1 //===-- AMDGPUCodeGenPrepare.cpp ------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file 10 /// This pass does misc. AMDGPU optimizations on IR before instruction 11 /// selection. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "AMDGPU.h" 16 #include "AMDGPUTargetMachine.h" 17 #include "SIModeRegisterDefaults.h" 18 #include "llvm/Analysis/AssumptionCache.h" 19 #include "llvm/Analysis/ConstantFolding.h" 20 #include "llvm/Analysis/TargetLibraryInfo.h" 21 #include "llvm/Analysis/UniformityAnalysis.h" 22 #include "llvm/Analysis/ValueTracking.h" 23 #include "llvm/CodeGen/TargetPassConfig.h" 24 #include "llvm/IR/Dominators.h" 25 #include "llvm/IR/IRBuilder.h" 26 #include "llvm/IR/InstVisitor.h" 27 #include "llvm/IR/IntrinsicsAMDGPU.h" 28 #include "llvm/IR/PatternMatch.h" 29 #include "llvm/InitializePasses.h" 30 #include "llvm/Pass.h" 31 #include "llvm/Support/KnownBits.h" 32 #include "llvm/Transforms/Utils/IntegerDivision.h" 33 #include "llvm/Transforms/Utils/Local.h" 34 35 #define DEBUG_TYPE "amdgpu-codegenprepare" 36 37 using namespace llvm; 38 using namespace llvm::PatternMatch; 39 40 namespace { 41 42 static cl::opt<bool> WidenLoads( 43 "amdgpu-codegenprepare-widen-constant-loads", 44 cl::desc("Widen sub-dword constant address space loads in AMDGPUCodeGenPrepare"), 45 cl::ReallyHidden, 46 cl::init(false)); 47 48 static cl::opt<bool> Widen16BitOps( 49 "amdgpu-codegenprepare-widen-16-bit-ops", 50 cl::desc("Widen uniform 16-bit instructions to 32-bit in AMDGPUCodeGenPrepare"), 51 cl::ReallyHidden, 52 cl::init(true)); 53 54 static cl::opt<bool> 55 BreakLargePHIs("amdgpu-codegenprepare-break-large-phis", 56 cl::desc("Break large PHI nodes for DAGISel"), 57 cl::ReallyHidden, cl::init(true)); 58 59 static cl::opt<bool> 60 ForceBreakLargePHIs("amdgpu-codegenprepare-force-break-large-phis", 61 cl::desc("For testing purposes, always break large " 62 "PHIs even if it isn't profitable."), 63 cl::ReallyHidden, cl::init(false)); 64 65 static cl::opt<unsigned> BreakLargePHIsThreshold( 66 "amdgpu-codegenprepare-break-large-phis-threshold", 67 cl::desc("Minimum type size in bits for breaking large PHI nodes"), 68 cl::ReallyHidden, cl::init(32)); 69 70 static cl::opt<bool> UseMul24Intrin( 71 "amdgpu-codegenprepare-mul24", 72 cl::desc("Introduce mul24 intrinsics in AMDGPUCodeGenPrepare"), 73 cl::ReallyHidden, 74 cl::init(true)); 75 76 // Legalize 64-bit division by using the generic IR expansion. 77 static cl::opt<bool> ExpandDiv64InIR( 78 "amdgpu-codegenprepare-expand-div64", 79 cl::desc("Expand 64-bit division in AMDGPUCodeGenPrepare"), 80 cl::ReallyHidden, 81 cl::init(false)); 82 83 // Leave all division operations as they are. This supersedes ExpandDiv64InIR 84 // and is used for testing the legalizer. 85 static cl::opt<bool> DisableIDivExpand( 86 "amdgpu-codegenprepare-disable-idiv-expansion", 87 cl::desc("Prevent expanding integer division in AMDGPUCodeGenPrepare"), 88 cl::ReallyHidden, 89 cl::init(false)); 90 91 // Disable processing of fdiv so we can better test the backend implementations. 92 static cl::opt<bool> DisableFDivExpand( 93 "amdgpu-codegenprepare-disable-fdiv-expansion", 94 cl::desc("Prevent expanding floating point division in AMDGPUCodeGenPrepare"), 95 cl::ReallyHidden, 96 cl::init(false)); 97 98 class AMDGPUCodeGenPrepareImpl 99 : public InstVisitor<AMDGPUCodeGenPrepareImpl, bool> { 100 public: 101 const GCNSubtarget *ST = nullptr; 102 const AMDGPUTargetMachine *TM = nullptr; 103 const TargetLibraryInfo *TLInfo = nullptr; 104 AssumptionCache *AC = nullptr; 105 DominatorTree *DT = nullptr; 106 UniformityInfo *UA = nullptr; 107 Module *Mod = nullptr; 108 const DataLayout *DL = nullptr; 109 bool HasUnsafeFPMath = false; 110 bool HasFP32DenormalFlush = false; 111 bool FlowChanged = false; 112 mutable Function *SqrtF32 = nullptr; 113 mutable Function *LdexpF32 = nullptr; 114 115 DenseMap<const PHINode *, bool> BreakPhiNodesCache; 116 117 Function *getSqrtF32() const { 118 if (SqrtF32) 119 return SqrtF32; 120 121 LLVMContext &Ctx = Mod->getContext(); 122 SqrtF32 = Intrinsic::getOrInsertDeclaration(Mod, Intrinsic::amdgcn_sqrt, 123 {Type::getFloatTy(Ctx)}); 124 return SqrtF32; 125 } 126 127 Function *getLdexpF32() const { 128 if (LdexpF32) 129 return LdexpF32; 130 131 LLVMContext &Ctx = Mod->getContext(); 132 LdexpF32 = Intrinsic::getOrInsertDeclaration( 133 Mod, Intrinsic::ldexp, {Type::getFloatTy(Ctx), Type::getInt32Ty(Ctx)}); 134 return LdexpF32; 135 } 136 137 bool canBreakPHINode(const PHINode &I); 138 139 /// Copies exact/nsw/nuw flags (if any) from binary operation \p I to 140 /// binary operation \p V. 141 /// 142 /// \returns Binary operation \p V. 143 /// \returns \p T's base element bit width. 144 unsigned getBaseElementBitWidth(const Type *T) const; 145 146 /// \returns Equivalent 32 bit integer type for given type \p T. For example, 147 /// if \p T is i7, then i32 is returned; if \p T is <3 x i12>, then <3 x i32> 148 /// is returned. 149 Type *getI32Ty(IRBuilder<> &B, const Type *T) const; 150 151 /// \returns True if binary operation \p I is a signed binary operation, false 152 /// otherwise. 153 bool isSigned(const BinaryOperator &I) const; 154 155 /// \returns True if the condition of 'select' operation \p I comes from a 156 /// signed 'icmp' operation, false otherwise. 157 bool isSigned(const SelectInst &I) const; 158 159 /// \returns True if type \p T needs to be promoted to 32 bit integer type, 160 /// false otherwise. 161 bool needsPromotionToI32(const Type *T) const; 162 163 /// Return true if \p T is a legal scalar floating point type. 164 bool isLegalFloatingTy(const Type *T) const; 165 166 /// Wrapper to pass all the arguments to computeKnownFPClass 167 KnownFPClass computeKnownFPClass(const Value *V, FPClassTest Interested, 168 const Instruction *CtxI) const { 169 return llvm::computeKnownFPClass(V, *DL, Interested, 0, TLInfo, AC, CtxI, 170 DT); 171 } 172 173 bool canIgnoreDenormalInput(const Value *V, const Instruction *CtxI) const { 174 return HasFP32DenormalFlush || 175 computeKnownFPClass(V, fcSubnormal, CtxI).isKnownNeverSubnormal(); 176 } 177 178 /// Promotes uniform binary operation \p I to equivalent 32 bit binary 179 /// operation. 180 /// 181 /// \details \p I's base element bit width must be greater than 1 and less 182 /// than or equal 16. Promotion is done by sign or zero extending operands to 183 /// 32 bits, replacing \p I with equivalent 32 bit binary operation, and 184 /// truncating the result of 32 bit binary operation back to \p I's original 185 /// type. Division operation is not promoted. 186 /// 187 /// \returns True if \p I is promoted to equivalent 32 bit binary operation, 188 /// false otherwise. 189 bool promoteUniformOpToI32(BinaryOperator &I) const; 190 191 /// Promotes uniform 'icmp' operation \p I to 32 bit 'icmp' operation. 192 /// 193 /// \details \p I's base element bit width must be greater than 1 and less 194 /// than or equal 16. Promotion is done by sign or zero extending operands to 195 /// 32 bits, and replacing \p I with 32 bit 'icmp' operation. 196 /// 197 /// \returns True. 198 bool promoteUniformOpToI32(ICmpInst &I) const; 199 200 /// Promotes uniform 'select' operation \p I to 32 bit 'select' 201 /// operation. 202 /// 203 /// \details \p I's base element bit width must be greater than 1 and less 204 /// than or equal 16. Promotion is done by sign or zero extending operands to 205 /// 32 bits, replacing \p I with 32 bit 'select' operation, and truncating the 206 /// result of 32 bit 'select' operation back to \p I's original type. 207 /// 208 /// \returns True. 209 bool promoteUniformOpToI32(SelectInst &I) const; 210 211 /// Promotes uniform 'bitreverse' intrinsic \p I to 32 bit 'bitreverse' 212 /// intrinsic. 213 /// 214 /// \details \p I's base element bit width must be greater than 1 and less 215 /// than or equal 16. Promotion is done by zero extending the operand to 32 216 /// bits, replacing \p I with 32 bit 'bitreverse' intrinsic, shifting the 217 /// result of 32 bit 'bitreverse' intrinsic to the right with zero fill (the 218 /// shift amount is 32 minus \p I's base element bit width), and truncating 219 /// the result of the shift operation back to \p I's original type. 220 /// 221 /// \returns True. 222 bool promoteUniformBitreverseToI32(IntrinsicInst &I) const; 223 224 /// \returns The minimum number of bits needed to store the value of \Op as an 225 /// unsigned integer. Truncating to this size and then zero-extending to 226 /// the original will not change the value. 227 unsigned numBitsUnsigned(Value *Op) const; 228 229 /// \returns The minimum number of bits needed to store the value of \Op as a 230 /// signed integer. Truncating to this size and then sign-extending to 231 /// the original size will not change the value. 232 unsigned numBitsSigned(Value *Op) const; 233 234 /// Replace mul instructions with llvm.amdgcn.mul.u24 or llvm.amdgcn.mul.s24. 235 /// SelectionDAG has an issue where an and asserting the bits are known 236 bool replaceMulWithMul24(BinaryOperator &I) const; 237 238 /// Perform same function as equivalently named function in DAGCombiner. Since 239 /// we expand some divisions here, we need to perform this before obscuring. 240 bool foldBinOpIntoSelect(BinaryOperator &I) const; 241 242 bool divHasSpecialOptimization(BinaryOperator &I, 243 Value *Num, Value *Den) const; 244 int getDivNumBits(BinaryOperator &I, 245 Value *Num, Value *Den, 246 unsigned AtLeast, bool Signed) const; 247 248 /// Expands 24 bit div or rem. 249 Value* expandDivRem24(IRBuilder<> &Builder, BinaryOperator &I, 250 Value *Num, Value *Den, 251 bool IsDiv, bool IsSigned) const; 252 253 Value *expandDivRem24Impl(IRBuilder<> &Builder, BinaryOperator &I, 254 Value *Num, Value *Den, unsigned NumBits, 255 bool IsDiv, bool IsSigned) const; 256 257 /// Expands 32 bit div or rem. 258 Value* expandDivRem32(IRBuilder<> &Builder, BinaryOperator &I, 259 Value *Num, Value *Den) const; 260 261 Value *shrinkDivRem64(IRBuilder<> &Builder, BinaryOperator &I, 262 Value *Num, Value *Den) const; 263 void expandDivRem64(BinaryOperator &I) const; 264 265 /// Widen a scalar load. 266 /// 267 /// \details \p Widen scalar load for uniform, small type loads from constant 268 // memory / to a full 32-bits and then truncate the input to allow a scalar 269 // load instead of a vector load. 270 // 271 /// \returns True. 272 273 bool canWidenScalarExtLoad(LoadInst &I) const; 274 275 Value *matchFractPat(IntrinsicInst &I); 276 Value *applyFractPat(IRBuilder<> &Builder, Value *FractArg); 277 278 bool canOptimizeWithRsq(const FPMathOperator *SqrtOp, FastMathFlags DivFMF, 279 FastMathFlags SqrtFMF) const; 280 281 Value *optimizeWithRsq(IRBuilder<> &Builder, Value *Num, Value *Den, 282 FastMathFlags DivFMF, FastMathFlags SqrtFMF, 283 const Instruction *CtxI) const; 284 285 Value *optimizeWithRcp(IRBuilder<> &Builder, Value *Num, Value *Den, 286 FastMathFlags FMF, const Instruction *CtxI) const; 287 Value *optimizeWithFDivFast(IRBuilder<> &Builder, Value *Num, Value *Den, 288 float ReqdAccuracy) const; 289 290 Value *visitFDivElement(IRBuilder<> &Builder, Value *Num, Value *Den, 291 FastMathFlags DivFMF, FastMathFlags SqrtFMF, 292 Value *RsqOp, const Instruction *FDiv, 293 float ReqdAccuracy) const; 294 295 std::pair<Value *, Value *> getFrexpResults(IRBuilder<> &Builder, 296 Value *Src) const; 297 298 Value *emitRcpIEEE1ULP(IRBuilder<> &Builder, Value *Src, 299 bool IsNegative) const; 300 Value *emitFrexpDiv(IRBuilder<> &Builder, Value *LHS, Value *RHS, 301 FastMathFlags FMF) const; 302 Value *emitSqrtIEEE2ULP(IRBuilder<> &Builder, Value *Src, 303 FastMathFlags FMF) const; 304 305 public: 306 bool visitFDiv(BinaryOperator &I); 307 308 bool visitInstruction(Instruction &I) { return false; } 309 bool visitBinaryOperator(BinaryOperator &I); 310 bool visitLoadInst(LoadInst &I); 311 bool visitICmpInst(ICmpInst &I); 312 bool visitSelectInst(SelectInst &I); 313 bool visitPHINode(PHINode &I); 314 bool visitAddrSpaceCastInst(AddrSpaceCastInst &I); 315 316 bool visitIntrinsicInst(IntrinsicInst &I); 317 bool visitBitreverseIntrinsicInst(IntrinsicInst &I); 318 bool visitMinNum(IntrinsicInst &I); 319 bool visitSqrt(IntrinsicInst &I); 320 bool run(Function &F); 321 }; 322 323 class AMDGPUCodeGenPrepare : public FunctionPass { 324 private: 325 AMDGPUCodeGenPrepareImpl Impl; 326 327 public: 328 static char ID; 329 AMDGPUCodeGenPrepare() : FunctionPass(ID) { 330 initializeAMDGPUCodeGenPreparePass(*PassRegistry::getPassRegistry()); 331 } 332 void getAnalysisUsage(AnalysisUsage &AU) const override { 333 AU.addRequired<AssumptionCacheTracker>(); 334 AU.addRequired<UniformityInfoWrapperPass>(); 335 AU.addRequired<TargetLibraryInfoWrapperPass>(); 336 337 // FIXME: Division expansion needs to preserve the dominator tree. 338 if (!ExpandDiv64InIR) 339 AU.setPreservesAll(); 340 } 341 bool runOnFunction(Function &F) override; 342 bool doInitialization(Module &M) override; 343 StringRef getPassName() const override { return "AMDGPU IR optimizations"; } 344 }; 345 346 } // end anonymous namespace 347 348 bool AMDGPUCodeGenPrepareImpl::run(Function &F) { 349 BreakPhiNodesCache.clear(); 350 bool MadeChange = false; 351 352 Function::iterator NextBB; 353 for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE; FI = NextBB) { 354 BasicBlock *BB = &*FI; 355 NextBB = std::next(FI); 356 357 BasicBlock::iterator Next; 358 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; 359 I = Next) { 360 Next = std::next(I); 361 362 MadeChange |= visit(*I); 363 364 if (Next != E) { // Control flow changed 365 BasicBlock *NextInstBB = Next->getParent(); 366 if (NextInstBB != BB) { 367 BB = NextInstBB; 368 E = BB->end(); 369 FE = F.end(); 370 } 371 } 372 } 373 } 374 return MadeChange; 375 } 376 377 unsigned AMDGPUCodeGenPrepareImpl::getBaseElementBitWidth(const Type *T) const { 378 assert(needsPromotionToI32(T) && "T does not need promotion to i32"); 379 380 if (T->isIntegerTy()) 381 return T->getIntegerBitWidth(); 382 return cast<VectorType>(T)->getElementType()->getIntegerBitWidth(); 383 } 384 385 Type *AMDGPUCodeGenPrepareImpl::getI32Ty(IRBuilder<> &B, const Type *T) const { 386 assert(needsPromotionToI32(T) && "T does not need promotion to i32"); 387 388 if (T->isIntegerTy()) 389 return B.getInt32Ty(); 390 return FixedVectorType::get(B.getInt32Ty(), cast<FixedVectorType>(T)); 391 } 392 393 bool AMDGPUCodeGenPrepareImpl::isSigned(const BinaryOperator &I) const { 394 return I.getOpcode() == Instruction::AShr || 395 I.getOpcode() == Instruction::SDiv || I.getOpcode() == Instruction::SRem; 396 } 397 398 bool AMDGPUCodeGenPrepareImpl::isSigned(const SelectInst &I) const { 399 return isa<ICmpInst>(I.getOperand(0)) ? 400 cast<ICmpInst>(I.getOperand(0))->isSigned() : false; 401 } 402 403 bool AMDGPUCodeGenPrepareImpl::needsPromotionToI32(const Type *T) const { 404 if (!Widen16BitOps) 405 return false; 406 407 const IntegerType *IntTy = dyn_cast<IntegerType>(T); 408 if (IntTy && IntTy->getBitWidth() > 1 && IntTy->getBitWidth() <= 16) 409 return true; 410 411 if (const VectorType *VT = dyn_cast<VectorType>(T)) { 412 // TODO: The set of packed operations is more limited, so may want to 413 // promote some anyway. 414 if (ST->hasVOP3PInsts()) 415 return false; 416 417 return needsPromotionToI32(VT->getElementType()); 418 } 419 420 return false; 421 } 422 423 bool AMDGPUCodeGenPrepareImpl::isLegalFloatingTy(const Type *Ty) const { 424 return Ty->isFloatTy() || Ty->isDoubleTy() || 425 (Ty->isHalfTy() && ST->has16BitInsts()); 426 } 427 428 // Return true if the op promoted to i32 should have nsw set. 429 static bool promotedOpIsNSW(const Instruction &I) { 430 switch (I.getOpcode()) { 431 case Instruction::Shl: 432 case Instruction::Add: 433 case Instruction::Sub: 434 return true; 435 case Instruction::Mul: 436 return I.hasNoUnsignedWrap(); 437 default: 438 return false; 439 } 440 } 441 442 // Return true if the op promoted to i32 should have nuw set. 443 static bool promotedOpIsNUW(const Instruction &I) { 444 switch (I.getOpcode()) { 445 case Instruction::Shl: 446 case Instruction::Add: 447 case Instruction::Mul: 448 return true; 449 case Instruction::Sub: 450 return I.hasNoUnsignedWrap(); 451 default: 452 return false; 453 } 454 } 455 456 bool AMDGPUCodeGenPrepareImpl::canWidenScalarExtLoad(LoadInst &I) const { 457 Type *Ty = I.getType(); 458 const DataLayout &DL = Mod->getDataLayout(); 459 int TySize = DL.getTypeSizeInBits(Ty); 460 Align Alignment = DL.getValueOrABITypeAlignment(I.getAlign(), Ty); 461 462 return I.isSimple() && TySize < 32 && Alignment >= 4 && UA->isUniform(&I); 463 } 464 465 bool AMDGPUCodeGenPrepareImpl::promoteUniformOpToI32(BinaryOperator &I) const { 466 assert(needsPromotionToI32(I.getType()) && 467 "I does not need promotion to i32"); 468 469 if (I.getOpcode() == Instruction::SDiv || 470 I.getOpcode() == Instruction::UDiv || 471 I.getOpcode() == Instruction::SRem || 472 I.getOpcode() == Instruction::URem) 473 return false; 474 475 IRBuilder<> Builder(&I); 476 Builder.SetCurrentDebugLocation(I.getDebugLoc()); 477 478 Type *I32Ty = getI32Ty(Builder, I.getType()); 479 Value *ExtOp0 = nullptr; 480 Value *ExtOp1 = nullptr; 481 Value *ExtRes = nullptr; 482 Value *TruncRes = nullptr; 483 484 if (isSigned(I)) { 485 ExtOp0 = Builder.CreateSExt(I.getOperand(0), I32Ty); 486 ExtOp1 = Builder.CreateSExt(I.getOperand(1), I32Ty); 487 } else { 488 ExtOp0 = Builder.CreateZExt(I.getOperand(0), I32Ty); 489 ExtOp1 = Builder.CreateZExt(I.getOperand(1), I32Ty); 490 } 491 492 ExtRes = Builder.CreateBinOp(I.getOpcode(), ExtOp0, ExtOp1); 493 if (Instruction *Inst = dyn_cast<Instruction>(ExtRes)) { 494 if (promotedOpIsNSW(cast<Instruction>(I))) 495 Inst->setHasNoSignedWrap(); 496 497 if (promotedOpIsNUW(cast<Instruction>(I))) 498 Inst->setHasNoUnsignedWrap(); 499 500 if (const auto *ExactOp = dyn_cast<PossiblyExactOperator>(&I)) 501 Inst->setIsExact(ExactOp->isExact()); 502 } 503 504 TruncRes = Builder.CreateTrunc(ExtRes, I.getType()); 505 506 I.replaceAllUsesWith(TruncRes); 507 I.eraseFromParent(); 508 509 return true; 510 } 511 512 bool AMDGPUCodeGenPrepareImpl::promoteUniformOpToI32(ICmpInst &I) const { 513 assert(needsPromotionToI32(I.getOperand(0)->getType()) && 514 "I does not need promotion to i32"); 515 516 IRBuilder<> Builder(&I); 517 Builder.SetCurrentDebugLocation(I.getDebugLoc()); 518 519 Type *I32Ty = getI32Ty(Builder, I.getOperand(0)->getType()); 520 Value *ExtOp0 = nullptr; 521 Value *ExtOp1 = nullptr; 522 Value *NewICmp = nullptr; 523 524 if (I.isSigned()) { 525 ExtOp0 = Builder.CreateSExt(I.getOperand(0), I32Ty); 526 ExtOp1 = Builder.CreateSExt(I.getOperand(1), I32Ty); 527 } else { 528 ExtOp0 = Builder.CreateZExt(I.getOperand(0), I32Ty); 529 ExtOp1 = Builder.CreateZExt(I.getOperand(1), I32Ty); 530 } 531 NewICmp = Builder.CreateICmp(I.getPredicate(), ExtOp0, ExtOp1); 532 533 I.replaceAllUsesWith(NewICmp); 534 I.eraseFromParent(); 535 536 return true; 537 } 538 539 bool AMDGPUCodeGenPrepareImpl::promoteUniformOpToI32(SelectInst &I) const { 540 assert(needsPromotionToI32(I.getType()) && 541 "I does not need promotion to i32"); 542 543 IRBuilder<> Builder(&I); 544 Builder.SetCurrentDebugLocation(I.getDebugLoc()); 545 546 Type *I32Ty = getI32Ty(Builder, I.getType()); 547 Value *ExtOp1 = nullptr; 548 Value *ExtOp2 = nullptr; 549 Value *ExtRes = nullptr; 550 Value *TruncRes = nullptr; 551 552 if (isSigned(I)) { 553 ExtOp1 = Builder.CreateSExt(I.getOperand(1), I32Ty); 554 ExtOp2 = Builder.CreateSExt(I.getOperand(2), I32Ty); 555 } else { 556 ExtOp1 = Builder.CreateZExt(I.getOperand(1), I32Ty); 557 ExtOp2 = Builder.CreateZExt(I.getOperand(2), I32Ty); 558 } 559 ExtRes = Builder.CreateSelect(I.getOperand(0), ExtOp1, ExtOp2); 560 TruncRes = Builder.CreateTrunc(ExtRes, I.getType()); 561 562 I.replaceAllUsesWith(TruncRes); 563 I.eraseFromParent(); 564 565 return true; 566 } 567 568 bool AMDGPUCodeGenPrepareImpl::promoteUniformBitreverseToI32( 569 IntrinsicInst &I) const { 570 assert(I.getIntrinsicID() == Intrinsic::bitreverse && 571 "I must be bitreverse intrinsic"); 572 assert(needsPromotionToI32(I.getType()) && 573 "I does not need promotion to i32"); 574 575 IRBuilder<> Builder(&I); 576 Builder.SetCurrentDebugLocation(I.getDebugLoc()); 577 578 Type *I32Ty = getI32Ty(Builder, I.getType()); 579 Value *ExtOp = Builder.CreateZExt(I.getOperand(0), I32Ty); 580 Value *ExtRes = 581 Builder.CreateIntrinsic(Intrinsic::bitreverse, {I32Ty}, {ExtOp}); 582 Value *LShrOp = 583 Builder.CreateLShr(ExtRes, 32 - getBaseElementBitWidth(I.getType())); 584 Value *TruncRes = 585 Builder.CreateTrunc(LShrOp, I.getType()); 586 587 I.replaceAllUsesWith(TruncRes); 588 I.eraseFromParent(); 589 590 return true; 591 } 592 593 unsigned AMDGPUCodeGenPrepareImpl::numBitsUnsigned(Value *Op) const { 594 return computeKnownBits(Op, *DL, 0, AC).countMaxActiveBits(); 595 } 596 597 unsigned AMDGPUCodeGenPrepareImpl::numBitsSigned(Value *Op) const { 598 return ComputeMaxSignificantBits(Op, *DL, 0, AC); 599 } 600 601 static void extractValues(IRBuilder<> &Builder, 602 SmallVectorImpl<Value *> &Values, Value *V) { 603 auto *VT = dyn_cast<FixedVectorType>(V->getType()); 604 if (!VT) { 605 Values.push_back(V); 606 return; 607 } 608 609 for (int I = 0, E = VT->getNumElements(); I != E; ++I) 610 Values.push_back(Builder.CreateExtractElement(V, I)); 611 } 612 613 static Value *insertValues(IRBuilder<> &Builder, 614 Type *Ty, 615 SmallVectorImpl<Value *> &Values) { 616 if (!Ty->isVectorTy()) { 617 assert(Values.size() == 1); 618 return Values[0]; 619 } 620 621 Value *NewVal = PoisonValue::get(Ty); 622 for (int I = 0, E = Values.size(); I != E; ++I) 623 NewVal = Builder.CreateInsertElement(NewVal, Values[I], I); 624 625 return NewVal; 626 } 627 628 bool AMDGPUCodeGenPrepareImpl::replaceMulWithMul24(BinaryOperator &I) const { 629 if (I.getOpcode() != Instruction::Mul) 630 return false; 631 632 Type *Ty = I.getType(); 633 unsigned Size = Ty->getScalarSizeInBits(); 634 if (Size <= 16 && ST->has16BitInsts()) 635 return false; 636 637 // Prefer scalar if this could be s_mul_i32 638 if (UA->isUniform(&I)) 639 return false; 640 641 Value *LHS = I.getOperand(0); 642 Value *RHS = I.getOperand(1); 643 IRBuilder<> Builder(&I); 644 Builder.SetCurrentDebugLocation(I.getDebugLoc()); 645 646 unsigned LHSBits = 0, RHSBits = 0; 647 bool IsSigned = false; 648 649 if (ST->hasMulU24() && (LHSBits = numBitsUnsigned(LHS)) <= 24 && 650 (RHSBits = numBitsUnsigned(RHS)) <= 24) { 651 IsSigned = false; 652 653 } else if (ST->hasMulI24() && (LHSBits = numBitsSigned(LHS)) <= 24 && 654 (RHSBits = numBitsSigned(RHS)) <= 24) { 655 IsSigned = true; 656 657 } else 658 return false; 659 660 SmallVector<Value *, 4> LHSVals; 661 SmallVector<Value *, 4> RHSVals; 662 SmallVector<Value *, 4> ResultVals; 663 extractValues(Builder, LHSVals, LHS); 664 extractValues(Builder, RHSVals, RHS); 665 666 IntegerType *I32Ty = Builder.getInt32Ty(); 667 IntegerType *IntrinTy = Size > 32 ? Builder.getInt64Ty() : I32Ty; 668 Type *DstTy = LHSVals[0]->getType(); 669 670 for (int I = 0, E = LHSVals.size(); I != E; ++I) { 671 Value *LHS = IsSigned ? Builder.CreateSExtOrTrunc(LHSVals[I], I32Ty) 672 : Builder.CreateZExtOrTrunc(LHSVals[I], I32Ty); 673 Value *RHS = IsSigned ? Builder.CreateSExtOrTrunc(RHSVals[I], I32Ty) 674 : Builder.CreateZExtOrTrunc(RHSVals[I], I32Ty); 675 Intrinsic::ID ID = 676 IsSigned ? Intrinsic::amdgcn_mul_i24 : Intrinsic::amdgcn_mul_u24; 677 Value *Result = Builder.CreateIntrinsic(ID, {IntrinTy}, {LHS, RHS}); 678 Result = IsSigned ? Builder.CreateSExtOrTrunc(Result, DstTy) 679 : Builder.CreateZExtOrTrunc(Result, DstTy); 680 ResultVals.push_back(Result); 681 } 682 683 Value *NewVal = insertValues(Builder, Ty, ResultVals); 684 NewVal->takeName(&I); 685 I.replaceAllUsesWith(NewVal); 686 I.eraseFromParent(); 687 688 return true; 689 } 690 691 // Find a select instruction, which may have been casted. This is mostly to deal 692 // with cases where i16 selects were promoted here to i32. 693 static SelectInst *findSelectThroughCast(Value *V, CastInst *&Cast) { 694 Cast = nullptr; 695 if (SelectInst *Sel = dyn_cast<SelectInst>(V)) 696 return Sel; 697 698 if ((Cast = dyn_cast<CastInst>(V))) { 699 if (SelectInst *Sel = dyn_cast<SelectInst>(Cast->getOperand(0))) 700 return Sel; 701 } 702 703 return nullptr; 704 } 705 706 bool AMDGPUCodeGenPrepareImpl::foldBinOpIntoSelect(BinaryOperator &BO) const { 707 // Don't do this unless the old select is going away. We want to eliminate the 708 // binary operator, not replace a binop with a select. 709 int SelOpNo = 0; 710 711 CastInst *CastOp; 712 713 // TODO: Should probably try to handle some cases with multiple 714 // users. Duplicating the select may be profitable for division. 715 SelectInst *Sel = findSelectThroughCast(BO.getOperand(0), CastOp); 716 if (!Sel || !Sel->hasOneUse()) { 717 SelOpNo = 1; 718 Sel = findSelectThroughCast(BO.getOperand(1), CastOp); 719 } 720 721 if (!Sel || !Sel->hasOneUse()) 722 return false; 723 724 Constant *CT = dyn_cast<Constant>(Sel->getTrueValue()); 725 Constant *CF = dyn_cast<Constant>(Sel->getFalseValue()); 726 Constant *CBO = dyn_cast<Constant>(BO.getOperand(SelOpNo ^ 1)); 727 if (!CBO || !CT || !CF) 728 return false; 729 730 if (CastOp) { 731 if (!CastOp->hasOneUse()) 732 return false; 733 CT = ConstantFoldCastOperand(CastOp->getOpcode(), CT, BO.getType(), *DL); 734 CF = ConstantFoldCastOperand(CastOp->getOpcode(), CF, BO.getType(), *DL); 735 } 736 737 // TODO: Handle special 0/-1 cases DAG combine does, although we only really 738 // need to handle divisions here. 739 Constant *FoldedT = SelOpNo ? 740 ConstantFoldBinaryOpOperands(BO.getOpcode(), CBO, CT, *DL) : 741 ConstantFoldBinaryOpOperands(BO.getOpcode(), CT, CBO, *DL); 742 if (!FoldedT || isa<ConstantExpr>(FoldedT)) 743 return false; 744 745 Constant *FoldedF = SelOpNo ? 746 ConstantFoldBinaryOpOperands(BO.getOpcode(), CBO, CF, *DL) : 747 ConstantFoldBinaryOpOperands(BO.getOpcode(), CF, CBO, *DL); 748 if (!FoldedF || isa<ConstantExpr>(FoldedF)) 749 return false; 750 751 IRBuilder<> Builder(&BO); 752 Builder.SetCurrentDebugLocation(BO.getDebugLoc()); 753 if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(&BO)) 754 Builder.setFastMathFlags(FPOp->getFastMathFlags()); 755 756 Value *NewSelect = Builder.CreateSelect(Sel->getCondition(), 757 FoldedT, FoldedF); 758 NewSelect->takeName(&BO); 759 BO.replaceAllUsesWith(NewSelect); 760 BO.eraseFromParent(); 761 if (CastOp) 762 CastOp->eraseFromParent(); 763 Sel->eraseFromParent(); 764 return true; 765 } 766 767 std::pair<Value *, Value *> 768 AMDGPUCodeGenPrepareImpl::getFrexpResults(IRBuilder<> &Builder, 769 Value *Src) const { 770 Type *Ty = Src->getType(); 771 Value *Frexp = Builder.CreateIntrinsic(Intrinsic::frexp, 772 {Ty, Builder.getInt32Ty()}, Src); 773 Value *FrexpMant = Builder.CreateExtractValue(Frexp, {0}); 774 775 // Bypass the bug workaround for the exponent result since it doesn't matter. 776 // TODO: Does the bug workaround even really need to consider the exponent 777 // result? It's unspecified by the spec. 778 779 Value *FrexpExp = 780 ST->hasFractBug() 781 ? Builder.CreateIntrinsic(Intrinsic::amdgcn_frexp_exp, 782 {Builder.getInt32Ty(), Ty}, Src) 783 : Builder.CreateExtractValue(Frexp, {1}); 784 return {FrexpMant, FrexpExp}; 785 } 786 787 /// Emit an expansion of 1.0 / Src good for 1ulp that supports denormals. 788 Value *AMDGPUCodeGenPrepareImpl::emitRcpIEEE1ULP(IRBuilder<> &Builder, 789 Value *Src, 790 bool IsNegative) const { 791 // Same as for 1.0, but expand the sign out of the constant. 792 // -1.0 / x -> rcp (fneg x) 793 if (IsNegative) 794 Src = Builder.CreateFNeg(Src); 795 796 // The rcp instruction doesn't support denormals, so scale the input 797 // out of the denormal range and convert at the end. 798 // 799 // Expand as 2^-n * (1.0 / (x * 2^n)) 800 801 // TODO: Skip scaling if input is known never denormal and the input 802 // range won't underflow to denormal. The hard part is knowing the 803 // result. We need a range check, the result could be denormal for 804 // 0x1p+126 < den <= 0x1p+127. 805 auto [FrexpMant, FrexpExp] = getFrexpResults(Builder, Src); 806 Value *ScaleFactor = Builder.CreateNeg(FrexpExp); 807 Value *Rcp = Builder.CreateUnaryIntrinsic(Intrinsic::amdgcn_rcp, FrexpMant); 808 return Builder.CreateCall(getLdexpF32(), {Rcp, ScaleFactor}); 809 } 810 811 /// Emit a 2ulp expansion for fdiv by using frexp for input scaling. 812 Value *AMDGPUCodeGenPrepareImpl::emitFrexpDiv(IRBuilder<> &Builder, Value *LHS, 813 Value *RHS, 814 FastMathFlags FMF) const { 815 // If we have have to work around the fract/frexp bug, we're worse off than 816 // using the fdiv.fast expansion. The full safe expansion is faster if we have 817 // fast FMA. 818 if (HasFP32DenormalFlush && ST->hasFractBug() && !ST->hasFastFMAF32() && 819 (!FMF.noNaNs() || !FMF.noInfs())) 820 return nullptr; 821 822 // We're scaling the LHS to avoid a denormal input, and scale the denominator 823 // to avoid large values underflowing the result. 824 auto [FrexpMantRHS, FrexpExpRHS] = getFrexpResults(Builder, RHS); 825 826 Value *Rcp = 827 Builder.CreateUnaryIntrinsic(Intrinsic::amdgcn_rcp, FrexpMantRHS); 828 829 auto [FrexpMantLHS, FrexpExpLHS] = getFrexpResults(Builder, LHS); 830 Value *Mul = Builder.CreateFMul(FrexpMantLHS, Rcp); 831 832 // We multiplied by 2^N/2^M, so we need to multiply by 2^(N-M) to scale the 833 // result. 834 Value *ExpDiff = Builder.CreateSub(FrexpExpLHS, FrexpExpRHS); 835 return Builder.CreateCall(getLdexpF32(), {Mul, ExpDiff}); 836 } 837 838 /// Emit a sqrt that handles denormals and is accurate to 2ulp. 839 Value *AMDGPUCodeGenPrepareImpl::emitSqrtIEEE2ULP(IRBuilder<> &Builder, 840 Value *Src, 841 FastMathFlags FMF) const { 842 Type *Ty = Src->getType(); 843 APFloat SmallestNormal = 844 APFloat::getSmallestNormalized(Ty->getFltSemantics()); 845 Value *NeedScale = 846 Builder.CreateFCmpOLT(Src, ConstantFP::get(Ty, SmallestNormal)); 847 848 ConstantInt *Zero = Builder.getInt32(0); 849 Value *InputScaleFactor = 850 Builder.CreateSelect(NeedScale, Builder.getInt32(32), Zero); 851 852 Value *Scaled = Builder.CreateCall(getLdexpF32(), {Src, InputScaleFactor}); 853 854 Value *Sqrt = Builder.CreateCall(getSqrtF32(), Scaled); 855 856 Value *OutputScaleFactor = 857 Builder.CreateSelect(NeedScale, Builder.getInt32(-16), Zero); 858 return Builder.CreateCall(getLdexpF32(), {Sqrt, OutputScaleFactor}); 859 } 860 861 /// Emit an expansion of 1.0 / sqrt(Src) good for 1ulp that supports denormals. 862 static Value *emitRsqIEEE1ULP(IRBuilder<> &Builder, Value *Src, 863 bool IsNegative) { 864 // bool need_scale = x < 0x1p-126f; 865 // float input_scale = need_scale ? 0x1.0p+24f : 1.0f; 866 // float output_scale = need_scale ? 0x1.0p+12f : 1.0f; 867 // rsq(x * input_scale) * output_scale; 868 869 Type *Ty = Src->getType(); 870 APFloat SmallestNormal = 871 APFloat::getSmallestNormalized(Ty->getFltSemantics()); 872 Value *NeedScale = 873 Builder.CreateFCmpOLT(Src, ConstantFP::get(Ty, SmallestNormal)); 874 Constant *One = ConstantFP::get(Ty, 1.0); 875 Constant *InputScale = ConstantFP::get(Ty, 0x1.0p+24); 876 Constant *OutputScale = 877 ConstantFP::get(Ty, IsNegative ? -0x1.0p+12 : 0x1.0p+12); 878 879 Value *InputScaleFactor = Builder.CreateSelect(NeedScale, InputScale, One); 880 881 Value *ScaledInput = Builder.CreateFMul(Src, InputScaleFactor); 882 Value *Rsq = Builder.CreateUnaryIntrinsic(Intrinsic::amdgcn_rsq, ScaledInput); 883 Value *OutputScaleFactor = Builder.CreateSelect( 884 NeedScale, OutputScale, IsNegative ? ConstantFP::get(Ty, -1.0) : One); 885 886 return Builder.CreateFMul(Rsq, OutputScaleFactor); 887 } 888 889 bool AMDGPUCodeGenPrepareImpl::canOptimizeWithRsq(const FPMathOperator *SqrtOp, 890 FastMathFlags DivFMF, 891 FastMathFlags SqrtFMF) const { 892 // The rsqrt contraction increases accuracy from ~2ulp to ~1ulp. 893 if (!DivFMF.allowContract() || !SqrtFMF.allowContract()) 894 return false; 895 896 // v_rsq_f32 gives 1ulp 897 return SqrtFMF.approxFunc() || HasUnsafeFPMath || 898 SqrtOp->getFPAccuracy() >= 1.0f; 899 } 900 901 Value *AMDGPUCodeGenPrepareImpl::optimizeWithRsq( 902 IRBuilder<> &Builder, Value *Num, Value *Den, const FastMathFlags DivFMF, 903 const FastMathFlags SqrtFMF, const Instruction *CtxI) const { 904 // The rsqrt contraction increases accuracy from ~2ulp to ~1ulp. 905 assert(DivFMF.allowContract() && SqrtFMF.allowContract()); 906 907 // rsq_f16 is accurate to 0.51 ulp. 908 // rsq_f32 is accurate for !fpmath >= 1.0ulp and denormals are flushed. 909 // rsq_f64 is never accurate. 910 const ConstantFP *CLHS = dyn_cast<ConstantFP>(Num); 911 if (!CLHS) 912 return nullptr; 913 914 assert(Den->getType()->isFloatTy()); 915 916 bool IsNegative = false; 917 918 // TODO: Handle other numerator values with arcp. 919 if (CLHS->isExactlyValue(1.0) || (IsNegative = CLHS->isExactlyValue(-1.0))) { 920 // Add in the sqrt flags. 921 IRBuilder<>::FastMathFlagGuard Guard(Builder); 922 Builder.setFastMathFlags(DivFMF | SqrtFMF); 923 924 if ((DivFMF.approxFunc() && SqrtFMF.approxFunc()) || HasUnsafeFPMath || 925 canIgnoreDenormalInput(Den, CtxI)) { 926 Value *Result = Builder.CreateUnaryIntrinsic(Intrinsic::amdgcn_rsq, Den); 927 // -1.0 / sqrt(x) -> fneg(rsq(x)) 928 return IsNegative ? Builder.CreateFNeg(Result) : Result; 929 } 930 931 return emitRsqIEEE1ULP(Builder, Den, IsNegative); 932 } 933 934 return nullptr; 935 } 936 937 // Optimize fdiv with rcp: 938 // 939 // 1/x -> rcp(x) when rcp is sufficiently accurate or inaccurate rcp is 940 // allowed with unsafe-fp-math or afn. 941 // 942 // a/b -> a*rcp(b) when arcp is allowed, and we only need provide ULP 1.0 943 Value * 944 AMDGPUCodeGenPrepareImpl::optimizeWithRcp(IRBuilder<> &Builder, Value *Num, 945 Value *Den, FastMathFlags FMF, 946 const Instruction *CtxI) const { 947 // rcp_f16 is accurate to 0.51 ulp. 948 // rcp_f32 is accurate for !fpmath >= 1.0ulp and denormals are flushed. 949 // rcp_f64 is never accurate. 950 assert(Den->getType()->isFloatTy()); 951 952 if (const ConstantFP *CLHS = dyn_cast<ConstantFP>(Num)) { 953 bool IsNegative = false; 954 if (CLHS->isExactlyValue(1.0) || 955 (IsNegative = CLHS->isExactlyValue(-1.0))) { 956 Value *Src = Den; 957 958 if (HasFP32DenormalFlush || FMF.approxFunc()) { 959 // -1.0 / x -> 1.0 / fneg(x) 960 if (IsNegative) 961 Src = Builder.CreateFNeg(Src); 962 963 // v_rcp_f32 and v_rsq_f32 do not support denormals, and according to 964 // the CI documentation has a worst case error of 1 ulp. 965 // OpenCL requires <= 2.5 ulp for 1.0 / x, so it should always be OK 966 // to use it as long as we aren't trying to use denormals. 967 // 968 // v_rcp_f16 and v_rsq_f16 DO support denormals. 969 970 // NOTE: v_sqrt and v_rcp will be combined to v_rsq later. So we don't 971 // insert rsq intrinsic here. 972 973 // 1.0 / x -> rcp(x) 974 return Builder.CreateUnaryIntrinsic(Intrinsic::amdgcn_rcp, Src); 975 } 976 977 // TODO: If the input isn't denormal, and we know the input exponent isn't 978 // big enough to introduce a denormal we can avoid the scaling. 979 return emitRcpIEEE1ULP(Builder, Src, IsNegative); 980 } 981 } 982 983 if (FMF.allowReciprocal()) { 984 // x / y -> x * (1.0 / y) 985 986 // TODO: Could avoid denormal scaling and use raw rcp if we knew the output 987 // will never underflow. 988 if (HasFP32DenormalFlush || FMF.approxFunc()) { 989 Value *Recip = Builder.CreateUnaryIntrinsic(Intrinsic::amdgcn_rcp, Den); 990 return Builder.CreateFMul(Num, Recip); 991 } 992 993 Value *Recip = emitRcpIEEE1ULP(Builder, Den, false); 994 return Builder.CreateFMul(Num, Recip); 995 } 996 997 return nullptr; 998 } 999 1000 // optimize with fdiv.fast: 1001 // 1002 // a/b -> fdiv.fast(a, b) when !fpmath >= 2.5ulp with denormals flushed. 1003 // 1004 // 1/x -> fdiv.fast(1,x) when !fpmath >= 2.5ulp. 1005 // 1006 // NOTE: optimizeWithRcp should be tried first because rcp is the preference. 1007 Value *AMDGPUCodeGenPrepareImpl::optimizeWithFDivFast( 1008 IRBuilder<> &Builder, Value *Num, Value *Den, float ReqdAccuracy) const { 1009 // fdiv.fast can achieve 2.5 ULP accuracy. 1010 if (ReqdAccuracy < 2.5f) 1011 return nullptr; 1012 1013 // Only have fdiv.fast for f32. 1014 assert(Den->getType()->isFloatTy()); 1015 1016 bool NumIsOne = false; 1017 if (const ConstantFP *CNum = dyn_cast<ConstantFP>(Num)) { 1018 if (CNum->isExactlyValue(+1.0) || CNum->isExactlyValue(-1.0)) 1019 NumIsOne = true; 1020 } 1021 1022 // fdiv does not support denormals. But 1.0/x is always fine to use it. 1023 // 1024 // TODO: This works for any value with a specific known exponent range, don't 1025 // just limit to constant 1. 1026 if (!HasFP32DenormalFlush && !NumIsOne) 1027 return nullptr; 1028 1029 return Builder.CreateIntrinsic(Intrinsic::amdgcn_fdiv_fast, {}, {Num, Den}); 1030 } 1031 1032 Value *AMDGPUCodeGenPrepareImpl::visitFDivElement( 1033 IRBuilder<> &Builder, Value *Num, Value *Den, FastMathFlags DivFMF, 1034 FastMathFlags SqrtFMF, Value *RsqOp, const Instruction *FDivInst, 1035 float ReqdDivAccuracy) const { 1036 if (RsqOp) { 1037 Value *Rsq = 1038 optimizeWithRsq(Builder, Num, RsqOp, DivFMF, SqrtFMF, FDivInst); 1039 if (Rsq) 1040 return Rsq; 1041 } 1042 1043 Value *Rcp = optimizeWithRcp(Builder, Num, Den, DivFMF, FDivInst); 1044 if (Rcp) 1045 return Rcp; 1046 1047 // In the basic case fdiv_fast has the same instruction count as the frexp div 1048 // expansion. Slightly prefer fdiv_fast since it ends in an fmul that can 1049 // potentially be fused into a user. Also, materialization of the constants 1050 // can be reused for multiple instances. 1051 Value *FDivFast = optimizeWithFDivFast(Builder, Num, Den, ReqdDivAccuracy); 1052 if (FDivFast) 1053 return FDivFast; 1054 1055 return emitFrexpDiv(Builder, Num, Den, DivFMF); 1056 } 1057 1058 // Optimizations is performed based on fpmath, fast math flags as well as 1059 // denormals to optimize fdiv with either rcp or fdiv.fast. 1060 // 1061 // With rcp: 1062 // 1/x -> rcp(x) when rcp is sufficiently accurate or inaccurate rcp is 1063 // allowed with unsafe-fp-math or afn. 1064 // 1065 // a/b -> a*rcp(b) when inaccurate rcp is allowed with unsafe-fp-math or afn. 1066 // 1067 // With fdiv.fast: 1068 // a/b -> fdiv.fast(a, b) when !fpmath >= 2.5ulp with denormals flushed. 1069 // 1070 // 1/x -> fdiv.fast(1,x) when !fpmath >= 2.5ulp. 1071 // 1072 // NOTE: rcp is the preference in cases that both are legal. 1073 bool AMDGPUCodeGenPrepareImpl::visitFDiv(BinaryOperator &FDiv) { 1074 if (DisableFDivExpand) 1075 return false; 1076 1077 Type *Ty = FDiv.getType()->getScalarType(); 1078 if (!Ty->isFloatTy()) 1079 return false; 1080 1081 // The f64 rcp/rsq approximations are pretty inaccurate. We can do an 1082 // expansion around them in codegen. f16 is good enough to always use. 1083 1084 const FPMathOperator *FPOp = cast<const FPMathOperator>(&FDiv); 1085 const FastMathFlags DivFMF = FPOp->getFastMathFlags(); 1086 const float ReqdAccuracy = FPOp->getFPAccuracy(); 1087 1088 FastMathFlags SqrtFMF; 1089 1090 Value *Num = FDiv.getOperand(0); 1091 Value *Den = FDiv.getOperand(1); 1092 1093 Value *RsqOp = nullptr; 1094 auto *DenII = dyn_cast<IntrinsicInst>(Den); 1095 if (DenII && DenII->getIntrinsicID() == Intrinsic::sqrt && 1096 DenII->hasOneUse()) { 1097 const auto *SqrtOp = cast<FPMathOperator>(DenII); 1098 SqrtFMF = SqrtOp->getFastMathFlags(); 1099 if (canOptimizeWithRsq(SqrtOp, DivFMF, SqrtFMF)) 1100 RsqOp = SqrtOp->getOperand(0); 1101 } 1102 1103 // Inaccurate rcp is allowed with unsafe-fp-math or afn. 1104 // 1105 // Defer to codegen to handle this. 1106 // 1107 // TODO: Decide on an interpretation for interactions between afn + arcp + 1108 // !fpmath, and make it consistent between here and codegen. For now, defer 1109 // expansion of afn to codegen. The current interpretation is so aggressive we 1110 // don't need any pre-consideration here when we have better information. A 1111 // more conservative interpretation could use handling here. 1112 const bool AllowInaccurateRcp = HasUnsafeFPMath || DivFMF.approxFunc(); 1113 if (!RsqOp && AllowInaccurateRcp) 1114 return false; 1115 1116 // Defer the correct implementations to codegen. 1117 if (ReqdAccuracy < 1.0f) 1118 return false; 1119 1120 IRBuilder<> Builder(FDiv.getParent(), std::next(FDiv.getIterator())); 1121 Builder.setFastMathFlags(DivFMF); 1122 Builder.SetCurrentDebugLocation(FDiv.getDebugLoc()); 1123 1124 SmallVector<Value *, 4> NumVals; 1125 SmallVector<Value *, 4> DenVals; 1126 SmallVector<Value *, 4> RsqDenVals; 1127 extractValues(Builder, NumVals, Num); 1128 extractValues(Builder, DenVals, Den); 1129 1130 if (RsqOp) 1131 extractValues(Builder, RsqDenVals, RsqOp); 1132 1133 SmallVector<Value *, 4> ResultVals(NumVals.size()); 1134 for (int I = 0, E = NumVals.size(); I != E; ++I) { 1135 Value *NumElt = NumVals[I]; 1136 Value *DenElt = DenVals[I]; 1137 Value *RsqDenElt = RsqOp ? RsqDenVals[I] : nullptr; 1138 1139 Value *NewElt = 1140 visitFDivElement(Builder, NumElt, DenElt, DivFMF, SqrtFMF, RsqDenElt, 1141 cast<Instruction>(FPOp), ReqdAccuracy); 1142 if (!NewElt) { 1143 // Keep the original, but scalarized. 1144 1145 // This has the unfortunate side effect of sometimes scalarizing when 1146 // we're not going to do anything. 1147 NewElt = Builder.CreateFDiv(NumElt, DenElt); 1148 if (auto *NewEltInst = dyn_cast<Instruction>(NewElt)) 1149 NewEltInst->copyMetadata(FDiv); 1150 } 1151 1152 ResultVals[I] = NewElt; 1153 } 1154 1155 Value *NewVal = insertValues(Builder, FDiv.getType(), ResultVals); 1156 1157 if (NewVal) { 1158 FDiv.replaceAllUsesWith(NewVal); 1159 NewVal->takeName(&FDiv); 1160 RecursivelyDeleteTriviallyDeadInstructions(&FDiv, TLInfo); 1161 } 1162 1163 return true; 1164 } 1165 1166 static bool hasUnsafeFPMath(const Function &F) { 1167 Attribute Attr = F.getFnAttribute("unsafe-fp-math"); 1168 return Attr.getValueAsBool(); 1169 } 1170 1171 static std::pair<Value*, Value*> getMul64(IRBuilder<> &Builder, 1172 Value *LHS, Value *RHS) { 1173 Type *I32Ty = Builder.getInt32Ty(); 1174 Type *I64Ty = Builder.getInt64Ty(); 1175 1176 Value *LHS_EXT64 = Builder.CreateZExt(LHS, I64Ty); 1177 Value *RHS_EXT64 = Builder.CreateZExt(RHS, I64Ty); 1178 Value *MUL64 = Builder.CreateMul(LHS_EXT64, RHS_EXT64); 1179 Value *Lo = Builder.CreateTrunc(MUL64, I32Ty); 1180 Value *Hi = Builder.CreateLShr(MUL64, Builder.getInt64(32)); 1181 Hi = Builder.CreateTrunc(Hi, I32Ty); 1182 return std::pair(Lo, Hi); 1183 } 1184 1185 static Value* getMulHu(IRBuilder<> &Builder, Value *LHS, Value *RHS) { 1186 return getMul64(Builder, LHS, RHS).second; 1187 } 1188 1189 /// Figure out how many bits are really needed for this division. \p AtLeast is 1190 /// an optimization hint to bypass the second ComputeNumSignBits call if we the 1191 /// first one is insufficient. Returns -1 on failure. 1192 int AMDGPUCodeGenPrepareImpl::getDivNumBits(BinaryOperator &I, Value *Num, 1193 Value *Den, unsigned AtLeast, 1194 bool IsSigned) const { 1195 const DataLayout &DL = Mod->getDataLayout(); 1196 if (IsSigned) { 1197 unsigned LHSSignBits = ComputeNumSignBits(Num, DL, 0, AC, &I); 1198 if (LHSSignBits < AtLeast) 1199 return -1; 1200 1201 unsigned RHSSignBits = ComputeNumSignBits(Den, DL, 0, AC, &I); 1202 if (RHSSignBits < AtLeast) 1203 return -1; 1204 1205 unsigned SignBits = std::min(LHSSignBits, RHSSignBits); 1206 unsigned DivBits = Num->getType()->getScalarSizeInBits() - SignBits; 1207 return DivBits + 1; 1208 } else { 1209 KnownBits Known = computeKnownBits(Num, DL, 0, AC, &I); 1210 // We know all bits are used for division for Num or Den in range 1211 // (SignedMax, UnsignedMax] 1212 if (Known.isNegative() || !Known.isNonNegative()) 1213 return -1; 1214 unsigned LHSSignBits = Known.countMinLeadingZeros(); 1215 1216 Known = computeKnownBits(Den, DL, 0, AC, &I); 1217 if (Known.isNegative() || !Known.isNonNegative()) 1218 return -1; 1219 unsigned RHSSignBits = Known.countMinLeadingZeros(); 1220 1221 unsigned SignBits = std::min(LHSSignBits, RHSSignBits); 1222 unsigned DivBits = Num->getType()->getScalarSizeInBits() - SignBits; 1223 return DivBits; 1224 } 1225 } 1226 1227 // The fractional part of a float is enough to accurately represent up to 1228 // a 24-bit signed integer. 1229 Value *AMDGPUCodeGenPrepareImpl::expandDivRem24(IRBuilder<> &Builder, 1230 BinaryOperator &I, Value *Num, 1231 Value *Den, bool IsDiv, 1232 bool IsSigned) const { 1233 unsigned SSBits = Num->getType()->getScalarSizeInBits(); 1234 // If Num bits <= 24, assume 0 signbits. 1235 unsigned AtLeast = (SSBits <= 24) ? 0 : (SSBits - 24 + IsSigned); 1236 int DivBits = getDivNumBits(I, Num, Den, AtLeast, IsSigned); 1237 if (DivBits == -1) 1238 return nullptr; 1239 return expandDivRem24Impl(Builder, I, Num, Den, DivBits, IsDiv, IsSigned); 1240 } 1241 1242 Value *AMDGPUCodeGenPrepareImpl::expandDivRem24Impl( 1243 IRBuilder<> &Builder, BinaryOperator &I, Value *Num, Value *Den, 1244 unsigned DivBits, bool IsDiv, bool IsSigned) const { 1245 Type *I32Ty = Builder.getInt32Ty(); 1246 Num = Builder.CreateTrunc(Num, I32Ty); 1247 Den = Builder.CreateTrunc(Den, I32Ty); 1248 1249 Type *F32Ty = Builder.getFloatTy(); 1250 ConstantInt *One = Builder.getInt32(1); 1251 Value *JQ = One; 1252 1253 if (IsSigned) { 1254 // char|short jq = ia ^ ib; 1255 JQ = Builder.CreateXor(Num, Den); 1256 1257 // jq = jq >> (bitsize - 2) 1258 JQ = Builder.CreateAShr(JQ, Builder.getInt32(30)); 1259 1260 // jq = jq | 0x1 1261 JQ = Builder.CreateOr(JQ, One); 1262 } 1263 1264 // int ia = (int)LHS; 1265 Value *IA = Num; 1266 1267 // int ib, (int)RHS; 1268 Value *IB = Den; 1269 1270 // float fa = (float)ia; 1271 Value *FA = IsSigned ? Builder.CreateSIToFP(IA, F32Ty) 1272 : Builder.CreateUIToFP(IA, F32Ty); 1273 1274 // float fb = (float)ib; 1275 Value *FB = IsSigned ? Builder.CreateSIToFP(IB,F32Ty) 1276 : Builder.CreateUIToFP(IB,F32Ty); 1277 1278 Value *RCP = Builder.CreateIntrinsic(Intrinsic::amdgcn_rcp, 1279 Builder.getFloatTy(), {FB}); 1280 Value *FQM = Builder.CreateFMul(FA, RCP); 1281 1282 // fq = trunc(fqm); 1283 CallInst *FQ = Builder.CreateUnaryIntrinsic(Intrinsic::trunc, FQM); 1284 FQ->copyFastMathFlags(Builder.getFastMathFlags()); 1285 1286 // float fqneg = -fq; 1287 Value *FQNeg = Builder.CreateFNeg(FQ); 1288 1289 // float fr = mad(fqneg, fb, fa); 1290 auto FMAD = !ST->hasMadMacF32Insts() 1291 ? Intrinsic::fma 1292 : (Intrinsic::ID)Intrinsic::amdgcn_fmad_ftz; 1293 Value *FR = Builder.CreateIntrinsic(FMAD, 1294 {FQNeg->getType()}, {FQNeg, FB, FA}, FQ); 1295 1296 // int iq = (int)fq; 1297 Value *IQ = IsSigned ? Builder.CreateFPToSI(FQ, I32Ty) 1298 : Builder.CreateFPToUI(FQ, I32Ty); 1299 1300 // fr = fabs(fr); 1301 FR = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, FR, FQ); 1302 1303 // fb = fabs(fb); 1304 FB = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, FB, FQ); 1305 1306 // int cv = fr >= fb; 1307 Value *CV = Builder.CreateFCmpOGE(FR, FB); 1308 1309 // jq = (cv ? jq : 0); 1310 JQ = Builder.CreateSelect(CV, JQ, Builder.getInt32(0)); 1311 1312 // dst = iq + jq; 1313 Value *Div = Builder.CreateAdd(IQ, JQ); 1314 1315 Value *Res = Div; 1316 if (!IsDiv) { 1317 // Rem needs compensation, it's easier to recompute it 1318 Value *Rem = Builder.CreateMul(Div, Den); 1319 Res = Builder.CreateSub(Num, Rem); 1320 } 1321 1322 if (DivBits != 0 && DivBits < 32) { 1323 // Extend in register from the number of bits this divide really is. 1324 if (IsSigned) { 1325 int InRegBits = 32 - DivBits; 1326 1327 Res = Builder.CreateShl(Res, InRegBits); 1328 Res = Builder.CreateAShr(Res, InRegBits); 1329 } else { 1330 ConstantInt *TruncMask 1331 = Builder.getInt32((UINT64_C(1) << DivBits) - 1); 1332 Res = Builder.CreateAnd(Res, TruncMask); 1333 } 1334 } 1335 1336 return Res; 1337 } 1338 1339 // Try to recognize special cases the DAG will emit special, better expansions 1340 // than the general expansion we do here. 1341 1342 // TODO: It would be better to just directly handle those optimizations here. 1343 bool AMDGPUCodeGenPrepareImpl::divHasSpecialOptimization(BinaryOperator &I, 1344 Value *Num, 1345 Value *Den) const { 1346 if (Constant *C = dyn_cast<Constant>(Den)) { 1347 // Arbitrary constants get a better expansion as long as a wider mulhi is 1348 // legal. 1349 if (C->getType()->getScalarSizeInBits() <= 32) 1350 return true; 1351 1352 // TODO: Sdiv check for not exact for some reason. 1353 1354 // If there's no wider mulhi, there's only a better expansion for powers of 1355 // two. 1356 // TODO: Should really know for each vector element. 1357 if (isKnownToBeAPowerOfTwo(C, *DL, true, 0, AC, &I, DT)) 1358 return true; 1359 1360 return false; 1361 } 1362 1363 if (BinaryOperator *BinOpDen = dyn_cast<BinaryOperator>(Den)) { 1364 // fold (udiv x, (shl c, y)) -> x >>u (log2(c)+y) iff c is power of 2 1365 if (BinOpDen->getOpcode() == Instruction::Shl && 1366 isa<Constant>(BinOpDen->getOperand(0)) && 1367 isKnownToBeAPowerOfTwo(BinOpDen->getOperand(0), *DL, true, 1368 0, AC, &I, DT)) { 1369 return true; 1370 } 1371 } 1372 1373 return false; 1374 } 1375 1376 static Value *getSign32(Value *V, IRBuilder<> &Builder, const DataLayout *DL) { 1377 // Check whether the sign can be determined statically. 1378 KnownBits Known = computeKnownBits(V, *DL); 1379 if (Known.isNegative()) 1380 return Constant::getAllOnesValue(V->getType()); 1381 if (Known.isNonNegative()) 1382 return Constant::getNullValue(V->getType()); 1383 return Builder.CreateAShr(V, Builder.getInt32(31)); 1384 } 1385 1386 Value *AMDGPUCodeGenPrepareImpl::expandDivRem32(IRBuilder<> &Builder, 1387 BinaryOperator &I, Value *X, 1388 Value *Y) const { 1389 Instruction::BinaryOps Opc = I.getOpcode(); 1390 assert(Opc == Instruction::URem || Opc == Instruction::UDiv || 1391 Opc == Instruction::SRem || Opc == Instruction::SDiv); 1392 1393 FastMathFlags FMF; 1394 FMF.setFast(); 1395 Builder.setFastMathFlags(FMF); 1396 1397 if (divHasSpecialOptimization(I, X, Y)) 1398 return nullptr; // Keep it for later optimization. 1399 1400 bool IsDiv = Opc == Instruction::UDiv || Opc == Instruction::SDiv; 1401 bool IsSigned = Opc == Instruction::SRem || Opc == Instruction::SDiv; 1402 1403 Type *Ty = X->getType(); 1404 Type *I32Ty = Builder.getInt32Ty(); 1405 Type *F32Ty = Builder.getFloatTy(); 1406 1407 if (Ty->getScalarSizeInBits() != 32) { 1408 if (IsSigned) { 1409 X = Builder.CreateSExtOrTrunc(X, I32Ty); 1410 Y = Builder.CreateSExtOrTrunc(Y, I32Ty); 1411 } else { 1412 X = Builder.CreateZExtOrTrunc(X, I32Ty); 1413 Y = Builder.CreateZExtOrTrunc(Y, I32Ty); 1414 } 1415 } 1416 1417 if (Value *Res = expandDivRem24(Builder, I, X, Y, IsDiv, IsSigned)) { 1418 return IsSigned ? Builder.CreateSExtOrTrunc(Res, Ty) : 1419 Builder.CreateZExtOrTrunc(Res, Ty); 1420 } 1421 1422 ConstantInt *Zero = Builder.getInt32(0); 1423 ConstantInt *One = Builder.getInt32(1); 1424 1425 Value *Sign = nullptr; 1426 if (IsSigned) { 1427 Value *SignX = getSign32(X, Builder, DL); 1428 Value *SignY = getSign32(Y, Builder, DL); 1429 // Remainder sign is the same as LHS 1430 Sign = IsDiv ? Builder.CreateXor(SignX, SignY) : SignX; 1431 1432 X = Builder.CreateAdd(X, SignX); 1433 Y = Builder.CreateAdd(Y, SignY); 1434 1435 X = Builder.CreateXor(X, SignX); 1436 Y = Builder.CreateXor(Y, SignY); 1437 } 1438 1439 // The algorithm here is based on ideas from "Software Integer Division", Tom 1440 // Rodeheffer, August 2008. 1441 // 1442 // unsigned udiv(unsigned x, unsigned y) { 1443 // // Initial estimate of inv(y). The constant is less than 2^32 to ensure 1444 // // that this is a lower bound on inv(y), even if some of the calculations 1445 // // round up. 1446 // unsigned z = (unsigned)((4294967296.0 - 512.0) * v_rcp_f32((float)y)); 1447 // 1448 // // One round of UNR (Unsigned integer Newton-Raphson) to improve z. 1449 // // Empirically this is guaranteed to give a "two-y" lower bound on 1450 // // inv(y). 1451 // z += umulh(z, -y * z); 1452 // 1453 // // Quotient/remainder estimate. 1454 // unsigned q = umulh(x, z); 1455 // unsigned r = x - q * y; 1456 // 1457 // // Two rounds of quotient/remainder refinement. 1458 // if (r >= y) { 1459 // ++q; 1460 // r -= y; 1461 // } 1462 // if (r >= y) { 1463 // ++q; 1464 // r -= y; 1465 // } 1466 // 1467 // return q; 1468 // } 1469 1470 // Initial estimate of inv(y). 1471 Value *FloatY = Builder.CreateUIToFP(Y, F32Ty); 1472 Value *RcpY = Builder.CreateIntrinsic(Intrinsic::amdgcn_rcp, F32Ty, {FloatY}); 1473 Constant *Scale = ConstantFP::get(F32Ty, llvm::bit_cast<float>(0x4F7FFFFE)); 1474 Value *ScaledY = Builder.CreateFMul(RcpY, Scale); 1475 Value *Z = Builder.CreateFPToUI(ScaledY, I32Ty); 1476 1477 // One round of UNR. 1478 Value *NegY = Builder.CreateSub(Zero, Y); 1479 Value *NegYZ = Builder.CreateMul(NegY, Z); 1480 Z = Builder.CreateAdd(Z, getMulHu(Builder, Z, NegYZ)); 1481 1482 // Quotient/remainder estimate. 1483 Value *Q = getMulHu(Builder, X, Z); 1484 Value *R = Builder.CreateSub(X, Builder.CreateMul(Q, Y)); 1485 1486 // First quotient/remainder refinement. 1487 Value *Cond = Builder.CreateICmpUGE(R, Y); 1488 if (IsDiv) 1489 Q = Builder.CreateSelect(Cond, Builder.CreateAdd(Q, One), Q); 1490 R = Builder.CreateSelect(Cond, Builder.CreateSub(R, Y), R); 1491 1492 // Second quotient/remainder refinement. 1493 Cond = Builder.CreateICmpUGE(R, Y); 1494 Value *Res; 1495 if (IsDiv) 1496 Res = Builder.CreateSelect(Cond, Builder.CreateAdd(Q, One), Q); 1497 else 1498 Res = Builder.CreateSelect(Cond, Builder.CreateSub(R, Y), R); 1499 1500 if (IsSigned) { 1501 Res = Builder.CreateXor(Res, Sign); 1502 Res = Builder.CreateSub(Res, Sign); 1503 Res = Builder.CreateSExtOrTrunc(Res, Ty); 1504 } else { 1505 Res = Builder.CreateZExtOrTrunc(Res, Ty); 1506 } 1507 return Res; 1508 } 1509 1510 Value *AMDGPUCodeGenPrepareImpl::shrinkDivRem64(IRBuilder<> &Builder, 1511 BinaryOperator &I, Value *Num, 1512 Value *Den) const { 1513 if (!ExpandDiv64InIR && divHasSpecialOptimization(I, Num, Den)) 1514 return nullptr; // Keep it for later optimization. 1515 1516 Instruction::BinaryOps Opc = I.getOpcode(); 1517 1518 bool IsDiv = Opc == Instruction::SDiv || Opc == Instruction::UDiv; 1519 bool IsSigned = Opc == Instruction::SDiv || Opc == Instruction::SRem; 1520 1521 int NumDivBits = getDivNumBits(I, Num, Den, 32, IsSigned); 1522 if (NumDivBits == -1) 1523 return nullptr; 1524 1525 Value *Narrowed = nullptr; 1526 if (NumDivBits <= 24) { 1527 Narrowed = expandDivRem24Impl(Builder, I, Num, Den, NumDivBits, 1528 IsDiv, IsSigned); 1529 } else if (NumDivBits <= 32) { 1530 Narrowed = expandDivRem32(Builder, I, Num, Den); 1531 } 1532 1533 if (Narrowed) { 1534 return IsSigned ? Builder.CreateSExt(Narrowed, Num->getType()) : 1535 Builder.CreateZExt(Narrowed, Num->getType()); 1536 } 1537 1538 return nullptr; 1539 } 1540 1541 void AMDGPUCodeGenPrepareImpl::expandDivRem64(BinaryOperator &I) const { 1542 Instruction::BinaryOps Opc = I.getOpcode(); 1543 // Do the general expansion. 1544 if (Opc == Instruction::UDiv || Opc == Instruction::SDiv) { 1545 expandDivisionUpTo64Bits(&I); 1546 return; 1547 } 1548 1549 if (Opc == Instruction::URem || Opc == Instruction::SRem) { 1550 expandRemainderUpTo64Bits(&I); 1551 return; 1552 } 1553 1554 llvm_unreachable("not a division"); 1555 } 1556 1557 bool AMDGPUCodeGenPrepareImpl::visitBinaryOperator(BinaryOperator &I) { 1558 if (foldBinOpIntoSelect(I)) 1559 return true; 1560 1561 if (ST->has16BitInsts() && needsPromotionToI32(I.getType()) && 1562 UA->isUniform(&I) && promoteUniformOpToI32(I)) 1563 return true; 1564 1565 if (UseMul24Intrin && replaceMulWithMul24(I)) 1566 return true; 1567 1568 bool Changed = false; 1569 Instruction::BinaryOps Opc = I.getOpcode(); 1570 Type *Ty = I.getType(); 1571 Value *NewDiv = nullptr; 1572 unsigned ScalarSize = Ty->getScalarSizeInBits(); 1573 1574 SmallVector<BinaryOperator *, 8> Div64ToExpand; 1575 1576 if ((Opc == Instruction::URem || Opc == Instruction::UDiv || 1577 Opc == Instruction::SRem || Opc == Instruction::SDiv) && 1578 ScalarSize <= 64 && 1579 !DisableIDivExpand) { 1580 Value *Num = I.getOperand(0); 1581 Value *Den = I.getOperand(1); 1582 IRBuilder<> Builder(&I); 1583 Builder.SetCurrentDebugLocation(I.getDebugLoc()); 1584 1585 if (auto *VT = dyn_cast<FixedVectorType>(Ty)) { 1586 NewDiv = PoisonValue::get(VT); 1587 1588 for (unsigned N = 0, E = VT->getNumElements(); N != E; ++N) { 1589 Value *NumEltN = Builder.CreateExtractElement(Num, N); 1590 Value *DenEltN = Builder.CreateExtractElement(Den, N); 1591 1592 Value *NewElt; 1593 if (ScalarSize <= 32) { 1594 NewElt = expandDivRem32(Builder, I, NumEltN, DenEltN); 1595 if (!NewElt) 1596 NewElt = Builder.CreateBinOp(Opc, NumEltN, DenEltN); 1597 } else { 1598 // See if this 64-bit division can be shrunk to 32/24-bits before 1599 // producing the general expansion. 1600 NewElt = shrinkDivRem64(Builder, I, NumEltN, DenEltN); 1601 if (!NewElt) { 1602 // The general 64-bit expansion introduces control flow and doesn't 1603 // return the new value. Just insert a scalar copy and defer 1604 // expanding it. 1605 NewElt = Builder.CreateBinOp(Opc, NumEltN, DenEltN); 1606 Div64ToExpand.push_back(cast<BinaryOperator>(NewElt)); 1607 } 1608 } 1609 1610 if (auto *NewEltI = dyn_cast<Instruction>(NewElt)) 1611 NewEltI->copyIRFlags(&I); 1612 1613 NewDiv = Builder.CreateInsertElement(NewDiv, NewElt, N); 1614 } 1615 } else { 1616 if (ScalarSize <= 32) 1617 NewDiv = expandDivRem32(Builder, I, Num, Den); 1618 else { 1619 NewDiv = shrinkDivRem64(Builder, I, Num, Den); 1620 if (!NewDiv) 1621 Div64ToExpand.push_back(&I); 1622 } 1623 } 1624 1625 if (NewDiv) { 1626 I.replaceAllUsesWith(NewDiv); 1627 I.eraseFromParent(); 1628 Changed = true; 1629 } 1630 } 1631 1632 if (ExpandDiv64InIR) { 1633 // TODO: We get much worse code in specially handled constant cases. 1634 for (BinaryOperator *Div : Div64ToExpand) { 1635 expandDivRem64(*Div); 1636 FlowChanged = true; 1637 Changed = true; 1638 } 1639 } 1640 1641 return Changed; 1642 } 1643 1644 bool AMDGPUCodeGenPrepareImpl::visitLoadInst(LoadInst &I) { 1645 if (!WidenLoads) 1646 return false; 1647 1648 if ((I.getPointerAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS || 1649 I.getPointerAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS_32BIT) && 1650 canWidenScalarExtLoad(I)) { 1651 IRBuilder<> Builder(&I); 1652 Builder.SetCurrentDebugLocation(I.getDebugLoc()); 1653 1654 Type *I32Ty = Builder.getInt32Ty(); 1655 LoadInst *WidenLoad = Builder.CreateLoad(I32Ty, I.getPointerOperand()); 1656 WidenLoad->copyMetadata(I); 1657 1658 // If we have range metadata, we need to convert the type, and not make 1659 // assumptions about the high bits. 1660 if (auto *Range = WidenLoad->getMetadata(LLVMContext::MD_range)) { 1661 ConstantInt *Lower = 1662 mdconst::extract<ConstantInt>(Range->getOperand(0)); 1663 1664 if (Lower->isNullValue()) { 1665 WidenLoad->setMetadata(LLVMContext::MD_range, nullptr); 1666 } else { 1667 Metadata *LowAndHigh[] = { 1668 ConstantAsMetadata::get(ConstantInt::get(I32Ty, Lower->getValue().zext(32))), 1669 // Don't make assumptions about the high bits. 1670 ConstantAsMetadata::get(ConstantInt::get(I32Ty, 0)) 1671 }; 1672 1673 WidenLoad->setMetadata(LLVMContext::MD_range, 1674 MDNode::get(Mod->getContext(), LowAndHigh)); 1675 } 1676 } 1677 1678 int TySize = Mod->getDataLayout().getTypeSizeInBits(I.getType()); 1679 Type *IntNTy = Builder.getIntNTy(TySize); 1680 Value *ValTrunc = Builder.CreateTrunc(WidenLoad, IntNTy); 1681 Value *ValOrig = Builder.CreateBitCast(ValTrunc, I.getType()); 1682 I.replaceAllUsesWith(ValOrig); 1683 I.eraseFromParent(); 1684 return true; 1685 } 1686 1687 return false; 1688 } 1689 1690 bool AMDGPUCodeGenPrepareImpl::visitICmpInst(ICmpInst &I) { 1691 bool Changed = false; 1692 1693 if (ST->has16BitInsts() && needsPromotionToI32(I.getOperand(0)->getType()) && 1694 UA->isUniform(&I)) 1695 Changed |= promoteUniformOpToI32(I); 1696 1697 return Changed; 1698 } 1699 1700 bool AMDGPUCodeGenPrepareImpl::visitSelectInst(SelectInst &I) { 1701 Value *Cond = I.getCondition(); 1702 Value *TrueVal = I.getTrueValue(); 1703 Value *FalseVal = I.getFalseValue(); 1704 Value *CmpVal; 1705 FCmpInst::Predicate Pred; 1706 1707 if (ST->has16BitInsts() && needsPromotionToI32(I.getType())) { 1708 if (UA->isUniform(&I)) 1709 return promoteUniformOpToI32(I); 1710 return false; 1711 } 1712 1713 // Match fract pattern with nan check. 1714 if (!match(Cond, m_FCmp(Pred, m_Value(CmpVal), m_NonNaN()))) 1715 return false; 1716 1717 FPMathOperator *FPOp = dyn_cast<FPMathOperator>(&I); 1718 if (!FPOp) 1719 return false; 1720 1721 IRBuilder<> Builder(&I); 1722 Builder.setFastMathFlags(FPOp->getFastMathFlags()); 1723 1724 auto *IITrue = dyn_cast<IntrinsicInst>(TrueVal); 1725 auto *IIFalse = dyn_cast<IntrinsicInst>(FalseVal); 1726 1727 Value *Fract = nullptr; 1728 if (Pred == FCmpInst::FCMP_UNO && TrueVal == CmpVal && IIFalse && 1729 CmpVal == matchFractPat(*IIFalse)) { 1730 // isnan(x) ? x : fract(x) 1731 Fract = applyFractPat(Builder, CmpVal); 1732 } else if (Pred == FCmpInst::FCMP_ORD && FalseVal == CmpVal && IITrue && 1733 CmpVal == matchFractPat(*IITrue)) { 1734 // !isnan(x) ? fract(x) : x 1735 Fract = applyFractPat(Builder, CmpVal); 1736 } else 1737 return false; 1738 1739 Fract->takeName(&I); 1740 I.replaceAllUsesWith(Fract); 1741 RecursivelyDeleteTriviallyDeadInstructions(&I, TLInfo); 1742 return true; 1743 } 1744 1745 static bool areInSameBB(const Value *A, const Value *B) { 1746 const auto *IA = dyn_cast<Instruction>(A); 1747 const auto *IB = dyn_cast<Instruction>(B); 1748 return IA && IB && IA->getParent() == IB->getParent(); 1749 } 1750 1751 // Helper for breaking large PHIs that returns true when an extractelement on V 1752 // is likely to be folded away by the DAG combiner. 1753 static bool isInterestingPHIIncomingValue(const Value *V) { 1754 const auto *FVT = dyn_cast<FixedVectorType>(V->getType()); 1755 if (!FVT) 1756 return false; 1757 1758 const Value *CurVal = V; 1759 1760 // Check for insertelements, keeping track of the elements covered. 1761 BitVector EltsCovered(FVT->getNumElements()); 1762 while (const auto *IE = dyn_cast<InsertElementInst>(CurVal)) { 1763 const auto *Idx = dyn_cast<ConstantInt>(IE->getOperand(2)); 1764 1765 // Non constant index/out of bounds index -> folding is unlikely. 1766 // The latter is more of a sanity check because canonical IR should just 1767 // have replaced those with poison. 1768 if (!Idx || Idx->getZExtValue() >= FVT->getNumElements()) 1769 return false; 1770 1771 const auto *VecSrc = IE->getOperand(0); 1772 1773 // If the vector source is another instruction, it must be in the same basic 1774 // block. Otherwise, the DAGCombiner won't see the whole thing and is 1775 // unlikely to be able to do anything interesting here. 1776 if (isa<Instruction>(VecSrc) && !areInSameBB(VecSrc, IE)) 1777 return false; 1778 1779 CurVal = VecSrc; 1780 EltsCovered.set(Idx->getZExtValue()); 1781 1782 // All elements covered. 1783 if (EltsCovered.all()) 1784 return true; 1785 } 1786 1787 // We either didn't find a single insertelement, or the insertelement chain 1788 // ended before all elements were covered. Check for other interesting values. 1789 1790 // Constants are always interesting because we can just constant fold the 1791 // extractelements. 1792 if (isa<Constant>(CurVal)) 1793 return true; 1794 1795 // shufflevector is likely to be profitable if either operand is a constant, 1796 // or if either source is in the same block. 1797 // This is because shufflevector is most often lowered as a series of 1798 // insert/extract elements anyway. 1799 if (const auto *SV = dyn_cast<ShuffleVectorInst>(CurVal)) { 1800 return isa<Constant>(SV->getOperand(1)) || 1801 areInSameBB(SV, SV->getOperand(0)) || 1802 areInSameBB(SV, SV->getOperand(1)); 1803 } 1804 1805 return false; 1806 } 1807 1808 static void collectPHINodes(const PHINode &I, 1809 SmallPtrSet<const PHINode *, 8> &SeenPHIs) { 1810 const auto [It, Inserted] = SeenPHIs.insert(&I); 1811 if (!Inserted) 1812 return; 1813 1814 for (const Value *Inc : I.incoming_values()) { 1815 if (const auto *PhiInc = dyn_cast<PHINode>(Inc)) 1816 collectPHINodes(*PhiInc, SeenPHIs); 1817 } 1818 1819 for (const User *U : I.users()) { 1820 if (const auto *PhiU = dyn_cast<PHINode>(U)) 1821 collectPHINodes(*PhiU, SeenPHIs); 1822 } 1823 } 1824 1825 bool AMDGPUCodeGenPrepareImpl::canBreakPHINode(const PHINode &I) { 1826 // Check in the cache first. 1827 if (const auto It = BreakPhiNodesCache.find(&I); 1828 It != BreakPhiNodesCache.end()) 1829 return It->second; 1830 1831 // We consider PHI nodes as part of "chains", so given a PHI node I, we 1832 // recursively consider all its users and incoming values that are also PHI 1833 // nodes. We then make a decision about all of those PHIs at once. Either they 1834 // all get broken up, or none of them do. That way, we avoid cases where a 1835 // single PHI is/is not broken and we end up reforming/exploding a vector 1836 // multiple times, or even worse, doing it in a loop. 1837 SmallPtrSet<const PHINode *, 8> WorkList; 1838 collectPHINodes(I, WorkList); 1839 1840 #ifndef NDEBUG 1841 // Check that none of the PHI nodes in the worklist are in the map. If some of 1842 // them are, it means we're not good enough at collecting related PHIs. 1843 for (const PHINode *WLP : WorkList) { 1844 assert(BreakPhiNodesCache.count(WLP) == 0); 1845 } 1846 #endif 1847 1848 // To consider a PHI profitable to break, we need to see some interesting 1849 // incoming values. At least 2/3rd (rounded up) of all PHIs in the worklist 1850 // must have one to consider all PHIs breakable. 1851 // 1852 // This threshold has been determined through performance testing. 1853 // 1854 // Note that the computation below is equivalent to 1855 // 1856 // (unsigned)ceil((K / 3.0) * 2) 1857 // 1858 // It's simply written this way to avoid mixing integral/FP arithmetic. 1859 const auto Threshold = (alignTo(WorkList.size() * 2, 3) / 3); 1860 unsigned NumBreakablePHIs = 0; 1861 bool CanBreak = false; 1862 for (const PHINode *Cur : WorkList) { 1863 // Don't break PHIs that have no interesting incoming values. That is, where 1864 // there is no clear opportunity to fold the "extractelement" instructions 1865 // we would add. 1866 // 1867 // Note: IC does not run after this pass, so we're only interested in the 1868 // foldings that the DAG combiner can do. 1869 if (any_of(Cur->incoming_values(), isInterestingPHIIncomingValue)) { 1870 if (++NumBreakablePHIs >= Threshold) { 1871 CanBreak = true; 1872 break; 1873 } 1874 } 1875 } 1876 1877 for (const PHINode *Cur : WorkList) 1878 BreakPhiNodesCache[Cur] = CanBreak; 1879 1880 return CanBreak; 1881 } 1882 1883 /// Helper class for "break large PHIs" (visitPHINode). 1884 /// 1885 /// This represents a slice of a PHI's incoming value, which is made up of: 1886 /// - The type of the slice (Ty) 1887 /// - The index in the incoming value's vector where the slice starts (Idx) 1888 /// - The number of elements in the slice (NumElts). 1889 /// It also keeps track of the NewPHI node inserted for this particular slice. 1890 /// 1891 /// Slice examples: 1892 /// <4 x i64> -> Split into four i64 slices. 1893 /// -> [i64, 0, 1], [i64, 1, 1], [i64, 2, 1], [i64, 3, 1] 1894 /// <5 x i16> -> Split into 2 <2 x i16> slices + a i16 tail. 1895 /// -> [<2 x i16>, 0, 2], [<2 x i16>, 2, 2], [i16, 4, 1] 1896 class VectorSlice { 1897 public: 1898 VectorSlice(Type *Ty, unsigned Idx, unsigned NumElts) 1899 : Ty(Ty), Idx(Idx), NumElts(NumElts) {} 1900 1901 Type *Ty = nullptr; 1902 unsigned Idx = 0; 1903 unsigned NumElts = 0; 1904 PHINode *NewPHI = nullptr; 1905 1906 /// Slice \p Inc according to the information contained within this slice. 1907 /// This is cached, so if called multiple times for the same \p BB & \p Inc 1908 /// pair, it returns the same Sliced value as well. 1909 /// 1910 /// Note this *intentionally* does not return the same value for, say, 1911 /// [%bb.0, %0] & [%bb.1, %0] as: 1912 /// - It could cause issues with dominance (e.g. if bb.1 is seen first, then 1913 /// the value in bb.1 may not be reachable from bb.0 if it's its 1914 /// predecessor.) 1915 /// - We also want to make our extract instructions as local as possible so 1916 /// the DAG has better chances of folding them out. Duplicating them like 1917 /// that is beneficial in that regard. 1918 /// 1919 /// This is both a minor optimization to avoid creating duplicate 1920 /// instructions, but also a requirement for correctness. It is not forbidden 1921 /// for a PHI node to have the same [BB, Val] pair multiple times. If we 1922 /// returned a new value each time, those previously identical pairs would all 1923 /// have different incoming values (from the same block) and it'd cause a "PHI 1924 /// node has multiple entries for the same basic block with different incoming 1925 /// values!" verifier error. 1926 Value *getSlicedVal(BasicBlock *BB, Value *Inc, StringRef NewValName) { 1927 Value *&Res = SlicedVals[{BB, Inc}]; 1928 if (Res) 1929 return Res; 1930 1931 IRBuilder<> B(BB->getTerminator()); 1932 if (Instruction *IncInst = dyn_cast<Instruction>(Inc)) 1933 B.SetCurrentDebugLocation(IncInst->getDebugLoc()); 1934 1935 if (NumElts > 1) { 1936 SmallVector<int, 4> Mask; 1937 for (unsigned K = Idx; K < (Idx + NumElts); ++K) 1938 Mask.push_back(K); 1939 Res = B.CreateShuffleVector(Inc, Mask, NewValName); 1940 } else 1941 Res = B.CreateExtractElement(Inc, Idx, NewValName); 1942 1943 return Res; 1944 } 1945 1946 private: 1947 SmallDenseMap<std::pair<BasicBlock *, Value *>, Value *> SlicedVals; 1948 }; 1949 1950 bool AMDGPUCodeGenPrepareImpl::visitPHINode(PHINode &I) { 1951 // Break-up fixed-vector PHIs into smaller pieces. 1952 // Default threshold is 32, so it breaks up any vector that's >32 bits into 1953 // its elements, or into 32-bit pieces (for 8/16 bit elts). 1954 // 1955 // This is only helpful for DAGISel because it doesn't handle large PHIs as 1956 // well as GlobalISel. DAGISel lowers PHIs by using CopyToReg/CopyFromReg. 1957 // With large, odd-sized PHIs we may end up needing many `build_vector` 1958 // operations with most elements being "undef". This inhibits a lot of 1959 // optimization opportunities and can result in unreasonably high register 1960 // pressure and the inevitable stack spilling. 1961 if (!BreakLargePHIs || getCGPassBuilderOption().EnableGlobalISelOption) 1962 return false; 1963 1964 FixedVectorType *FVT = dyn_cast<FixedVectorType>(I.getType()); 1965 if (!FVT || FVT->getNumElements() == 1 || 1966 DL->getTypeSizeInBits(FVT) <= BreakLargePHIsThreshold) 1967 return false; 1968 1969 if (!ForceBreakLargePHIs && !canBreakPHINode(I)) 1970 return false; 1971 1972 std::vector<VectorSlice> Slices; 1973 1974 Type *EltTy = FVT->getElementType(); 1975 { 1976 unsigned Idx = 0; 1977 // For 8/16 bits type, don't scalarize fully but break it up into as many 1978 // 32-bit slices as we can, and scalarize the tail. 1979 const unsigned EltSize = DL->getTypeSizeInBits(EltTy); 1980 const unsigned NumElts = FVT->getNumElements(); 1981 if (EltSize == 8 || EltSize == 16) { 1982 const unsigned SubVecSize = (32 / EltSize); 1983 Type *SubVecTy = FixedVectorType::get(EltTy, SubVecSize); 1984 for (unsigned End = alignDown(NumElts, SubVecSize); Idx < End; 1985 Idx += SubVecSize) 1986 Slices.emplace_back(SubVecTy, Idx, SubVecSize); 1987 } 1988 1989 // Scalarize all remaining elements. 1990 for (; Idx < NumElts; ++Idx) 1991 Slices.emplace_back(EltTy, Idx, 1); 1992 } 1993 1994 assert(Slices.size() > 1); 1995 1996 // Create one PHI per vector piece. The "VectorSlice" class takes care of 1997 // creating the necessary instruction to extract the relevant slices of each 1998 // incoming value. 1999 IRBuilder<> B(I.getParent()); 2000 B.SetCurrentDebugLocation(I.getDebugLoc()); 2001 2002 unsigned IncNameSuffix = 0; 2003 for (VectorSlice &S : Slices) { 2004 // We need to reset the build on each iteration, because getSlicedVal may 2005 // have inserted something into I's BB. 2006 B.SetInsertPoint(I.getParent()->getFirstNonPHIIt()); 2007 S.NewPHI = B.CreatePHI(S.Ty, I.getNumIncomingValues()); 2008 2009 for (const auto &[Idx, BB] : enumerate(I.blocks())) { 2010 S.NewPHI->addIncoming(S.getSlicedVal(BB, I.getIncomingValue(Idx), 2011 "largephi.extractslice" + 2012 std::to_string(IncNameSuffix++)), 2013 BB); 2014 } 2015 } 2016 2017 // And replace this PHI with a vector of all the previous PHI values. 2018 Value *Vec = PoisonValue::get(FVT); 2019 unsigned NameSuffix = 0; 2020 for (VectorSlice &S : Slices) { 2021 const auto ValName = "largephi.insertslice" + std::to_string(NameSuffix++); 2022 if (S.NumElts > 1) 2023 Vec = 2024 B.CreateInsertVector(FVT, Vec, S.NewPHI, B.getInt64(S.Idx), ValName); 2025 else 2026 Vec = B.CreateInsertElement(Vec, S.NewPHI, S.Idx, ValName); 2027 } 2028 2029 I.replaceAllUsesWith(Vec); 2030 I.eraseFromParent(); 2031 return true; 2032 } 2033 2034 /// \param V Value to check 2035 /// \param DL DataLayout 2036 /// \param TM TargetMachine (TODO: remove once DL contains nullptr values) 2037 /// \param AS Target Address Space 2038 /// \return true if \p V cannot be the null value of \p AS, false otherwise. 2039 static bool isPtrKnownNeverNull(const Value *V, const DataLayout &DL, 2040 const AMDGPUTargetMachine &TM, unsigned AS) { 2041 // Pointer cannot be null if it's a block address, GV or alloca. 2042 // NOTE: We don't support extern_weak, but if we did, we'd need to check for 2043 // it as the symbol could be null in such cases. 2044 if (isa<BlockAddress>(V) || isa<GlobalValue>(V) || isa<AllocaInst>(V)) 2045 return true; 2046 2047 // Check nonnull arguments. 2048 if (const auto *Arg = dyn_cast<Argument>(V); Arg && Arg->hasNonNullAttr()) 2049 return true; 2050 2051 // getUnderlyingObject may have looked through another addrspacecast, although 2052 // the optimizable situations most likely folded out by now. 2053 if (AS != cast<PointerType>(V->getType())->getAddressSpace()) 2054 return false; 2055 2056 // TODO: Calls that return nonnull? 2057 2058 // For all other things, use KnownBits. 2059 // We either use 0 or all bits set to indicate null, so check whether the 2060 // value can be zero or all ones. 2061 // 2062 // TODO: Use ValueTracking's isKnownNeverNull if it becomes aware that some 2063 // address spaces have non-zero null values. 2064 auto SrcPtrKB = computeKnownBits(V, DL); 2065 const auto NullVal = TM.getNullPointerValue(AS); 2066 2067 assert(SrcPtrKB.getBitWidth() == DL.getPointerSizeInBits(AS)); 2068 assert((NullVal == 0 || NullVal == -1) && 2069 "don't know how to check for this null value!"); 2070 return NullVal ? !SrcPtrKB.getMaxValue().isAllOnes() : SrcPtrKB.isNonZero(); 2071 } 2072 2073 bool AMDGPUCodeGenPrepareImpl::visitAddrSpaceCastInst(AddrSpaceCastInst &I) { 2074 // Intrinsic doesn't support vectors, also it seems that it's often difficult 2075 // to prove that a vector cannot have any nulls in it so it's unclear if it's 2076 // worth supporting. 2077 if (I.getType()->isVectorTy()) 2078 return false; 2079 2080 // Check if this can be lowered to a amdgcn.addrspacecast.nonnull. 2081 // This is only worthwhile for casts from/to priv/local to flat. 2082 const unsigned SrcAS = I.getSrcAddressSpace(); 2083 const unsigned DstAS = I.getDestAddressSpace(); 2084 2085 bool CanLower = false; 2086 if (SrcAS == AMDGPUAS::FLAT_ADDRESS) 2087 CanLower = (DstAS == AMDGPUAS::LOCAL_ADDRESS || 2088 DstAS == AMDGPUAS::PRIVATE_ADDRESS); 2089 else if (DstAS == AMDGPUAS::FLAT_ADDRESS) 2090 CanLower = (SrcAS == AMDGPUAS::LOCAL_ADDRESS || 2091 SrcAS == AMDGPUAS::PRIVATE_ADDRESS); 2092 if (!CanLower) 2093 return false; 2094 2095 SmallVector<const Value *, 4> WorkList; 2096 getUnderlyingObjects(I.getOperand(0), WorkList); 2097 if (!all_of(WorkList, [&](const Value *V) { 2098 return isPtrKnownNeverNull(V, *DL, *TM, SrcAS); 2099 })) 2100 return false; 2101 2102 IRBuilder<> B(&I); 2103 auto *Intrin = B.CreateIntrinsic( 2104 I.getType(), Intrinsic::amdgcn_addrspacecast_nonnull, {I.getOperand(0)}); 2105 I.replaceAllUsesWith(Intrin); 2106 I.eraseFromParent(); 2107 return true; 2108 } 2109 2110 bool AMDGPUCodeGenPrepareImpl::visitIntrinsicInst(IntrinsicInst &I) { 2111 switch (I.getIntrinsicID()) { 2112 case Intrinsic::bitreverse: 2113 return visitBitreverseIntrinsicInst(I); 2114 case Intrinsic::minnum: 2115 return visitMinNum(I); 2116 case Intrinsic::sqrt: 2117 return visitSqrt(I); 2118 default: 2119 return false; 2120 } 2121 } 2122 2123 bool AMDGPUCodeGenPrepareImpl::visitBitreverseIntrinsicInst(IntrinsicInst &I) { 2124 bool Changed = false; 2125 2126 if (ST->has16BitInsts() && needsPromotionToI32(I.getType()) && 2127 UA->isUniform(&I)) 2128 Changed |= promoteUniformBitreverseToI32(I); 2129 2130 return Changed; 2131 } 2132 2133 /// Match non-nan fract pattern. 2134 /// minnum(fsub(x, floor(x)), nextafter(1.0, -1.0) 2135 /// 2136 /// If fract is a useful instruction for the subtarget. Does not account for the 2137 /// nan handling; the instruction has a nan check on the input value. 2138 Value *AMDGPUCodeGenPrepareImpl::matchFractPat(IntrinsicInst &I) { 2139 if (ST->hasFractBug()) 2140 return nullptr; 2141 2142 if (I.getIntrinsicID() != Intrinsic::minnum) 2143 return nullptr; 2144 2145 Type *Ty = I.getType(); 2146 if (!isLegalFloatingTy(Ty->getScalarType())) 2147 return nullptr; 2148 2149 Value *Arg0 = I.getArgOperand(0); 2150 Value *Arg1 = I.getArgOperand(1); 2151 2152 const APFloat *C; 2153 if (!match(Arg1, m_APFloat(C))) 2154 return nullptr; 2155 2156 APFloat One(1.0); 2157 bool LosesInfo; 2158 One.convert(C->getSemantics(), APFloat::rmNearestTiesToEven, &LosesInfo); 2159 2160 // Match nextafter(1.0, -1) 2161 One.next(true); 2162 if (One != *C) 2163 return nullptr; 2164 2165 Value *FloorSrc; 2166 if (match(Arg0, m_FSub(m_Value(FloorSrc), 2167 m_Intrinsic<Intrinsic::floor>(m_Deferred(FloorSrc))))) 2168 return FloorSrc; 2169 return nullptr; 2170 } 2171 2172 Value *AMDGPUCodeGenPrepareImpl::applyFractPat(IRBuilder<> &Builder, 2173 Value *FractArg) { 2174 SmallVector<Value *, 4> FractVals; 2175 extractValues(Builder, FractVals, FractArg); 2176 2177 SmallVector<Value *, 4> ResultVals(FractVals.size()); 2178 2179 Type *Ty = FractArg->getType()->getScalarType(); 2180 for (unsigned I = 0, E = FractVals.size(); I != E; ++I) { 2181 ResultVals[I] = 2182 Builder.CreateIntrinsic(Intrinsic::amdgcn_fract, {Ty}, {FractVals[I]}); 2183 } 2184 2185 return insertValues(Builder, FractArg->getType(), ResultVals); 2186 } 2187 2188 bool AMDGPUCodeGenPrepareImpl::visitMinNum(IntrinsicInst &I) { 2189 Value *FractArg = matchFractPat(I); 2190 if (!FractArg) 2191 return false; 2192 2193 // Match pattern for fract intrinsic in contexts where the nan check has been 2194 // optimized out (and hope the knowledge the source can't be nan wasn't lost). 2195 if (!I.hasNoNaNs() && 2196 !isKnownNeverNaN(FractArg, /*Depth=*/0, SimplifyQuery(*DL, TLInfo))) 2197 return false; 2198 2199 IRBuilder<> Builder(&I); 2200 FastMathFlags FMF = I.getFastMathFlags(); 2201 FMF.setNoNaNs(); 2202 Builder.setFastMathFlags(FMF); 2203 2204 Value *Fract = applyFractPat(Builder, FractArg); 2205 Fract->takeName(&I); 2206 I.replaceAllUsesWith(Fract); 2207 2208 RecursivelyDeleteTriviallyDeadInstructions(&I, TLInfo); 2209 return true; 2210 } 2211 2212 static bool isOneOrNegOne(const Value *Val) { 2213 const APFloat *C; 2214 return match(Val, m_APFloat(C)) && C->getExactLog2Abs() == 0; 2215 } 2216 2217 // Expand llvm.sqrt.f32 calls with !fpmath metadata in a semi-fast way. 2218 bool AMDGPUCodeGenPrepareImpl::visitSqrt(IntrinsicInst &Sqrt) { 2219 Type *Ty = Sqrt.getType()->getScalarType(); 2220 if (!Ty->isFloatTy() && (!Ty->isHalfTy() || ST->has16BitInsts())) 2221 return false; 2222 2223 const FPMathOperator *FPOp = cast<const FPMathOperator>(&Sqrt); 2224 FastMathFlags SqrtFMF = FPOp->getFastMathFlags(); 2225 2226 // We're trying to handle the fast-but-not-that-fast case only. The lowering 2227 // of fast llvm.sqrt will give the raw instruction anyway. 2228 if (SqrtFMF.approxFunc() || HasUnsafeFPMath) 2229 return false; 2230 2231 const float ReqdAccuracy = FPOp->getFPAccuracy(); 2232 2233 // Defer correctly rounded expansion to codegen. 2234 if (ReqdAccuracy < 1.0f) 2235 return false; 2236 2237 // FIXME: This is an ugly hack for this pass using forward iteration instead 2238 // of reverse. If it worked like a normal combiner, the rsq would form before 2239 // we saw a sqrt call. 2240 auto *FDiv = 2241 dyn_cast_or_null<FPMathOperator>(Sqrt.getUniqueUndroppableUser()); 2242 if (FDiv && FDiv->getOpcode() == Instruction::FDiv && 2243 FDiv->getFPAccuracy() >= 1.0f && 2244 canOptimizeWithRsq(FPOp, FDiv->getFastMathFlags(), SqrtFMF) && 2245 // TODO: We should also handle the arcp case for the fdiv with non-1 value 2246 isOneOrNegOne(FDiv->getOperand(0))) 2247 return false; 2248 2249 Value *SrcVal = Sqrt.getOperand(0); 2250 bool CanTreatAsDAZ = canIgnoreDenormalInput(SrcVal, &Sqrt); 2251 2252 // The raw instruction is 1 ulp, but the correction for denormal handling 2253 // brings it to 2. 2254 if (!CanTreatAsDAZ && ReqdAccuracy < 2.0f) 2255 return false; 2256 2257 IRBuilder<> Builder(&Sqrt); 2258 SmallVector<Value *, 4> SrcVals; 2259 extractValues(Builder, SrcVals, SrcVal); 2260 2261 SmallVector<Value *, 4> ResultVals(SrcVals.size()); 2262 for (int I = 0, E = SrcVals.size(); I != E; ++I) { 2263 if (CanTreatAsDAZ) 2264 ResultVals[I] = Builder.CreateCall(getSqrtF32(), SrcVals[I]); 2265 else 2266 ResultVals[I] = emitSqrtIEEE2ULP(Builder, SrcVals[I], SqrtFMF); 2267 } 2268 2269 Value *NewSqrt = insertValues(Builder, Sqrt.getType(), ResultVals); 2270 NewSqrt->takeName(&Sqrt); 2271 Sqrt.replaceAllUsesWith(NewSqrt); 2272 Sqrt.eraseFromParent(); 2273 return true; 2274 } 2275 2276 bool AMDGPUCodeGenPrepare::doInitialization(Module &M) { 2277 Impl.Mod = &M; 2278 Impl.DL = &Impl.Mod->getDataLayout(); 2279 Impl.SqrtF32 = nullptr; 2280 Impl.LdexpF32 = nullptr; 2281 return false; 2282 } 2283 2284 bool AMDGPUCodeGenPrepare::runOnFunction(Function &F) { 2285 if (skipFunction(F)) 2286 return false; 2287 2288 auto *TPC = getAnalysisIfAvailable<TargetPassConfig>(); 2289 if (!TPC) 2290 return false; 2291 2292 const AMDGPUTargetMachine &TM = TPC->getTM<AMDGPUTargetMachine>(); 2293 Impl.TM = &TM; 2294 Impl.TLInfo = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F); 2295 Impl.ST = &TM.getSubtarget<GCNSubtarget>(F); 2296 Impl.AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 2297 Impl.UA = &getAnalysis<UniformityInfoWrapperPass>().getUniformityInfo(); 2298 auto *DTWP = getAnalysisIfAvailable<DominatorTreeWrapperPass>(); 2299 Impl.DT = DTWP ? &DTWP->getDomTree() : nullptr; 2300 Impl.HasUnsafeFPMath = hasUnsafeFPMath(F); 2301 SIModeRegisterDefaults Mode(F, *Impl.ST); 2302 Impl.HasFP32DenormalFlush = 2303 Mode.FP32Denormals == DenormalMode::getPreserveSign(); 2304 return Impl.run(F); 2305 } 2306 2307 PreservedAnalyses AMDGPUCodeGenPreparePass::run(Function &F, 2308 FunctionAnalysisManager &FAM) { 2309 AMDGPUCodeGenPrepareImpl Impl; 2310 Impl.Mod = F.getParent(); 2311 Impl.DL = &Impl.Mod->getDataLayout(); 2312 Impl.TM = static_cast<const AMDGPUTargetMachine *>(&TM); 2313 Impl.TLInfo = &FAM.getResult<TargetLibraryAnalysis>(F); 2314 Impl.ST = &TM.getSubtarget<GCNSubtarget>(F); 2315 Impl.AC = &FAM.getResult<AssumptionAnalysis>(F); 2316 Impl.UA = &FAM.getResult<UniformityInfoAnalysis>(F); 2317 Impl.DT = FAM.getCachedResult<DominatorTreeAnalysis>(F); 2318 Impl.HasUnsafeFPMath = hasUnsafeFPMath(F); 2319 SIModeRegisterDefaults Mode(F, *Impl.ST); 2320 Impl.HasFP32DenormalFlush = 2321 Mode.FP32Denormals == DenormalMode::getPreserveSign(); 2322 PreservedAnalyses PA = PreservedAnalyses::none(); 2323 if (!Impl.FlowChanged) 2324 PA.preserveSet<CFGAnalyses>(); 2325 return Impl.run(F) ? PA : PreservedAnalyses::all(); 2326 } 2327 2328 INITIALIZE_PASS_BEGIN(AMDGPUCodeGenPrepare, DEBUG_TYPE, 2329 "AMDGPU IR optimizations", false, false) 2330 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 2331 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 2332 INITIALIZE_PASS_DEPENDENCY(UniformityInfoWrapperPass) 2333 INITIALIZE_PASS_END(AMDGPUCodeGenPrepare, DEBUG_TYPE, "AMDGPU IR optimizations", 2334 false, false) 2335 2336 char AMDGPUCodeGenPrepare::ID = 0; 2337 2338 FunctionPass *llvm::createAMDGPUCodeGenPreparePass() { 2339 return new AMDGPUCodeGenPrepare(); 2340 } 2341