xref: /llvm-project/llvm/lib/Target/AMDGPU/AMDGPUCodeGenPrepare.cpp (revision bcd91778fe7e6fc66cdccc5ddc3ff3fc48909f6b)
1 //===-- AMDGPUCodeGenPrepare.cpp ------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file
10 /// This pass does misc. AMDGPU optimizations on IR before instruction
11 /// selection.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "AMDGPU.h"
16 #include "AMDGPUSubtarget.h"
17 #include "AMDGPUTargetMachine.h"
18 #include "llvm/ADT/StringRef.h"
19 #include "llvm/Analysis/AssumptionCache.h"
20 #include "llvm/Analysis/ConstantFolding.h"
21 #include "llvm/Analysis/LegacyDivergenceAnalysis.h"
22 #include "llvm/Analysis/Loads.h"
23 #include "llvm/Analysis/ValueTracking.h"
24 #include "llvm/CodeGen/Passes.h"
25 #include "llvm/CodeGen/TargetPassConfig.h"
26 #include "llvm/IR/Attributes.h"
27 #include "llvm/IR/BasicBlock.h"
28 #include "llvm/IR/Constants.h"
29 #include "llvm/IR/DerivedTypes.h"
30 #include "llvm/IR/Function.h"
31 #include "llvm/IR/IRBuilder.h"
32 #include "llvm/IR/InstVisitor.h"
33 #include "llvm/IR/InstrTypes.h"
34 #include "llvm/IR/Instruction.h"
35 #include "llvm/IR/Instructions.h"
36 #include "llvm/IR/IntrinsicInst.h"
37 #include "llvm/IR/Intrinsics.h"
38 #include "llvm/IR/LLVMContext.h"
39 #include "llvm/IR/Operator.h"
40 #include "llvm/IR/Type.h"
41 #include "llvm/IR/Value.h"
42 #include "llvm/InitializePasses.h"
43 #include "llvm/Pass.h"
44 #include "llvm/Support/Casting.h"
45 #include <cassert>
46 #include <iterator>
47 
48 #define DEBUG_TYPE "amdgpu-codegenprepare"
49 
50 using namespace llvm;
51 
52 namespace {
53 
54 static cl::opt<bool> WidenLoads(
55   "amdgpu-codegenprepare-widen-constant-loads",
56   cl::desc("Widen sub-dword constant address space loads in AMDGPUCodeGenPrepare"),
57   cl::ReallyHidden,
58   cl::init(true));
59 
60 static cl::opt<bool> UseMul24Intrin(
61   "amdgpu-codegenprepare-mul24",
62   cl::desc("Introduce mul24 intrinsics in AMDGPUCodeGenPrepare"),
63   cl::ReallyHidden,
64   cl::init(true));
65 
66 class AMDGPUCodeGenPrepare : public FunctionPass,
67                              public InstVisitor<AMDGPUCodeGenPrepare, bool> {
68   const GCNSubtarget *ST = nullptr;
69   AssumptionCache *AC = nullptr;
70   LegacyDivergenceAnalysis *DA = nullptr;
71   Module *Mod = nullptr;
72   const DataLayout *DL = nullptr;
73   bool HasUnsafeFPMath = false;
74   bool HasFP32Denormals = false;
75 
76   /// Copies exact/nsw/nuw flags (if any) from binary operation \p I to
77   /// binary operation \p V.
78   ///
79   /// \returns Binary operation \p V.
80   /// \returns \p T's base element bit width.
81   unsigned getBaseElementBitWidth(const Type *T) const;
82 
83   /// \returns Equivalent 32 bit integer type for given type \p T. For example,
84   /// if \p T is i7, then i32 is returned; if \p T is <3 x i12>, then <3 x i32>
85   /// is returned.
86   Type *getI32Ty(IRBuilder<> &B, const Type *T) const;
87 
88   /// \returns True if binary operation \p I is a signed binary operation, false
89   /// otherwise.
90   bool isSigned(const BinaryOperator &I) const;
91 
92   /// \returns True if the condition of 'select' operation \p I comes from a
93   /// signed 'icmp' operation, false otherwise.
94   bool isSigned(const SelectInst &I) const;
95 
96   /// \returns True if type \p T needs to be promoted to 32 bit integer type,
97   /// false otherwise.
98   bool needsPromotionToI32(const Type *T) const;
99 
100   /// Promotes uniform binary operation \p I to equivalent 32 bit binary
101   /// operation.
102   ///
103   /// \details \p I's base element bit width must be greater than 1 and less
104   /// than or equal 16. Promotion is done by sign or zero extending operands to
105   /// 32 bits, replacing \p I with equivalent 32 bit binary operation, and
106   /// truncating the result of 32 bit binary operation back to \p I's original
107   /// type. Division operation is not promoted.
108   ///
109   /// \returns True if \p I is promoted to equivalent 32 bit binary operation,
110   /// false otherwise.
111   bool promoteUniformOpToI32(BinaryOperator &I) const;
112 
113   /// Promotes uniform 'icmp' operation \p I to 32 bit 'icmp' operation.
114   ///
115   /// \details \p I's base element bit width must be greater than 1 and less
116   /// than or equal 16. Promotion is done by sign or zero extending operands to
117   /// 32 bits, and replacing \p I with 32 bit 'icmp' operation.
118   ///
119   /// \returns True.
120   bool promoteUniformOpToI32(ICmpInst &I) const;
121 
122   /// Promotes uniform 'select' operation \p I to 32 bit 'select'
123   /// operation.
124   ///
125   /// \details \p I's base element bit width must be greater than 1 and less
126   /// than or equal 16. Promotion is done by sign or zero extending operands to
127   /// 32 bits, replacing \p I with 32 bit 'select' operation, and truncating the
128   /// result of 32 bit 'select' operation back to \p I's original type.
129   ///
130   /// \returns True.
131   bool promoteUniformOpToI32(SelectInst &I) const;
132 
133   /// Promotes uniform 'bitreverse' intrinsic \p I to 32 bit 'bitreverse'
134   /// intrinsic.
135   ///
136   /// \details \p I's base element bit width must be greater than 1 and less
137   /// than or equal 16. Promotion is done by zero extending the operand to 32
138   /// bits, replacing \p I with 32 bit 'bitreverse' intrinsic, shifting the
139   /// result of 32 bit 'bitreverse' intrinsic to the right with zero fill (the
140   /// shift amount is 32 minus \p I's base element bit width), and truncating
141   /// the result of the shift operation back to \p I's original type.
142   ///
143   /// \returns True.
144   bool promoteUniformBitreverseToI32(IntrinsicInst &I) const;
145 
146 
147   unsigned numBitsUnsigned(Value *Op, unsigned ScalarSize) const;
148   unsigned numBitsSigned(Value *Op, unsigned ScalarSize) const;
149   bool isI24(Value *V, unsigned ScalarSize) const;
150   bool isU24(Value *V, unsigned ScalarSize) const;
151 
152   /// Replace mul instructions with llvm.amdgcn.mul.u24 or llvm.amdgcn.mul.s24.
153   /// SelectionDAG has an issue where an and asserting the bits are known
154   bool replaceMulWithMul24(BinaryOperator &I) const;
155 
156   /// Perform same function as equivalently named function in DAGCombiner. Since
157   /// we expand some divisions here, we need to perform this before obscuring.
158   bool foldBinOpIntoSelect(BinaryOperator &I) const;
159 
160   /// Expands 24 bit div or rem.
161   Value* expandDivRem24(IRBuilder<> &Builder, BinaryOperator &I,
162                         Value *Num, Value *Den,
163                         bool IsDiv, bool IsSigned) const;
164 
165   /// Expands 32 bit div or rem.
166   Value* expandDivRem32(IRBuilder<> &Builder, BinaryOperator &I,
167                         Value *Num, Value *Den) const;
168 
169   /// Widen a scalar load.
170   ///
171   /// \details \p Widen scalar load for uniform, small type loads from constant
172   //  memory / to a full 32-bits and then truncate the input to allow a scalar
173   //  load instead of a vector load.
174   //
175   /// \returns True.
176 
177   bool canWidenScalarExtLoad(LoadInst &I) const;
178 
179 public:
180   static char ID;
181 
182   AMDGPUCodeGenPrepare() : FunctionPass(ID) {}
183 
184   bool visitFDiv(BinaryOperator &I);
185 
186   bool visitInstruction(Instruction &I) { return false; }
187   bool visitBinaryOperator(BinaryOperator &I);
188   bool visitLoadInst(LoadInst &I);
189   bool visitICmpInst(ICmpInst &I);
190   bool visitSelectInst(SelectInst &I);
191 
192   bool visitIntrinsicInst(IntrinsicInst &I);
193   bool visitBitreverseIntrinsicInst(IntrinsicInst &I);
194 
195   bool doInitialization(Module &M) override;
196   bool runOnFunction(Function &F) override;
197 
198   StringRef getPassName() const override { return "AMDGPU IR optimizations"; }
199 
200   void getAnalysisUsage(AnalysisUsage &AU) const override {
201     AU.addRequired<AssumptionCacheTracker>();
202     AU.addRequired<LegacyDivergenceAnalysis>();
203     AU.setPreservesAll();
204  }
205 };
206 
207 } // end anonymous namespace
208 
209 unsigned AMDGPUCodeGenPrepare::getBaseElementBitWidth(const Type *T) const {
210   assert(needsPromotionToI32(T) && "T does not need promotion to i32");
211 
212   if (T->isIntegerTy())
213     return T->getIntegerBitWidth();
214   return cast<VectorType>(T)->getElementType()->getIntegerBitWidth();
215 }
216 
217 Type *AMDGPUCodeGenPrepare::getI32Ty(IRBuilder<> &B, const Type *T) const {
218   assert(needsPromotionToI32(T) && "T does not need promotion to i32");
219 
220   if (T->isIntegerTy())
221     return B.getInt32Ty();
222   return VectorType::get(B.getInt32Ty(), cast<VectorType>(T)->getNumElements());
223 }
224 
225 bool AMDGPUCodeGenPrepare::isSigned(const BinaryOperator &I) const {
226   return I.getOpcode() == Instruction::AShr ||
227       I.getOpcode() == Instruction::SDiv || I.getOpcode() == Instruction::SRem;
228 }
229 
230 bool AMDGPUCodeGenPrepare::isSigned(const SelectInst &I) const {
231   return isa<ICmpInst>(I.getOperand(0)) ?
232       cast<ICmpInst>(I.getOperand(0))->isSigned() : false;
233 }
234 
235 bool AMDGPUCodeGenPrepare::needsPromotionToI32(const Type *T) const {
236   const IntegerType *IntTy = dyn_cast<IntegerType>(T);
237   if (IntTy && IntTy->getBitWidth() > 1 && IntTy->getBitWidth() <= 16)
238     return true;
239 
240   if (const VectorType *VT = dyn_cast<VectorType>(T)) {
241     // TODO: The set of packed operations is more limited, so may want to
242     // promote some anyway.
243     if (ST->hasVOP3PInsts())
244       return false;
245 
246     return needsPromotionToI32(VT->getElementType());
247   }
248 
249   return false;
250 }
251 
252 // Return true if the op promoted to i32 should have nsw set.
253 static bool promotedOpIsNSW(const Instruction &I) {
254   switch (I.getOpcode()) {
255   case Instruction::Shl:
256   case Instruction::Add:
257   case Instruction::Sub:
258     return true;
259   case Instruction::Mul:
260     return I.hasNoUnsignedWrap();
261   default:
262     return false;
263   }
264 }
265 
266 // Return true if the op promoted to i32 should have nuw set.
267 static bool promotedOpIsNUW(const Instruction &I) {
268   switch (I.getOpcode()) {
269   case Instruction::Shl:
270   case Instruction::Add:
271   case Instruction::Mul:
272     return true;
273   case Instruction::Sub:
274     return I.hasNoUnsignedWrap();
275   default:
276     return false;
277   }
278 }
279 
280 bool AMDGPUCodeGenPrepare::canWidenScalarExtLoad(LoadInst &I) const {
281   Type *Ty = I.getType();
282   const DataLayout &DL = Mod->getDataLayout();
283   int TySize = DL.getTypeSizeInBits(Ty);
284   unsigned Align = I.getAlignment() ?
285                    I.getAlignment() : DL.getABITypeAlignment(Ty);
286 
287   return I.isSimple() && TySize < 32 && Align >= 4 && DA->isUniform(&I);
288 }
289 
290 bool AMDGPUCodeGenPrepare::promoteUniformOpToI32(BinaryOperator &I) const {
291   assert(needsPromotionToI32(I.getType()) &&
292          "I does not need promotion to i32");
293 
294   if (I.getOpcode() == Instruction::SDiv ||
295       I.getOpcode() == Instruction::UDiv ||
296       I.getOpcode() == Instruction::SRem ||
297       I.getOpcode() == Instruction::URem)
298     return false;
299 
300   IRBuilder<> Builder(&I);
301   Builder.SetCurrentDebugLocation(I.getDebugLoc());
302 
303   Type *I32Ty = getI32Ty(Builder, I.getType());
304   Value *ExtOp0 = nullptr;
305   Value *ExtOp1 = nullptr;
306   Value *ExtRes = nullptr;
307   Value *TruncRes = nullptr;
308 
309   if (isSigned(I)) {
310     ExtOp0 = Builder.CreateSExt(I.getOperand(0), I32Ty);
311     ExtOp1 = Builder.CreateSExt(I.getOperand(1), I32Ty);
312   } else {
313     ExtOp0 = Builder.CreateZExt(I.getOperand(0), I32Ty);
314     ExtOp1 = Builder.CreateZExt(I.getOperand(1), I32Ty);
315   }
316 
317   ExtRes = Builder.CreateBinOp(I.getOpcode(), ExtOp0, ExtOp1);
318   if (Instruction *Inst = dyn_cast<Instruction>(ExtRes)) {
319     if (promotedOpIsNSW(cast<Instruction>(I)))
320       Inst->setHasNoSignedWrap();
321 
322     if (promotedOpIsNUW(cast<Instruction>(I)))
323       Inst->setHasNoUnsignedWrap();
324 
325     if (const auto *ExactOp = dyn_cast<PossiblyExactOperator>(&I))
326       Inst->setIsExact(ExactOp->isExact());
327   }
328 
329   TruncRes = Builder.CreateTrunc(ExtRes, I.getType());
330 
331   I.replaceAllUsesWith(TruncRes);
332   I.eraseFromParent();
333 
334   return true;
335 }
336 
337 bool AMDGPUCodeGenPrepare::promoteUniformOpToI32(ICmpInst &I) const {
338   assert(needsPromotionToI32(I.getOperand(0)->getType()) &&
339          "I does not need promotion to i32");
340 
341   IRBuilder<> Builder(&I);
342   Builder.SetCurrentDebugLocation(I.getDebugLoc());
343 
344   Type *I32Ty = getI32Ty(Builder, I.getOperand(0)->getType());
345   Value *ExtOp0 = nullptr;
346   Value *ExtOp1 = nullptr;
347   Value *NewICmp  = nullptr;
348 
349   if (I.isSigned()) {
350     ExtOp0 = Builder.CreateSExt(I.getOperand(0), I32Ty);
351     ExtOp1 = Builder.CreateSExt(I.getOperand(1), I32Ty);
352   } else {
353     ExtOp0 = Builder.CreateZExt(I.getOperand(0), I32Ty);
354     ExtOp1 = Builder.CreateZExt(I.getOperand(1), I32Ty);
355   }
356   NewICmp = Builder.CreateICmp(I.getPredicate(), ExtOp0, ExtOp1);
357 
358   I.replaceAllUsesWith(NewICmp);
359   I.eraseFromParent();
360 
361   return true;
362 }
363 
364 bool AMDGPUCodeGenPrepare::promoteUniformOpToI32(SelectInst &I) const {
365   assert(needsPromotionToI32(I.getType()) &&
366          "I does not need promotion to i32");
367 
368   IRBuilder<> Builder(&I);
369   Builder.SetCurrentDebugLocation(I.getDebugLoc());
370 
371   Type *I32Ty = getI32Ty(Builder, I.getType());
372   Value *ExtOp1 = nullptr;
373   Value *ExtOp2 = nullptr;
374   Value *ExtRes = nullptr;
375   Value *TruncRes = nullptr;
376 
377   if (isSigned(I)) {
378     ExtOp1 = Builder.CreateSExt(I.getOperand(1), I32Ty);
379     ExtOp2 = Builder.CreateSExt(I.getOperand(2), I32Ty);
380   } else {
381     ExtOp1 = Builder.CreateZExt(I.getOperand(1), I32Ty);
382     ExtOp2 = Builder.CreateZExt(I.getOperand(2), I32Ty);
383   }
384   ExtRes = Builder.CreateSelect(I.getOperand(0), ExtOp1, ExtOp2);
385   TruncRes = Builder.CreateTrunc(ExtRes, I.getType());
386 
387   I.replaceAllUsesWith(TruncRes);
388   I.eraseFromParent();
389 
390   return true;
391 }
392 
393 bool AMDGPUCodeGenPrepare::promoteUniformBitreverseToI32(
394     IntrinsicInst &I) const {
395   assert(I.getIntrinsicID() == Intrinsic::bitreverse &&
396          "I must be bitreverse intrinsic");
397   assert(needsPromotionToI32(I.getType()) &&
398          "I does not need promotion to i32");
399 
400   IRBuilder<> Builder(&I);
401   Builder.SetCurrentDebugLocation(I.getDebugLoc());
402 
403   Type *I32Ty = getI32Ty(Builder, I.getType());
404   Function *I32 =
405       Intrinsic::getDeclaration(Mod, Intrinsic::bitreverse, { I32Ty });
406   Value *ExtOp = Builder.CreateZExt(I.getOperand(0), I32Ty);
407   Value *ExtRes = Builder.CreateCall(I32, { ExtOp });
408   Value *LShrOp =
409       Builder.CreateLShr(ExtRes, 32 - getBaseElementBitWidth(I.getType()));
410   Value *TruncRes =
411       Builder.CreateTrunc(LShrOp, I.getType());
412 
413   I.replaceAllUsesWith(TruncRes);
414   I.eraseFromParent();
415 
416   return true;
417 }
418 
419 unsigned AMDGPUCodeGenPrepare::numBitsUnsigned(Value *Op,
420                                                unsigned ScalarSize) const {
421   KnownBits Known = computeKnownBits(Op, *DL, 0, AC);
422   return ScalarSize - Known.countMinLeadingZeros();
423 }
424 
425 unsigned AMDGPUCodeGenPrepare::numBitsSigned(Value *Op,
426                                              unsigned ScalarSize) const {
427   // In order for this to be a signed 24-bit value, bit 23, must
428   // be a sign bit.
429   return ScalarSize - ComputeNumSignBits(Op, *DL, 0, AC);
430 }
431 
432 bool AMDGPUCodeGenPrepare::isI24(Value *V, unsigned ScalarSize) const {
433   return ScalarSize >= 24 && // Types less than 24-bit should be treated
434                                      // as unsigned 24-bit values.
435     numBitsSigned(V, ScalarSize) < 24;
436 }
437 
438 bool AMDGPUCodeGenPrepare::isU24(Value *V, unsigned ScalarSize) const {
439   return numBitsUnsigned(V, ScalarSize) <= 24;
440 }
441 
442 static void extractValues(IRBuilder<> &Builder,
443                           SmallVectorImpl<Value *> &Values, Value *V) {
444   VectorType *VT = dyn_cast<VectorType>(V->getType());
445   if (!VT) {
446     Values.push_back(V);
447     return;
448   }
449 
450   for (int I = 0, E = VT->getNumElements(); I != E; ++I)
451     Values.push_back(Builder.CreateExtractElement(V, I));
452 }
453 
454 static Value *insertValues(IRBuilder<> &Builder,
455                            Type *Ty,
456                            SmallVectorImpl<Value *> &Values) {
457   if (Values.size() == 1)
458     return Values[0];
459 
460   Value *NewVal = UndefValue::get(Ty);
461   for (int I = 0, E = Values.size(); I != E; ++I)
462     NewVal = Builder.CreateInsertElement(NewVal, Values[I], I);
463 
464   return NewVal;
465 }
466 
467 bool AMDGPUCodeGenPrepare::replaceMulWithMul24(BinaryOperator &I) const {
468   if (I.getOpcode() != Instruction::Mul)
469     return false;
470 
471   Type *Ty = I.getType();
472   unsigned Size = Ty->getScalarSizeInBits();
473   if (Size <= 16 && ST->has16BitInsts())
474     return false;
475 
476   // Prefer scalar if this could be s_mul_i32
477   if (DA->isUniform(&I))
478     return false;
479 
480   Value *LHS = I.getOperand(0);
481   Value *RHS = I.getOperand(1);
482   IRBuilder<> Builder(&I);
483   Builder.SetCurrentDebugLocation(I.getDebugLoc());
484 
485   Intrinsic::ID IntrID = Intrinsic::not_intrinsic;
486 
487   // TODO: Should this try to match mulhi24?
488   if (ST->hasMulU24() && isU24(LHS, Size) && isU24(RHS, Size)) {
489     IntrID = Intrinsic::amdgcn_mul_u24;
490   } else if (ST->hasMulI24() && isI24(LHS, Size) && isI24(RHS, Size)) {
491     IntrID = Intrinsic::amdgcn_mul_i24;
492   } else
493     return false;
494 
495   SmallVector<Value *, 4> LHSVals;
496   SmallVector<Value *, 4> RHSVals;
497   SmallVector<Value *, 4> ResultVals;
498   extractValues(Builder, LHSVals, LHS);
499   extractValues(Builder, RHSVals, RHS);
500 
501 
502   IntegerType *I32Ty = Builder.getInt32Ty();
503   FunctionCallee Intrin = Intrinsic::getDeclaration(Mod, IntrID);
504   for (int I = 0, E = LHSVals.size(); I != E; ++I) {
505     Value *LHS, *RHS;
506     if (IntrID == Intrinsic::amdgcn_mul_u24) {
507       LHS = Builder.CreateZExtOrTrunc(LHSVals[I], I32Ty);
508       RHS = Builder.CreateZExtOrTrunc(RHSVals[I], I32Ty);
509     } else {
510       LHS = Builder.CreateSExtOrTrunc(LHSVals[I], I32Ty);
511       RHS = Builder.CreateSExtOrTrunc(RHSVals[I], I32Ty);
512     }
513 
514     Value *Result = Builder.CreateCall(Intrin, {LHS, RHS});
515 
516     if (IntrID == Intrinsic::amdgcn_mul_u24) {
517       ResultVals.push_back(Builder.CreateZExtOrTrunc(Result,
518                                                      LHSVals[I]->getType()));
519     } else {
520       ResultVals.push_back(Builder.CreateSExtOrTrunc(Result,
521                                                      LHSVals[I]->getType()));
522     }
523   }
524 
525   Value *NewVal = insertValues(Builder, Ty, ResultVals);
526   NewVal->takeName(&I);
527   I.replaceAllUsesWith(NewVal);
528   I.eraseFromParent();
529 
530   return true;
531 }
532 
533 bool AMDGPUCodeGenPrepare::foldBinOpIntoSelect(BinaryOperator &BO) const {
534   // Don't do this unless the old select is going away. We want to eliminate the
535   // binary operator, not replace a binop with a select.
536   int SelOpNo = 0;
537   SelectInst *Sel = dyn_cast<SelectInst>(BO.getOperand(0));
538   if (!Sel || !Sel->hasOneUse()) {
539     SelOpNo = 1;
540     Sel = dyn_cast<SelectInst>(BO.getOperand(1));
541   }
542 
543   if (!Sel || !Sel->hasOneUse())
544     return false;
545 
546   Constant *CT = dyn_cast<Constant>(Sel->getTrueValue());
547   Constant *CF = dyn_cast<Constant>(Sel->getFalseValue());
548   Constant *CBO = dyn_cast<Constant>(BO.getOperand(SelOpNo ^ 1));
549   if (!CBO || !CT || !CF)
550     return false;
551 
552   // TODO: Handle special 0/-1 cases DAG combine does, although we only really
553   // need to handle divisions here.
554   Constant *FoldedT = SelOpNo ?
555     ConstantFoldBinaryOpOperands(BO.getOpcode(), CBO, CT, *DL) :
556     ConstantFoldBinaryOpOperands(BO.getOpcode(), CT, CBO, *DL);
557   if (isa<ConstantExpr>(FoldedT))
558     return false;
559 
560   Constant *FoldedF = SelOpNo ?
561     ConstantFoldBinaryOpOperands(BO.getOpcode(), CBO, CF, *DL) :
562     ConstantFoldBinaryOpOperands(BO.getOpcode(), CF, CBO, *DL);
563   if (isa<ConstantExpr>(FoldedF))
564     return false;
565 
566   IRBuilder<> Builder(&BO);
567   Builder.SetCurrentDebugLocation(BO.getDebugLoc());
568   if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(&BO))
569     Builder.setFastMathFlags(FPOp->getFastMathFlags());
570 
571   Value *NewSelect = Builder.CreateSelect(Sel->getCondition(),
572                                           FoldedT, FoldedF);
573   NewSelect->takeName(&BO);
574   BO.replaceAllUsesWith(NewSelect);
575   BO.eraseFromParent();
576   Sel->eraseFromParent();
577   return true;
578 }
579 
580 static bool shouldKeepFDivF32(Value *Num, bool UnsafeDiv, bool HasDenormals) {
581   const ConstantFP *CNum = dyn_cast<ConstantFP>(Num);
582   if (!CNum)
583     return HasDenormals;
584 
585   if (UnsafeDiv)
586     return true;
587 
588   bool IsOne = CNum->isExactlyValue(+1.0) || CNum->isExactlyValue(-1.0);
589 
590   // Reciprocal f32 is handled separately without denormals.
591   return HasDenormals ^ IsOne;
592 }
593 
594 // Insert an intrinsic for fast fdiv for safe math situations where we can
595 // reduce precision. Leave fdiv for situations where the generic node is
596 // expected to be optimized.
597 bool AMDGPUCodeGenPrepare::visitFDiv(BinaryOperator &FDiv) {
598   Type *Ty = FDiv.getType();
599 
600   if (!Ty->getScalarType()->isFloatTy())
601     return false;
602 
603   MDNode *FPMath = FDiv.getMetadata(LLVMContext::MD_fpmath);
604   if (!FPMath)
605     return false;
606 
607   const FPMathOperator *FPOp = cast<const FPMathOperator>(&FDiv);
608   float ULP = FPOp->getFPAccuracy();
609   if (ULP < 2.5f)
610     return false;
611 
612   FastMathFlags FMF = FPOp->getFastMathFlags();
613   bool UnsafeDiv = HasUnsafeFPMath || FMF.isFast() ||
614                                       FMF.allowReciprocal();
615 
616   // With UnsafeDiv node will be optimized to just rcp and mul.
617   if (UnsafeDiv)
618     return false;
619 
620   IRBuilder<> Builder(FDiv.getParent(), std::next(FDiv.getIterator()), FPMath);
621   Builder.setFastMathFlags(FMF);
622   Builder.SetCurrentDebugLocation(FDiv.getDebugLoc());
623 
624   Function *Decl = Intrinsic::getDeclaration(Mod, Intrinsic::amdgcn_fdiv_fast);
625 
626   Value *Num = FDiv.getOperand(0);
627   Value *Den = FDiv.getOperand(1);
628 
629   Value *NewFDiv = nullptr;
630 
631   if (VectorType *VT = dyn_cast<VectorType>(Ty)) {
632     NewFDiv = UndefValue::get(VT);
633 
634     // FIXME: Doesn't do the right thing for cases where the vector is partially
635     // constant. This works when the scalarizer pass is run first.
636     for (unsigned I = 0, E = VT->getNumElements(); I != E; ++I) {
637       Value *NumEltI = Builder.CreateExtractElement(Num, I);
638       Value *DenEltI = Builder.CreateExtractElement(Den, I);
639       Value *NewElt;
640 
641       if (shouldKeepFDivF32(NumEltI, UnsafeDiv, HasFP32Denormals)) {
642         NewElt = Builder.CreateFDiv(NumEltI, DenEltI);
643       } else {
644         NewElt = Builder.CreateCall(Decl, { NumEltI, DenEltI });
645       }
646 
647       NewFDiv = Builder.CreateInsertElement(NewFDiv, NewElt, I);
648     }
649   } else {
650     if (!shouldKeepFDivF32(Num, UnsafeDiv, HasFP32Denormals))
651       NewFDiv = Builder.CreateCall(Decl, { Num, Den });
652   }
653 
654   if (NewFDiv) {
655     FDiv.replaceAllUsesWith(NewFDiv);
656     NewFDiv->takeName(&FDiv);
657     FDiv.eraseFromParent();
658   }
659 
660   return !!NewFDiv;
661 }
662 
663 static bool hasUnsafeFPMath(const Function &F) {
664   Attribute Attr = F.getFnAttribute("unsafe-fp-math");
665   return Attr.getValueAsString() == "true";
666 }
667 
668 static std::pair<Value*, Value*> getMul64(IRBuilder<> &Builder,
669                                           Value *LHS, Value *RHS) {
670   Type *I32Ty = Builder.getInt32Ty();
671   Type *I64Ty = Builder.getInt64Ty();
672 
673   Value *LHS_EXT64 = Builder.CreateZExt(LHS, I64Ty);
674   Value *RHS_EXT64 = Builder.CreateZExt(RHS, I64Ty);
675   Value *MUL64 = Builder.CreateMul(LHS_EXT64, RHS_EXT64);
676   Value *Lo = Builder.CreateTrunc(MUL64, I32Ty);
677   Value *Hi = Builder.CreateLShr(MUL64, Builder.getInt64(32));
678   Hi = Builder.CreateTrunc(Hi, I32Ty);
679   return std::make_pair(Lo, Hi);
680 }
681 
682 static Value* getMulHu(IRBuilder<> &Builder, Value *LHS, Value *RHS) {
683   return getMul64(Builder, LHS, RHS).second;
684 }
685 
686 // The fractional part of a float is enough to accurately represent up to
687 // a 24-bit signed integer.
688 Value* AMDGPUCodeGenPrepare::expandDivRem24(IRBuilder<> &Builder,
689                                             BinaryOperator &I,
690                                             Value *Num, Value *Den,
691                                             bool IsDiv, bool IsSigned) const {
692   assert(Num->getType()->isIntegerTy(32));
693 
694   const DataLayout &DL = Mod->getDataLayout();
695   unsigned LHSSignBits = ComputeNumSignBits(Num, DL, 0, AC, &I);
696   if (LHSSignBits < 9)
697     return nullptr;
698 
699   unsigned RHSSignBits = ComputeNumSignBits(Den, DL, 0, AC, &I);
700   if (RHSSignBits < 9)
701     return nullptr;
702 
703 
704   unsigned SignBits = std::min(LHSSignBits, RHSSignBits);
705   unsigned DivBits = 32 - SignBits;
706   if (IsSigned)
707     ++DivBits;
708 
709   Type *I32Ty = Builder.getInt32Ty();
710   Type *F32Ty = Builder.getFloatTy();
711   ConstantInt *One = Builder.getInt32(1);
712   Value *JQ = One;
713 
714   if (IsSigned) {
715     // char|short jq = ia ^ ib;
716     JQ = Builder.CreateXor(Num, Den);
717 
718     // jq = jq >> (bitsize - 2)
719     JQ = Builder.CreateAShr(JQ, Builder.getInt32(30));
720 
721     // jq = jq | 0x1
722     JQ = Builder.CreateOr(JQ, One);
723   }
724 
725   // int ia = (int)LHS;
726   Value *IA = Num;
727 
728   // int ib, (int)RHS;
729   Value *IB = Den;
730 
731   // float fa = (float)ia;
732   Value *FA = IsSigned ? Builder.CreateSIToFP(IA, F32Ty)
733                        : Builder.CreateUIToFP(IA, F32Ty);
734 
735   // float fb = (float)ib;
736   Value *FB = IsSigned ? Builder.CreateSIToFP(IB,F32Ty)
737                        : Builder.CreateUIToFP(IB,F32Ty);
738 
739   Value *RCP = Builder.CreateFDiv(ConstantFP::get(F32Ty, 1.0), FB);
740   Value *FQM = Builder.CreateFMul(FA, RCP);
741 
742   // fq = trunc(fqm);
743   CallInst *FQ = Builder.CreateUnaryIntrinsic(Intrinsic::trunc, FQM);
744   FQ->copyFastMathFlags(Builder.getFastMathFlags());
745 
746   // float fqneg = -fq;
747   Value *FQNeg = Builder.CreateFNeg(FQ);
748 
749   // float fr = mad(fqneg, fb, fa);
750   Value *FR = Builder.CreateIntrinsic(Intrinsic::amdgcn_fmad_ftz,
751                                       {FQNeg->getType()}, {FQNeg, FB, FA}, FQ);
752 
753   // int iq = (int)fq;
754   Value *IQ = IsSigned ? Builder.CreateFPToSI(FQ, I32Ty)
755                        : Builder.CreateFPToUI(FQ, I32Ty);
756 
757   // fr = fabs(fr);
758   FR = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, FR, FQ);
759 
760   // fb = fabs(fb);
761   FB = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, FB, FQ);
762 
763   // int cv = fr >= fb;
764   Value *CV = Builder.CreateFCmpOGE(FR, FB);
765 
766   // jq = (cv ? jq : 0);
767   JQ = Builder.CreateSelect(CV, JQ, Builder.getInt32(0));
768 
769   // dst = iq + jq;
770   Value *Div = Builder.CreateAdd(IQ, JQ);
771 
772   Value *Res = Div;
773   if (!IsDiv) {
774     // Rem needs compensation, it's easier to recompute it
775     Value *Rem = Builder.CreateMul(Div, Den);
776     Res = Builder.CreateSub(Num, Rem);
777   }
778 
779   // Extend in register from the number of bits this divide really is.
780   if (IsSigned) {
781     Res = Builder.CreateShl(Res, 32 - DivBits);
782     Res = Builder.CreateAShr(Res, 32 - DivBits);
783   } else {
784     ConstantInt *TruncMask = Builder.getInt32((UINT64_C(1) << DivBits) - 1);
785     Res = Builder.CreateAnd(Res, TruncMask);
786   }
787 
788   return Res;
789 }
790 
791 Value* AMDGPUCodeGenPrepare::expandDivRem32(IRBuilder<> &Builder,
792                                             BinaryOperator &I,
793                                             Value *Num, Value *Den) const {
794   Instruction::BinaryOps Opc = I.getOpcode();
795   assert(Opc == Instruction::URem || Opc == Instruction::UDiv ||
796          Opc == Instruction::SRem || Opc == Instruction::SDiv);
797 
798   FastMathFlags FMF;
799   FMF.setFast();
800   Builder.setFastMathFlags(FMF);
801 
802   if (isa<Constant>(Den))
803     return nullptr; // Keep it for optimization
804 
805   bool IsDiv = Opc == Instruction::UDiv || Opc == Instruction::SDiv;
806   bool IsSigned = Opc == Instruction::SRem || Opc == Instruction::SDiv;
807 
808   Type *Ty = Num->getType();
809   Type *I32Ty = Builder.getInt32Ty();
810   Type *F32Ty = Builder.getFloatTy();
811 
812   if (Ty->getScalarSizeInBits() < 32) {
813     if (IsSigned) {
814       Num = Builder.CreateSExt(Num, I32Ty);
815       Den = Builder.CreateSExt(Den, I32Ty);
816     } else {
817       Num = Builder.CreateZExt(Num, I32Ty);
818       Den = Builder.CreateZExt(Den, I32Ty);
819     }
820   }
821 
822   if (Value *Res = expandDivRem24(Builder, I, Num, Den, IsDiv, IsSigned)) {
823     Res = Builder.CreateTrunc(Res, Ty);
824     return Res;
825   }
826 
827   ConstantInt *Zero = Builder.getInt32(0);
828   ConstantInt *One = Builder.getInt32(1);
829   ConstantInt *MinusOne = Builder.getInt32(~0);
830 
831   Value *Sign = nullptr;
832   if (IsSigned) {
833     ConstantInt *K31 = Builder.getInt32(31);
834     Value *LHSign = Builder.CreateAShr(Num, K31);
835     Value *RHSign = Builder.CreateAShr(Den, K31);
836     // Remainder sign is the same as LHS
837     Sign = IsDiv ? Builder.CreateXor(LHSign, RHSign) : LHSign;
838 
839     Num = Builder.CreateAdd(Num, LHSign);
840     Den = Builder.CreateAdd(Den, RHSign);
841 
842     Num = Builder.CreateXor(Num, LHSign);
843     Den = Builder.CreateXor(Den, RHSign);
844   }
845 
846   // RCP =  URECIP(Den) = 2^32 / Den + e
847   // e is rounding error.
848   Value *DEN_F32 = Builder.CreateUIToFP(Den, F32Ty);
849   Value *RCP_F32 = Builder.CreateFDiv(ConstantFP::get(F32Ty, 1.0), DEN_F32);
850   Constant *UINT_MAX_PLUS_1 = ConstantFP::get(F32Ty, BitsToFloat(0x4f800000));
851   Value *RCP_SCALE = Builder.CreateFMul(RCP_F32, UINT_MAX_PLUS_1);
852   Value *RCP = Builder.CreateFPToUI(RCP_SCALE, I32Ty);
853 
854   // RCP_LO, RCP_HI = mul(RCP, Den) */
855   Value *RCP_LO, *RCP_HI;
856   std::tie(RCP_LO, RCP_HI) = getMul64(Builder, RCP, Den);
857 
858   // NEG_RCP_LO = -RCP_LO
859   Value *NEG_RCP_LO = Builder.CreateNeg(RCP_LO);
860 
861   // ABS_RCP_LO = (RCP_HI == 0 ? NEG_RCP_LO : RCP_LO)
862   Value *RCP_HI_0_CC = Builder.CreateICmpEQ(RCP_HI, Zero);
863   Value *ABS_RCP_LO = Builder.CreateSelect(RCP_HI_0_CC, NEG_RCP_LO, RCP_LO);
864 
865   // Calculate the rounding error from the URECIP instruction
866   // E = mulhu(ABS_RCP_LO, RCP)
867   Value *E = getMulHu(Builder, ABS_RCP_LO, RCP);
868 
869   // RCP_A_E = RCP + E
870   Value *RCP_A_E = Builder.CreateAdd(RCP, E);
871 
872   // RCP_S_E = RCP - E
873   Value *RCP_S_E = Builder.CreateSub(RCP, E);
874 
875   // Tmp0 = (RCP_HI == 0 ? RCP_A_E : RCP_SUB_E)
876   Value *Tmp0 = Builder.CreateSelect(RCP_HI_0_CC, RCP_A_E, RCP_S_E);
877 
878   // Quotient = mulhu(Tmp0, Num)
879   Value *Quotient = getMulHu(Builder, Tmp0, Num);
880 
881   // Num_S_Remainder = Quotient * Den
882   Value *Num_S_Remainder = Builder.CreateMul(Quotient, Den);
883 
884   // Remainder = Num - Num_S_Remainder
885   Value *Remainder = Builder.CreateSub(Num, Num_S_Remainder);
886 
887   // Remainder_GE_Den = (Remainder >= Den ? -1 : 0)
888   Value *Rem_GE_Den_CC = Builder.CreateICmpUGE(Remainder, Den);
889   Value *Remainder_GE_Den = Builder.CreateSelect(Rem_GE_Den_CC, MinusOne, Zero);
890 
891   // Remainder_GE_Zero = (Num >= Num_S_Remainder ? -1 : 0)
892   Value *Num_GE_Num_S_Rem_CC = Builder.CreateICmpUGE(Num, Num_S_Remainder);
893   Value *Remainder_GE_Zero = Builder.CreateSelect(Num_GE_Num_S_Rem_CC,
894                                                   MinusOne, Zero);
895 
896   // Tmp1 = Remainder_GE_Den & Remainder_GE_Zero
897   Value *Tmp1 = Builder.CreateAnd(Remainder_GE_Den, Remainder_GE_Zero);
898   Value *Tmp1_0_CC = Builder.CreateICmpEQ(Tmp1, Zero);
899 
900   Value *Res;
901   if (IsDiv) {
902     // Quotient_A_One = Quotient + 1
903     Value *Quotient_A_One = Builder.CreateAdd(Quotient, One);
904 
905     // Quotient_S_One = Quotient - 1
906     Value *Quotient_S_One = Builder.CreateSub(Quotient, One);
907 
908     // Div = (Tmp1 == 0 ? Quotient : Quotient_A_One)
909     Value *Div = Builder.CreateSelect(Tmp1_0_CC, Quotient, Quotient_A_One);
910 
911     // Div = (Remainder_GE_Zero == 0 ? Quotient_S_One : Div)
912     Res = Builder.CreateSelect(Num_GE_Num_S_Rem_CC, Div, Quotient_S_One);
913   } else {
914     // Remainder_S_Den = Remainder - Den
915     Value *Remainder_S_Den = Builder.CreateSub(Remainder, Den);
916 
917     // Remainder_A_Den = Remainder + Den
918     Value *Remainder_A_Den = Builder.CreateAdd(Remainder, Den);
919 
920     // Rem = (Tmp1 == 0 ? Remainder : Remainder_S_Den)
921     Value *Rem = Builder.CreateSelect(Tmp1_0_CC, Remainder, Remainder_S_Den);
922 
923     // Rem = (Remainder_GE_Zero == 0 ? Remainder_A_Den : Rem)
924     Res = Builder.CreateSelect(Num_GE_Num_S_Rem_CC, Rem, Remainder_A_Den);
925   }
926 
927   if (IsSigned) {
928     Res = Builder.CreateXor(Res, Sign);
929     Res = Builder.CreateSub(Res, Sign);
930   }
931 
932   Res = Builder.CreateTrunc(Res, Ty);
933 
934   return Res;
935 }
936 
937 bool AMDGPUCodeGenPrepare::visitBinaryOperator(BinaryOperator &I) {
938   if (foldBinOpIntoSelect(I))
939     return true;
940 
941   if (ST->has16BitInsts() && needsPromotionToI32(I.getType()) &&
942       DA->isUniform(&I) && promoteUniformOpToI32(I))
943     return true;
944 
945   if (UseMul24Intrin && replaceMulWithMul24(I))
946     return true;
947 
948   bool Changed = false;
949   Instruction::BinaryOps Opc = I.getOpcode();
950   Type *Ty = I.getType();
951   Value *NewDiv = nullptr;
952   if ((Opc == Instruction::URem || Opc == Instruction::UDiv ||
953        Opc == Instruction::SRem || Opc == Instruction::SDiv) &&
954       Ty->getScalarSizeInBits() <= 32) {
955     Value *Num = I.getOperand(0);
956     Value *Den = I.getOperand(1);
957     IRBuilder<> Builder(&I);
958     Builder.SetCurrentDebugLocation(I.getDebugLoc());
959 
960     if (VectorType *VT = dyn_cast<VectorType>(Ty)) {
961       NewDiv = UndefValue::get(VT);
962 
963       for (unsigned N = 0, E = VT->getNumElements(); N != E; ++N) {
964         Value *NumEltN = Builder.CreateExtractElement(Num, N);
965         Value *DenEltN = Builder.CreateExtractElement(Den, N);
966         Value *NewElt = expandDivRem32(Builder, I, NumEltN, DenEltN);
967         if (!NewElt)
968           NewElt = Builder.CreateBinOp(Opc, NumEltN, DenEltN);
969         NewDiv = Builder.CreateInsertElement(NewDiv, NewElt, N);
970       }
971     } else {
972       NewDiv = expandDivRem32(Builder, I, Num, Den);
973     }
974 
975     if (NewDiv) {
976       I.replaceAllUsesWith(NewDiv);
977       I.eraseFromParent();
978       Changed = true;
979     }
980   }
981 
982   return Changed;
983 }
984 
985 bool AMDGPUCodeGenPrepare::visitLoadInst(LoadInst &I) {
986   if (!WidenLoads)
987     return false;
988 
989   if ((I.getPointerAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS ||
990        I.getPointerAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS_32BIT) &&
991       canWidenScalarExtLoad(I)) {
992     IRBuilder<> Builder(&I);
993     Builder.SetCurrentDebugLocation(I.getDebugLoc());
994 
995     Type *I32Ty = Builder.getInt32Ty();
996     Type *PT = PointerType::get(I32Ty, I.getPointerAddressSpace());
997     Value *BitCast= Builder.CreateBitCast(I.getPointerOperand(), PT);
998     LoadInst *WidenLoad = Builder.CreateLoad(I32Ty, BitCast);
999     WidenLoad->copyMetadata(I);
1000 
1001     // If we have range metadata, we need to convert the type, and not make
1002     // assumptions about the high bits.
1003     if (auto *Range = WidenLoad->getMetadata(LLVMContext::MD_range)) {
1004       ConstantInt *Lower =
1005         mdconst::extract<ConstantInt>(Range->getOperand(0));
1006 
1007       if (Lower->getValue().isNullValue()) {
1008         WidenLoad->setMetadata(LLVMContext::MD_range, nullptr);
1009       } else {
1010         Metadata *LowAndHigh[] = {
1011           ConstantAsMetadata::get(ConstantInt::get(I32Ty, Lower->getValue().zext(32))),
1012           // Don't make assumptions about the high bits.
1013           ConstantAsMetadata::get(ConstantInt::get(I32Ty, 0))
1014         };
1015 
1016         WidenLoad->setMetadata(LLVMContext::MD_range,
1017                                MDNode::get(Mod->getContext(), LowAndHigh));
1018       }
1019     }
1020 
1021     int TySize = Mod->getDataLayout().getTypeSizeInBits(I.getType());
1022     Type *IntNTy = Builder.getIntNTy(TySize);
1023     Value *ValTrunc = Builder.CreateTrunc(WidenLoad, IntNTy);
1024     Value *ValOrig = Builder.CreateBitCast(ValTrunc, I.getType());
1025     I.replaceAllUsesWith(ValOrig);
1026     I.eraseFromParent();
1027     return true;
1028   }
1029 
1030   return false;
1031 }
1032 
1033 bool AMDGPUCodeGenPrepare::visitICmpInst(ICmpInst &I) {
1034   bool Changed = false;
1035 
1036   if (ST->has16BitInsts() && needsPromotionToI32(I.getOperand(0)->getType()) &&
1037       DA->isUniform(&I))
1038     Changed |= promoteUniformOpToI32(I);
1039 
1040   return Changed;
1041 }
1042 
1043 bool AMDGPUCodeGenPrepare::visitSelectInst(SelectInst &I) {
1044   bool Changed = false;
1045 
1046   if (ST->has16BitInsts() && needsPromotionToI32(I.getType()) &&
1047       DA->isUniform(&I))
1048     Changed |= promoteUniformOpToI32(I);
1049 
1050   return Changed;
1051 }
1052 
1053 bool AMDGPUCodeGenPrepare::visitIntrinsicInst(IntrinsicInst &I) {
1054   switch (I.getIntrinsicID()) {
1055   case Intrinsic::bitreverse:
1056     return visitBitreverseIntrinsicInst(I);
1057   default:
1058     return false;
1059   }
1060 }
1061 
1062 bool AMDGPUCodeGenPrepare::visitBitreverseIntrinsicInst(IntrinsicInst &I) {
1063   bool Changed = false;
1064 
1065   if (ST->has16BitInsts() && needsPromotionToI32(I.getType()) &&
1066       DA->isUniform(&I))
1067     Changed |= promoteUniformBitreverseToI32(I);
1068 
1069   return Changed;
1070 }
1071 
1072 bool AMDGPUCodeGenPrepare::doInitialization(Module &M) {
1073   Mod = &M;
1074   DL = &Mod->getDataLayout();
1075   return false;
1076 }
1077 
1078 bool AMDGPUCodeGenPrepare::runOnFunction(Function &F) {
1079   if (skipFunction(F))
1080     return false;
1081 
1082   auto *TPC = getAnalysisIfAvailable<TargetPassConfig>();
1083   if (!TPC)
1084     return false;
1085 
1086   const AMDGPUTargetMachine &TM = TPC->getTM<AMDGPUTargetMachine>();
1087   ST = &TM.getSubtarget<GCNSubtarget>(F);
1088   AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
1089   DA = &getAnalysis<LegacyDivergenceAnalysis>();
1090   HasUnsafeFPMath = hasUnsafeFPMath(F);
1091   HasFP32Denormals = ST->hasFP32Denormals(F);
1092 
1093   bool MadeChange = false;
1094 
1095   for (BasicBlock &BB : F) {
1096     BasicBlock::iterator Next;
1097     for (BasicBlock::iterator I = BB.begin(), E = BB.end(); I != E; I = Next) {
1098       Next = std::next(I);
1099       MadeChange |= visit(*I);
1100     }
1101   }
1102 
1103   return MadeChange;
1104 }
1105 
1106 INITIALIZE_PASS_BEGIN(AMDGPUCodeGenPrepare, DEBUG_TYPE,
1107                       "AMDGPU IR optimizations", false, false)
1108 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
1109 INITIALIZE_PASS_DEPENDENCY(LegacyDivergenceAnalysis)
1110 INITIALIZE_PASS_END(AMDGPUCodeGenPrepare, DEBUG_TYPE, "AMDGPU IR optimizations",
1111                     false, false)
1112 
1113 char AMDGPUCodeGenPrepare::ID = 0;
1114 
1115 FunctionPass *llvm::createAMDGPUCodeGenPreparePass() {
1116   return new AMDGPUCodeGenPrepare();
1117 }
1118