1 //===-- AMDGPUCodeGenPrepare.cpp ------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file 10 /// This pass does misc. AMDGPU optimizations on IR before instruction 11 /// selection. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "AMDGPU.h" 16 #include "AMDGPUTargetMachine.h" 17 #include "SIModeRegisterDefaults.h" 18 #include "llvm/Analysis/AssumptionCache.h" 19 #include "llvm/Analysis/ConstantFolding.h" 20 #include "llvm/Analysis/UniformityAnalysis.h" 21 #include "llvm/Analysis/ValueTracking.h" 22 #include "llvm/CodeGen/TargetPassConfig.h" 23 #include "llvm/IR/Dominators.h" 24 #include "llvm/IR/IRBuilder.h" 25 #include "llvm/IR/InstVisitor.h" 26 #include "llvm/IR/IntrinsicsAMDGPU.h" 27 #include "llvm/InitializePasses.h" 28 #include "llvm/Pass.h" 29 #include "llvm/Support/KnownBits.h" 30 #include "llvm/Transforms/Utils/IntegerDivision.h" 31 32 #define DEBUG_TYPE "amdgpu-codegenprepare" 33 34 using namespace llvm; 35 36 namespace { 37 38 static cl::opt<bool> WidenLoads( 39 "amdgpu-codegenprepare-widen-constant-loads", 40 cl::desc("Widen sub-dword constant address space loads in AMDGPUCodeGenPrepare"), 41 cl::ReallyHidden, 42 cl::init(false)); 43 44 static cl::opt<bool> Widen16BitOps( 45 "amdgpu-codegenprepare-widen-16-bit-ops", 46 cl::desc("Widen uniform 16-bit instructions to 32-bit in AMDGPUCodeGenPrepare"), 47 cl::ReallyHidden, 48 cl::init(true)); 49 50 static cl::opt<bool> 51 ScalarizeLargePHIs("amdgpu-codegenprepare-break-large-phis", 52 cl::desc("Break large PHI nodes for DAGISel"), 53 cl::ReallyHidden, cl::init(true)); 54 55 static cl::opt<unsigned> ScalarizeLargePHIsThreshold( 56 "amdgpu-codegenprepare-break-large-phis-threshold", 57 cl::desc("Minimum type size in bits for breaking large PHI nodes"), 58 cl::ReallyHidden, cl::init(32)); 59 60 static cl::opt<bool> UseMul24Intrin( 61 "amdgpu-codegenprepare-mul24", 62 cl::desc("Introduce mul24 intrinsics in AMDGPUCodeGenPrepare"), 63 cl::ReallyHidden, 64 cl::init(true)); 65 66 // Legalize 64-bit division by using the generic IR expansion. 67 static cl::opt<bool> ExpandDiv64InIR( 68 "amdgpu-codegenprepare-expand-div64", 69 cl::desc("Expand 64-bit division in AMDGPUCodeGenPrepare"), 70 cl::ReallyHidden, 71 cl::init(false)); 72 73 // Leave all division operations as they are. This supersedes ExpandDiv64InIR 74 // and is used for testing the legalizer. 75 static cl::opt<bool> DisableIDivExpand( 76 "amdgpu-codegenprepare-disable-idiv-expansion", 77 cl::desc("Prevent expanding integer division in AMDGPUCodeGenPrepare"), 78 cl::ReallyHidden, 79 cl::init(false)); 80 81 class AMDGPUCodeGenPrepare : public FunctionPass, 82 public InstVisitor<AMDGPUCodeGenPrepare, bool> { 83 const GCNSubtarget *ST = nullptr; 84 AssumptionCache *AC = nullptr; 85 DominatorTree *DT = nullptr; 86 UniformityInfo *UA = nullptr; 87 Module *Mod = nullptr; 88 const DataLayout *DL = nullptr; 89 bool HasUnsafeFPMath = false; 90 bool HasFP32Denormals = false; 91 92 /// Copies exact/nsw/nuw flags (if any) from binary operation \p I to 93 /// binary operation \p V. 94 /// 95 /// \returns Binary operation \p V. 96 /// \returns \p T's base element bit width. 97 unsigned getBaseElementBitWidth(const Type *T) const; 98 99 /// \returns Equivalent 32 bit integer type for given type \p T. For example, 100 /// if \p T is i7, then i32 is returned; if \p T is <3 x i12>, then <3 x i32> 101 /// is returned. 102 Type *getI32Ty(IRBuilder<> &B, const Type *T) const; 103 104 /// \returns True if binary operation \p I is a signed binary operation, false 105 /// otherwise. 106 bool isSigned(const BinaryOperator &I) const; 107 108 /// \returns True if the condition of 'select' operation \p I comes from a 109 /// signed 'icmp' operation, false otherwise. 110 bool isSigned(const SelectInst &I) const; 111 112 /// \returns True if type \p T needs to be promoted to 32 bit integer type, 113 /// false otherwise. 114 bool needsPromotionToI32(const Type *T) const; 115 116 /// Promotes uniform binary operation \p I to equivalent 32 bit binary 117 /// operation. 118 /// 119 /// \details \p I's base element bit width must be greater than 1 and less 120 /// than or equal 16. Promotion is done by sign or zero extending operands to 121 /// 32 bits, replacing \p I with equivalent 32 bit binary operation, and 122 /// truncating the result of 32 bit binary operation back to \p I's original 123 /// type. Division operation is not promoted. 124 /// 125 /// \returns True if \p I is promoted to equivalent 32 bit binary operation, 126 /// false otherwise. 127 bool promoteUniformOpToI32(BinaryOperator &I) const; 128 129 /// Promotes uniform 'icmp' operation \p I to 32 bit 'icmp' operation. 130 /// 131 /// \details \p I's base element bit width must be greater than 1 and less 132 /// than or equal 16. Promotion is done by sign or zero extending operands to 133 /// 32 bits, and replacing \p I with 32 bit 'icmp' operation. 134 /// 135 /// \returns True. 136 bool promoteUniformOpToI32(ICmpInst &I) const; 137 138 /// Promotes uniform 'select' operation \p I to 32 bit 'select' 139 /// operation. 140 /// 141 /// \details \p I's base element bit width must be greater than 1 and less 142 /// than or equal 16. Promotion is done by sign or zero extending operands to 143 /// 32 bits, replacing \p I with 32 bit 'select' operation, and truncating the 144 /// result of 32 bit 'select' operation back to \p I's original type. 145 /// 146 /// \returns True. 147 bool promoteUniformOpToI32(SelectInst &I) const; 148 149 /// Promotes uniform 'bitreverse' intrinsic \p I to 32 bit 'bitreverse' 150 /// intrinsic. 151 /// 152 /// \details \p I's base element bit width must be greater than 1 and less 153 /// than or equal 16. Promotion is done by zero extending the operand to 32 154 /// bits, replacing \p I with 32 bit 'bitreverse' intrinsic, shifting the 155 /// result of 32 bit 'bitreverse' intrinsic to the right with zero fill (the 156 /// shift amount is 32 minus \p I's base element bit width), and truncating 157 /// the result of the shift operation back to \p I's original type. 158 /// 159 /// \returns True. 160 bool promoteUniformBitreverseToI32(IntrinsicInst &I) const; 161 162 /// \returns The minimum number of bits needed to store the value of \Op as an 163 /// unsigned integer. Truncating to this size and then zero-extending to 164 /// the original will not change the value. 165 unsigned numBitsUnsigned(Value *Op) const; 166 167 /// \returns The minimum number of bits needed to store the value of \Op as a 168 /// signed integer. Truncating to this size and then sign-extending to 169 /// the original size will not change the value. 170 unsigned numBitsSigned(Value *Op) const; 171 172 /// Replace mul instructions with llvm.amdgcn.mul.u24 or llvm.amdgcn.mul.s24. 173 /// SelectionDAG has an issue where an and asserting the bits are known 174 bool replaceMulWithMul24(BinaryOperator &I) const; 175 176 /// Perform same function as equivalently named function in DAGCombiner. Since 177 /// we expand some divisions here, we need to perform this before obscuring. 178 bool foldBinOpIntoSelect(BinaryOperator &I) const; 179 180 bool divHasSpecialOptimization(BinaryOperator &I, 181 Value *Num, Value *Den) const; 182 int getDivNumBits(BinaryOperator &I, 183 Value *Num, Value *Den, 184 unsigned AtLeast, bool Signed) const; 185 186 /// Expands 24 bit div or rem. 187 Value* expandDivRem24(IRBuilder<> &Builder, BinaryOperator &I, 188 Value *Num, Value *Den, 189 bool IsDiv, bool IsSigned) const; 190 191 Value *expandDivRem24Impl(IRBuilder<> &Builder, BinaryOperator &I, 192 Value *Num, Value *Den, unsigned NumBits, 193 bool IsDiv, bool IsSigned) const; 194 195 /// Expands 32 bit div or rem. 196 Value* expandDivRem32(IRBuilder<> &Builder, BinaryOperator &I, 197 Value *Num, Value *Den) const; 198 199 Value *shrinkDivRem64(IRBuilder<> &Builder, BinaryOperator &I, 200 Value *Num, Value *Den) const; 201 void expandDivRem64(BinaryOperator &I) const; 202 203 /// Widen a scalar load. 204 /// 205 /// \details \p Widen scalar load for uniform, small type loads from constant 206 // memory / to a full 32-bits and then truncate the input to allow a scalar 207 // load instead of a vector load. 208 // 209 /// \returns True. 210 211 bool canWidenScalarExtLoad(LoadInst &I) const; 212 213 public: 214 static char ID; 215 216 AMDGPUCodeGenPrepare() : FunctionPass(ID) {} 217 218 bool visitFDiv(BinaryOperator &I); 219 bool visitXor(BinaryOperator &I); 220 221 bool visitInstruction(Instruction &I) { return false; } 222 bool visitBinaryOperator(BinaryOperator &I); 223 bool visitLoadInst(LoadInst &I); 224 bool visitICmpInst(ICmpInst &I); 225 bool visitSelectInst(SelectInst &I); 226 bool visitPHINode(PHINode &I); 227 228 bool visitIntrinsicInst(IntrinsicInst &I); 229 bool visitBitreverseIntrinsicInst(IntrinsicInst &I); 230 231 bool doInitialization(Module &M) override; 232 bool runOnFunction(Function &F) override; 233 234 StringRef getPassName() const override { return "AMDGPU IR optimizations"; } 235 236 void getAnalysisUsage(AnalysisUsage &AU) const override { 237 AU.addRequired<AssumptionCacheTracker>(); 238 AU.addRequired<UniformityInfoWrapperPass>(); 239 240 // FIXME: Division expansion needs to preserve the dominator tree. 241 if (!ExpandDiv64InIR) 242 AU.setPreservesAll(); 243 } 244 }; 245 246 } // end anonymous namespace 247 248 unsigned AMDGPUCodeGenPrepare::getBaseElementBitWidth(const Type *T) const { 249 assert(needsPromotionToI32(T) && "T does not need promotion to i32"); 250 251 if (T->isIntegerTy()) 252 return T->getIntegerBitWidth(); 253 return cast<VectorType>(T)->getElementType()->getIntegerBitWidth(); 254 } 255 256 Type *AMDGPUCodeGenPrepare::getI32Ty(IRBuilder<> &B, const Type *T) const { 257 assert(needsPromotionToI32(T) && "T does not need promotion to i32"); 258 259 if (T->isIntegerTy()) 260 return B.getInt32Ty(); 261 return FixedVectorType::get(B.getInt32Ty(), cast<FixedVectorType>(T)); 262 } 263 264 bool AMDGPUCodeGenPrepare::isSigned(const BinaryOperator &I) const { 265 return I.getOpcode() == Instruction::AShr || 266 I.getOpcode() == Instruction::SDiv || I.getOpcode() == Instruction::SRem; 267 } 268 269 bool AMDGPUCodeGenPrepare::isSigned(const SelectInst &I) const { 270 return isa<ICmpInst>(I.getOperand(0)) ? 271 cast<ICmpInst>(I.getOperand(0))->isSigned() : false; 272 } 273 274 bool AMDGPUCodeGenPrepare::needsPromotionToI32(const Type *T) const { 275 if (!Widen16BitOps) 276 return false; 277 278 const IntegerType *IntTy = dyn_cast<IntegerType>(T); 279 if (IntTy && IntTy->getBitWidth() > 1 && IntTy->getBitWidth() <= 16) 280 return true; 281 282 if (const VectorType *VT = dyn_cast<VectorType>(T)) { 283 // TODO: The set of packed operations is more limited, so may want to 284 // promote some anyway. 285 if (ST->hasVOP3PInsts()) 286 return false; 287 288 return needsPromotionToI32(VT->getElementType()); 289 } 290 291 return false; 292 } 293 294 // Return true if the op promoted to i32 should have nsw set. 295 static bool promotedOpIsNSW(const Instruction &I) { 296 switch (I.getOpcode()) { 297 case Instruction::Shl: 298 case Instruction::Add: 299 case Instruction::Sub: 300 return true; 301 case Instruction::Mul: 302 return I.hasNoUnsignedWrap(); 303 default: 304 return false; 305 } 306 } 307 308 // Return true if the op promoted to i32 should have nuw set. 309 static bool promotedOpIsNUW(const Instruction &I) { 310 switch (I.getOpcode()) { 311 case Instruction::Shl: 312 case Instruction::Add: 313 case Instruction::Mul: 314 return true; 315 case Instruction::Sub: 316 return I.hasNoUnsignedWrap(); 317 default: 318 return false; 319 } 320 } 321 322 bool AMDGPUCodeGenPrepare::canWidenScalarExtLoad(LoadInst &I) const { 323 Type *Ty = I.getType(); 324 const DataLayout &DL = Mod->getDataLayout(); 325 int TySize = DL.getTypeSizeInBits(Ty); 326 Align Alignment = DL.getValueOrABITypeAlignment(I.getAlign(), Ty); 327 328 return I.isSimple() && TySize < 32 && Alignment >= 4 && UA->isUniform(&I); 329 } 330 331 bool AMDGPUCodeGenPrepare::promoteUniformOpToI32(BinaryOperator &I) const { 332 assert(needsPromotionToI32(I.getType()) && 333 "I does not need promotion to i32"); 334 335 if (I.getOpcode() == Instruction::SDiv || 336 I.getOpcode() == Instruction::UDiv || 337 I.getOpcode() == Instruction::SRem || 338 I.getOpcode() == Instruction::URem) 339 return false; 340 341 IRBuilder<> Builder(&I); 342 Builder.SetCurrentDebugLocation(I.getDebugLoc()); 343 344 Type *I32Ty = getI32Ty(Builder, I.getType()); 345 Value *ExtOp0 = nullptr; 346 Value *ExtOp1 = nullptr; 347 Value *ExtRes = nullptr; 348 Value *TruncRes = nullptr; 349 350 if (isSigned(I)) { 351 ExtOp0 = Builder.CreateSExt(I.getOperand(0), I32Ty); 352 ExtOp1 = Builder.CreateSExt(I.getOperand(1), I32Ty); 353 } else { 354 ExtOp0 = Builder.CreateZExt(I.getOperand(0), I32Ty); 355 ExtOp1 = Builder.CreateZExt(I.getOperand(1), I32Ty); 356 } 357 358 ExtRes = Builder.CreateBinOp(I.getOpcode(), ExtOp0, ExtOp1); 359 if (Instruction *Inst = dyn_cast<Instruction>(ExtRes)) { 360 if (promotedOpIsNSW(cast<Instruction>(I))) 361 Inst->setHasNoSignedWrap(); 362 363 if (promotedOpIsNUW(cast<Instruction>(I))) 364 Inst->setHasNoUnsignedWrap(); 365 366 if (const auto *ExactOp = dyn_cast<PossiblyExactOperator>(&I)) 367 Inst->setIsExact(ExactOp->isExact()); 368 } 369 370 TruncRes = Builder.CreateTrunc(ExtRes, I.getType()); 371 372 I.replaceAllUsesWith(TruncRes); 373 I.eraseFromParent(); 374 375 return true; 376 } 377 378 bool AMDGPUCodeGenPrepare::promoteUniformOpToI32(ICmpInst &I) const { 379 assert(needsPromotionToI32(I.getOperand(0)->getType()) && 380 "I does not need promotion to i32"); 381 382 IRBuilder<> Builder(&I); 383 Builder.SetCurrentDebugLocation(I.getDebugLoc()); 384 385 Type *I32Ty = getI32Ty(Builder, I.getOperand(0)->getType()); 386 Value *ExtOp0 = nullptr; 387 Value *ExtOp1 = nullptr; 388 Value *NewICmp = nullptr; 389 390 if (I.isSigned()) { 391 ExtOp0 = Builder.CreateSExt(I.getOperand(0), I32Ty); 392 ExtOp1 = Builder.CreateSExt(I.getOperand(1), I32Ty); 393 } else { 394 ExtOp0 = Builder.CreateZExt(I.getOperand(0), I32Ty); 395 ExtOp1 = Builder.CreateZExt(I.getOperand(1), I32Ty); 396 } 397 NewICmp = Builder.CreateICmp(I.getPredicate(), ExtOp0, ExtOp1); 398 399 I.replaceAllUsesWith(NewICmp); 400 I.eraseFromParent(); 401 402 return true; 403 } 404 405 bool AMDGPUCodeGenPrepare::promoteUniformOpToI32(SelectInst &I) const { 406 assert(needsPromotionToI32(I.getType()) && 407 "I does not need promotion to i32"); 408 409 IRBuilder<> Builder(&I); 410 Builder.SetCurrentDebugLocation(I.getDebugLoc()); 411 412 Type *I32Ty = getI32Ty(Builder, I.getType()); 413 Value *ExtOp1 = nullptr; 414 Value *ExtOp2 = nullptr; 415 Value *ExtRes = nullptr; 416 Value *TruncRes = nullptr; 417 418 if (isSigned(I)) { 419 ExtOp1 = Builder.CreateSExt(I.getOperand(1), I32Ty); 420 ExtOp2 = Builder.CreateSExt(I.getOperand(2), I32Ty); 421 } else { 422 ExtOp1 = Builder.CreateZExt(I.getOperand(1), I32Ty); 423 ExtOp2 = Builder.CreateZExt(I.getOperand(2), I32Ty); 424 } 425 ExtRes = Builder.CreateSelect(I.getOperand(0), ExtOp1, ExtOp2); 426 TruncRes = Builder.CreateTrunc(ExtRes, I.getType()); 427 428 I.replaceAllUsesWith(TruncRes); 429 I.eraseFromParent(); 430 431 return true; 432 } 433 434 bool AMDGPUCodeGenPrepare::promoteUniformBitreverseToI32( 435 IntrinsicInst &I) const { 436 assert(I.getIntrinsicID() == Intrinsic::bitreverse && 437 "I must be bitreverse intrinsic"); 438 assert(needsPromotionToI32(I.getType()) && 439 "I does not need promotion to i32"); 440 441 IRBuilder<> Builder(&I); 442 Builder.SetCurrentDebugLocation(I.getDebugLoc()); 443 444 Type *I32Ty = getI32Ty(Builder, I.getType()); 445 Function *I32 = 446 Intrinsic::getDeclaration(Mod, Intrinsic::bitreverse, { I32Ty }); 447 Value *ExtOp = Builder.CreateZExt(I.getOperand(0), I32Ty); 448 Value *ExtRes = Builder.CreateCall(I32, { ExtOp }); 449 Value *LShrOp = 450 Builder.CreateLShr(ExtRes, 32 - getBaseElementBitWidth(I.getType())); 451 Value *TruncRes = 452 Builder.CreateTrunc(LShrOp, I.getType()); 453 454 I.replaceAllUsesWith(TruncRes); 455 I.eraseFromParent(); 456 457 return true; 458 } 459 460 unsigned AMDGPUCodeGenPrepare::numBitsUnsigned(Value *Op) const { 461 return computeKnownBits(Op, *DL, 0, AC).countMaxActiveBits(); 462 } 463 464 unsigned AMDGPUCodeGenPrepare::numBitsSigned(Value *Op) const { 465 return ComputeMaxSignificantBits(Op, *DL, 0, AC); 466 } 467 468 static void extractValues(IRBuilder<> &Builder, 469 SmallVectorImpl<Value *> &Values, Value *V) { 470 auto *VT = dyn_cast<FixedVectorType>(V->getType()); 471 if (!VT) { 472 Values.push_back(V); 473 return; 474 } 475 476 for (int I = 0, E = VT->getNumElements(); I != E; ++I) 477 Values.push_back(Builder.CreateExtractElement(V, I)); 478 } 479 480 static Value *insertValues(IRBuilder<> &Builder, 481 Type *Ty, 482 SmallVectorImpl<Value *> &Values) { 483 if (!Ty->isVectorTy()) { 484 assert(Values.size() == 1); 485 return Values[0]; 486 } 487 488 Value *NewVal = PoisonValue::get(Ty); 489 for (int I = 0, E = Values.size(); I != E; ++I) 490 NewVal = Builder.CreateInsertElement(NewVal, Values[I], I); 491 492 return NewVal; 493 } 494 495 // Returns 24-bit or 48-bit (as per `NumBits` and `Size`) mul of `LHS` and 496 // `RHS`. `NumBits` is the number of KnownBits of the result and `Size` is the 497 // width of the original destination. 498 static Value *getMul24(IRBuilder<> &Builder, Value *LHS, Value *RHS, 499 unsigned Size, unsigned NumBits, bool IsSigned) { 500 if (Size <= 32 || NumBits <= 32) { 501 Intrinsic::ID ID = 502 IsSigned ? Intrinsic::amdgcn_mul_i24 : Intrinsic::amdgcn_mul_u24; 503 return Builder.CreateIntrinsic(ID, {}, {LHS, RHS}); 504 } 505 506 assert(NumBits <= 48); 507 508 Intrinsic::ID LoID = 509 IsSigned ? Intrinsic::amdgcn_mul_i24 : Intrinsic::amdgcn_mul_u24; 510 Intrinsic::ID HiID = 511 IsSigned ? Intrinsic::amdgcn_mulhi_i24 : Intrinsic::amdgcn_mulhi_u24; 512 513 Value *Lo = Builder.CreateIntrinsic(LoID, {}, {LHS, RHS}); 514 Value *Hi = Builder.CreateIntrinsic(HiID, {}, {LHS, RHS}); 515 516 IntegerType *I64Ty = Builder.getInt64Ty(); 517 Lo = Builder.CreateZExtOrTrunc(Lo, I64Ty); 518 Hi = Builder.CreateZExtOrTrunc(Hi, I64Ty); 519 520 return Builder.CreateOr(Lo, Builder.CreateShl(Hi, 32)); 521 } 522 523 bool AMDGPUCodeGenPrepare::replaceMulWithMul24(BinaryOperator &I) const { 524 if (I.getOpcode() != Instruction::Mul) 525 return false; 526 527 Type *Ty = I.getType(); 528 unsigned Size = Ty->getScalarSizeInBits(); 529 if (Size <= 16 && ST->has16BitInsts()) 530 return false; 531 532 // Prefer scalar if this could be s_mul_i32 533 if (UA->isUniform(&I)) 534 return false; 535 536 Value *LHS = I.getOperand(0); 537 Value *RHS = I.getOperand(1); 538 IRBuilder<> Builder(&I); 539 Builder.SetCurrentDebugLocation(I.getDebugLoc()); 540 541 unsigned LHSBits = 0, RHSBits = 0; 542 bool IsSigned = false; 543 544 if (ST->hasMulU24() && (LHSBits = numBitsUnsigned(LHS)) <= 24 && 545 (RHSBits = numBitsUnsigned(RHS)) <= 24) { 546 IsSigned = false; 547 548 } else if (ST->hasMulI24() && (LHSBits = numBitsSigned(LHS)) <= 24 && 549 (RHSBits = numBitsSigned(RHS)) <= 24) { 550 IsSigned = true; 551 552 } else 553 return false; 554 555 SmallVector<Value *, 4> LHSVals; 556 SmallVector<Value *, 4> RHSVals; 557 SmallVector<Value *, 4> ResultVals; 558 extractValues(Builder, LHSVals, LHS); 559 extractValues(Builder, RHSVals, RHS); 560 561 IntegerType *I32Ty = Builder.getInt32Ty(); 562 for (int I = 0, E = LHSVals.size(); I != E; ++I) { 563 Value *LHS, *RHS; 564 if (IsSigned) { 565 LHS = Builder.CreateSExtOrTrunc(LHSVals[I], I32Ty); 566 RHS = Builder.CreateSExtOrTrunc(RHSVals[I], I32Ty); 567 } else { 568 LHS = Builder.CreateZExtOrTrunc(LHSVals[I], I32Ty); 569 RHS = Builder.CreateZExtOrTrunc(RHSVals[I], I32Ty); 570 } 571 572 Value *Result = 573 getMul24(Builder, LHS, RHS, Size, LHSBits + RHSBits, IsSigned); 574 575 if (IsSigned) { 576 ResultVals.push_back( 577 Builder.CreateSExtOrTrunc(Result, LHSVals[I]->getType())); 578 } else { 579 ResultVals.push_back( 580 Builder.CreateZExtOrTrunc(Result, LHSVals[I]->getType())); 581 } 582 } 583 584 Value *NewVal = insertValues(Builder, Ty, ResultVals); 585 NewVal->takeName(&I); 586 I.replaceAllUsesWith(NewVal); 587 I.eraseFromParent(); 588 589 return true; 590 } 591 592 // Find a select instruction, which may have been casted. This is mostly to deal 593 // with cases where i16 selects were promoted here to i32. 594 static SelectInst *findSelectThroughCast(Value *V, CastInst *&Cast) { 595 Cast = nullptr; 596 if (SelectInst *Sel = dyn_cast<SelectInst>(V)) 597 return Sel; 598 599 if ((Cast = dyn_cast<CastInst>(V))) { 600 if (SelectInst *Sel = dyn_cast<SelectInst>(Cast->getOperand(0))) 601 return Sel; 602 } 603 604 return nullptr; 605 } 606 607 bool AMDGPUCodeGenPrepare::foldBinOpIntoSelect(BinaryOperator &BO) const { 608 // Don't do this unless the old select is going away. We want to eliminate the 609 // binary operator, not replace a binop with a select. 610 int SelOpNo = 0; 611 612 CastInst *CastOp; 613 614 // TODO: Should probably try to handle some cases with multiple 615 // users. Duplicating the select may be profitable for division. 616 SelectInst *Sel = findSelectThroughCast(BO.getOperand(0), CastOp); 617 if (!Sel || !Sel->hasOneUse()) { 618 SelOpNo = 1; 619 Sel = findSelectThroughCast(BO.getOperand(1), CastOp); 620 } 621 622 if (!Sel || !Sel->hasOneUse()) 623 return false; 624 625 Constant *CT = dyn_cast<Constant>(Sel->getTrueValue()); 626 Constant *CF = dyn_cast<Constant>(Sel->getFalseValue()); 627 Constant *CBO = dyn_cast<Constant>(BO.getOperand(SelOpNo ^ 1)); 628 if (!CBO || !CT || !CF) 629 return false; 630 631 if (CastOp) { 632 if (!CastOp->hasOneUse()) 633 return false; 634 CT = ConstantFoldCastOperand(CastOp->getOpcode(), CT, BO.getType(), *DL); 635 CF = ConstantFoldCastOperand(CastOp->getOpcode(), CF, BO.getType(), *DL); 636 } 637 638 // TODO: Handle special 0/-1 cases DAG combine does, although we only really 639 // need to handle divisions here. 640 Constant *FoldedT = SelOpNo ? 641 ConstantFoldBinaryOpOperands(BO.getOpcode(), CBO, CT, *DL) : 642 ConstantFoldBinaryOpOperands(BO.getOpcode(), CT, CBO, *DL); 643 if (!FoldedT || isa<ConstantExpr>(FoldedT)) 644 return false; 645 646 Constant *FoldedF = SelOpNo ? 647 ConstantFoldBinaryOpOperands(BO.getOpcode(), CBO, CF, *DL) : 648 ConstantFoldBinaryOpOperands(BO.getOpcode(), CF, CBO, *DL); 649 if (!FoldedF || isa<ConstantExpr>(FoldedF)) 650 return false; 651 652 IRBuilder<> Builder(&BO); 653 Builder.SetCurrentDebugLocation(BO.getDebugLoc()); 654 if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(&BO)) 655 Builder.setFastMathFlags(FPOp->getFastMathFlags()); 656 657 Value *NewSelect = Builder.CreateSelect(Sel->getCondition(), 658 FoldedT, FoldedF); 659 NewSelect->takeName(&BO); 660 BO.replaceAllUsesWith(NewSelect); 661 BO.eraseFromParent(); 662 if (CastOp) 663 CastOp->eraseFromParent(); 664 Sel->eraseFromParent(); 665 return true; 666 } 667 668 // Optimize fdiv with rcp: 669 // 670 // 1/x -> rcp(x) when rcp is sufficiently accurate or inaccurate rcp is 671 // allowed with unsafe-fp-math or afn. 672 // 673 // a/b -> a*rcp(b) when inaccurate rcp is allowed with unsafe-fp-math or afn. 674 static Value *optimizeWithRcp(Value *Num, Value *Den, bool AllowInaccurateRcp, 675 bool RcpIsAccurate, IRBuilder<> &Builder, 676 Module *Mod) { 677 678 if (!AllowInaccurateRcp && !RcpIsAccurate) 679 return nullptr; 680 681 Type *Ty = Den->getType(); 682 if (const ConstantFP *CLHS = dyn_cast<ConstantFP>(Num)) { 683 if (AllowInaccurateRcp || RcpIsAccurate) { 684 if (CLHS->isExactlyValue(1.0)) { 685 Function *Decl = Intrinsic::getDeclaration( 686 Mod, Intrinsic::amdgcn_rcp, Ty); 687 688 // v_rcp_f32 and v_rsq_f32 do not support denormals, and according to 689 // the CI documentation has a worst case error of 1 ulp. 690 // OpenCL requires <= 2.5 ulp for 1.0 / x, so it should always be OK to 691 // use it as long as we aren't trying to use denormals. 692 // 693 // v_rcp_f16 and v_rsq_f16 DO support denormals. 694 695 // NOTE: v_sqrt and v_rcp will be combined to v_rsq later. So we don't 696 // insert rsq intrinsic here. 697 698 // 1.0 / x -> rcp(x) 699 return Builder.CreateCall(Decl, { Den }); 700 } 701 702 // Same as for 1.0, but expand the sign out of the constant. 703 if (CLHS->isExactlyValue(-1.0)) { 704 Function *Decl = Intrinsic::getDeclaration( 705 Mod, Intrinsic::amdgcn_rcp, Ty); 706 707 // -1.0 / x -> rcp (fneg x) 708 Value *FNeg = Builder.CreateFNeg(Den); 709 return Builder.CreateCall(Decl, { FNeg }); 710 } 711 } 712 } 713 714 if (AllowInaccurateRcp) { 715 Function *Decl = Intrinsic::getDeclaration( 716 Mod, Intrinsic::amdgcn_rcp, Ty); 717 718 // Turn into multiply by the reciprocal. 719 // x / y -> x * (1.0 / y) 720 Value *Recip = Builder.CreateCall(Decl, { Den }); 721 return Builder.CreateFMul(Num, Recip); 722 } 723 return nullptr; 724 } 725 726 // optimize with fdiv.fast: 727 // 728 // a/b -> fdiv.fast(a, b) when !fpmath >= 2.5ulp with denormals flushed. 729 // 730 // 1/x -> fdiv.fast(1,x) when !fpmath >= 2.5ulp. 731 // 732 // NOTE: optimizeWithRcp should be tried first because rcp is the preference. 733 static Value *optimizeWithFDivFast(Value *Num, Value *Den, float ReqdAccuracy, 734 bool HasDenormals, IRBuilder<> &Builder, 735 Module *Mod) { 736 // fdiv.fast can achieve 2.5 ULP accuracy. 737 if (ReqdAccuracy < 2.5f) 738 return nullptr; 739 740 // Only have fdiv.fast for f32. 741 Type *Ty = Den->getType(); 742 if (!Ty->isFloatTy()) 743 return nullptr; 744 745 bool NumIsOne = false; 746 if (const ConstantFP *CNum = dyn_cast<ConstantFP>(Num)) { 747 if (CNum->isExactlyValue(+1.0) || CNum->isExactlyValue(-1.0)) 748 NumIsOne = true; 749 } 750 751 // fdiv does not support denormals. But 1.0/x is always fine to use it. 752 if (HasDenormals && !NumIsOne) 753 return nullptr; 754 755 Function *Decl = Intrinsic::getDeclaration(Mod, Intrinsic::amdgcn_fdiv_fast); 756 return Builder.CreateCall(Decl, { Num, Den }); 757 } 758 759 // Optimizations is performed based on fpmath, fast math flags as well as 760 // denormals to optimize fdiv with either rcp or fdiv.fast. 761 // 762 // With rcp: 763 // 1/x -> rcp(x) when rcp is sufficiently accurate or inaccurate rcp is 764 // allowed with unsafe-fp-math or afn. 765 // 766 // a/b -> a*rcp(b) when inaccurate rcp is allowed with unsafe-fp-math or afn. 767 // 768 // With fdiv.fast: 769 // a/b -> fdiv.fast(a, b) when !fpmath >= 2.5ulp with denormals flushed. 770 // 771 // 1/x -> fdiv.fast(1,x) when !fpmath >= 2.5ulp. 772 // 773 // NOTE: rcp is the preference in cases that both are legal. 774 bool AMDGPUCodeGenPrepare::visitFDiv(BinaryOperator &FDiv) { 775 776 Type *Ty = FDiv.getType()->getScalarType(); 777 778 // The f64 rcp/rsq approximations are pretty inaccurate. We can do an 779 // expansion around them in codegen. 780 if (Ty->isDoubleTy()) 781 return false; 782 783 // No intrinsic for fdiv16 if target does not support f16. 784 if (Ty->isHalfTy() && !ST->has16BitInsts()) 785 return false; 786 787 const FPMathOperator *FPOp = cast<const FPMathOperator>(&FDiv); 788 const float ReqdAccuracy = FPOp->getFPAccuracy(); 789 790 // Inaccurate rcp is allowed with unsafe-fp-math or afn. 791 FastMathFlags FMF = FPOp->getFastMathFlags(); 792 const bool AllowInaccurateRcp = HasUnsafeFPMath || FMF.approxFunc(); 793 794 // rcp_f16 is accurate for !fpmath >= 1.0ulp. 795 // rcp_f32 is accurate for !fpmath >= 1.0ulp and denormals are flushed. 796 // rcp_f64 is never accurate. 797 const bool RcpIsAccurate = (Ty->isHalfTy() && ReqdAccuracy >= 1.0f) || 798 (Ty->isFloatTy() && !HasFP32Denormals && ReqdAccuracy >= 1.0f); 799 800 IRBuilder<> Builder(FDiv.getParent(), std::next(FDiv.getIterator())); 801 Builder.setFastMathFlags(FMF); 802 Builder.SetCurrentDebugLocation(FDiv.getDebugLoc()); 803 804 Value *Num = FDiv.getOperand(0); 805 Value *Den = FDiv.getOperand(1); 806 807 Value *NewFDiv = nullptr; 808 if (auto *VT = dyn_cast<FixedVectorType>(FDiv.getType())) { 809 NewFDiv = PoisonValue::get(VT); 810 811 // FIXME: Doesn't do the right thing for cases where the vector is partially 812 // constant. This works when the scalarizer pass is run first. 813 for (unsigned I = 0, E = VT->getNumElements(); I != E; ++I) { 814 Value *NumEltI = Builder.CreateExtractElement(Num, I); 815 Value *DenEltI = Builder.CreateExtractElement(Den, I); 816 // Try rcp first. 817 Value *NewElt = optimizeWithRcp(NumEltI, DenEltI, AllowInaccurateRcp, 818 RcpIsAccurate, Builder, Mod); 819 if (!NewElt) // Try fdiv.fast. 820 NewElt = optimizeWithFDivFast(NumEltI, DenEltI, ReqdAccuracy, 821 HasFP32Denormals, Builder, Mod); 822 if (!NewElt) // Keep the original. 823 NewElt = Builder.CreateFDiv(NumEltI, DenEltI); 824 825 NewFDiv = Builder.CreateInsertElement(NewFDiv, NewElt, I); 826 } 827 } else { // Scalar FDiv. 828 // Try rcp first. 829 NewFDiv = optimizeWithRcp(Num, Den, AllowInaccurateRcp, RcpIsAccurate, 830 Builder, Mod); 831 if (!NewFDiv) { // Try fdiv.fast. 832 NewFDiv = optimizeWithFDivFast(Num, Den, ReqdAccuracy, HasFP32Denormals, 833 Builder, Mod); 834 } 835 } 836 837 if (NewFDiv) { 838 FDiv.replaceAllUsesWith(NewFDiv); 839 NewFDiv->takeName(&FDiv); 840 FDiv.eraseFromParent(); 841 } 842 843 return !!NewFDiv; 844 } 845 846 bool AMDGPUCodeGenPrepare::visitXor(BinaryOperator &I) { 847 // Match the Xor instruction, its type and its operands 848 IntrinsicInst *IntrinsicCall = dyn_cast<IntrinsicInst>(I.getOperand(0)); 849 ConstantInt *RHS = dyn_cast<ConstantInt>(I.getOperand(1)); 850 if (!RHS || !IntrinsicCall || RHS->getSExtValue() != -1) 851 return visitBinaryOperator(I); 852 853 // Check if the Call is an intrinsic instruction to amdgcn_class intrinsic 854 // has only one use 855 if (IntrinsicCall->getIntrinsicID() != Intrinsic::amdgcn_class || 856 !IntrinsicCall->hasOneUse()) 857 return visitBinaryOperator(I); 858 859 // "Not" the second argument of the intrinsic call 860 ConstantInt *Arg = dyn_cast<ConstantInt>(IntrinsicCall->getOperand(1)); 861 if (!Arg) 862 return visitBinaryOperator(I); 863 864 IntrinsicCall->setOperand( 865 1, ConstantInt::get(Arg->getType(), Arg->getZExtValue() ^ 0x3ff)); 866 I.replaceAllUsesWith(IntrinsicCall); 867 I.eraseFromParent(); 868 return true; 869 } 870 871 static bool hasUnsafeFPMath(const Function &F) { 872 Attribute Attr = F.getFnAttribute("unsafe-fp-math"); 873 return Attr.getValueAsBool(); 874 } 875 876 static std::pair<Value*, Value*> getMul64(IRBuilder<> &Builder, 877 Value *LHS, Value *RHS) { 878 Type *I32Ty = Builder.getInt32Ty(); 879 Type *I64Ty = Builder.getInt64Ty(); 880 881 Value *LHS_EXT64 = Builder.CreateZExt(LHS, I64Ty); 882 Value *RHS_EXT64 = Builder.CreateZExt(RHS, I64Ty); 883 Value *MUL64 = Builder.CreateMul(LHS_EXT64, RHS_EXT64); 884 Value *Lo = Builder.CreateTrunc(MUL64, I32Ty); 885 Value *Hi = Builder.CreateLShr(MUL64, Builder.getInt64(32)); 886 Hi = Builder.CreateTrunc(Hi, I32Ty); 887 return std::pair(Lo, Hi); 888 } 889 890 static Value* getMulHu(IRBuilder<> &Builder, Value *LHS, Value *RHS) { 891 return getMul64(Builder, LHS, RHS).second; 892 } 893 894 /// Figure out how many bits are really needed for this division. \p AtLeast is 895 /// an optimization hint to bypass the second ComputeNumSignBits call if we the 896 /// first one is insufficient. Returns -1 on failure. 897 int AMDGPUCodeGenPrepare::getDivNumBits(BinaryOperator &I, 898 Value *Num, Value *Den, 899 unsigned AtLeast, bool IsSigned) const { 900 const DataLayout &DL = Mod->getDataLayout(); 901 unsigned LHSSignBits = ComputeNumSignBits(Num, DL, 0, AC, &I); 902 if (LHSSignBits < AtLeast) 903 return -1; 904 905 unsigned RHSSignBits = ComputeNumSignBits(Den, DL, 0, AC, &I); 906 if (RHSSignBits < AtLeast) 907 return -1; 908 909 unsigned SignBits = std::min(LHSSignBits, RHSSignBits); 910 unsigned DivBits = Num->getType()->getScalarSizeInBits() - SignBits; 911 if (IsSigned) 912 ++DivBits; 913 return DivBits; 914 } 915 916 // The fractional part of a float is enough to accurately represent up to 917 // a 24-bit signed integer. 918 Value *AMDGPUCodeGenPrepare::expandDivRem24(IRBuilder<> &Builder, 919 BinaryOperator &I, 920 Value *Num, Value *Den, 921 bool IsDiv, bool IsSigned) const { 922 int DivBits = getDivNumBits(I, Num, Den, 9, IsSigned); 923 if (DivBits == -1) 924 return nullptr; 925 return expandDivRem24Impl(Builder, I, Num, Den, DivBits, IsDiv, IsSigned); 926 } 927 928 Value *AMDGPUCodeGenPrepare::expandDivRem24Impl(IRBuilder<> &Builder, 929 BinaryOperator &I, 930 Value *Num, Value *Den, 931 unsigned DivBits, 932 bool IsDiv, bool IsSigned) const { 933 Type *I32Ty = Builder.getInt32Ty(); 934 Num = Builder.CreateTrunc(Num, I32Ty); 935 Den = Builder.CreateTrunc(Den, I32Ty); 936 937 Type *F32Ty = Builder.getFloatTy(); 938 ConstantInt *One = Builder.getInt32(1); 939 Value *JQ = One; 940 941 if (IsSigned) { 942 // char|short jq = ia ^ ib; 943 JQ = Builder.CreateXor(Num, Den); 944 945 // jq = jq >> (bitsize - 2) 946 JQ = Builder.CreateAShr(JQ, Builder.getInt32(30)); 947 948 // jq = jq | 0x1 949 JQ = Builder.CreateOr(JQ, One); 950 } 951 952 // int ia = (int)LHS; 953 Value *IA = Num; 954 955 // int ib, (int)RHS; 956 Value *IB = Den; 957 958 // float fa = (float)ia; 959 Value *FA = IsSigned ? Builder.CreateSIToFP(IA, F32Ty) 960 : Builder.CreateUIToFP(IA, F32Ty); 961 962 // float fb = (float)ib; 963 Value *FB = IsSigned ? Builder.CreateSIToFP(IB,F32Ty) 964 : Builder.CreateUIToFP(IB,F32Ty); 965 966 Function *RcpDecl = Intrinsic::getDeclaration(Mod, Intrinsic::amdgcn_rcp, 967 Builder.getFloatTy()); 968 Value *RCP = Builder.CreateCall(RcpDecl, { FB }); 969 Value *FQM = Builder.CreateFMul(FA, RCP); 970 971 // fq = trunc(fqm); 972 CallInst *FQ = Builder.CreateUnaryIntrinsic(Intrinsic::trunc, FQM); 973 FQ->copyFastMathFlags(Builder.getFastMathFlags()); 974 975 // float fqneg = -fq; 976 Value *FQNeg = Builder.CreateFNeg(FQ); 977 978 // float fr = mad(fqneg, fb, fa); 979 auto FMAD = !ST->hasMadMacF32Insts() 980 ? Intrinsic::fma 981 : (Intrinsic::ID)Intrinsic::amdgcn_fmad_ftz; 982 Value *FR = Builder.CreateIntrinsic(FMAD, 983 {FQNeg->getType()}, {FQNeg, FB, FA}, FQ); 984 985 // int iq = (int)fq; 986 Value *IQ = IsSigned ? Builder.CreateFPToSI(FQ, I32Ty) 987 : Builder.CreateFPToUI(FQ, I32Ty); 988 989 // fr = fabs(fr); 990 FR = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, FR, FQ); 991 992 // fb = fabs(fb); 993 FB = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, FB, FQ); 994 995 // int cv = fr >= fb; 996 Value *CV = Builder.CreateFCmpOGE(FR, FB); 997 998 // jq = (cv ? jq : 0); 999 JQ = Builder.CreateSelect(CV, JQ, Builder.getInt32(0)); 1000 1001 // dst = iq + jq; 1002 Value *Div = Builder.CreateAdd(IQ, JQ); 1003 1004 Value *Res = Div; 1005 if (!IsDiv) { 1006 // Rem needs compensation, it's easier to recompute it 1007 Value *Rem = Builder.CreateMul(Div, Den); 1008 Res = Builder.CreateSub(Num, Rem); 1009 } 1010 1011 if (DivBits != 0 && DivBits < 32) { 1012 // Extend in register from the number of bits this divide really is. 1013 if (IsSigned) { 1014 int InRegBits = 32 - DivBits; 1015 1016 Res = Builder.CreateShl(Res, InRegBits); 1017 Res = Builder.CreateAShr(Res, InRegBits); 1018 } else { 1019 ConstantInt *TruncMask 1020 = Builder.getInt32((UINT64_C(1) << DivBits) - 1); 1021 Res = Builder.CreateAnd(Res, TruncMask); 1022 } 1023 } 1024 1025 return Res; 1026 } 1027 1028 // Try to recognize special cases the DAG will emit special, better expansions 1029 // than the general expansion we do here. 1030 1031 // TODO: It would be better to just directly handle those optimizations here. 1032 bool AMDGPUCodeGenPrepare::divHasSpecialOptimization( 1033 BinaryOperator &I, Value *Num, Value *Den) const { 1034 if (Constant *C = dyn_cast<Constant>(Den)) { 1035 // Arbitrary constants get a better expansion as long as a wider mulhi is 1036 // legal. 1037 if (C->getType()->getScalarSizeInBits() <= 32) 1038 return true; 1039 1040 // TODO: Sdiv check for not exact for some reason. 1041 1042 // If there's no wider mulhi, there's only a better expansion for powers of 1043 // two. 1044 // TODO: Should really know for each vector element. 1045 if (isKnownToBeAPowerOfTwo(C, *DL, true, 0, AC, &I, DT)) 1046 return true; 1047 1048 return false; 1049 } 1050 1051 if (BinaryOperator *BinOpDen = dyn_cast<BinaryOperator>(Den)) { 1052 // fold (udiv x, (shl c, y)) -> x >>u (log2(c)+y) iff c is power of 2 1053 if (BinOpDen->getOpcode() == Instruction::Shl && 1054 isa<Constant>(BinOpDen->getOperand(0)) && 1055 isKnownToBeAPowerOfTwo(BinOpDen->getOperand(0), *DL, true, 1056 0, AC, &I, DT)) { 1057 return true; 1058 } 1059 } 1060 1061 return false; 1062 } 1063 1064 static Value *getSign32(Value *V, IRBuilder<> &Builder, const DataLayout *DL) { 1065 // Check whether the sign can be determined statically. 1066 KnownBits Known = computeKnownBits(V, *DL); 1067 if (Known.isNegative()) 1068 return Constant::getAllOnesValue(V->getType()); 1069 if (Known.isNonNegative()) 1070 return Constant::getNullValue(V->getType()); 1071 return Builder.CreateAShr(V, Builder.getInt32(31)); 1072 } 1073 1074 Value *AMDGPUCodeGenPrepare::expandDivRem32(IRBuilder<> &Builder, 1075 BinaryOperator &I, Value *X, 1076 Value *Y) const { 1077 Instruction::BinaryOps Opc = I.getOpcode(); 1078 assert(Opc == Instruction::URem || Opc == Instruction::UDiv || 1079 Opc == Instruction::SRem || Opc == Instruction::SDiv); 1080 1081 FastMathFlags FMF; 1082 FMF.setFast(); 1083 Builder.setFastMathFlags(FMF); 1084 1085 if (divHasSpecialOptimization(I, X, Y)) 1086 return nullptr; // Keep it for later optimization. 1087 1088 bool IsDiv = Opc == Instruction::UDiv || Opc == Instruction::SDiv; 1089 bool IsSigned = Opc == Instruction::SRem || Opc == Instruction::SDiv; 1090 1091 Type *Ty = X->getType(); 1092 Type *I32Ty = Builder.getInt32Ty(); 1093 Type *F32Ty = Builder.getFloatTy(); 1094 1095 if (Ty->getScalarSizeInBits() < 32) { 1096 if (IsSigned) { 1097 X = Builder.CreateSExt(X, I32Ty); 1098 Y = Builder.CreateSExt(Y, I32Ty); 1099 } else { 1100 X = Builder.CreateZExt(X, I32Ty); 1101 Y = Builder.CreateZExt(Y, I32Ty); 1102 } 1103 } 1104 1105 if (Value *Res = expandDivRem24(Builder, I, X, Y, IsDiv, IsSigned)) { 1106 return IsSigned ? Builder.CreateSExtOrTrunc(Res, Ty) : 1107 Builder.CreateZExtOrTrunc(Res, Ty); 1108 } 1109 1110 ConstantInt *Zero = Builder.getInt32(0); 1111 ConstantInt *One = Builder.getInt32(1); 1112 1113 Value *Sign = nullptr; 1114 if (IsSigned) { 1115 Value *SignX = getSign32(X, Builder, DL); 1116 Value *SignY = getSign32(Y, Builder, DL); 1117 // Remainder sign is the same as LHS 1118 Sign = IsDiv ? Builder.CreateXor(SignX, SignY) : SignX; 1119 1120 X = Builder.CreateAdd(X, SignX); 1121 Y = Builder.CreateAdd(Y, SignY); 1122 1123 X = Builder.CreateXor(X, SignX); 1124 Y = Builder.CreateXor(Y, SignY); 1125 } 1126 1127 // The algorithm here is based on ideas from "Software Integer Division", Tom 1128 // Rodeheffer, August 2008. 1129 // 1130 // unsigned udiv(unsigned x, unsigned y) { 1131 // // Initial estimate of inv(y). The constant is less than 2^32 to ensure 1132 // // that this is a lower bound on inv(y), even if some of the calculations 1133 // // round up. 1134 // unsigned z = (unsigned)((4294967296.0 - 512.0) * v_rcp_f32((float)y)); 1135 // 1136 // // One round of UNR (Unsigned integer Newton-Raphson) to improve z. 1137 // // Empirically this is guaranteed to give a "two-y" lower bound on 1138 // // inv(y). 1139 // z += umulh(z, -y * z); 1140 // 1141 // // Quotient/remainder estimate. 1142 // unsigned q = umulh(x, z); 1143 // unsigned r = x - q * y; 1144 // 1145 // // Two rounds of quotient/remainder refinement. 1146 // if (r >= y) { 1147 // ++q; 1148 // r -= y; 1149 // } 1150 // if (r >= y) { 1151 // ++q; 1152 // r -= y; 1153 // } 1154 // 1155 // return q; 1156 // } 1157 1158 // Initial estimate of inv(y). 1159 Value *FloatY = Builder.CreateUIToFP(Y, F32Ty); 1160 Function *Rcp = Intrinsic::getDeclaration(Mod, Intrinsic::amdgcn_rcp, F32Ty); 1161 Value *RcpY = Builder.CreateCall(Rcp, {FloatY}); 1162 Constant *Scale = ConstantFP::get(F32Ty, llvm::bit_cast<float>(0x4F7FFFFE)); 1163 Value *ScaledY = Builder.CreateFMul(RcpY, Scale); 1164 Value *Z = Builder.CreateFPToUI(ScaledY, I32Ty); 1165 1166 // One round of UNR. 1167 Value *NegY = Builder.CreateSub(Zero, Y); 1168 Value *NegYZ = Builder.CreateMul(NegY, Z); 1169 Z = Builder.CreateAdd(Z, getMulHu(Builder, Z, NegYZ)); 1170 1171 // Quotient/remainder estimate. 1172 Value *Q = getMulHu(Builder, X, Z); 1173 Value *R = Builder.CreateSub(X, Builder.CreateMul(Q, Y)); 1174 1175 // First quotient/remainder refinement. 1176 Value *Cond = Builder.CreateICmpUGE(R, Y); 1177 if (IsDiv) 1178 Q = Builder.CreateSelect(Cond, Builder.CreateAdd(Q, One), Q); 1179 R = Builder.CreateSelect(Cond, Builder.CreateSub(R, Y), R); 1180 1181 // Second quotient/remainder refinement. 1182 Cond = Builder.CreateICmpUGE(R, Y); 1183 Value *Res; 1184 if (IsDiv) 1185 Res = Builder.CreateSelect(Cond, Builder.CreateAdd(Q, One), Q); 1186 else 1187 Res = Builder.CreateSelect(Cond, Builder.CreateSub(R, Y), R); 1188 1189 if (IsSigned) { 1190 Res = Builder.CreateXor(Res, Sign); 1191 Res = Builder.CreateSub(Res, Sign); 1192 } 1193 1194 Res = Builder.CreateTrunc(Res, Ty); 1195 1196 return Res; 1197 } 1198 1199 Value *AMDGPUCodeGenPrepare::shrinkDivRem64(IRBuilder<> &Builder, 1200 BinaryOperator &I, 1201 Value *Num, Value *Den) const { 1202 if (!ExpandDiv64InIR && divHasSpecialOptimization(I, Num, Den)) 1203 return nullptr; // Keep it for later optimization. 1204 1205 Instruction::BinaryOps Opc = I.getOpcode(); 1206 1207 bool IsDiv = Opc == Instruction::SDiv || Opc == Instruction::UDiv; 1208 bool IsSigned = Opc == Instruction::SDiv || Opc == Instruction::SRem; 1209 1210 int NumDivBits = getDivNumBits(I, Num, Den, 32, IsSigned); 1211 if (NumDivBits == -1) 1212 return nullptr; 1213 1214 Value *Narrowed = nullptr; 1215 if (NumDivBits <= 24) { 1216 Narrowed = expandDivRem24Impl(Builder, I, Num, Den, NumDivBits, 1217 IsDiv, IsSigned); 1218 } else if (NumDivBits <= 32) { 1219 Narrowed = expandDivRem32(Builder, I, Num, Den); 1220 } 1221 1222 if (Narrowed) { 1223 return IsSigned ? Builder.CreateSExt(Narrowed, Num->getType()) : 1224 Builder.CreateZExt(Narrowed, Num->getType()); 1225 } 1226 1227 return nullptr; 1228 } 1229 1230 void AMDGPUCodeGenPrepare::expandDivRem64(BinaryOperator &I) const { 1231 Instruction::BinaryOps Opc = I.getOpcode(); 1232 // Do the general expansion. 1233 if (Opc == Instruction::UDiv || Opc == Instruction::SDiv) { 1234 expandDivisionUpTo64Bits(&I); 1235 return; 1236 } 1237 1238 if (Opc == Instruction::URem || Opc == Instruction::SRem) { 1239 expandRemainderUpTo64Bits(&I); 1240 return; 1241 } 1242 1243 llvm_unreachable("not a division"); 1244 } 1245 1246 bool AMDGPUCodeGenPrepare::visitBinaryOperator(BinaryOperator &I) { 1247 if (foldBinOpIntoSelect(I)) 1248 return true; 1249 1250 if (ST->has16BitInsts() && needsPromotionToI32(I.getType()) && 1251 UA->isUniform(&I) && promoteUniformOpToI32(I)) 1252 return true; 1253 1254 if (UseMul24Intrin && replaceMulWithMul24(I)) 1255 return true; 1256 1257 bool Changed = false; 1258 Instruction::BinaryOps Opc = I.getOpcode(); 1259 Type *Ty = I.getType(); 1260 Value *NewDiv = nullptr; 1261 unsigned ScalarSize = Ty->getScalarSizeInBits(); 1262 1263 SmallVector<BinaryOperator *, 8> Div64ToExpand; 1264 1265 if ((Opc == Instruction::URem || Opc == Instruction::UDiv || 1266 Opc == Instruction::SRem || Opc == Instruction::SDiv) && 1267 ScalarSize <= 64 && 1268 !DisableIDivExpand) { 1269 Value *Num = I.getOperand(0); 1270 Value *Den = I.getOperand(1); 1271 IRBuilder<> Builder(&I); 1272 Builder.SetCurrentDebugLocation(I.getDebugLoc()); 1273 1274 if (auto *VT = dyn_cast<FixedVectorType>(Ty)) { 1275 NewDiv = PoisonValue::get(VT); 1276 1277 for (unsigned N = 0, E = VT->getNumElements(); N != E; ++N) { 1278 Value *NumEltN = Builder.CreateExtractElement(Num, N); 1279 Value *DenEltN = Builder.CreateExtractElement(Den, N); 1280 1281 Value *NewElt; 1282 if (ScalarSize <= 32) { 1283 NewElt = expandDivRem32(Builder, I, NumEltN, DenEltN); 1284 if (!NewElt) 1285 NewElt = Builder.CreateBinOp(Opc, NumEltN, DenEltN); 1286 } else { 1287 // See if this 64-bit division can be shrunk to 32/24-bits before 1288 // producing the general expansion. 1289 NewElt = shrinkDivRem64(Builder, I, NumEltN, DenEltN); 1290 if (!NewElt) { 1291 // The general 64-bit expansion introduces control flow and doesn't 1292 // return the new value. Just insert a scalar copy and defer 1293 // expanding it. 1294 NewElt = Builder.CreateBinOp(Opc, NumEltN, DenEltN); 1295 Div64ToExpand.push_back(cast<BinaryOperator>(NewElt)); 1296 } 1297 } 1298 1299 NewDiv = Builder.CreateInsertElement(NewDiv, NewElt, N); 1300 } 1301 } else { 1302 if (ScalarSize <= 32) 1303 NewDiv = expandDivRem32(Builder, I, Num, Den); 1304 else { 1305 NewDiv = shrinkDivRem64(Builder, I, Num, Den); 1306 if (!NewDiv) 1307 Div64ToExpand.push_back(&I); 1308 } 1309 } 1310 1311 if (NewDiv) { 1312 I.replaceAllUsesWith(NewDiv); 1313 I.eraseFromParent(); 1314 Changed = true; 1315 } 1316 } 1317 1318 if (ExpandDiv64InIR) { 1319 // TODO: We get much worse code in specially handled constant cases. 1320 for (BinaryOperator *Div : Div64ToExpand) { 1321 expandDivRem64(*Div); 1322 Changed = true; 1323 } 1324 } 1325 1326 return Changed; 1327 } 1328 1329 bool AMDGPUCodeGenPrepare::visitLoadInst(LoadInst &I) { 1330 if (!WidenLoads) 1331 return false; 1332 1333 if ((I.getPointerAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS || 1334 I.getPointerAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS_32BIT) && 1335 canWidenScalarExtLoad(I)) { 1336 IRBuilder<> Builder(&I); 1337 Builder.SetCurrentDebugLocation(I.getDebugLoc()); 1338 1339 Type *I32Ty = Builder.getInt32Ty(); 1340 Type *PT = PointerType::get(I32Ty, I.getPointerAddressSpace()); 1341 Value *BitCast= Builder.CreateBitCast(I.getPointerOperand(), PT); 1342 LoadInst *WidenLoad = Builder.CreateLoad(I32Ty, BitCast); 1343 WidenLoad->copyMetadata(I); 1344 1345 // If we have range metadata, we need to convert the type, and not make 1346 // assumptions about the high bits. 1347 if (auto *Range = WidenLoad->getMetadata(LLVMContext::MD_range)) { 1348 ConstantInt *Lower = 1349 mdconst::extract<ConstantInt>(Range->getOperand(0)); 1350 1351 if (Lower->isNullValue()) { 1352 WidenLoad->setMetadata(LLVMContext::MD_range, nullptr); 1353 } else { 1354 Metadata *LowAndHigh[] = { 1355 ConstantAsMetadata::get(ConstantInt::get(I32Ty, Lower->getValue().zext(32))), 1356 // Don't make assumptions about the high bits. 1357 ConstantAsMetadata::get(ConstantInt::get(I32Ty, 0)) 1358 }; 1359 1360 WidenLoad->setMetadata(LLVMContext::MD_range, 1361 MDNode::get(Mod->getContext(), LowAndHigh)); 1362 } 1363 } 1364 1365 int TySize = Mod->getDataLayout().getTypeSizeInBits(I.getType()); 1366 Type *IntNTy = Builder.getIntNTy(TySize); 1367 Value *ValTrunc = Builder.CreateTrunc(WidenLoad, IntNTy); 1368 Value *ValOrig = Builder.CreateBitCast(ValTrunc, I.getType()); 1369 I.replaceAllUsesWith(ValOrig); 1370 I.eraseFromParent(); 1371 return true; 1372 } 1373 1374 return false; 1375 } 1376 1377 bool AMDGPUCodeGenPrepare::visitICmpInst(ICmpInst &I) { 1378 bool Changed = false; 1379 1380 if (ST->has16BitInsts() && needsPromotionToI32(I.getOperand(0)->getType()) && 1381 UA->isUniform(&I)) 1382 Changed |= promoteUniformOpToI32(I); 1383 1384 return Changed; 1385 } 1386 1387 bool AMDGPUCodeGenPrepare::visitSelectInst(SelectInst &I) { 1388 bool Changed = false; 1389 1390 if (ST->has16BitInsts() && needsPromotionToI32(I.getType()) && 1391 UA->isUniform(&I)) 1392 Changed |= promoteUniformOpToI32(I); 1393 1394 return Changed; 1395 } 1396 1397 bool AMDGPUCodeGenPrepare::visitPHINode(PHINode &I) { 1398 // Break-up fixed-vector PHIs into smaller pieces. 1399 // Default threshold is 32, so it breaks up any vector that's >32 bits into 1400 // its elements, or into 32-bit pieces (for 8/16 bit elts). 1401 // 1402 // This is only helpful for DAGISel because it doesn't handle large PHIs as 1403 // well as GlobalISel. DAGISel lowers PHIs by using CopyToReg/CopyFromReg. 1404 // With large, odd-sized PHIs we may end up needing many `build_vector` 1405 // operations with most elements being "undef". This inhibits a lot of 1406 // optimization opportunities and can result in unreasonably high register 1407 // pressure and the inevitable stack spilling. 1408 if (!ScalarizeLargePHIs || getCGPassBuilderOption().EnableGlobalISelOption) 1409 return false; 1410 1411 FixedVectorType *FVT = dyn_cast<FixedVectorType>(I.getType()); 1412 if (!FVT || DL->getTypeSizeInBits(FVT) <= ScalarizeLargePHIsThreshold) 1413 return false; 1414 1415 struct VectorSlice { 1416 Type *Ty = nullptr; 1417 unsigned Idx = 0; 1418 unsigned NumElts = 0; 1419 std::vector<Value *> IncomingValues = {}; 1420 PHINode *NewPHI = nullptr; 1421 }; 1422 1423 std::vector<VectorSlice> Slices; 1424 1425 Type *EltTy = FVT->getElementType(); 1426 { 1427 unsigned Idx = 0; 1428 // For 8/16 bits type, don't scalarize fully but break it up into as many 1429 // 32-bit slices as we can, and scalarize the tail. 1430 const unsigned EltSize = DL->getTypeSizeInBits(EltTy); 1431 const unsigned NumElts = FVT->getNumElements(); 1432 if (EltSize == 8 || EltSize == 16) { 1433 const unsigned SubVecSize = (32 / EltSize); 1434 Type *SubVecTy = FixedVectorType::get(EltTy, SubVecSize); 1435 for (unsigned End = alignDown(NumElts, SubVecSize); Idx < End; 1436 Idx += SubVecSize) 1437 Slices.push_back(VectorSlice{SubVecTy, Idx, SubVecSize}); 1438 } 1439 1440 // Scalarize all remaining elements. 1441 for (; Idx < NumElts; ++Idx) 1442 Slices.push_back(VectorSlice{EltTy, Idx, 1}); 1443 } 1444 1445 if (Slices.size() == 1) 1446 return false; 1447 1448 // Break up this PHI's incoming values. 1449 for (unsigned Idx = 0; Idx < I.getNumIncomingValues(); ++Idx) { 1450 Value *Inc = I.getIncomingValue(Idx); 1451 1452 IRBuilder<> B(I.getIncomingBlock(Idx)->getTerminator()); 1453 if (Instruction *IncInst = dyn_cast<Instruction>(Inc)) 1454 B.SetCurrentDebugLocation(IncInst->getDebugLoc()); 1455 1456 unsigned NameSuffix = 0; 1457 for (VectorSlice &S : Slices) { 1458 const auto ValName = 1459 "largephi.extractslice" + std::to_string(NameSuffix++); 1460 if (S.NumElts > 1) { 1461 SmallVector<int, 4> Mask; 1462 for (unsigned K = S.Idx; K < (S.Idx + S.NumElts); ++K) 1463 Mask.push_back(K); 1464 S.IncomingValues.push_back(B.CreateShuffleVector(Inc, Mask, ValName)); 1465 } else 1466 S.IncomingValues.push_back(B.CreateExtractElement(Inc, S.Idx, ValName)); 1467 } 1468 } 1469 1470 // Now create one PHI per vector piece. 1471 IRBuilder<> B(I.getParent()->getFirstNonPHI()); 1472 B.SetCurrentDebugLocation(I.getDebugLoc()); 1473 1474 for (VectorSlice &S : Slices) { 1475 S.NewPHI = B.CreatePHI(S.Ty, I.getNumIncomingValues()); 1476 for (const auto &[Idx, BB] : enumerate(I.blocks())) 1477 S.NewPHI->addIncoming(S.IncomingValues[Idx], BB); 1478 } 1479 1480 // And replace this PHI with a vector of all the previous PHI values. 1481 Value *Vec = PoisonValue::get(FVT); 1482 unsigned NameSuffix = 0; 1483 for (VectorSlice &S : Slices) { 1484 const auto ValName = "largephi.insertslice" + std::to_string(NameSuffix++); 1485 if (S.NumElts > 1) 1486 Vec = 1487 B.CreateInsertVector(FVT, Vec, S.NewPHI, B.getInt64(S.Idx), ValName); 1488 else 1489 Vec = B.CreateInsertElement(Vec, S.NewPHI, S.Idx, ValName); 1490 } 1491 1492 I.replaceAllUsesWith(Vec); 1493 I.eraseFromParent(); 1494 return true; 1495 } 1496 1497 bool AMDGPUCodeGenPrepare::visitIntrinsicInst(IntrinsicInst &I) { 1498 switch (I.getIntrinsicID()) { 1499 case Intrinsic::bitreverse: 1500 return visitBitreverseIntrinsicInst(I); 1501 default: 1502 return false; 1503 } 1504 } 1505 1506 bool AMDGPUCodeGenPrepare::visitBitreverseIntrinsicInst(IntrinsicInst &I) { 1507 bool Changed = false; 1508 1509 if (ST->has16BitInsts() && needsPromotionToI32(I.getType()) && 1510 UA->isUniform(&I)) 1511 Changed |= promoteUniformBitreverseToI32(I); 1512 1513 return Changed; 1514 } 1515 1516 bool AMDGPUCodeGenPrepare::doInitialization(Module &M) { 1517 Mod = &M; 1518 DL = &Mod->getDataLayout(); 1519 return false; 1520 } 1521 1522 bool AMDGPUCodeGenPrepare::runOnFunction(Function &F) { 1523 if (skipFunction(F)) 1524 return false; 1525 1526 auto *TPC = getAnalysisIfAvailable<TargetPassConfig>(); 1527 if (!TPC) 1528 return false; 1529 1530 const AMDGPUTargetMachine &TM = TPC->getTM<AMDGPUTargetMachine>(); 1531 ST = &TM.getSubtarget<GCNSubtarget>(F); 1532 AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 1533 UA = &getAnalysis<UniformityInfoWrapperPass>().getUniformityInfo(); 1534 1535 auto *DTWP = getAnalysisIfAvailable<DominatorTreeWrapperPass>(); 1536 DT = DTWP ? &DTWP->getDomTree() : nullptr; 1537 1538 HasUnsafeFPMath = hasUnsafeFPMath(F); 1539 1540 SIModeRegisterDefaults Mode(F); 1541 HasFP32Denormals = Mode.allFP32Denormals(); 1542 1543 bool MadeChange = false; 1544 1545 Function::iterator NextBB; 1546 for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE; FI = NextBB) { 1547 BasicBlock *BB = &*FI; 1548 NextBB = std::next(FI); 1549 1550 BasicBlock::iterator Next; 1551 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; I = Next) { 1552 Next = std::next(I); 1553 1554 MadeChange |= visit(*I); 1555 1556 if (Next != E) { // Control flow changed 1557 BasicBlock *NextInstBB = Next->getParent(); 1558 if (NextInstBB != BB) { 1559 BB = NextInstBB; 1560 E = BB->end(); 1561 FE = F.end(); 1562 } 1563 } 1564 } 1565 } 1566 1567 return MadeChange; 1568 } 1569 1570 INITIALIZE_PASS_BEGIN(AMDGPUCodeGenPrepare, DEBUG_TYPE, 1571 "AMDGPU IR optimizations", false, false) 1572 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 1573 INITIALIZE_PASS_DEPENDENCY(UniformityInfoWrapperPass) 1574 INITIALIZE_PASS_END(AMDGPUCodeGenPrepare, DEBUG_TYPE, "AMDGPU IR optimizations", 1575 false, false) 1576 1577 char AMDGPUCodeGenPrepare::ID = 0; 1578 1579 FunctionPass *llvm::createAMDGPUCodeGenPreparePass() { 1580 return new AMDGPUCodeGenPrepare(); 1581 } 1582