1 //===-- AMDGPUCodeGenPrepare.cpp ------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file 10 /// This pass does misc. AMDGPU optimizations on IR before instruction 11 /// selection. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "AMDGPU.h" 16 #include "AMDGPUTargetMachine.h" 17 #include "SIModeRegisterDefaults.h" 18 #include "llvm/Analysis/AssumptionCache.h" 19 #include "llvm/Analysis/ConstantFolding.h" 20 #include "llvm/Analysis/TargetLibraryInfo.h" 21 #include "llvm/Analysis/UniformityAnalysis.h" 22 #include "llvm/Analysis/ValueTracking.h" 23 #include "llvm/CodeGen/TargetPassConfig.h" 24 #include "llvm/IR/Dominators.h" 25 #include "llvm/IR/IRBuilder.h" 26 #include "llvm/IR/InstVisitor.h" 27 #include "llvm/IR/IntrinsicsAMDGPU.h" 28 #include "llvm/IR/PatternMatch.h" 29 #include "llvm/InitializePasses.h" 30 #include "llvm/Pass.h" 31 #include "llvm/Support/KnownBits.h" 32 #include "llvm/Transforms/Utils/IntegerDivision.h" 33 #include "llvm/Transforms/Utils/Local.h" 34 35 #define DEBUG_TYPE "amdgpu-codegenprepare" 36 37 using namespace llvm; 38 using namespace llvm::PatternMatch; 39 40 namespace { 41 42 static cl::opt<bool> WidenLoads( 43 "amdgpu-codegenprepare-widen-constant-loads", 44 cl::desc("Widen sub-dword constant address space loads in AMDGPUCodeGenPrepare"), 45 cl::ReallyHidden, 46 cl::init(false)); 47 48 static cl::opt<bool> Widen16BitOps( 49 "amdgpu-codegenprepare-widen-16-bit-ops", 50 cl::desc("Widen uniform 16-bit instructions to 32-bit in AMDGPUCodeGenPrepare"), 51 cl::ReallyHidden, 52 cl::init(true)); 53 54 static cl::opt<bool> 55 ScalarizeLargePHIs("amdgpu-codegenprepare-break-large-phis", 56 cl::desc("Break large PHI nodes for DAGISel"), 57 cl::ReallyHidden, cl::init(true)); 58 59 static cl::opt<bool> 60 ForceScalarizeLargePHIs("amdgpu-codegenprepare-force-break-large-phis", 61 cl::desc("For testing purposes, always break large " 62 "PHIs even if it isn't profitable."), 63 cl::ReallyHidden, cl::init(false)); 64 65 static cl::opt<unsigned> ScalarizeLargePHIsThreshold( 66 "amdgpu-codegenprepare-break-large-phis-threshold", 67 cl::desc("Minimum type size in bits for breaking large PHI nodes"), 68 cl::ReallyHidden, cl::init(32)); 69 70 static cl::opt<bool> UseMul24Intrin( 71 "amdgpu-codegenprepare-mul24", 72 cl::desc("Introduce mul24 intrinsics in AMDGPUCodeGenPrepare"), 73 cl::ReallyHidden, 74 cl::init(true)); 75 76 // Legalize 64-bit division by using the generic IR expansion. 77 static cl::opt<bool> ExpandDiv64InIR( 78 "amdgpu-codegenprepare-expand-div64", 79 cl::desc("Expand 64-bit division in AMDGPUCodeGenPrepare"), 80 cl::ReallyHidden, 81 cl::init(false)); 82 83 // Leave all division operations as they are. This supersedes ExpandDiv64InIR 84 // and is used for testing the legalizer. 85 static cl::opt<bool> DisableIDivExpand( 86 "amdgpu-codegenprepare-disable-idiv-expansion", 87 cl::desc("Prevent expanding integer division in AMDGPUCodeGenPrepare"), 88 cl::ReallyHidden, 89 cl::init(false)); 90 91 // Disable processing of fdiv so we can better test the backend implementations. 92 static cl::opt<bool> DisableFDivExpand( 93 "amdgpu-codegenprepare-disable-fdiv-expansion", 94 cl::desc("Prevent expanding floating point division in AMDGPUCodeGenPrepare"), 95 cl::ReallyHidden, 96 cl::init(false)); 97 98 class AMDGPUCodeGenPrepareImpl 99 : public InstVisitor<AMDGPUCodeGenPrepareImpl, bool> { 100 public: 101 const GCNSubtarget *ST = nullptr; 102 const TargetLibraryInfo *TLInfo = nullptr; 103 AssumptionCache *AC = nullptr; 104 DominatorTree *DT = nullptr; 105 UniformityInfo *UA = nullptr; 106 Module *Mod = nullptr; 107 const DataLayout *DL = nullptr; 108 bool HasUnsafeFPMath = false; 109 bool HasFP32DenormalFlush = false; 110 bool FlowChanged = false; 111 112 DenseMap<const PHINode *, bool> BreakPhiNodesCache; 113 114 bool canBreakPHINode(const PHINode &I); 115 116 /// Copies exact/nsw/nuw flags (if any) from binary operation \p I to 117 /// binary operation \p V. 118 /// 119 /// \returns Binary operation \p V. 120 /// \returns \p T's base element bit width. 121 unsigned getBaseElementBitWidth(const Type *T) const; 122 123 /// \returns Equivalent 32 bit integer type for given type \p T. For example, 124 /// if \p T is i7, then i32 is returned; if \p T is <3 x i12>, then <3 x i32> 125 /// is returned. 126 Type *getI32Ty(IRBuilder<> &B, const Type *T) const; 127 128 /// \returns True if binary operation \p I is a signed binary operation, false 129 /// otherwise. 130 bool isSigned(const BinaryOperator &I) const; 131 132 /// \returns True if the condition of 'select' operation \p I comes from a 133 /// signed 'icmp' operation, false otherwise. 134 bool isSigned(const SelectInst &I) const; 135 136 /// \returns True if type \p T needs to be promoted to 32 bit integer type, 137 /// false otherwise. 138 bool needsPromotionToI32(const Type *T) const; 139 140 /// Return true if \p T is a legal scalar floating point type. 141 bool isLegalFloatingTy(const Type *T) const; 142 143 /// Promotes uniform binary operation \p I to equivalent 32 bit binary 144 /// operation. 145 /// 146 /// \details \p I's base element bit width must be greater than 1 and less 147 /// than or equal 16. Promotion is done by sign or zero extending operands to 148 /// 32 bits, replacing \p I with equivalent 32 bit binary operation, and 149 /// truncating the result of 32 bit binary operation back to \p I's original 150 /// type. Division operation is not promoted. 151 /// 152 /// \returns True if \p I is promoted to equivalent 32 bit binary operation, 153 /// false otherwise. 154 bool promoteUniformOpToI32(BinaryOperator &I) const; 155 156 /// Promotes uniform 'icmp' operation \p I to 32 bit 'icmp' operation. 157 /// 158 /// \details \p I's base element bit width must be greater than 1 and less 159 /// than or equal 16. Promotion is done by sign or zero extending operands to 160 /// 32 bits, and replacing \p I with 32 bit 'icmp' operation. 161 /// 162 /// \returns True. 163 bool promoteUniformOpToI32(ICmpInst &I) const; 164 165 /// Promotes uniform 'select' operation \p I to 32 bit 'select' 166 /// operation. 167 /// 168 /// \details \p I's base element bit width must be greater than 1 and less 169 /// than or equal 16. Promotion is done by sign or zero extending operands to 170 /// 32 bits, replacing \p I with 32 bit 'select' operation, and truncating the 171 /// result of 32 bit 'select' operation back to \p I's original type. 172 /// 173 /// \returns True. 174 bool promoteUniformOpToI32(SelectInst &I) const; 175 176 /// Promotes uniform 'bitreverse' intrinsic \p I to 32 bit 'bitreverse' 177 /// intrinsic. 178 /// 179 /// \details \p I's base element bit width must be greater than 1 and less 180 /// than or equal 16. Promotion is done by zero extending the operand to 32 181 /// bits, replacing \p I with 32 bit 'bitreverse' intrinsic, shifting the 182 /// result of 32 bit 'bitreverse' intrinsic to the right with zero fill (the 183 /// shift amount is 32 minus \p I's base element bit width), and truncating 184 /// the result of the shift operation back to \p I's original type. 185 /// 186 /// \returns True. 187 bool promoteUniformBitreverseToI32(IntrinsicInst &I) const; 188 189 /// \returns The minimum number of bits needed to store the value of \Op as an 190 /// unsigned integer. Truncating to this size and then zero-extending to 191 /// the original will not change the value. 192 unsigned numBitsUnsigned(Value *Op) const; 193 194 /// \returns The minimum number of bits needed to store the value of \Op as a 195 /// signed integer. Truncating to this size and then sign-extending to 196 /// the original size will not change the value. 197 unsigned numBitsSigned(Value *Op) const; 198 199 /// Replace mul instructions with llvm.amdgcn.mul.u24 or llvm.amdgcn.mul.s24. 200 /// SelectionDAG has an issue where an and asserting the bits are known 201 bool replaceMulWithMul24(BinaryOperator &I) const; 202 203 /// Perform same function as equivalently named function in DAGCombiner. Since 204 /// we expand some divisions here, we need to perform this before obscuring. 205 bool foldBinOpIntoSelect(BinaryOperator &I) const; 206 207 bool divHasSpecialOptimization(BinaryOperator &I, 208 Value *Num, Value *Den) const; 209 int getDivNumBits(BinaryOperator &I, 210 Value *Num, Value *Den, 211 unsigned AtLeast, bool Signed) const; 212 213 /// Expands 24 bit div or rem. 214 Value* expandDivRem24(IRBuilder<> &Builder, BinaryOperator &I, 215 Value *Num, Value *Den, 216 bool IsDiv, bool IsSigned) const; 217 218 Value *expandDivRem24Impl(IRBuilder<> &Builder, BinaryOperator &I, 219 Value *Num, Value *Den, unsigned NumBits, 220 bool IsDiv, bool IsSigned) const; 221 222 /// Expands 32 bit div or rem. 223 Value* expandDivRem32(IRBuilder<> &Builder, BinaryOperator &I, 224 Value *Num, Value *Den) const; 225 226 Value *shrinkDivRem64(IRBuilder<> &Builder, BinaryOperator &I, 227 Value *Num, Value *Den) const; 228 void expandDivRem64(BinaryOperator &I) const; 229 230 /// Widen a scalar load. 231 /// 232 /// \details \p Widen scalar load for uniform, small type loads from constant 233 // memory / to a full 32-bits and then truncate the input to allow a scalar 234 // load instead of a vector load. 235 // 236 /// \returns True. 237 238 bool canWidenScalarExtLoad(LoadInst &I) const; 239 240 Value *matchFractPat(IntrinsicInst &I); 241 Value *applyFractPat(IRBuilder<> &Builder, Value *FractArg); 242 243 public: 244 bool visitFDiv(BinaryOperator &I); 245 246 bool visitInstruction(Instruction &I) { return false; } 247 bool visitBinaryOperator(BinaryOperator &I); 248 bool visitLoadInst(LoadInst &I); 249 bool visitICmpInst(ICmpInst &I); 250 bool visitSelectInst(SelectInst &I); 251 bool visitPHINode(PHINode &I); 252 253 bool visitIntrinsicInst(IntrinsicInst &I); 254 bool visitBitreverseIntrinsicInst(IntrinsicInst &I); 255 bool visitMinNum(IntrinsicInst &I); 256 bool run(Function &F); 257 }; 258 259 class AMDGPUCodeGenPrepare : public FunctionPass { 260 private: 261 AMDGPUCodeGenPrepareImpl Impl; 262 263 public: 264 static char ID; 265 AMDGPUCodeGenPrepare() : FunctionPass(ID) { 266 initializeAMDGPUCodeGenPreparePass(*PassRegistry::getPassRegistry()); 267 } 268 void getAnalysisUsage(AnalysisUsage &AU) const override { 269 AU.addRequired<AssumptionCacheTracker>(); 270 AU.addRequired<UniformityInfoWrapperPass>(); 271 AU.addRequired<TargetLibraryInfoWrapperPass>(); 272 273 // FIXME: Division expansion needs to preserve the dominator tree. 274 if (!ExpandDiv64InIR) 275 AU.setPreservesAll(); 276 } 277 bool runOnFunction(Function &F) override; 278 bool doInitialization(Module &M) override; 279 StringRef getPassName() const override { return "AMDGPU IR optimizations"; } 280 }; 281 282 } // end anonymous namespace 283 284 bool AMDGPUCodeGenPrepareImpl::run(Function &F) { 285 bool MadeChange = false; 286 287 Function::iterator NextBB; 288 for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE; FI = NextBB) { 289 BasicBlock *BB = &*FI; 290 NextBB = std::next(FI); 291 292 BasicBlock::iterator Next; 293 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; 294 I = Next) { 295 Next = std::next(I); 296 297 MadeChange |= visit(*I); 298 299 if (Next != E) { // Control flow changed 300 BasicBlock *NextInstBB = Next->getParent(); 301 if (NextInstBB != BB) { 302 BB = NextInstBB; 303 E = BB->end(); 304 FE = F.end(); 305 } 306 } 307 } 308 } 309 return MadeChange; 310 } 311 312 unsigned AMDGPUCodeGenPrepareImpl::getBaseElementBitWidth(const Type *T) const { 313 assert(needsPromotionToI32(T) && "T does not need promotion to i32"); 314 315 if (T->isIntegerTy()) 316 return T->getIntegerBitWidth(); 317 return cast<VectorType>(T)->getElementType()->getIntegerBitWidth(); 318 } 319 320 Type *AMDGPUCodeGenPrepareImpl::getI32Ty(IRBuilder<> &B, const Type *T) const { 321 assert(needsPromotionToI32(T) && "T does not need promotion to i32"); 322 323 if (T->isIntegerTy()) 324 return B.getInt32Ty(); 325 return FixedVectorType::get(B.getInt32Ty(), cast<FixedVectorType>(T)); 326 } 327 328 bool AMDGPUCodeGenPrepareImpl::isSigned(const BinaryOperator &I) const { 329 return I.getOpcode() == Instruction::AShr || 330 I.getOpcode() == Instruction::SDiv || I.getOpcode() == Instruction::SRem; 331 } 332 333 bool AMDGPUCodeGenPrepareImpl::isSigned(const SelectInst &I) const { 334 return isa<ICmpInst>(I.getOperand(0)) ? 335 cast<ICmpInst>(I.getOperand(0))->isSigned() : false; 336 } 337 338 bool AMDGPUCodeGenPrepareImpl::needsPromotionToI32(const Type *T) const { 339 if (!Widen16BitOps) 340 return false; 341 342 const IntegerType *IntTy = dyn_cast<IntegerType>(T); 343 if (IntTy && IntTy->getBitWidth() > 1 && IntTy->getBitWidth() <= 16) 344 return true; 345 346 if (const VectorType *VT = dyn_cast<VectorType>(T)) { 347 // TODO: The set of packed operations is more limited, so may want to 348 // promote some anyway. 349 if (ST->hasVOP3PInsts()) 350 return false; 351 352 return needsPromotionToI32(VT->getElementType()); 353 } 354 355 return false; 356 } 357 358 bool AMDGPUCodeGenPrepareImpl::isLegalFloatingTy(const Type *Ty) const { 359 return Ty->isFloatTy() || Ty->isDoubleTy() || 360 (Ty->isHalfTy() && ST->has16BitInsts()); 361 } 362 363 // Return true if the op promoted to i32 should have nsw set. 364 static bool promotedOpIsNSW(const Instruction &I) { 365 switch (I.getOpcode()) { 366 case Instruction::Shl: 367 case Instruction::Add: 368 case Instruction::Sub: 369 return true; 370 case Instruction::Mul: 371 return I.hasNoUnsignedWrap(); 372 default: 373 return false; 374 } 375 } 376 377 // Return true if the op promoted to i32 should have nuw set. 378 static bool promotedOpIsNUW(const Instruction &I) { 379 switch (I.getOpcode()) { 380 case Instruction::Shl: 381 case Instruction::Add: 382 case Instruction::Mul: 383 return true; 384 case Instruction::Sub: 385 return I.hasNoUnsignedWrap(); 386 default: 387 return false; 388 } 389 } 390 391 bool AMDGPUCodeGenPrepareImpl::canWidenScalarExtLoad(LoadInst &I) const { 392 Type *Ty = I.getType(); 393 const DataLayout &DL = Mod->getDataLayout(); 394 int TySize = DL.getTypeSizeInBits(Ty); 395 Align Alignment = DL.getValueOrABITypeAlignment(I.getAlign(), Ty); 396 397 return I.isSimple() && TySize < 32 && Alignment >= 4 && UA->isUniform(&I); 398 } 399 400 bool AMDGPUCodeGenPrepareImpl::promoteUniformOpToI32(BinaryOperator &I) const { 401 assert(needsPromotionToI32(I.getType()) && 402 "I does not need promotion to i32"); 403 404 if (I.getOpcode() == Instruction::SDiv || 405 I.getOpcode() == Instruction::UDiv || 406 I.getOpcode() == Instruction::SRem || 407 I.getOpcode() == Instruction::URem) 408 return false; 409 410 IRBuilder<> Builder(&I); 411 Builder.SetCurrentDebugLocation(I.getDebugLoc()); 412 413 Type *I32Ty = getI32Ty(Builder, I.getType()); 414 Value *ExtOp0 = nullptr; 415 Value *ExtOp1 = nullptr; 416 Value *ExtRes = nullptr; 417 Value *TruncRes = nullptr; 418 419 if (isSigned(I)) { 420 ExtOp0 = Builder.CreateSExt(I.getOperand(0), I32Ty); 421 ExtOp1 = Builder.CreateSExt(I.getOperand(1), I32Ty); 422 } else { 423 ExtOp0 = Builder.CreateZExt(I.getOperand(0), I32Ty); 424 ExtOp1 = Builder.CreateZExt(I.getOperand(1), I32Ty); 425 } 426 427 ExtRes = Builder.CreateBinOp(I.getOpcode(), ExtOp0, ExtOp1); 428 if (Instruction *Inst = dyn_cast<Instruction>(ExtRes)) { 429 if (promotedOpIsNSW(cast<Instruction>(I))) 430 Inst->setHasNoSignedWrap(); 431 432 if (promotedOpIsNUW(cast<Instruction>(I))) 433 Inst->setHasNoUnsignedWrap(); 434 435 if (const auto *ExactOp = dyn_cast<PossiblyExactOperator>(&I)) 436 Inst->setIsExact(ExactOp->isExact()); 437 } 438 439 TruncRes = Builder.CreateTrunc(ExtRes, I.getType()); 440 441 I.replaceAllUsesWith(TruncRes); 442 I.eraseFromParent(); 443 444 return true; 445 } 446 447 bool AMDGPUCodeGenPrepareImpl::promoteUniformOpToI32(ICmpInst &I) const { 448 assert(needsPromotionToI32(I.getOperand(0)->getType()) && 449 "I does not need promotion to i32"); 450 451 IRBuilder<> Builder(&I); 452 Builder.SetCurrentDebugLocation(I.getDebugLoc()); 453 454 Type *I32Ty = getI32Ty(Builder, I.getOperand(0)->getType()); 455 Value *ExtOp0 = nullptr; 456 Value *ExtOp1 = nullptr; 457 Value *NewICmp = nullptr; 458 459 if (I.isSigned()) { 460 ExtOp0 = Builder.CreateSExt(I.getOperand(0), I32Ty); 461 ExtOp1 = Builder.CreateSExt(I.getOperand(1), I32Ty); 462 } else { 463 ExtOp0 = Builder.CreateZExt(I.getOperand(0), I32Ty); 464 ExtOp1 = Builder.CreateZExt(I.getOperand(1), I32Ty); 465 } 466 NewICmp = Builder.CreateICmp(I.getPredicate(), ExtOp0, ExtOp1); 467 468 I.replaceAllUsesWith(NewICmp); 469 I.eraseFromParent(); 470 471 return true; 472 } 473 474 bool AMDGPUCodeGenPrepareImpl::promoteUniformOpToI32(SelectInst &I) const { 475 assert(needsPromotionToI32(I.getType()) && 476 "I does not need promotion to i32"); 477 478 IRBuilder<> Builder(&I); 479 Builder.SetCurrentDebugLocation(I.getDebugLoc()); 480 481 Type *I32Ty = getI32Ty(Builder, I.getType()); 482 Value *ExtOp1 = nullptr; 483 Value *ExtOp2 = nullptr; 484 Value *ExtRes = nullptr; 485 Value *TruncRes = nullptr; 486 487 if (isSigned(I)) { 488 ExtOp1 = Builder.CreateSExt(I.getOperand(1), I32Ty); 489 ExtOp2 = Builder.CreateSExt(I.getOperand(2), I32Ty); 490 } else { 491 ExtOp1 = Builder.CreateZExt(I.getOperand(1), I32Ty); 492 ExtOp2 = Builder.CreateZExt(I.getOperand(2), I32Ty); 493 } 494 ExtRes = Builder.CreateSelect(I.getOperand(0), ExtOp1, ExtOp2); 495 TruncRes = Builder.CreateTrunc(ExtRes, I.getType()); 496 497 I.replaceAllUsesWith(TruncRes); 498 I.eraseFromParent(); 499 500 return true; 501 } 502 503 bool AMDGPUCodeGenPrepareImpl::promoteUniformBitreverseToI32( 504 IntrinsicInst &I) const { 505 assert(I.getIntrinsicID() == Intrinsic::bitreverse && 506 "I must be bitreverse intrinsic"); 507 assert(needsPromotionToI32(I.getType()) && 508 "I does not need promotion to i32"); 509 510 IRBuilder<> Builder(&I); 511 Builder.SetCurrentDebugLocation(I.getDebugLoc()); 512 513 Type *I32Ty = getI32Ty(Builder, I.getType()); 514 Function *I32 = 515 Intrinsic::getDeclaration(Mod, Intrinsic::bitreverse, { I32Ty }); 516 Value *ExtOp = Builder.CreateZExt(I.getOperand(0), I32Ty); 517 Value *ExtRes = Builder.CreateCall(I32, { ExtOp }); 518 Value *LShrOp = 519 Builder.CreateLShr(ExtRes, 32 - getBaseElementBitWidth(I.getType())); 520 Value *TruncRes = 521 Builder.CreateTrunc(LShrOp, I.getType()); 522 523 I.replaceAllUsesWith(TruncRes); 524 I.eraseFromParent(); 525 526 return true; 527 } 528 529 unsigned AMDGPUCodeGenPrepareImpl::numBitsUnsigned(Value *Op) const { 530 return computeKnownBits(Op, *DL, 0, AC).countMaxActiveBits(); 531 } 532 533 unsigned AMDGPUCodeGenPrepareImpl::numBitsSigned(Value *Op) const { 534 return ComputeMaxSignificantBits(Op, *DL, 0, AC); 535 } 536 537 static void extractValues(IRBuilder<> &Builder, 538 SmallVectorImpl<Value *> &Values, Value *V) { 539 auto *VT = dyn_cast<FixedVectorType>(V->getType()); 540 if (!VT) { 541 Values.push_back(V); 542 return; 543 } 544 545 for (int I = 0, E = VT->getNumElements(); I != E; ++I) 546 Values.push_back(Builder.CreateExtractElement(V, I)); 547 } 548 549 static Value *insertValues(IRBuilder<> &Builder, 550 Type *Ty, 551 SmallVectorImpl<Value *> &Values) { 552 if (!Ty->isVectorTy()) { 553 assert(Values.size() == 1); 554 return Values[0]; 555 } 556 557 Value *NewVal = PoisonValue::get(Ty); 558 for (int I = 0, E = Values.size(); I != E; ++I) 559 NewVal = Builder.CreateInsertElement(NewVal, Values[I], I); 560 561 return NewVal; 562 } 563 564 // Returns 24-bit or 48-bit (as per `NumBits` and `Size`) mul of `LHS` and 565 // `RHS`. `NumBits` is the number of KnownBits of the result and `Size` is the 566 // width of the original destination. 567 static Value *getMul24(IRBuilder<> &Builder, Value *LHS, Value *RHS, 568 unsigned Size, unsigned NumBits, bool IsSigned) { 569 if (Size <= 32 || NumBits <= 32) { 570 Intrinsic::ID ID = 571 IsSigned ? Intrinsic::amdgcn_mul_i24 : Intrinsic::amdgcn_mul_u24; 572 return Builder.CreateIntrinsic(ID, {}, {LHS, RHS}); 573 } 574 575 assert(NumBits <= 48); 576 577 Intrinsic::ID LoID = 578 IsSigned ? Intrinsic::amdgcn_mul_i24 : Intrinsic::amdgcn_mul_u24; 579 Intrinsic::ID HiID = 580 IsSigned ? Intrinsic::amdgcn_mulhi_i24 : Intrinsic::amdgcn_mulhi_u24; 581 582 Value *Lo = Builder.CreateIntrinsic(LoID, {}, {LHS, RHS}); 583 Value *Hi = Builder.CreateIntrinsic(HiID, {}, {LHS, RHS}); 584 585 IntegerType *I64Ty = Builder.getInt64Ty(); 586 Lo = Builder.CreateZExtOrTrunc(Lo, I64Ty); 587 Hi = Builder.CreateZExtOrTrunc(Hi, I64Ty); 588 589 return Builder.CreateOr(Lo, Builder.CreateShl(Hi, 32)); 590 } 591 592 bool AMDGPUCodeGenPrepareImpl::replaceMulWithMul24(BinaryOperator &I) const { 593 if (I.getOpcode() != Instruction::Mul) 594 return false; 595 596 Type *Ty = I.getType(); 597 unsigned Size = Ty->getScalarSizeInBits(); 598 if (Size <= 16 && ST->has16BitInsts()) 599 return false; 600 601 // Prefer scalar if this could be s_mul_i32 602 if (UA->isUniform(&I)) 603 return false; 604 605 Value *LHS = I.getOperand(0); 606 Value *RHS = I.getOperand(1); 607 IRBuilder<> Builder(&I); 608 Builder.SetCurrentDebugLocation(I.getDebugLoc()); 609 610 unsigned LHSBits = 0, RHSBits = 0; 611 bool IsSigned = false; 612 613 if (ST->hasMulU24() && (LHSBits = numBitsUnsigned(LHS)) <= 24 && 614 (RHSBits = numBitsUnsigned(RHS)) <= 24) { 615 IsSigned = false; 616 617 } else if (ST->hasMulI24() && (LHSBits = numBitsSigned(LHS)) <= 24 && 618 (RHSBits = numBitsSigned(RHS)) <= 24) { 619 IsSigned = true; 620 621 } else 622 return false; 623 624 SmallVector<Value *, 4> LHSVals; 625 SmallVector<Value *, 4> RHSVals; 626 SmallVector<Value *, 4> ResultVals; 627 extractValues(Builder, LHSVals, LHS); 628 extractValues(Builder, RHSVals, RHS); 629 630 IntegerType *I32Ty = Builder.getInt32Ty(); 631 for (int I = 0, E = LHSVals.size(); I != E; ++I) { 632 Value *LHS, *RHS; 633 if (IsSigned) { 634 LHS = Builder.CreateSExtOrTrunc(LHSVals[I], I32Ty); 635 RHS = Builder.CreateSExtOrTrunc(RHSVals[I], I32Ty); 636 } else { 637 LHS = Builder.CreateZExtOrTrunc(LHSVals[I], I32Ty); 638 RHS = Builder.CreateZExtOrTrunc(RHSVals[I], I32Ty); 639 } 640 641 Value *Result = 642 getMul24(Builder, LHS, RHS, Size, LHSBits + RHSBits, IsSigned); 643 644 if (IsSigned) { 645 ResultVals.push_back( 646 Builder.CreateSExtOrTrunc(Result, LHSVals[I]->getType())); 647 } else { 648 ResultVals.push_back( 649 Builder.CreateZExtOrTrunc(Result, LHSVals[I]->getType())); 650 } 651 } 652 653 Value *NewVal = insertValues(Builder, Ty, ResultVals); 654 NewVal->takeName(&I); 655 I.replaceAllUsesWith(NewVal); 656 I.eraseFromParent(); 657 658 return true; 659 } 660 661 // Find a select instruction, which may have been casted. This is mostly to deal 662 // with cases where i16 selects were promoted here to i32. 663 static SelectInst *findSelectThroughCast(Value *V, CastInst *&Cast) { 664 Cast = nullptr; 665 if (SelectInst *Sel = dyn_cast<SelectInst>(V)) 666 return Sel; 667 668 if ((Cast = dyn_cast<CastInst>(V))) { 669 if (SelectInst *Sel = dyn_cast<SelectInst>(Cast->getOperand(0))) 670 return Sel; 671 } 672 673 return nullptr; 674 } 675 676 bool AMDGPUCodeGenPrepareImpl::foldBinOpIntoSelect(BinaryOperator &BO) const { 677 // Don't do this unless the old select is going away. We want to eliminate the 678 // binary operator, not replace a binop with a select. 679 int SelOpNo = 0; 680 681 CastInst *CastOp; 682 683 // TODO: Should probably try to handle some cases with multiple 684 // users. Duplicating the select may be profitable for division. 685 SelectInst *Sel = findSelectThroughCast(BO.getOperand(0), CastOp); 686 if (!Sel || !Sel->hasOneUse()) { 687 SelOpNo = 1; 688 Sel = findSelectThroughCast(BO.getOperand(1), CastOp); 689 } 690 691 if (!Sel || !Sel->hasOneUse()) 692 return false; 693 694 Constant *CT = dyn_cast<Constant>(Sel->getTrueValue()); 695 Constant *CF = dyn_cast<Constant>(Sel->getFalseValue()); 696 Constant *CBO = dyn_cast<Constant>(BO.getOperand(SelOpNo ^ 1)); 697 if (!CBO || !CT || !CF) 698 return false; 699 700 if (CastOp) { 701 if (!CastOp->hasOneUse()) 702 return false; 703 CT = ConstantFoldCastOperand(CastOp->getOpcode(), CT, BO.getType(), *DL); 704 CF = ConstantFoldCastOperand(CastOp->getOpcode(), CF, BO.getType(), *DL); 705 } 706 707 // TODO: Handle special 0/-1 cases DAG combine does, although we only really 708 // need to handle divisions here. 709 Constant *FoldedT = SelOpNo ? 710 ConstantFoldBinaryOpOperands(BO.getOpcode(), CBO, CT, *DL) : 711 ConstantFoldBinaryOpOperands(BO.getOpcode(), CT, CBO, *DL); 712 if (!FoldedT || isa<ConstantExpr>(FoldedT)) 713 return false; 714 715 Constant *FoldedF = SelOpNo ? 716 ConstantFoldBinaryOpOperands(BO.getOpcode(), CBO, CF, *DL) : 717 ConstantFoldBinaryOpOperands(BO.getOpcode(), CF, CBO, *DL); 718 if (!FoldedF || isa<ConstantExpr>(FoldedF)) 719 return false; 720 721 IRBuilder<> Builder(&BO); 722 Builder.SetCurrentDebugLocation(BO.getDebugLoc()); 723 if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(&BO)) 724 Builder.setFastMathFlags(FPOp->getFastMathFlags()); 725 726 Value *NewSelect = Builder.CreateSelect(Sel->getCondition(), 727 FoldedT, FoldedF); 728 NewSelect->takeName(&BO); 729 BO.replaceAllUsesWith(NewSelect); 730 BO.eraseFromParent(); 731 if (CastOp) 732 CastOp->eraseFromParent(); 733 Sel->eraseFromParent(); 734 return true; 735 } 736 737 // Optimize fdiv with rcp: 738 // 739 // 1/x -> rcp(x) when rcp is sufficiently accurate or inaccurate rcp is 740 // allowed with unsafe-fp-math or afn. 741 // 742 // a/b -> a*rcp(b) when inaccurate rcp is allowed with unsafe-fp-math or afn. 743 static Value *optimizeWithRcp(Value *Num, Value *Den, bool AllowInaccurateRcp, 744 bool RcpIsAccurate, IRBuilder<> &Builder, 745 Module *Mod) { 746 747 if (!AllowInaccurateRcp && !RcpIsAccurate) 748 return nullptr; 749 750 Type *Ty = Den->getType(); 751 if (const ConstantFP *CLHS = dyn_cast<ConstantFP>(Num)) { 752 if (AllowInaccurateRcp || RcpIsAccurate) { 753 if (CLHS->isExactlyValue(1.0)) { 754 Function *Decl = Intrinsic::getDeclaration( 755 Mod, Intrinsic::amdgcn_rcp, Ty); 756 757 // v_rcp_f32 and v_rsq_f32 do not support denormals, and according to 758 // the CI documentation has a worst case error of 1 ulp. 759 // OpenCL requires <= 2.5 ulp for 1.0 / x, so it should always be OK to 760 // use it as long as we aren't trying to use denormals. 761 // 762 // v_rcp_f16 and v_rsq_f16 DO support denormals. 763 764 // NOTE: v_sqrt and v_rcp will be combined to v_rsq later. So we don't 765 // insert rsq intrinsic here. 766 767 // 1.0 / x -> rcp(x) 768 return Builder.CreateCall(Decl, { Den }); 769 } 770 771 // Same as for 1.0, but expand the sign out of the constant. 772 if (CLHS->isExactlyValue(-1.0)) { 773 Function *Decl = Intrinsic::getDeclaration( 774 Mod, Intrinsic::amdgcn_rcp, Ty); 775 776 // -1.0 / x -> rcp (fneg x) 777 Value *FNeg = Builder.CreateFNeg(Den); 778 return Builder.CreateCall(Decl, { FNeg }); 779 } 780 } 781 } 782 783 if (AllowInaccurateRcp) { 784 Function *Decl = Intrinsic::getDeclaration( 785 Mod, Intrinsic::amdgcn_rcp, Ty); 786 787 // Turn into multiply by the reciprocal. 788 // x / y -> x * (1.0 / y) 789 Value *Recip = Builder.CreateCall(Decl, { Den }); 790 return Builder.CreateFMul(Num, Recip); 791 } 792 return nullptr; 793 } 794 795 // optimize with fdiv.fast: 796 // 797 // a/b -> fdiv.fast(a, b) when !fpmath >= 2.5ulp with denormals flushed. 798 // 799 // 1/x -> fdiv.fast(1,x) when !fpmath >= 2.5ulp. 800 // 801 // NOTE: optimizeWithRcp should be tried first because rcp is the preference. 802 static Value *optimizeWithFDivFast(Value *Num, Value *Den, float ReqdAccuracy, 803 bool HasFP32DenormalFlush, 804 IRBuilder<> &Builder, Module *Mod) { 805 // fdiv.fast can achieve 2.5 ULP accuracy. 806 if (ReqdAccuracy < 2.5f) 807 return nullptr; 808 809 // Only have fdiv.fast for f32. 810 Type *Ty = Den->getType(); 811 if (!Ty->isFloatTy()) 812 return nullptr; 813 814 bool NumIsOne = false; 815 if (const ConstantFP *CNum = dyn_cast<ConstantFP>(Num)) { 816 if (CNum->isExactlyValue(+1.0) || CNum->isExactlyValue(-1.0)) 817 NumIsOne = true; 818 } 819 820 // fdiv does not support denormals. But 1.0/x is always fine to use it. 821 if (!HasFP32DenormalFlush && !NumIsOne) 822 return nullptr; 823 824 Function *Decl = Intrinsic::getDeclaration(Mod, Intrinsic::amdgcn_fdiv_fast); 825 return Builder.CreateCall(Decl, { Num, Den }); 826 } 827 828 // Optimizations is performed based on fpmath, fast math flags as well as 829 // denormals to optimize fdiv with either rcp or fdiv.fast. 830 // 831 // With rcp: 832 // 1/x -> rcp(x) when rcp is sufficiently accurate or inaccurate rcp is 833 // allowed with unsafe-fp-math or afn. 834 // 835 // a/b -> a*rcp(b) when inaccurate rcp is allowed with unsafe-fp-math or afn. 836 // 837 // With fdiv.fast: 838 // a/b -> fdiv.fast(a, b) when !fpmath >= 2.5ulp with denormals flushed. 839 // 840 // 1/x -> fdiv.fast(1,x) when !fpmath >= 2.5ulp. 841 // 842 // NOTE: rcp is the preference in cases that both are legal. 843 bool AMDGPUCodeGenPrepareImpl::visitFDiv(BinaryOperator &FDiv) { 844 if (DisableFDivExpand) 845 return false; 846 847 Type *Ty = FDiv.getType()->getScalarType(); 848 if (!Ty->isFloatTy()) 849 return false; 850 851 // The f64 rcp/rsq approximations are pretty inaccurate. We can do an 852 // expansion around them in codegen. f16 is good enough to always use. 853 854 const FPMathOperator *FPOp = cast<const FPMathOperator>(&FDiv); 855 const float ReqdAccuracy = FPOp->getFPAccuracy(); 856 857 // Inaccurate rcp is allowed with unsafe-fp-math or afn. 858 FastMathFlags FMF = FPOp->getFastMathFlags(); 859 const bool AllowInaccurateRcp = HasUnsafeFPMath || FMF.approxFunc(); 860 861 // rcp_f16 is accurate to 0.51 ulp. 862 // rcp_f32 is accurate for !fpmath >= 1.0ulp and denormals are flushed. 863 // rcp_f64 is never accurate. 864 const bool RcpIsAccurate = HasFP32DenormalFlush && ReqdAccuracy >= 1.0f; 865 866 IRBuilder<> Builder(FDiv.getParent(), std::next(FDiv.getIterator())); 867 Builder.setFastMathFlags(FMF); 868 Builder.SetCurrentDebugLocation(FDiv.getDebugLoc()); 869 870 Value *Num = FDiv.getOperand(0); 871 Value *Den = FDiv.getOperand(1); 872 873 Value *NewFDiv = nullptr; 874 if (auto *VT = dyn_cast<FixedVectorType>(FDiv.getType())) { 875 NewFDiv = PoisonValue::get(VT); 876 877 // FIXME: Doesn't do the right thing for cases where the vector is partially 878 // constant. This works when the scalarizer pass is run first. 879 for (unsigned I = 0, E = VT->getNumElements(); I != E; ++I) { 880 Value *NumEltI = Builder.CreateExtractElement(Num, I); 881 Value *DenEltI = Builder.CreateExtractElement(Den, I); 882 // Try rcp first. 883 Value *NewElt = optimizeWithRcp(NumEltI, DenEltI, AllowInaccurateRcp, 884 RcpIsAccurate, Builder, Mod); 885 if (!NewElt) // Try fdiv.fast. 886 NewElt = optimizeWithFDivFast(NumEltI, DenEltI, ReqdAccuracy, 887 HasFP32DenormalFlush, Builder, Mod); 888 if (!NewElt) // Keep the original. 889 NewElt = Builder.CreateFDiv(NumEltI, DenEltI); 890 891 NewFDiv = Builder.CreateInsertElement(NewFDiv, NewElt, I); 892 } 893 } else { // Scalar FDiv. 894 // Try rcp first. 895 NewFDiv = optimizeWithRcp(Num, Den, AllowInaccurateRcp, RcpIsAccurate, 896 Builder, Mod); 897 if (!NewFDiv) { // Try fdiv.fast. 898 NewFDiv = optimizeWithFDivFast(Num, Den, ReqdAccuracy, 899 HasFP32DenormalFlush, Builder, Mod); 900 } 901 } 902 903 if (NewFDiv) { 904 FDiv.replaceAllUsesWith(NewFDiv); 905 NewFDiv->takeName(&FDiv); 906 FDiv.eraseFromParent(); 907 } 908 909 return !!NewFDiv; 910 } 911 912 static bool hasUnsafeFPMath(const Function &F) { 913 Attribute Attr = F.getFnAttribute("unsafe-fp-math"); 914 return Attr.getValueAsBool(); 915 } 916 917 static std::pair<Value*, Value*> getMul64(IRBuilder<> &Builder, 918 Value *LHS, Value *RHS) { 919 Type *I32Ty = Builder.getInt32Ty(); 920 Type *I64Ty = Builder.getInt64Ty(); 921 922 Value *LHS_EXT64 = Builder.CreateZExt(LHS, I64Ty); 923 Value *RHS_EXT64 = Builder.CreateZExt(RHS, I64Ty); 924 Value *MUL64 = Builder.CreateMul(LHS_EXT64, RHS_EXT64); 925 Value *Lo = Builder.CreateTrunc(MUL64, I32Ty); 926 Value *Hi = Builder.CreateLShr(MUL64, Builder.getInt64(32)); 927 Hi = Builder.CreateTrunc(Hi, I32Ty); 928 return std::pair(Lo, Hi); 929 } 930 931 static Value* getMulHu(IRBuilder<> &Builder, Value *LHS, Value *RHS) { 932 return getMul64(Builder, LHS, RHS).second; 933 } 934 935 /// Figure out how many bits are really needed for this division. \p AtLeast is 936 /// an optimization hint to bypass the second ComputeNumSignBits call if we the 937 /// first one is insufficient. Returns -1 on failure. 938 int AMDGPUCodeGenPrepareImpl::getDivNumBits(BinaryOperator &I, Value *Num, 939 Value *Den, unsigned AtLeast, 940 bool IsSigned) const { 941 const DataLayout &DL = Mod->getDataLayout(); 942 unsigned LHSSignBits = ComputeNumSignBits(Num, DL, 0, AC, &I); 943 if (LHSSignBits < AtLeast) 944 return -1; 945 946 unsigned RHSSignBits = ComputeNumSignBits(Den, DL, 0, AC, &I); 947 if (RHSSignBits < AtLeast) 948 return -1; 949 950 unsigned SignBits = std::min(LHSSignBits, RHSSignBits); 951 unsigned DivBits = Num->getType()->getScalarSizeInBits() - SignBits; 952 if (IsSigned) 953 ++DivBits; 954 return DivBits; 955 } 956 957 // The fractional part of a float is enough to accurately represent up to 958 // a 24-bit signed integer. 959 Value *AMDGPUCodeGenPrepareImpl::expandDivRem24(IRBuilder<> &Builder, 960 BinaryOperator &I, Value *Num, 961 Value *Den, bool IsDiv, 962 bool IsSigned) const { 963 int DivBits = getDivNumBits(I, Num, Den, 9, IsSigned); 964 if (DivBits == -1) 965 return nullptr; 966 return expandDivRem24Impl(Builder, I, Num, Den, DivBits, IsDiv, IsSigned); 967 } 968 969 Value *AMDGPUCodeGenPrepareImpl::expandDivRem24Impl( 970 IRBuilder<> &Builder, BinaryOperator &I, Value *Num, Value *Den, 971 unsigned DivBits, bool IsDiv, bool IsSigned) const { 972 Type *I32Ty = Builder.getInt32Ty(); 973 Num = Builder.CreateTrunc(Num, I32Ty); 974 Den = Builder.CreateTrunc(Den, I32Ty); 975 976 Type *F32Ty = Builder.getFloatTy(); 977 ConstantInt *One = Builder.getInt32(1); 978 Value *JQ = One; 979 980 if (IsSigned) { 981 // char|short jq = ia ^ ib; 982 JQ = Builder.CreateXor(Num, Den); 983 984 // jq = jq >> (bitsize - 2) 985 JQ = Builder.CreateAShr(JQ, Builder.getInt32(30)); 986 987 // jq = jq | 0x1 988 JQ = Builder.CreateOr(JQ, One); 989 } 990 991 // int ia = (int)LHS; 992 Value *IA = Num; 993 994 // int ib, (int)RHS; 995 Value *IB = Den; 996 997 // float fa = (float)ia; 998 Value *FA = IsSigned ? Builder.CreateSIToFP(IA, F32Ty) 999 : Builder.CreateUIToFP(IA, F32Ty); 1000 1001 // float fb = (float)ib; 1002 Value *FB = IsSigned ? Builder.CreateSIToFP(IB,F32Ty) 1003 : Builder.CreateUIToFP(IB,F32Ty); 1004 1005 Function *RcpDecl = Intrinsic::getDeclaration(Mod, Intrinsic::amdgcn_rcp, 1006 Builder.getFloatTy()); 1007 Value *RCP = Builder.CreateCall(RcpDecl, { FB }); 1008 Value *FQM = Builder.CreateFMul(FA, RCP); 1009 1010 // fq = trunc(fqm); 1011 CallInst *FQ = Builder.CreateUnaryIntrinsic(Intrinsic::trunc, FQM); 1012 FQ->copyFastMathFlags(Builder.getFastMathFlags()); 1013 1014 // float fqneg = -fq; 1015 Value *FQNeg = Builder.CreateFNeg(FQ); 1016 1017 // float fr = mad(fqneg, fb, fa); 1018 auto FMAD = !ST->hasMadMacF32Insts() 1019 ? Intrinsic::fma 1020 : (Intrinsic::ID)Intrinsic::amdgcn_fmad_ftz; 1021 Value *FR = Builder.CreateIntrinsic(FMAD, 1022 {FQNeg->getType()}, {FQNeg, FB, FA}, FQ); 1023 1024 // int iq = (int)fq; 1025 Value *IQ = IsSigned ? Builder.CreateFPToSI(FQ, I32Ty) 1026 : Builder.CreateFPToUI(FQ, I32Ty); 1027 1028 // fr = fabs(fr); 1029 FR = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, FR, FQ); 1030 1031 // fb = fabs(fb); 1032 FB = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, FB, FQ); 1033 1034 // int cv = fr >= fb; 1035 Value *CV = Builder.CreateFCmpOGE(FR, FB); 1036 1037 // jq = (cv ? jq : 0); 1038 JQ = Builder.CreateSelect(CV, JQ, Builder.getInt32(0)); 1039 1040 // dst = iq + jq; 1041 Value *Div = Builder.CreateAdd(IQ, JQ); 1042 1043 Value *Res = Div; 1044 if (!IsDiv) { 1045 // Rem needs compensation, it's easier to recompute it 1046 Value *Rem = Builder.CreateMul(Div, Den); 1047 Res = Builder.CreateSub(Num, Rem); 1048 } 1049 1050 if (DivBits != 0 && DivBits < 32) { 1051 // Extend in register from the number of bits this divide really is. 1052 if (IsSigned) { 1053 int InRegBits = 32 - DivBits; 1054 1055 Res = Builder.CreateShl(Res, InRegBits); 1056 Res = Builder.CreateAShr(Res, InRegBits); 1057 } else { 1058 ConstantInt *TruncMask 1059 = Builder.getInt32((UINT64_C(1) << DivBits) - 1); 1060 Res = Builder.CreateAnd(Res, TruncMask); 1061 } 1062 } 1063 1064 return Res; 1065 } 1066 1067 // Try to recognize special cases the DAG will emit special, better expansions 1068 // than the general expansion we do here. 1069 1070 // TODO: It would be better to just directly handle those optimizations here. 1071 bool AMDGPUCodeGenPrepareImpl::divHasSpecialOptimization(BinaryOperator &I, 1072 Value *Num, 1073 Value *Den) const { 1074 if (Constant *C = dyn_cast<Constant>(Den)) { 1075 // Arbitrary constants get a better expansion as long as a wider mulhi is 1076 // legal. 1077 if (C->getType()->getScalarSizeInBits() <= 32) 1078 return true; 1079 1080 // TODO: Sdiv check for not exact for some reason. 1081 1082 // If there's no wider mulhi, there's only a better expansion for powers of 1083 // two. 1084 // TODO: Should really know for each vector element. 1085 if (isKnownToBeAPowerOfTwo(C, *DL, true, 0, AC, &I, DT)) 1086 return true; 1087 1088 return false; 1089 } 1090 1091 if (BinaryOperator *BinOpDen = dyn_cast<BinaryOperator>(Den)) { 1092 // fold (udiv x, (shl c, y)) -> x >>u (log2(c)+y) iff c is power of 2 1093 if (BinOpDen->getOpcode() == Instruction::Shl && 1094 isa<Constant>(BinOpDen->getOperand(0)) && 1095 isKnownToBeAPowerOfTwo(BinOpDen->getOperand(0), *DL, true, 1096 0, AC, &I, DT)) { 1097 return true; 1098 } 1099 } 1100 1101 return false; 1102 } 1103 1104 static Value *getSign32(Value *V, IRBuilder<> &Builder, const DataLayout *DL) { 1105 // Check whether the sign can be determined statically. 1106 KnownBits Known = computeKnownBits(V, *DL); 1107 if (Known.isNegative()) 1108 return Constant::getAllOnesValue(V->getType()); 1109 if (Known.isNonNegative()) 1110 return Constant::getNullValue(V->getType()); 1111 return Builder.CreateAShr(V, Builder.getInt32(31)); 1112 } 1113 1114 Value *AMDGPUCodeGenPrepareImpl::expandDivRem32(IRBuilder<> &Builder, 1115 BinaryOperator &I, Value *X, 1116 Value *Y) const { 1117 Instruction::BinaryOps Opc = I.getOpcode(); 1118 assert(Opc == Instruction::URem || Opc == Instruction::UDiv || 1119 Opc == Instruction::SRem || Opc == Instruction::SDiv); 1120 1121 FastMathFlags FMF; 1122 FMF.setFast(); 1123 Builder.setFastMathFlags(FMF); 1124 1125 if (divHasSpecialOptimization(I, X, Y)) 1126 return nullptr; // Keep it for later optimization. 1127 1128 bool IsDiv = Opc == Instruction::UDiv || Opc == Instruction::SDiv; 1129 bool IsSigned = Opc == Instruction::SRem || Opc == Instruction::SDiv; 1130 1131 Type *Ty = X->getType(); 1132 Type *I32Ty = Builder.getInt32Ty(); 1133 Type *F32Ty = Builder.getFloatTy(); 1134 1135 if (Ty->getScalarSizeInBits() < 32) { 1136 if (IsSigned) { 1137 X = Builder.CreateSExt(X, I32Ty); 1138 Y = Builder.CreateSExt(Y, I32Ty); 1139 } else { 1140 X = Builder.CreateZExt(X, I32Ty); 1141 Y = Builder.CreateZExt(Y, I32Ty); 1142 } 1143 } 1144 1145 if (Value *Res = expandDivRem24(Builder, I, X, Y, IsDiv, IsSigned)) { 1146 return IsSigned ? Builder.CreateSExtOrTrunc(Res, Ty) : 1147 Builder.CreateZExtOrTrunc(Res, Ty); 1148 } 1149 1150 ConstantInt *Zero = Builder.getInt32(0); 1151 ConstantInt *One = Builder.getInt32(1); 1152 1153 Value *Sign = nullptr; 1154 if (IsSigned) { 1155 Value *SignX = getSign32(X, Builder, DL); 1156 Value *SignY = getSign32(Y, Builder, DL); 1157 // Remainder sign is the same as LHS 1158 Sign = IsDiv ? Builder.CreateXor(SignX, SignY) : SignX; 1159 1160 X = Builder.CreateAdd(X, SignX); 1161 Y = Builder.CreateAdd(Y, SignY); 1162 1163 X = Builder.CreateXor(X, SignX); 1164 Y = Builder.CreateXor(Y, SignY); 1165 } 1166 1167 // The algorithm here is based on ideas from "Software Integer Division", Tom 1168 // Rodeheffer, August 2008. 1169 // 1170 // unsigned udiv(unsigned x, unsigned y) { 1171 // // Initial estimate of inv(y). The constant is less than 2^32 to ensure 1172 // // that this is a lower bound on inv(y), even if some of the calculations 1173 // // round up. 1174 // unsigned z = (unsigned)((4294967296.0 - 512.0) * v_rcp_f32((float)y)); 1175 // 1176 // // One round of UNR (Unsigned integer Newton-Raphson) to improve z. 1177 // // Empirically this is guaranteed to give a "two-y" lower bound on 1178 // // inv(y). 1179 // z += umulh(z, -y * z); 1180 // 1181 // // Quotient/remainder estimate. 1182 // unsigned q = umulh(x, z); 1183 // unsigned r = x - q * y; 1184 // 1185 // // Two rounds of quotient/remainder refinement. 1186 // if (r >= y) { 1187 // ++q; 1188 // r -= y; 1189 // } 1190 // if (r >= y) { 1191 // ++q; 1192 // r -= y; 1193 // } 1194 // 1195 // return q; 1196 // } 1197 1198 // Initial estimate of inv(y). 1199 Value *FloatY = Builder.CreateUIToFP(Y, F32Ty); 1200 Function *Rcp = Intrinsic::getDeclaration(Mod, Intrinsic::amdgcn_rcp, F32Ty); 1201 Value *RcpY = Builder.CreateCall(Rcp, {FloatY}); 1202 Constant *Scale = ConstantFP::get(F32Ty, llvm::bit_cast<float>(0x4F7FFFFE)); 1203 Value *ScaledY = Builder.CreateFMul(RcpY, Scale); 1204 Value *Z = Builder.CreateFPToUI(ScaledY, I32Ty); 1205 1206 // One round of UNR. 1207 Value *NegY = Builder.CreateSub(Zero, Y); 1208 Value *NegYZ = Builder.CreateMul(NegY, Z); 1209 Z = Builder.CreateAdd(Z, getMulHu(Builder, Z, NegYZ)); 1210 1211 // Quotient/remainder estimate. 1212 Value *Q = getMulHu(Builder, X, Z); 1213 Value *R = Builder.CreateSub(X, Builder.CreateMul(Q, Y)); 1214 1215 // First quotient/remainder refinement. 1216 Value *Cond = Builder.CreateICmpUGE(R, Y); 1217 if (IsDiv) 1218 Q = Builder.CreateSelect(Cond, Builder.CreateAdd(Q, One), Q); 1219 R = Builder.CreateSelect(Cond, Builder.CreateSub(R, Y), R); 1220 1221 // Second quotient/remainder refinement. 1222 Cond = Builder.CreateICmpUGE(R, Y); 1223 Value *Res; 1224 if (IsDiv) 1225 Res = Builder.CreateSelect(Cond, Builder.CreateAdd(Q, One), Q); 1226 else 1227 Res = Builder.CreateSelect(Cond, Builder.CreateSub(R, Y), R); 1228 1229 if (IsSigned) { 1230 Res = Builder.CreateXor(Res, Sign); 1231 Res = Builder.CreateSub(Res, Sign); 1232 } 1233 1234 Res = Builder.CreateTrunc(Res, Ty); 1235 1236 return Res; 1237 } 1238 1239 Value *AMDGPUCodeGenPrepareImpl::shrinkDivRem64(IRBuilder<> &Builder, 1240 BinaryOperator &I, Value *Num, 1241 Value *Den) const { 1242 if (!ExpandDiv64InIR && divHasSpecialOptimization(I, Num, Den)) 1243 return nullptr; // Keep it for later optimization. 1244 1245 Instruction::BinaryOps Opc = I.getOpcode(); 1246 1247 bool IsDiv = Opc == Instruction::SDiv || Opc == Instruction::UDiv; 1248 bool IsSigned = Opc == Instruction::SDiv || Opc == Instruction::SRem; 1249 1250 int NumDivBits = getDivNumBits(I, Num, Den, 32, IsSigned); 1251 if (NumDivBits == -1) 1252 return nullptr; 1253 1254 Value *Narrowed = nullptr; 1255 if (NumDivBits <= 24) { 1256 Narrowed = expandDivRem24Impl(Builder, I, Num, Den, NumDivBits, 1257 IsDiv, IsSigned); 1258 } else if (NumDivBits <= 32) { 1259 Narrowed = expandDivRem32(Builder, I, Num, Den); 1260 } 1261 1262 if (Narrowed) { 1263 return IsSigned ? Builder.CreateSExt(Narrowed, Num->getType()) : 1264 Builder.CreateZExt(Narrowed, Num->getType()); 1265 } 1266 1267 return nullptr; 1268 } 1269 1270 void AMDGPUCodeGenPrepareImpl::expandDivRem64(BinaryOperator &I) const { 1271 Instruction::BinaryOps Opc = I.getOpcode(); 1272 // Do the general expansion. 1273 if (Opc == Instruction::UDiv || Opc == Instruction::SDiv) { 1274 expandDivisionUpTo64Bits(&I); 1275 return; 1276 } 1277 1278 if (Opc == Instruction::URem || Opc == Instruction::SRem) { 1279 expandRemainderUpTo64Bits(&I); 1280 return; 1281 } 1282 1283 llvm_unreachable("not a division"); 1284 } 1285 1286 bool AMDGPUCodeGenPrepareImpl::visitBinaryOperator(BinaryOperator &I) { 1287 if (foldBinOpIntoSelect(I)) 1288 return true; 1289 1290 if (ST->has16BitInsts() && needsPromotionToI32(I.getType()) && 1291 UA->isUniform(&I) && promoteUniformOpToI32(I)) 1292 return true; 1293 1294 if (UseMul24Intrin && replaceMulWithMul24(I)) 1295 return true; 1296 1297 bool Changed = false; 1298 Instruction::BinaryOps Opc = I.getOpcode(); 1299 Type *Ty = I.getType(); 1300 Value *NewDiv = nullptr; 1301 unsigned ScalarSize = Ty->getScalarSizeInBits(); 1302 1303 SmallVector<BinaryOperator *, 8> Div64ToExpand; 1304 1305 if ((Opc == Instruction::URem || Opc == Instruction::UDiv || 1306 Opc == Instruction::SRem || Opc == Instruction::SDiv) && 1307 ScalarSize <= 64 && 1308 !DisableIDivExpand) { 1309 Value *Num = I.getOperand(0); 1310 Value *Den = I.getOperand(1); 1311 IRBuilder<> Builder(&I); 1312 Builder.SetCurrentDebugLocation(I.getDebugLoc()); 1313 1314 if (auto *VT = dyn_cast<FixedVectorType>(Ty)) { 1315 NewDiv = PoisonValue::get(VT); 1316 1317 for (unsigned N = 0, E = VT->getNumElements(); N != E; ++N) { 1318 Value *NumEltN = Builder.CreateExtractElement(Num, N); 1319 Value *DenEltN = Builder.CreateExtractElement(Den, N); 1320 1321 Value *NewElt; 1322 if (ScalarSize <= 32) { 1323 NewElt = expandDivRem32(Builder, I, NumEltN, DenEltN); 1324 if (!NewElt) 1325 NewElt = Builder.CreateBinOp(Opc, NumEltN, DenEltN); 1326 } else { 1327 // See if this 64-bit division can be shrunk to 32/24-bits before 1328 // producing the general expansion. 1329 NewElt = shrinkDivRem64(Builder, I, NumEltN, DenEltN); 1330 if (!NewElt) { 1331 // The general 64-bit expansion introduces control flow and doesn't 1332 // return the new value. Just insert a scalar copy and defer 1333 // expanding it. 1334 NewElt = Builder.CreateBinOp(Opc, NumEltN, DenEltN); 1335 Div64ToExpand.push_back(cast<BinaryOperator>(NewElt)); 1336 } 1337 } 1338 1339 NewDiv = Builder.CreateInsertElement(NewDiv, NewElt, N); 1340 } 1341 } else { 1342 if (ScalarSize <= 32) 1343 NewDiv = expandDivRem32(Builder, I, Num, Den); 1344 else { 1345 NewDiv = shrinkDivRem64(Builder, I, Num, Den); 1346 if (!NewDiv) 1347 Div64ToExpand.push_back(&I); 1348 } 1349 } 1350 1351 if (NewDiv) { 1352 I.replaceAllUsesWith(NewDiv); 1353 I.eraseFromParent(); 1354 Changed = true; 1355 } 1356 } 1357 1358 if (ExpandDiv64InIR) { 1359 // TODO: We get much worse code in specially handled constant cases. 1360 for (BinaryOperator *Div : Div64ToExpand) { 1361 expandDivRem64(*Div); 1362 FlowChanged = true; 1363 Changed = true; 1364 } 1365 } 1366 1367 return Changed; 1368 } 1369 1370 bool AMDGPUCodeGenPrepareImpl::visitLoadInst(LoadInst &I) { 1371 if (!WidenLoads) 1372 return false; 1373 1374 if ((I.getPointerAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS || 1375 I.getPointerAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS_32BIT) && 1376 canWidenScalarExtLoad(I)) { 1377 IRBuilder<> Builder(&I); 1378 Builder.SetCurrentDebugLocation(I.getDebugLoc()); 1379 1380 Type *I32Ty = Builder.getInt32Ty(); 1381 LoadInst *WidenLoad = Builder.CreateLoad(I32Ty, I.getPointerOperand()); 1382 WidenLoad->copyMetadata(I); 1383 1384 // If we have range metadata, we need to convert the type, and not make 1385 // assumptions about the high bits. 1386 if (auto *Range = WidenLoad->getMetadata(LLVMContext::MD_range)) { 1387 ConstantInt *Lower = 1388 mdconst::extract<ConstantInt>(Range->getOperand(0)); 1389 1390 if (Lower->isNullValue()) { 1391 WidenLoad->setMetadata(LLVMContext::MD_range, nullptr); 1392 } else { 1393 Metadata *LowAndHigh[] = { 1394 ConstantAsMetadata::get(ConstantInt::get(I32Ty, Lower->getValue().zext(32))), 1395 // Don't make assumptions about the high bits. 1396 ConstantAsMetadata::get(ConstantInt::get(I32Ty, 0)) 1397 }; 1398 1399 WidenLoad->setMetadata(LLVMContext::MD_range, 1400 MDNode::get(Mod->getContext(), LowAndHigh)); 1401 } 1402 } 1403 1404 int TySize = Mod->getDataLayout().getTypeSizeInBits(I.getType()); 1405 Type *IntNTy = Builder.getIntNTy(TySize); 1406 Value *ValTrunc = Builder.CreateTrunc(WidenLoad, IntNTy); 1407 Value *ValOrig = Builder.CreateBitCast(ValTrunc, I.getType()); 1408 I.replaceAllUsesWith(ValOrig); 1409 I.eraseFromParent(); 1410 return true; 1411 } 1412 1413 return false; 1414 } 1415 1416 bool AMDGPUCodeGenPrepareImpl::visitICmpInst(ICmpInst &I) { 1417 bool Changed = false; 1418 1419 if (ST->has16BitInsts() && needsPromotionToI32(I.getOperand(0)->getType()) && 1420 UA->isUniform(&I)) 1421 Changed |= promoteUniformOpToI32(I); 1422 1423 return Changed; 1424 } 1425 1426 bool AMDGPUCodeGenPrepareImpl::visitSelectInst(SelectInst &I) { 1427 Value *Cond = I.getCondition(); 1428 Value *TrueVal = I.getTrueValue(); 1429 Value *FalseVal = I.getFalseValue(); 1430 Value *CmpVal; 1431 FCmpInst::Predicate Pred; 1432 1433 if (ST->has16BitInsts() && needsPromotionToI32(I.getType())) { 1434 if (UA->isUniform(&I)) 1435 return promoteUniformOpToI32(I); 1436 return false; 1437 } 1438 1439 // Match fract pattern with nan check. 1440 if (!match(Cond, m_FCmp(Pred, m_Value(CmpVal), m_NonNaN()))) 1441 return false; 1442 1443 FPMathOperator *FPOp = dyn_cast<FPMathOperator>(&I); 1444 if (!FPOp) 1445 return false; 1446 1447 IRBuilder<> Builder(&I); 1448 Builder.setFastMathFlags(FPOp->getFastMathFlags()); 1449 1450 auto *IITrue = dyn_cast<IntrinsicInst>(TrueVal); 1451 auto *IIFalse = dyn_cast<IntrinsicInst>(FalseVal); 1452 1453 Value *Fract = nullptr; 1454 if (Pred == FCmpInst::FCMP_UNO && TrueVal == CmpVal && IIFalse && 1455 CmpVal == matchFractPat(*IIFalse)) { 1456 // isnan(x) ? x : fract(x) 1457 Fract = applyFractPat(Builder, CmpVal); 1458 } else if (Pred == FCmpInst::FCMP_ORD && FalseVal == CmpVal && IITrue && 1459 CmpVal == matchFractPat(*IITrue)) { 1460 // !isnan(x) ? fract(x) : x 1461 Fract = applyFractPat(Builder, CmpVal); 1462 } else 1463 return false; 1464 1465 Fract->takeName(&I); 1466 I.replaceAllUsesWith(Fract); 1467 RecursivelyDeleteTriviallyDeadInstructions(&I, TLInfo); 1468 return true; 1469 } 1470 1471 static bool areInSameBB(const Value *A, const Value *B) { 1472 const auto *IA = dyn_cast<Instruction>(A); 1473 const auto *IB = dyn_cast<Instruction>(B); 1474 return IA && IB && IA->getParent() == IB->getParent(); 1475 } 1476 1477 // Helper for breaking large PHIs that returns true when an extractelement on V 1478 // is likely to be folded away by the DAG combiner. 1479 static bool isInterestingPHIIncomingValue(const Value *V) { 1480 const auto *FVT = dyn_cast<FixedVectorType>(V->getType()); 1481 if (!FVT) 1482 return false; 1483 1484 const Value *CurVal = V; 1485 1486 // Check for insertelements, keeping track of the elements covered. 1487 BitVector EltsCovered(FVT->getNumElements()); 1488 while (const auto *IE = dyn_cast<InsertElementInst>(CurVal)) { 1489 const auto *Idx = dyn_cast<ConstantInt>(IE->getOperand(2)); 1490 1491 // Non constant index/out of bounds index -> folding is unlikely. 1492 // The latter is more of a sanity check because canonical IR should just 1493 // have replaced those with poison. 1494 if (!Idx || Idx->getSExtValue() >= FVT->getNumElements()) 1495 return false; 1496 1497 const auto *VecSrc = IE->getOperand(0); 1498 1499 // If the vector source is another instruction, it must be in the same basic 1500 // block. Otherwise, the DAGCombiner won't see the whole thing and is 1501 // unlikely to be able to do anything interesting here. 1502 if (isa<Instruction>(VecSrc) && !areInSameBB(VecSrc, IE)) 1503 return false; 1504 1505 CurVal = VecSrc; 1506 EltsCovered.set(Idx->getSExtValue()); 1507 1508 // All elements covered. 1509 if (EltsCovered.all()) 1510 return true; 1511 } 1512 1513 // We either didn't find a single insertelement, or the insertelement chain 1514 // ended before all elements were covered. Check for other interesting values. 1515 1516 // Constants are always interesting because we can just constant fold the 1517 // extractelements. 1518 if (isa<Constant>(CurVal)) 1519 return true; 1520 1521 // shufflevector is likely to be profitable if either operand is a constant, 1522 // or if either source is in the same block. 1523 // This is because shufflevector is most often lowered as a series of 1524 // insert/extract elements anyway. 1525 if (const auto *SV = dyn_cast<ShuffleVectorInst>(CurVal)) { 1526 return isa<Constant>(SV->getOperand(1)) || 1527 areInSameBB(SV, SV->getOperand(0)) || 1528 areInSameBB(SV, SV->getOperand(1)); 1529 } 1530 1531 return false; 1532 } 1533 1534 bool AMDGPUCodeGenPrepareImpl::canBreakPHINode(const PHINode &I) { 1535 // Check in the cache, or add an entry for this node. 1536 // 1537 // We init with false because we consider all PHI nodes unbreakable until we 1538 // reach a conclusion. Doing the opposite - assuming they're break-able until 1539 // proven otherwise - can be harmful in some pathological cases so we're 1540 // conservative for now. 1541 const auto [It, DidInsert] = BreakPhiNodesCache.insert({&I, false}); 1542 if (!DidInsert) 1543 return It->second; 1544 1545 // This function may recurse, so to guard against infinite looping, this PHI 1546 // is conservatively considered unbreakable until we reach a conclusion. 1547 1548 // Don't break PHIs that have no interesting incoming values. That is, where 1549 // there is no clear opportunity to fold the "extractelement" instructions we 1550 // would add. 1551 // 1552 // Note: IC does not run after this pass, so we're only interested in the 1553 // foldings that the DAG combiner can do. 1554 if (none_of(I.incoming_values(), 1555 [&](Value *V) { return isInterestingPHIIncomingValue(V); })) 1556 return false; 1557 1558 // Now, check users for unbreakable PHI nodes. If we have an unbreakable PHI 1559 // node as user, we don't want to break this PHI either because it's unlikely 1560 // to be beneficial. We would just explode the vector and reassemble it 1561 // directly, wasting instructions. 1562 // 1563 // In the case where multiple users are PHI nodes, we want at least half of 1564 // them to be breakable. 1565 int Score = 0; 1566 for (const Value *U : I.users()) { 1567 if (const auto *PU = dyn_cast<PHINode>(U)) 1568 Score += canBreakPHINode(*PU) ? 1 : -1; 1569 } 1570 1571 if (Score < 0) 1572 return false; 1573 1574 return BreakPhiNodesCache[&I] = true; 1575 } 1576 1577 /// Helper class for "break large PHIs" (visitPHINode). 1578 /// 1579 /// This represents a slice of a PHI's incoming value, which is made up of: 1580 /// - The type of the slice (Ty) 1581 /// - The index in the incoming value's vector where the slice starts (Idx) 1582 /// - The number of elements in the slice (NumElts). 1583 /// It also keeps track of the NewPHI node inserted for this particular slice. 1584 /// 1585 /// Slice examples: 1586 /// <4 x i64> -> Split into four i64 slices. 1587 /// -> [i64, 0, 1], [i64, 1, 1], [i64, 2, 1], [i64, 3, 1] 1588 /// <5 x i16> -> Split into 2 <2 x i16> slices + a i16 tail. 1589 /// -> [<2 x i16>, 0, 2], [<2 x i16>, 2, 2], [i16, 4, 1] 1590 class VectorSlice { 1591 public: 1592 VectorSlice(Type *Ty, unsigned Idx, unsigned NumElts) 1593 : Ty(Ty), Idx(Idx), NumElts(NumElts) {} 1594 1595 Type *Ty = nullptr; 1596 unsigned Idx = 0; 1597 unsigned NumElts = 0; 1598 PHINode *NewPHI = nullptr; 1599 1600 /// Slice \p Inc according to the information contained within this slice. 1601 /// This is cached, so if called multiple times for the same \p BB & \p Inc 1602 /// pair, it returns the same Sliced value as well. 1603 /// 1604 /// Note this *intentionally* does not return the same value for, say, 1605 /// [%bb.0, %0] & [%bb.1, %0] as: 1606 /// - It could cause issues with dominance (e.g. if bb.1 is seen first, then 1607 /// the value in bb.1 may not be reachable from bb.0 if it's its 1608 /// predecessor.) 1609 /// - We also want to make our extract instructions as local as possible so 1610 /// the DAG has better chances of folding them out. Duplicating them like 1611 /// that is beneficial in that regard. 1612 /// 1613 /// This is both a minor optimization to avoid creating duplicate 1614 /// instructions, but also a requirement for correctness. It is not forbidden 1615 /// for a PHI node to have the same [BB, Val] pair multiple times. If we 1616 /// returned a new value each time, those previously identical pairs would all 1617 /// have different incoming values (from the same block) and it'd cause a "PHI 1618 /// node has multiple entries for the same basic block with different incoming 1619 /// values!" verifier error. 1620 Value *getSlicedVal(BasicBlock *BB, Value *Inc, StringRef NewValName) { 1621 Value *&Res = SlicedVals[{BB, Inc}]; 1622 if (Res) 1623 return Res; 1624 1625 IRBuilder<> B(BB->getTerminator()); 1626 if (Instruction *IncInst = dyn_cast<Instruction>(Inc)) 1627 B.SetCurrentDebugLocation(IncInst->getDebugLoc()); 1628 1629 if (NumElts > 1) { 1630 SmallVector<int, 4> Mask; 1631 for (unsigned K = Idx; K < (Idx + NumElts); ++K) 1632 Mask.push_back(K); 1633 Res = B.CreateShuffleVector(Inc, Mask, NewValName); 1634 } else 1635 Res = B.CreateExtractElement(Inc, Idx, NewValName); 1636 1637 return Res; 1638 } 1639 1640 private: 1641 SmallDenseMap<std::pair<BasicBlock *, Value *>, Value *> SlicedVals; 1642 }; 1643 1644 bool AMDGPUCodeGenPrepareImpl::visitPHINode(PHINode &I) { 1645 // Break-up fixed-vector PHIs into smaller pieces. 1646 // Default threshold is 32, so it breaks up any vector that's >32 bits into 1647 // its elements, or into 32-bit pieces (for 8/16 bit elts). 1648 // 1649 // This is only helpful for DAGISel because it doesn't handle large PHIs as 1650 // well as GlobalISel. DAGISel lowers PHIs by using CopyToReg/CopyFromReg. 1651 // With large, odd-sized PHIs we may end up needing many `build_vector` 1652 // operations with most elements being "undef". This inhibits a lot of 1653 // optimization opportunities and can result in unreasonably high register 1654 // pressure and the inevitable stack spilling. 1655 if (!ScalarizeLargePHIs || getCGPassBuilderOption().EnableGlobalISelOption) 1656 return false; 1657 1658 FixedVectorType *FVT = dyn_cast<FixedVectorType>(I.getType()); 1659 if (!FVT || DL->getTypeSizeInBits(FVT) <= ScalarizeLargePHIsThreshold) 1660 return false; 1661 1662 if (!ForceScalarizeLargePHIs && !canBreakPHINode(I)) 1663 return false; 1664 1665 std::vector<VectorSlice> Slices; 1666 1667 Type *EltTy = FVT->getElementType(); 1668 { 1669 unsigned Idx = 0; 1670 // For 8/16 bits type, don't scalarize fully but break it up into as many 1671 // 32-bit slices as we can, and scalarize the tail. 1672 const unsigned EltSize = DL->getTypeSizeInBits(EltTy); 1673 const unsigned NumElts = FVT->getNumElements(); 1674 if (EltSize == 8 || EltSize == 16) { 1675 const unsigned SubVecSize = (32 / EltSize); 1676 Type *SubVecTy = FixedVectorType::get(EltTy, SubVecSize); 1677 for (unsigned End = alignDown(NumElts, SubVecSize); Idx < End; 1678 Idx += SubVecSize) 1679 Slices.emplace_back(SubVecTy, Idx, SubVecSize); 1680 } 1681 1682 // Scalarize all remaining elements. 1683 for (; Idx < NumElts; ++Idx) 1684 Slices.emplace_back(EltTy, Idx, 1); 1685 } 1686 1687 if (Slices.size() == 1) 1688 return false; 1689 1690 // Create one PHI per vector piece. The "VectorSlice" class takes care of 1691 // creating the necessary instruction to extract the relevant slices of each 1692 // incoming value. 1693 IRBuilder<> B(I.getParent()); 1694 B.SetCurrentDebugLocation(I.getDebugLoc()); 1695 1696 unsigned IncNameSuffix = 0; 1697 for (VectorSlice &S : Slices) { 1698 // We need to reset the build on each iteration, because getSlicedVal may 1699 // have inserted something into I's BB. 1700 B.SetInsertPoint(I.getParent()->getFirstNonPHI()); 1701 S.NewPHI = B.CreatePHI(S.Ty, I.getNumIncomingValues()); 1702 1703 for (const auto &[Idx, BB] : enumerate(I.blocks())) { 1704 S.NewPHI->addIncoming(S.getSlicedVal(BB, I.getIncomingValue(Idx), 1705 "largephi.extractslice" + 1706 std::to_string(IncNameSuffix++)), 1707 BB); 1708 } 1709 } 1710 1711 // And replace this PHI with a vector of all the previous PHI values. 1712 Value *Vec = PoisonValue::get(FVT); 1713 unsigned NameSuffix = 0; 1714 for (VectorSlice &S : Slices) { 1715 const auto ValName = "largephi.insertslice" + std::to_string(NameSuffix++); 1716 if (S.NumElts > 1) 1717 Vec = 1718 B.CreateInsertVector(FVT, Vec, S.NewPHI, B.getInt64(S.Idx), ValName); 1719 else 1720 Vec = B.CreateInsertElement(Vec, S.NewPHI, S.Idx, ValName); 1721 } 1722 1723 I.replaceAllUsesWith(Vec); 1724 I.eraseFromParent(); 1725 return true; 1726 } 1727 1728 bool AMDGPUCodeGenPrepareImpl::visitIntrinsicInst(IntrinsicInst &I) { 1729 switch (I.getIntrinsicID()) { 1730 case Intrinsic::bitreverse: 1731 return visitBitreverseIntrinsicInst(I); 1732 case Intrinsic::minnum: 1733 return visitMinNum(I); 1734 default: 1735 return false; 1736 } 1737 } 1738 1739 bool AMDGPUCodeGenPrepareImpl::visitBitreverseIntrinsicInst(IntrinsicInst &I) { 1740 bool Changed = false; 1741 1742 if (ST->has16BitInsts() && needsPromotionToI32(I.getType()) && 1743 UA->isUniform(&I)) 1744 Changed |= promoteUniformBitreverseToI32(I); 1745 1746 return Changed; 1747 } 1748 1749 /// Match non-nan fract pattern. 1750 /// minnum(fsub(x, floor(x)), nextafter(1.0, -1.0) 1751 /// 1752 /// If fract is a useful instruction for the subtarget. Does not account for the 1753 /// nan handling; the instruction has a nan check on the input value. 1754 Value *AMDGPUCodeGenPrepareImpl::matchFractPat(IntrinsicInst &I) { 1755 if (ST->hasFractBug()) 1756 return nullptr; 1757 1758 if (I.getIntrinsicID() != Intrinsic::minnum) 1759 return nullptr; 1760 1761 Type *Ty = I.getType(); 1762 if (!isLegalFloatingTy(Ty->getScalarType())) 1763 return nullptr; 1764 1765 Value *Arg0 = I.getArgOperand(0); 1766 Value *Arg1 = I.getArgOperand(1); 1767 1768 const APFloat *C; 1769 if (!match(Arg1, m_APFloat(C))) 1770 return nullptr; 1771 1772 APFloat One(1.0); 1773 bool LosesInfo; 1774 One.convert(C->getSemantics(), APFloat::rmNearestTiesToEven, &LosesInfo); 1775 1776 // Match nextafter(1.0, -1) 1777 One.next(true); 1778 if (One != *C) 1779 return nullptr; 1780 1781 Value *FloorSrc; 1782 if (match(Arg0, m_FSub(m_Value(FloorSrc), 1783 m_Intrinsic<Intrinsic::floor>(m_Deferred(FloorSrc))))) 1784 return FloorSrc; 1785 return nullptr; 1786 } 1787 1788 Value *AMDGPUCodeGenPrepareImpl::applyFractPat(IRBuilder<> &Builder, 1789 Value *FractArg) { 1790 SmallVector<Value *, 4> FractVals; 1791 extractValues(Builder, FractVals, FractArg); 1792 1793 SmallVector<Value *, 4> ResultVals(FractVals.size()); 1794 1795 Type *Ty = FractArg->getType()->getScalarType(); 1796 for (unsigned I = 0, E = FractVals.size(); I != E; ++I) { 1797 ResultVals[I] = 1798 Builder.CreateIntrinsic(Intrinsic::amdgcn_fract, {Ty}, {FractVals[I]}); 1799 } 1800 1801 return insertValues(Builder, FractArg->getType(), ResultVals); 1802 } 1803 1804 bool AMDGPUCodeGenPrepareImpl::visitMinNum(IntrinsicInst &I) { 1805 Value *FractArg = matchFractPat(I); 1806 if (!FractArg) 1807 return false; 1808 1809 // Match pattern for fract intrinsic in contexts where the nan check has been 1810 // optimized out (and hope the knowledge the source can't be nan wasn't lost). 1811 if (!I.hasNoNaNs() && !isKnownNeverNaN(FractArg, *DL, TLInfo)) 1812 return false; 1813 1814 IRBuilder<> Builder(&I); 1815 FastMathFlags FMF = I.getFastMathFlags(); 1816 FMF.setNoNaNs(); 1817 Builder.setFastMathFlags(FMF); 1818 1819 Value *Fract = applyFractPat(Builder, FractArg); 1820 Fract->takeName(&I); 1821 I.replaceAllUsesWith(Fract); 1822 1823 RecursivelyDeleteTriviallyDeadInstructions(&I, TLInfo); 1824 return true; 1825 } 1826 1827 bool AMDGPUCodeGenPrepare::doInitialization(Module &M) { 1828 Impl.Mod = &M; 1829 Impl.DL = &Impl.Mod->getDataLayout(); 1830 return false; 1831 } 1832 1833 bool AMDGPUCodeGenPrepare::runOnFunction(Function &F) { 1834 if (skipFunction(F)) 1835 return false; 1836 1837 auto *TPC = getAnalysisIfAvailable<TargetPassConfig>(); 1838 if (!TPC) 1839 return false; 1840 1841 const AMDGPUTargetMachine &TM = TPC->getTM<AMDGPUTargetMachine>(); 1842 Impl.TLInfo = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F); 1843 Impl.ST = &TM.getSubtarget<GCNSubtarget>(F); 1844 Impl.AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 1845 Impl.UA = &getAnalysis<UniformityInfoWrapperPass>().getUniformityInfo(); 1846 auto *DTWP = getAnalysisIfAvailable<DominatorTreeWrapperPass>(); 1847 Impl.DT = DTWP ? &DTWP->getDomTree() : nullptr; 1848 Impl.HasUnsafeFPMath = hasUnsafeFPMath(F); 1849 SIModeRegisterDefaults Mode(F); 1850 Impl.HasFP32DenormalFlush = 1851 Mode.FP32Denormals == DenormalMode::getPreserveSign(); 1852 return Impl.run(F); 1853 } 1854 1855 PreservedAnalyses AMDGPUCodeGenPreparePass::run(Function &F, 1856 FunctionAnalysisManager &FAM) { 1857 AMDGPUCodeGenPrepareImpl Impl; 1858 Impl.Mod = F.getParent(); 1859 Impl.DL = &Impl.Mod->getDataLayout(); 1860 Impl.TLInfo = &FAM.getResult<TargetLibraryAnalysis>(F); 1861 Impl.ST = &TM.getSubtarget<GCNSubtarget>(F); 1862 Impl.AC = &FAM.getResult<AssumptionAnalysis>(F); 1863 Impl.UA = &FAM.getResult<UniformityInfoAnalysis>(F); 1864 Impl.DT = FAM.getCachedResult<DominatorTreeAnalysis>(F); 1865 Impl.HasUnsafeFPMath = hasUnsafeFPMath(F); 1866 SIModeRegisterDefaults Mode(F); 1867 Impl.HasFP32DenormalFlush = 1868 Mode.FP32Denormals == DenormalMode::getPreserveSign(); 1869 PreservedAnalyses PA = PreservedAnalyses::none(); 1870 if (!Impl.FlowChanged) 1871 PA.preserveSet<CFGAnalyses>(); 1872 return Impl.run(F) ? PA : PreservedAnalyses::all(); 1873 } 1874 1875 INITIALIZE_PASS_BEGIN(AMDGPUCodeGenPrepare, DEBUG_TYPE, 1876 "AMDGPU IR optimizations", false, false) 1877 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 1878 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 1879 INITIALIZE_PASS_DEPENDENCY(UniformityInfoWrapperPass) 1880 INITIALIZE_PASS_END(AMDGPUCodeGenPrepare, DEBUG_TYPE, "AMDGPU IR optimizations", 1881 false, false) 1882 1883 char AMDGPUCodeGenPrepare::ID = 0; 1884 1885 FunctionPass *llvm::createAMDGPUCodeGenPreparePass() { 1886 return new AMDGPUCodeGenPrepare(); 1887 } 1888