1 //===-- AMDGPUCodeGenPrepare.cpp ------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file 10 /// This pass does misc. AMDGPU optimizations on IR before instruction 11 /// selection. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "AMDGPU.h" 16 #include "AMDGPUSubtarget.h" 17 #include "AMDGPUTargetMachine.h" 18 #include "llvm/ADT/StringRef.h" 19 #include "llvm/Analysis/AssumptionCache.h" 20 #include "llvm/Analysis/ConstantFolding.h" 21 #include "llvm/Analysis/LegacyDivergenceAnalysis.h" 22 #include "llvm/Analysis/Loads.h" 23 #include "llvm/Analysis/ValueTracking.h" 24 #include "llvm/CodeGen/Passes.h" 25 #include "llvm/CodeGen/TargetPassConfig.h" 26 #include "llvm/IR/Attributes.h" 27 #include "llvm/IR/BasicBlock.h" 28 #include "llvm/IR/Constants.h" 29 #include "llvm/IR/DerivedTypes.h" 30 #include "llvm/IR/Function.h" 31 #include "llvm/IR/IRBuilder.h" 32 #include "llvm/IR/InstVisitor.h" 33 #include "llvm/IR/InstrTypes.h" 34 #include "llvm/IR/Instruction.h" 35 #include "llvm/IR/Instructions.h" 36 #include "llvm/IR/IntrinsicInst.h" 37 #include "llvm/IR/Intrinsics.h" 38 #include "llvm/IR/LLVMContext.h" 39 #include "llvm/IR/Operator.h" 40 #include "llvm/IR/Type.h" 41 #include "llvm/IR/Value.h" 42 #include "llvm/InitializePasses.h" 43 #include "llvm/Pass.h" 44 #include "llvm/Support/Casting.h" 45 #include <cassert> 46 #include <iterator> 47 48 #define DEBUG_TYPE "amdgpu-codegenprepare" 49 50 using namespace llvm; 51 52 namespace { 53 54 static cl::opt<bool> WidenLoads( 55 "amdgpu-codegenprepare-widen-constant-loads", 56 cl::desc("Widen sub-dword constant address space loads in AMDGPUCodeGenPrepare"), 57 cl::ReallyHidden, 58 cl::init(true)); 59 60 static cl::opt<bool> UseMul24Intrin( 61 "amdgpu-codegenprepare-mul24", 62 cl::desc("Introduce mul24 intrinsics in AMDGPUCodeGenPrepare"), 63 cl::ReallyHidden, 64 cl::init(true)); 65 66 class AMDGPUCodeGenPrepare : public FunctionPass, 67 public InstVisitor<AMDGPUCodeGenPrepare, bool> { 68 const GCNSubtarget *ST = nullptr; 69 AssumptionCache *AC = nullptr; 70 LegacyDivergenceAnalysis *DA = nullptr; 71 Module *Mod = nullptr; 72 const DataLayout *DL = nullptr; 73 bool HasUnsafeFPMath = false; 74 bool HasFP32Denormals = false; 75 76 /// Copies exact/nsw/nuw flags (if any) from binary operation \p I to 77 /// binary operation \p V. 78 /// 79 /// \returns Binary operation \p V. 80 /// \returns \p T's base element bit width. 81 unsigned getBaseElementBitWidth(const Type *T) const; 82 83 /// \returns Equivalent 32 bit integer type for given type \p T. For example, 84 /// if \p T is i7, then i32 is returned; if \p T is <3 x i12>, then <3 x i32> 85 /// is returned. 86 Type *getI32Ty(IRBuilder<> &B, const Type *T) const; 87 88 /// \returns True if binary operation \p I is a signed binary operation, false 89 /// otherwise. 90 bool isSigned(const BinaryOperator &I) const; 91 92 /// \returns True if the condition of 'select' operation \p I comes from a 93 /// signed 'icmp' operation, false otherwise. 94 bool isSigned(const SelectInst &I) const; 95 96 /// \returns True if type \p T needs to be promoted to 32 bit integer type, 97 /// false otherwise. 98 bool needsPromotionToI32(const Type *T) const; 99 100 /// Promotes uniform binary operation \p I to equivalent 32 bit binary 101 /// operation. 102 /// 103 /// \details \p I's base element bit width must be greater than 1 and less 104 /// than or equal 16. Promotion is done by sign or zero extending operands to 105 /// 32 bits, replacing \p I with equivalent 32 bit binary operation, and 106 /// truncating the result of 32 bit binary operation back to \p I's original 107 /// type. Division operation is not promoted. 108 /// 109 /// \returns True if \p I is promoted to equivalent 32 bit binary operation, 110 /// false otherwise. 111 bool promoteUniformOpToI32(BinaryOperator &I) const; 112 113 /// Promotes uniform 'icmp' operation \p I to 32 bit 'icmp' operation. 114 /// 115 /// \details \p I's base element bit width must be greater than 1 and less 116 /// than or equal 16. Promotion is done by sign or zero extending operands to 117 /// 32 bits, and replacing \p I with 32 bit 'icmp' operation. 118 /// 119 /// \returns True. 120 bool promoteUniformOpToI32(ICmpInst &I) const; 121 122 /// Promotes uniform 'select' operation \p I to 32 bit 'select' 123 /// operation. 124 /// 125 /// \details \p I's base element bit width must be greater than 1 and less 126 /// than or equal 16. Promotion is done by sign or zero extending operands to 127 /// 32 bits, replacing \p I with 32 bit 'select' operation, and truncating the 128 /// result of 32 bit 'select' operation back to \p I's original type. 129 /// 130 /// \returns True. 131 bool promoteUniformOpToI32(SelectInst &I) const; 132 133 /// Promotes uniform 'bitreverse' intrinsic \p I to 32 bit 'bitreverse' 134 /// intrinsic. 135 /// 136 /// \details \p I's base element bit width must be greater than 1 and less 137 /// than or equal 16. Promotion is done by zero extending the operand to 32 138 /// bits, replacing \p I with 32 bit 'bitreverse' intrinsic, shifting the 139 /// result of 32 bit 'bitreverse' intrinsic to the right with zero fill (the 140 /// shift amount is 32 minus \p I's base element bit width), and truncating 141 /// the result of the shift operation back to \p I's original type. 142 /// 143 /// \returns True. 144 bool promoteUniformBitreverseToI32(IntrinsicInst &I) const; 145 146 147 unsigned numBitsUnsigned(Value *Op, unsigned ScalarSize) const; 148 unsigned numBitsSigned(Value *Op, unsigned ScalarSize) const; 149 bool isI24(Value *V, unsigned ScalarSize) const; 150 bool isU24(Value *V, unsigned ScalarSize) const; 151 152 /// Replace mul instructions with llvm.amdgcn.mul.u24 or llvm.amdgcn.mul.s24. 153 /// SelectionDAG has an issue where an and asserting the bits are known 154 bool replaceMulWithMul24(BinaryOperator &I) const; 155 156 /// Perform same function as equivalently named function in DAGCombiner. Since 157 /// we expand some divisions here, we need to perform this before obscuring. 158 bool foldBinOpIntoSelect(BinaryOperator &I) const; 159 160 /// Expands 24 bit div or rem. 161 Value* expandDivRem24(IRBuilder<> &Builder, BinaryOperator &I, 162 Value *Num, Value *Den, 163 bool IsDiv, bool IsSigned) const; 164 165 /// Expands 32 bit div or rem. 166 Value* expandDivRem32(IRBuilder<> &Builder, BinaryOperator &I, 167 Value *Num, Value *Den) const; 168 169 /// Widen a scalar load. 170 /// 171 /// \details \p Widen scalar load for uniform, small type loads from constant 172 // memory / to a full 32-bits and then truncate the input to allow a scalar 173 // load instead of a vector load. 174 // 175 /// \returns True. 176 177 bool canWidenScalarExtLoad(LoadInst &I) const; 178 179 public: 180 static char ID; 181 182 AMDGPUCodeGenPrepare() : FunctionPass(ID) {} 183 184 bool visitFDiv(BinaryOperator &I); 185 186 bool visitInstruction(Instruction &I) { return false; } 187 bool visitBinaryOperator(BinaryOperator &I); 188 bool visitLoadInst(LoadInst &I); 189 bool visitICmpInst(ICmpInst &I); 190 bool visitSelectInst(SelectInst &I); 191 192 bool visitIntrinsicInst(IntrinsicInst &I); 193 bool visitBitreverseIntrinsicInst(IntrinsicInst &I); 194 195 bool doInitialization(Module &M) override; 196 bool runOnFunction(Function &F) override; 197 198 StringRef getPassName() const override { return "AMDGPU IR optimizations"; } 199 200 void getAnalysisUsage(AnalysisUsage &AU) const override { 201 AU.addRequired<AssumptionCacheTracker>(); 202 AU.addRequired<LegacyDivergenceAnalysis>(); 203 AU.setPreservesAll(); 204 } 205 }; 206 207 } // end anonymous namespace 208 209 unsigned AMDGPUCodeGenPrepare::getBaseElementBitWidth(const Type *T) const { 210 assert(needsPromotionToI32(T) && "T does not need promotion to i32"); 211 212 if (T->isIntegerTy()) 213 return T->getIntegerBitWidth(); 214 return cast<VectorType>(T)->getElementType()->getIntegerBitWidth(); 215 } 216 217 Type *AMDGPUCodeGenPrepare::getI32Ty(IRBuilder<> &B, const Type *T) const { 218 assert(needsPromotionToI32(T) && "T does not need promotion to i32"); 219 220 if (T->isIntegerTy()) 221 return B.getInt32Ty(); 222 return VectorType::get(B.getInt32Ty(), cast<VectorType>(T)->getNumElements()); 223 } 224 225 bool AMDGPUCodeGenPrepare::isSigned(const BinaryOperator &I) const { 226 return I.getOpcode() == Instruction::AShr || 227 I.getOpcode() == Instruction::SDiv || I.getOpcode() == Instruction::SRem; 228 } 229 230 bool AMDGPUCodeGenPrepare::isSigned(const SelectInst &I) const { 231 return isa<ICmpInst>(I.getOperand(0)) ? 232 cast<ICmpInst>(I.getOperand(0))->isSigned() : false; 233 } 234 235 bool AMDGPUCodeGenPrepare::needsPromotionToI32(const Type *T) const { 236 const IntegerType *IntTy = dyn_cast<IntegerType>(T); 237 if (IntTy && IntTy->getBitWidth() > 1 && IntTy->getBitWidth() <= 16) 238 return true; 239 240 if (const VectorType *VT = dyn_cast<VectorType>(T)) { 241 // TODO: The set of packed operations is more limited, so may want to 242 // promote some anyway. 243 if (ST->hasVOP3PInsts()) 244 return false; 245 246 return needsPromotionToI32(VT->getElementType()); 247 } 248 249 return false; 250 } 251 252 // Return true if the op promoted to i32 should have nsw set. 253 static bool promotedOpIsNSW(const Instruction &I) { 254 switch (I.getOpcode()) { 255 case Instruction::Shl: 256 case Instruction::Add: 257 case Instruction::Sub: 258 return true; 259 case Instruction::Mul: 260 return I.hasNoUnsignedWrap(); 261 default: 262 return false; 263 } 264 } 265 266 // Return true if the op promoted to i32 should have nuw set. 267 static bool promotedOpIsNUW(const Instruction &I) { 268 switch (I.getOpcode()) { 269 case Instruction::Shl: 270 case Instruction::Add: 271 case Instruction::Mul: 272 return true; 273 case Instruction::Sub: 274 return I.hasNoUnsignedWrap(); 275 default: 276 return false; 277 } 278 } 279 280 bool AMDGPUCodeGenPrepare::canWidenScalarExtLoad(LoadInst &I) const { 281 Type *Ty = I.getType(); 282 const DataLayout &DL = Mod->getDataLayout(); 283 int TySize = DL.getTypeSizeInBits(Ty); 284 unsigned Align = I.getAlignment() ? 285 I.getAlignment() : DL.getABITypeAlignment(Ty); 286 287 return I.isSimple() && TySize < 32 && Align >= 4 && DA->isUniform(&I); 288 } 289 290 bool AMDGPUCodeGenPrepare::promoteUniformOpToI32(BinaryOperator &I) const { 291 assert(needsPromotionToI32(I.getType()) && 292 "I does not need promotion to i32"); 293 294 if (I.getOpcode() == Instruction::SDiv || 295 I.getOpcode() == Instruction::UDiv || 296 I.getOpcode() == Instruction::SRem || 297 I.getOpcode() == Instruction::URem) 298 return false; 299 300 IRBuilder<> Builder(&I); 301 Builder.SetCurrentDebugLocation(I.getDebugLoc()); 302 303 Type *I32Ty = getI32Ty(Builder, I.getType()); 304 Value *ExtOp0 = nullptr; 305 Value *ExtOp1 = nullptr; 306 Value *ExtRes = nullptr; 307 Value *TruncRes = nullptr; 308 309 if (isSigned(I)) { 310 ExtOp0 = Builder.CreateSExt(I.getOperand(0), I32Ty); 311 ExtOp1 = Builder.CreateSExt(I.getOperand(1), I32Ty); 312 } else { 313 ExtOp0 = Builder.CreateZExt(I.getOperand(0), I32Ty); 314 ExtOp1 = Builder.CreateZExt(I.getOperand(1), I32Ty); 315 } 316 317 ExtRes = Builder.CreateBinOp(I.getOpcode(), ExtOp0, ExtOp1); 318 if (Instruction *Inst = dyn_cast<Instruction>(ExtRes)) { 319 if (promotedOpIsNSW(cast<Instruction>(I))) 320 Inst->setHasNoSignedWrap(); 321 322 if (promotedOpIsNUW(cast<Instruction>(I))) 323 Inst->setHasNoUnsignedWrap(); 324 325 if (const auto *ExactOp = dyn_cast<PossiblyExactOperator>(&I)) 326 Inst->setIsExact(ExactOp->isExact()); 327 } 328 329 TruncRes = Builder.CreateTrunc(ExtRes, I.getType()); 330 331 I.replaceAllUsesWith(TruncRes); 332 I.eraseFromParent(); 333 334 return true; 335 } 336 337 bool AMDGPUCodeGenPrepare::promoteUniformOpToI32(ICmpInst &I) const { 338 assert(needsPromotionToI32(I.getOperand(0)->getType()) && 339 "I does not need promotion to i32"); 340 341 IRBuilder<> Builder(&I); 342 Builder.SetCurrentDebugLocation(I.getDebugLoc()); 343 344 Type *I32Ty = getI32Ty(Builder, I.getOperand(0)->getType()); 345 Value *ExtOp0 = nullptr; 346 Value *ExtOp1 = nullptr; 347 Value *NewICmp = nullptr; 348 349 if (I.isSigned()) { 350 ExtOp0 = Builder.CreateSExt(I.getOperand(0), I32Ty); 351 ExtOp1 = Builder.CreateSExt(I.getOperand(1), I32Ty); 352 } else { 353 ExtOp0 = Builder.CreateZExt(I.getOperand(0), I32Ty); 354 ExtOp1 = Builder.CreateZExt(I.getOperand(1), I32Ty); 355 } 356 NewICmp = Builder.CreateICmp(I.getPredicate(), ExtOp0, ExtOp1); 357 358 I.replaceAllUsesWith(NewICmp); 359 I.eraseFromParent(); 360 361 return true; 362 } 363 364 bool AMDGPUCodeGenPrepare::promoteUniformOpToI32(SelectInst &I) const { 365 assert(needsPromotionToI32(I.getType()) && 366 "I does not need promotion to i32"); 367 368 IRBuilder<> Builder(&I); 369 Builder.SetCurrentDebugLocation(I.getDebugLoc()); 370 371 Type *I32Ty = getI32Ty(Builder, I.getType()); 372 Value *ExtOp1 = nullptr; 373 Value *ExtOp2 = nullptr; 374 Value *ExtRes = nullptr; 375 Value *TruncRes = nullptr; 376 377 if (isSigned(I)) { 378 ExtOp1 = Builder.CreateSExt(I.getOperand(1), I32Ty); 379 ExtOp2 = Builder.CreateSExt(I.getOperand(2), I32Ty); 380 } else { 381 ExtOp1 = Builder.CreateZExt(I.getOperand(1), I32Ty); 382 ExtOp2 = Builder.CreateZExt(I.getOperand(2), I32Ty); 383 } 384 ExtRes = Builder.CreateSelect(I.getOperand(0), ExtOp1, ExtOp2); 385 TruncRes = Builder.CreateTrunc(ExtRes, I.getType()); 386 387 I.replaceAllUsesWith(TruncRes); 388 I.eraseFromParent(); 389 390 return true; 391 } 392 393 bool AMDGPUCodeGenPrepare::promoteUniformBitreverseToI32( 394 IntrinsicInst &I) const { 395 assert(I.getIntrinsicID() == Intrinsic::bitreverse && 396 "I must be bitreverse intrinsic"); 397 assert(needsPromotionToI32(I.getType()) && 398 "I does not need promotion to i32"); 399 400 IRBuilder<> Builder(&I); 401 Builder.SetCurrentDebugLocation(I.getDebugLoc()); 402 403 Type *I32Ty = getI32Ty(Builder, I.getType()); 404 Function *I32 = 405 Intrinsic::getDeclaration(Mod, Intrinsic::bitreverse, { I32Ty }); 406 Value *ExtOp = Builder.CreateZExt(I.getOperand(0), I32Ty); 407 Value *ExtRes = Builder.CreateCall(I32, { ExtOp }); 408 Value *LShrOp = 409 Builder.CreateLShr(ExtRes, 32 - getBaseElementBitWidth(I.getType())); 410 Value *TruncRes = 411 Builder.CreateTrunc(LShrOp, I.getType()); 412 413 I.replaceAllUsesWith(TruncRes); 414 I.eraseFromParent(); 415 416 return true; 417 } 418 419 unsigned AMDGPUCodeGenPrepare::numBitsUnsigned(Value *Op, 420 unsigned ScalarSize) const { 421 KnownBits Known = computeKnownBits(Op, *DL, 0, AC); 422 return ScalarSize - Known.countMinLeadingZeros(); 423 } 424 425 unsigned AMDGPUCodeGenPrepare::numBitsSigned(Value *Op, 426 unsigned ScalarSize) const { 427 // In order for this to be a signed 24-bit value, bit 23, must 428 // be a sign bit. 429 return ScalarSize - ComputeNumSignBits(Op, *DL, 0, AC); 430 } 431 432 bool AMDGPUCodeGenPrepare::isI24(Value *V, unsigned ScalarSize) const { 433 return ScalarSize >= 24 && // Types less than 24-bit should be treated 434 // as unsigned 24-bit values. 435 numBitsSigned(V, ScalarSize) < 24; 436 } 437 438 bool AMDGPUCodeGenPrepare::isU24(Value *V, unsigned ScalarSize) const { 439 return numBitsUnsigned(V, ScalarSize) <= 24; 440 } 441 442 static void extractValues(IRBuilder<> &Builder, 443 SmallVectorImpl<Value *> &Values, Value *V) { 444 VectorType *VT = dyn_cast<VectorType>(V->getType()); 445 if (!VT) { 446 Values.push_back(V); 447 return; 448 } 449 450 for (int I = 0, E = VT->getNumElements(); I != E; ++I) 451 Values.push_back(Builder.CreateExtractElement(V, I)); 452 } 453 454 static Value *insertValues(IRBuilder<> &Builder, 455 Type *Ty, 456 SmallVectorImpl<Value *> &Values) { 457 if (Values.size() == 1) 458 return Values[0]; 459 460 Value *NewVal = UndefValue::get(Ty); 461 for (int I = 0, E = Values.size(); I != E; ++I) 462 NewVal = Builder.CreateInsertElement(NewVal, Values[I], I); 463 464 return NewVal; 465 } 466 467 bool AMDGPUCodeGenPrepare::replaceMulWithMul24(BinaryOperator &I) const { 468 if (I.getOpcode() != Instruction::Mul) 469 return false; 470 471 Type *Ty = I.getType(); 472 unsigned Size = Ty->getScalarSizeInBits(); 473 if (Size <= 16 && ST->has16BitInsts()) 474 return false; 475 476 // Prefer scalar if this could be s_mul_i32 477 if (DA->isUniform(&I)) 478 return false; 479 480 Value *LHS = I.getOperand(0); 481 Value *RHS = I.getOperand(1); 482 IRBuilder<> Builder(&I); 483 Builder.SetCurrentDebugLocation(I.getDebugLoc()); 484 485 Intrinsic::ID IntrID = Intrinsic::not_intrinsic; 486 487 // TODO: Should this try to match mulhi24? 488 if (ST->hasMulU24() && isU24(LHS, Size) && isU24(RHS, Size)) { 489 IntrID = Intrinsic::amdgcn_mul_u24; 490 } else if (ST->hasMulI24() && isI24(LHS, Size) && isI24(RHS, Size)) { 491 IntrID = Intrinsic::amdgcn_mul_i24; 492 } else 493 return false; 494 495 SmallVector<Value *, 4> LHSVals; 496 SmallVector<Value *, 4> RHSVals; 497 SmallVector<Value *, 4> ResultVals; 498 extractValues(Builder, LHSVals, LHS); 499 extractValues(Builder, RHSVals, RHS); 500 501 502 IntegerType *I32Ty = Builder.getInt32Ty(); 503 FunctionCallee Intrin = Intrinsic::getDeclaration(Mod, IntrID); 504 for (int I = 0, E = LHSVals.size(); I != E; ++I) { 505 Value *LHS, *RHS; 506 if (IntrID == Intrinsic::amdgcn_mul_u24) { 507 LHS = Builder.CreateZExtOrTrunc(LHSVals[I], I32Ty); 508 RHS = Builder.CreateZExtOrTrunc(RHSVals[I], I32Ty); 509 } else { 510 LHS = Builder.CreateSExtOrTrunc(LHSVals[I], I32Ty); 511 RHS = Builder.CreateSExtOrTrunc(RHSVals[I], I32Ty); 512 } 513 514 Value *Result = Builder.CreateCall(Intrin, {LHS, RHS}); 515 516 if (IntrID == Intrinsic::amdgcn_mul_u24) { 517 ResultVals.push_back(Builder.CreateZExtOrTrunc(Result, 518 LHSVals[I]->getType())); 519 } else { 520 ResultVals.push_back(Builder.CreateSExtOrTrunc(Result, 521 LHSVals[I]->getType())); 522 } 523 } 524 525 Value *NewVal = insertValues(Builder, Ty, ResultVals); 526 NewVal->takeName(&I); 527 I.replaceAllUsesWith(NewVal); 528 I.eraseFromParent(); 529 530 return true; 531 } 532 533 bool AMDGPUCodeGenPrepare::foldBinOpIntoSelect(BinaryOperator &BO) const { 534 // Don't do this unless the old select is going away. We want to eliminate the 535 // binary operator, not replace a binop with a select. 536 int SelOpNo = 0; 537 SelectInst *Sel = dyn_cast<SelectInst>(BO.getOperand(0)); 538 if (!Sel || !Sel->hasOneUse()) { 539 SelOpNo = 1; 540 Sel = dyn_cast<SelectInst>(BO.getOperand(1)); 541 } 542 543 if (!Sel || !Sel->hasOneUse()) 544 return false; 545 546 Constant *CT = dyn_cast<Constant>(Sel->getTrueValue()); 547 Constant *CF = dyn_cast<Constant>(Sel->getFalseValue()); 548 Constant *CBO = dyn_cast<Constant>(BO.getOperand(SelOpNo ^ 1)); 549 if (!CBO || !CT || !CF) 550 return false; 551 552 // TODO: Handle special 0/-1 cases DAG combine does, although we only really 553 // need to handle divisions here. 554 Constant *FoldedT = SelOpNo ? 555 ConstantFoldBinaryOpOperands(BO.getOpcode(), CBO, CT, *DL) : 556 ConstantFoldBinaryOpOperands(BO.getOpcode(), CT, CBO, *DL); 557 if (isa<ConstantExpr>(FoldedT)) 558 return false; 559 560 Constant *FoldedF = SelOpNo ? 561 ConstantFoldBinaryOpOperands(BO.getOpcode(), CBO, CF, *DL) : 562 ConstantFoldBinaryOpOperands(BO.getOpcode(), CF, CBO, *DL); 563 if (isa<ConstantExpr>(FoldedF)) 564 return false; 565 566 IRBuilder<> Builder(&BO); 567 Builder.SetCurrentDebugLocation(BO.getDebugLoc()); 568 if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(&BO)) 569 Builder.setFastMathFlags(FPOp->getFastMathFlags()); 570 571 Value *NewSelect = Builder.CreateSelect(Sel->getCondition(), 572 FoldedT, FoldedF); 573 NewSelect->takeName(&BO); 574 BO.replaceAllUsesWith(NewSelect); 575 BO.eraseFromParent(); 576 Sel->eraseFromParent(); 577 return true; 578 } 579 580 static bool shouldKeepFDivF32(Value *Num, bool UnsafeDiv, bool HasDenormals) { 581 const ConstantFP *CNum = dyn_cast<ConstantFP>(Num); 582 if (!CNum) 583 return HasDenormals; 584 585 if (UnsafeDiv) 586 return true; 587 588 bool IsOne = CNum->isExactlyValue(+1.0) || CNum->isExactlyValue(-1.0); 589 590 // Reciprocal f32 is handled separately without denormals. 591 return HasDenormals ^ IsOne; 592 } 593 594 // Insert an intrinsic for fast fdiv for safe math situations where we can 595 // reduce precision. Leave fdiv for situations where the generic node is 596 // expected to be optimized. 597 bool AMDGPUCodeGenPrepare::visitFDiv(BinaryOperator &FDiv) { 598 Type *Ty = FDiv.getType(); 599 600 if (!Ty->getScalarType()->isFloatTy()) 601 return false; 602 603 MDNode *FPMath = FDiv.getMetadata(LLVMContext::MD_fpmath); 604 if (!FPMath) 605 return false; 606 607 const FPMathOperator *FPOp = cast<const FPMathOperator>(&FDiv); 608 float ULP = FPOp->getFPAccuracy(); 609 if (ULP < 2.5f) 610 return false; 611 612 FastMathFlags FMF = FPOp->getFastMathFlags(); 613 bool UnsafeDiv = HasUnsafeFPMath || FMF.isFast() || 614 FMF.allowReciprocal(); 615 616 // With UnsafeDiv node will be optimized to just rcp and mul. 617 if (UnsafeDiv) 618 return false; 619 620 IRBuilder<> Builder(FDiv.getParent(), std::next(FDiv.getIterator()), FPMath); 621 Builder.setFastMathFlags(FMF); 622 Builder.SetCurrentDebugLocation(FDiv.getDebugLoc()); 623 624 Function *Decl = Intrinsic::getDeclaration(Mod, Intrinsic::amdgcn_fdiv_fast); 625 626 Value *Num = FDiv.getOperand(0); 627 Value *Den = FDiv.getOperand(1); 628 629 Value *NewFDiv = nullptr; 630 631 if (VectorType *VT = dyn_cast<VectorType>(Ty)) { 632 NewFDiv = UndefValue::get(VT); 633 634 // FIXME: Doesn't do the right thing for cases where the vector is partially 635 // constant. This works when the scalarizer pass is run first. 636 for (unsigned I = 0, E = VT->getNumElements(); I != E; ++I) { 637 Value *NumEltI = Builder.CreateExtractElement(Num, I); 638 Value *DenEltI = Builder.CreateExtractElement(Den, I); 639 Value *NewElt; 640 641 if (shouldKeepFDivF32(NumEltI, UnsafeDiv, HasFP32Denormals)) { 642 NewElt = Builder.CreateFDiv(NumEltI, DenEltI); 643 } else { 644 NewElt = Builder.CreateCall(Decl, { NumEltI, DenEltI }); 645 } 646 647 NewFDiv = Builder.CreateInsertElement(NewFDiv, NewElt, I); 648 } 649 } else { 650 if (!shouldKeepFDivF32(Num, UnsafeDiv, HasFP32Denormals)) 651 NewFDiv = Builder.CreateCall(Decl, { Num, Den }); 652 } 653 654 if (NewFDiv) { 655 FDiv.replaceAllUsesWith(NewFDiv); 656 NewFDiv->takeName(&FDiv); 657 FDiv.eraseFromParent(); 658 } 659 660 return !!NewFDiv; 661 } 662 663 static bool hasUnsafeFPMath(const Function &F) { 664 Attribute Attr = F.getFnAttribute("unsafe-fp-math"); 665 return Attr.getValueAsString() == "true"; 666 } 667 668 static std::pair<Value*, Value*> getMul64(IRBuilder<> &Builder, 669 Value *LHS, Value *RHS) { 670 Type *I32Ty = Builder.getInt32Ty(); 671 Type *I64Ty = Builder.getInt64Ty(); 672 673 Value *LHS_EXT64 = Builder.CreateZExt(LHS, I64Ty); 674 Value *RHS_EXT64 = Builder.CreateZExt(RHS, I64Ty); 675 Value *MUL64 = Builder.CreateMul(LHS_EXT64, RHS_EXT64); 676 Value *Lo = Builder.CreateTrunc(MUL64, I32Ty); 677 Value *Hi = Builder.CreateLShr(MUL64, Builder.getInt64(32)); 678 Hi = Builder.CreateTrunc(Hi, I32Ty); 679 return std::make_pair(Lo, Hi); 680 } 681 682 static Value* getMulHu(IRBuilder<> &Builder, Value *LHS, Value *RHS) { 683 return getMul64(Builder, LHS, RHS).second; 684 } 685 686 // The fractional part of a float is enough to accurately represent up to 687 // a 24-bit signed integer. 688 Value* AMDGPUCodeGenPrepare::expandDivRem24(IRBuilder<> &Builder, 689 BinaryOperator &I, 690 Value *Num, Value *Den, 691 bool IsDiv, bool IsSigned) const { 692 assert(Num->getType()->isIntegerTy(32)); 693 694 const DataLayout &DL = Mod->getDataLayout(); 695 unsigned LHSSignBits = ComputeNumSignBits(Num, DL, 0, AC, &I); 696 if (LHSSignBits < 9) 697 return nullptr; 698 699 unsigned RHSSignBits = ComputeNumSignBits(Den, DL, 0, AC, &I); 700 if (RHSSignBits < 9) 701 return nullptr; 702 703 704 unsigned SignBits = std::min(LHSSignBits, RHSSignBits); 705 unsigned DivBits = 32 - SignBits; 706 if (IsSigned) 707 ++DivBits; 708 709 Type *I32Ty = Builder.getInt32Ty(); 710 Type *F32Ty = Builder.getFloatTy(); 711 ConstantInt *One = Builder.getInt32(1); 712 Value *JQ = One; 713 714 if (IsSigned) { 715 // char|short jq = ia ^ ib; 716 JQ = Builder.CreateXor(Num, Den); 717 718 // jq = jq >> (bitsize - 2) 719 JQ = Builder.CreateAShr(JQ, Builder.getInt32(30)); 720 721 // jq = jq | 0x1 722 JQ = Builder.CreateOr(JQ, One); 723 } 724 725 // int ia = (int)LHS; 726 Value *IA = Num; 727 728 // int ib, (int)RHS; 729 Value *IB = Den; 730 731 // float fa = (float)ia; 732 Value *FA = IsSigned ? Builder.CreateSIToFP(IA, F32Ty) 733 : Builder.CreateUIToFP(IA, F32Ty); 734 735 // float fb = (float)ib; 736 Value *FB = IsSigned ? Builder.CreateSIToFP(IB,F32Ty) 737 : Builder.CreateUIToFP(IB,F32Ty); 738 739 Value *RCP = Builder.CreateFDiv(ConstantFP::get(F32Ty, 1.0), FB); 740 Value *FQM = Builder.CreateFMul(FA, RCP); 741 742 // fq = trunc(fqm); 743 CallInst *FQ = Builder.CreateUnaryIntrinsic(Intrinsic::trunc, FQM); 744 FQ->copyFastMathFlags(Builder.getFastMathFlags()); 745 746 // float fqneg = -fq; 747 Value *FQNeg = Builder.CreateFNeg(FQ); 748 749 // float fr = mad(fqneg, fb, fa); 750 Value *FR = Builder.CreateIntrinsic(Intrinsic::amdgcn_fmad_ftz, 751 {FQNeg->getType()}, {FQNeg, FB, FA}, FQ); 752 753 // int iq = (int)fq; 754 Value *IQ = IsSigned ? Builder.CreateFPToSI(FQ, I32Ty) 755 : Builder.CreateFPToUI(FQ, I32Ty); 756 757 // fr = fabs(fr); 758 FR = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, FR, FQ); 759 760 // fb = fabs(fb); 761 FB = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, FB, FQ); 762 763 // int cv = fr >= fb; 764 Value *CV = Builder.CreateFCmpOGE(FR, FB); 765 766 // jq = (cv ? jq : 0); 767 JQ = Builder.CreateSelect(CV, JQ, Builder.getInt32(0)); 768 769 // dst = iq + jq; 770 Value *Div = Builder.CreateAdd(IQ, JQ); 771 772 Value *Res = Div; 773 if (!IsDiv) { 774 // Rem needs compensation, it's easier to recompute it 775 Value *Rem = Builder.CreateMul(Div, Den); 776 Res = Builder.CreateSub(Num, Rem); 777 } 778 779 // Extend in register from the number of bits this divide really is. 780 if (IsSigned) { 781 Res = Builder.CreateShl(Res, 32 - DivBits); 782 Res = Builder.CreateAShr(Res, 32 - DivBits); 783 } else { 784 ConstantInt *TruncMask = Builder.getInt32((UINT64_C(1) << DivBits) - 1); 785 Res = Builder.CreateAnd(Res, TruncMask); 786 } 787 788 return Res; 789 } 790 791 Value* AMDGPUCodeGenPrepare::expandDivRem32(IRBuilder<> &Builder, 792 BinaryOperator &I, 793 Value *Num, Value *Den) const { 794 Instruction::BinaryOps Opc = I.getOpcode(); 795 assert(Opc == Instruction::URem || Opc == Instruction::UDiv || 796 Opc == Instruction::SRem || Opc == Instruction::SDiv); 797 798 FastMathFlags FMF; 799 FMF.setFast(); 800 Builder.setFastMathFlags(FMF); 801 802 if (isa<Constant>(Den)) 803 return nullptr; // Keep it for optimization 804 805 bool IsDiv = Opc == Instruction::UDiv || Opc == Instruction::SDiv; 806 bool IsSigned = Opc == Instruction::SRem || Opc == Instruction::SDiv; 807 808 Type *Ty = Num->getType(); 809 Type *I32Ty = Builder.getInt32Ty(); 810 Type *F32Ty = Builder.getFloatTy(); 811 812 if (Ty->getScalarSizeInBits() < 32) { 813 if (IsSigned) { 814 Num = Builder.CreateSExt(Num, I32Ty); 815 Den = Builder.CreateSExt(Den, I32Ty); 816 } else { 817 Num = Builder.CreateZExt(Num, I32Ty); 818 Den = Builder.CreateZExt(Den, I32Ty); 819 } 820 } 821 822 if (Value *Res = expandDivRem24(Builder, I, Num, Den, IsDiv, IsSigned)) { 823 Res = Builder.CreateTrunc(Res, Ty); 824 return Res; 825 } 826 827 ConstantInt *Zero = Builder.getInt32(0); 828 ConstantInt *One = Builder.getInt32(1); 829 ConstantInt *MinusOne = Builder.getInt32(~0); 830 831 Value *Sign = nullptr; 832 if (IsSigned) { 833 ConstantInt *K31 = Builder.getInt32(31); 834 Value *LHSign = Builder.CreateAShr(Num, K31); 835 Value *RHSign = Builder.CreateAShr(Den, K31); 836 // Remainder sign is the same as LHS 837 Sign = IsDiv ? Builder.CreateXor(LHSign, RHSign) : LHSign; 838 839 Num = Builder.CreateAdd(Num, LHSign); 840 Den = Builder.CreateAdd(Den, RHSign); 841 842 Num = Builder.CreateXor(Num, LHSign); 843 Den = Builder.CreateXor(Den, RHSign); 844 } 845 846 // RCP = URECIP(Den) = 2^32 / Den + e 847 // e is rounding error. 848 Value *DEN_F32 = Builder.CreateUIToFP(Den, F32Ty); 849 Value *RCP_F32 = Builder.CreateFDiv(ConstantFP::get(F32Ty, 1.0), DEN_F32); 850 Constant *UINT_MAX_PLUS_1 = ConstantFP::get(F32Ty, BitsToFloat(0x4f800000)); 851 Value *RCP_SCALE = Builder.CreateFMul(RCP_F32, UINT_MAX_PLUS_1); 852 Value *RCP = Builder.CreateFPToUI(RCP_SCALE, I32Ty); 853 854 // RCP_LO, RCP_HI = mul(RCP, Den) */ 855 Value *RCP_LO, *RCP_HI; 856 std::tie(RCP_LO, RCP_HI) = getMul64(Builder, RCP, Den); 857 858 // NEG_RCP_LO = -RCP_LO 859 Value *NEG_RCP_LO = Builder.CreateNeg(RCP_LO); 860 861 // ABS_RCP_LO = (RCP_HI == 0 ? NEG_RCP_LO : RCP_LO) 862 Value *RCP_HI_0_CC = Builder.CreateICmpEQ(RCP_HI, Zero); 863 Value *ABS_RCP_LO = Builder.CreateSelect(RCP_HI_0_CC, NEG_RCP_LO, RCP_LO); 864 865 // Calculate the rounding error from the URECIP instruction 866 // E = mulhu(ABS_RCP_LO, RCP) 867 Value *E = getMulHu(Builder, ABS_RCP_LO, RCP); 868 869 // RCP_A_E = RCP + E 870 Value *RCP_A_E = Builder.CreateAdd(RCP, E); 871 872 // RCP_S_E = RCP - E 873 Value *RCP_S_E = Builder.CreateSub(RCP, E); 874 875 // Tmp0 = (RCP_HI == 0 ? RCP_A_E : RCP_SUB_E) 876 Value *Tmp0 = Builder.CreateSelect(RCP_HI_0_CC, RCP_A_E, RCP_S_E); 877 878 // Quotient = mulhu(Tmp0, Num) 879 Value *Quotient = getMulHu(Builder, Tmp0, Num); 880 881 // Num_S_Remainder = Quotient * Den 882 Value *Num_S_Remainder = Builder.CreateMul(Quotient, Den); 883 884 // Remainder = Num - Num_S_Remainder 885 Value *Remainder = Builder.CreateSub(Num, Num_S_Remainder); 886 887 // Remainder_GE_Den = (Remainder >= Den ? -1 : 0) 888 Value *Rem_GE_Den_CC = Builder.CreateICmpUGE(Remainder, Den); 889 Value *Remainder_GE_Den = Builder.CreateSelect(Rem_GE_Den_CC, MinusOne, Zero); 890 891 // Remainder_GE_Zero = (Num >= Num_S_Remainder ? -1 : 0) 892 Value *Num_GE_Num_S_Rem_CC = Builder.CreateICmpUGE(Num, Num_S_Remainder); 893 Value *Remainder_GE_Zero = Builder.CreateSelect(Num_GE_Num_S_Rem_CC, 894 MinusOne, Zero); 895 896 // Tmp1 = Remainder_GE_Den & Remainder_GE_Zero 897 Value *Tmp1 = Builder.CreateAnd(Remainder_GE_Den, Remainder_GE_Zero); 898 Value *Tmp1_0_CC = Builder.CreateICmpEQ(Tmp1, Zero); 899 900 Value *Res; 901 if (IsDiv) { 902 // Quotient_A_One = Quotient + 1 903 Value *Quotient_A_One = Builder.CreateAdd(Quotient, One); 904 905 // Quotient_S_One = Quotient - 1 906 Value *Quotient_S_One = Builder.CreateSub(Quotient, One); 907 908 // Div = (Tmp1 == 0 ? Quotient : Quotient_A_One) 909 Value *Div = Builder.CreateSelect(Tmp1_0_CC, Quotient, Quotient_A_One); 910 911 // Div = (Remainder_GE_Zero == 0 ? Quotient_S_One : Div) 912 Res = Builder.CreateSelect(Num_GE_Num_S_Rem_CC, Div, Quotient_S_One); 913 } else { 914 // Remainder_S_Den = Remainder - Den 915 Value *Remainder_S_Den = Builder.CreateSub(Remainder, Den); 916 917 // Remainder_A_Den = Remainder + Den 918 Value *Remainder_A_Den = Builder.CreateAdd(Remainder, Den); 919 920 // Rem = (Tmp1 == 0 ? Remainder : Remainder_S_Den) 921 Value *Rem = Builder.CreateSelect(Tmp1_0_CC, Remainder, Remainder_S_Den); 922 923 // Rem = (Remainder_GE_Zero == 0 ? Remainder_A_Den : Rem) 924 Res = Builder.CreateSelect(Num_GE_Num_S_Rem_CC, Rem, Remainder_A_Den); 925 } 926 927 if (IsSigned) { 928 Res = Builder.CreateXor(Res, Sign); 929 Res = Builder.CreateSub(Res, Sign); 930 } 931 932 Res = Builder.CreateTrunc(Res, Ty); 933 934 return Res; 935 } 936 937 bool AMDGPUCodeGenPrepare::visitBinaryOperator(BinaryOperator &I) { 938 if (foldBinOpIntoSelect(I)) 939 return true; 940 941 if (ST->has16BitInsts() && needsPromotionToI32(I.getType()) && 942 DA->isUniform(&I) && promoteUniformOpToI32(I)) 943 return true; 944 945 if (UseMul24Intrin && replaceMulWithMul24(I)) 946 return true; 947 948 bool Changed = false; 949 Instruction::BinaryOps Opc = I.getOpcode(); 950 Type *Ty = I.getType(); 951 Value *NewDiv = nullptr; 952 if ((Opc == Instruction::URem || Opc == Instruction::UDiv || 953 Opc == Instruction::SRem || Opc == Instruction::SDiv) && 954 Ty->getScalarSizeInBits() <= 32) { 955 Value *Num = I.getOperand(0); 956 Value *Den = I.getOperand(1); 957 IRBuilder<> Builder(&I); 958 Builder.SetCurrentDebugLocation(I.getDebugLoc()); 959 960 if (VectorType *VT = dyn_cast<VectorType>(Ty)) { 961 NewDiv = UndefValue::get(VT); 962 963 for (unsigned N = 0, E = VT->getNumElements(); N != E; ++N) { 964 Value *NumEltN = Builder.CreateExtractElement(Num, N); 965 Value *DenEltN = Builder.CreateExtractElement(Den, N); 966 Value *NewElt = expandDivRem32(Builder, I, NumEltN, DenEltN); 967 if (!NewElt) 968 NewElt = Builder.CreateBinOp(Opc, NumEltN, DenEltN); 969 NewDiv = Builder.CreateInsertElement(NewDiv, NewElt, N); 970 } 971 } else { 972 NewDiv = expandDivRem32(Builder, I, Num, Den); 973 } 974 975 if (NewDiv) { 976 I.replaceAllUsesWith(NewDiv); 977 I.eraseFromParent(); 978 Changed = true; 979 } 980 } 981 982 return Changed; 983 } 984 985 bool AMDGPUCodeGenPrepare::visitLoadInst(LoadInst &I) { 986 if (!WidenLoads) 987 return false; 988 989 if ((I.getPointerAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS || 990 I.getPointerAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS_32BIT) && 991 canWidenScalarExtLoad(I)) { 992 IRBuilder<> Builder(&I); 993 Builder.SetCurrentDebugLocation(I.getDebugLoc()); 994 995 Type *I32Ty = Builder.getInt32Ty(); 996 Type *PT = PointerType::get(I32Ty, I.getPointerAddressSpace()); 997 Value *BitCast= Builder.CreateBitCast(I.getPointerOperand(), PT); 998 LoadInst *WidenLoad = Builder.CreateLoad(I32Ty, BitCast); 999 WidenLoad->copyMetadata(I); 1000 1001 // If we have range metadata, we need to convert the type, and not make 1002 // assumptions about the high bits. 1003 if (auto *Range = WidenLoad->getMetadata(LLVMContext::MD_range)) { 1004 ConstantInt *Lower = 1005 mdconst::extract<ConstantInt>(Range->getOperand(0)); 1006 1007 if (Lower->getValue().isNullValue()) { 1008 WidenLoad->setMetadata(LLVMContext::MD_range, nullptr); 1009 } else { 1010 Metadata *LowAndHigh[] = { 1011 ConstantAsMetadata::get(ConstantInt::get(I32Ty, Lower->getValue().zext(32))), 1012 // Don't make assumptions about the high bits. 1013 ConstantAsMetadata::get(ConstantInt::get(I32Ty, 0)) 1014 }; 1015 1016 WidenLoad->setMetadata(LLVMContext::MD_range, 1017 MDNode::get(Mod->getContext(), LowAndHigh)); 1018 } 1019 } 1020 1021 int TySize = Mod->getDataLayout().getTypeSizeInBits(I.getType()); 1022 Type *IntNTy = Builder.getIntNTy(TySize); 1023 Value *ValTrunc = Builder.CreateTrunc(WidenLoad, IntNTy); 1024 Value *ValOrig = Builder.CreateBitCast(ValTrunc, I.getType()); 1025 I.replaceAllUsesWith(ValOrig); 1026 I.eraseFromParent(); 1027 return true; 1028 } 1029 1030 return false; 1031 } 1032 1033 bool AMDGPUCodeGenPrepare::visitICmpInst(ICmpInst &I) { 1034 bool Changed = false; 1035 1036 if (ST->has16BitInsts() && needsPromotionToI32(I.getOperand(0)->getType()) && 1037 DA->isUniform(&I)) 1038 Changed |= promoteUniformOpToI32(I); 1039 1040 return Changed; 1041 } 1042 1043 bool AMDGPUCodeGenPrepare::visitSelectInst(SelectInst &I) { 1044 bool Changed = false; 1045 1046 if (ST->has16BitInsts() && needsPromotionToI32(I.getType()) && 1047 DA->isUniform(&I)) 1048 Changed |= promoteUniformOpToI32(I); 1049 1050 return Changed; 1051 } 1052 1053 bool AMDGPUCodeGenPrepare::visitIntrinsicInst(IntrinsicInst &I) { 1054 switch (I.getIntrinsicID()) { 1055 case Intrinsic::bitreverse: 1056 return visitBitreverseIntrinsicInst(I); 1057 default: 1058 return false; 1059 } 1060 } 1061 1062 bool AMDGPUCodeGenPrepare::visitBitreverseIntrinsicInst(IntrinsicInst &I) { 1063 bool Changed = false; 1064 1065 if (ST->has16BitInsts() && needsPromotionToI32(I.getType()) && 1066 DA->isUniform(&I)) 1067 Changed |= promoteUniformBitreverseToI32(I); 1068 1069 return Changed; 1070 } 1071 1072 bool AMDGPUCodeGenPrepare::doInitialization(Module &M) { 1073 Mod = &M; 1074 DL = &Mod->getDataLayout(); 1075 return false; 1076 } 1077 1078 bool AMDGPUCodeGenPrepare::runOnFunction(Function &F) { 1079 if (skipFunction(F)) 1080 return false; 1081 1082 auto *TPC = getAnalysisIfAvailable<TargetPassConfig>(); 1083 if (!TPC) 1084 return false; 1085 1086 const AMDGPUTargetMachine &TM = TPC->getTM<AMDGPUTargetMachine>(); 1087 ST = &TM.getSubtarget<GCNSubtarget>(F); 1088 AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 1089 DA = &getAnalysis<LegacyDivergenceAnalysis>(); 1090 HasUnsafeFPMath = hasUnsafeFPMath(F); 1091 HasFP32Denormals = ST->hasFP32Denormals(F); 1092 1093 bool MadeChange = false; 1094 1095 for (BasicBlock &BB : F) { 1096 BasicBlock::iterator Next; 1097 for (BasicBlock::iterator I = BB.begin(), E = BB.end(); I != E; I = Next) { 1098 Next = std::next(I); 1099 MadeChange |= visit(*I); 1100 } 1101 } 1102 1103 return MadeChange; 1104 } 1105 1106 INITIALIZE_PASS_BEGIN(AMDGPUCodeGenPrepare, DEBUG_TYPE, 1107 "AMDGPU IR optimizations", false, false) 1108 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 1109 INITIALIZE_PASS_DEPENDENCY(LegacyDivergenceAnalysis) 1110 INITIALIZE_PASS_END(AMDGPUCodeGenPrepare, DEBUG_TYPE, "AMDGPU IR optimizations", 1111 false, false) 1112 1113 char AMDGPUCodeGenPrepare::ID = 0; 1114 1115 FunctionPass *llvm::createAMDGPUCodeGenPreparePass() { 1116 return new AMDGPUCodeGenPrepare(); 1117 } 1118