1 //===-- AMDGPUCodeGenPrepare.cpp ------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file 10 /// This pass does misc. AMDGPU optimizations on IR before instruction 11 /// selection. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "AMDGPU.h" 16 #include "AMDGPUTargetMachine.h" 17 #include "SIModeRegisterDefaults.h" 18 #include "llvm/Analysis/AssumptionCache.h" 19 #include "llvm/Analysis/ConstantFolding.h" 20 #include "llvm/Analysis/UniformityAnalysis.h" 21 #include "llvm/Analysis/ValueTracking.h" 22 #include "llvm/CodeGen/TargetPassConfig.h" 23 #include "llvm/IR/Dominators.h" 24 #include "llvm/IR/IRBuilder.h" 25 #include "llvm/IR/InstVisitor.h" 26 #include "llvm/IR/IntrinsicsAMDGPU.h" 27 #include "llvm/InitializePasses.h" 28 #include "llvm/Pass.h" 29 #include "llvm/Support/KnownBits.h" 30 #include "llvm/Transforms/Utils/IntegerDivision.h" 31 32 #define DEBUG_TYPE "amdgpu-codegenprepare" 33 34 using namespace llvm; 35 36 namespace { 37 38 static cl::opt<bool> WidenLoads( 39 "amdgpu-codegenprepare-widen-constant-loads", 40 cl::desc("Widen sub-dword constant address space loads in AMDGPUCodeGenPrepare"), 41 cl::ReallyHidden, 42 cl::init(false)); 43 44 static cl::opt<bool> Widen16BitOps( 45 "amdgpu-codegenprepare-widen-16-bit-ops", 46 cl::desc("Widen uniform 16-bit instructions to 32-bit in AMDGPUCodeGenPrepare"), 47 cl::ReallyHidden, 48 cl::init(true)); 49 50 static cl::opt<bool> 51 ScalarizeLargePHIs("amdgpu-codegenprepare-break-large-phis", 52 cl::desc("Break large PHI nodes for DAGISel"), 53 cl::ReallyHidden, cl::init(true)); 54 55 static cl::opt<bool> 56 ForceScalarizeLargePHIs("amdgpu-codegenprepare-force-break-large-phis", 57 cl::desc("For testing purposes, always break large " 58 "PHIs even if it isn't profitable."), 59 cl::ReallyHidden, cl::init(false)); 60 61 static cl::opt<unsigned> ScalarizeLargePHIsThreshold( 62 "amdgpu-codegenprepare-break-large-phis-threshold", 63 cl::desc("Minimum type size in bits for breaking large PHI nodes"), 64 cl::ReallyHidden, cl::init(32)); 65 66 static cl::opt<bool> UseMul24Intrin( 67 "amdgpu-codegenprepare-mul24", 68 cl::desc("Introduce mul24 intrinsics in AMDGPUCodeGenPrepare"), 69 cl::ReallyHidden, 70 cl::init(true)); 71 72 // Legalize 64-bit division by using the generic IR expansion. 73 static cl::opt<bool> ExpandDiv64InIR( 74 "amdgpu-codegenprepare-expand-div64", 75 cl::desc("Expand 64-bit division in AMDGPUCodeGenPrepare"), 76 cl::ReallyHidden, 77 cl::init(false)); 78 79 // Leave all division operations as they are. This supersedes ExpandDiv64InIR 80 // and is used for testing the legalizer. 81 static cl::opt<bool> DisableIDivExpand( 82 "amdgpu-codegenprepare-disable-idiv-expansion", 83 cl::desc("Prevent expanding integer division in AMDGPUCodeGenPrepare"), 84 cl::ReallyHidden, 85 cl::init(false)); 86 87 class AMDGPUCodeGenPrepare : public FunctionPass, 88 public InstVisitor<AMDGPUCodeGenPrepare, bool> { 89 const GCNSubtarget *ST = nullptr; 90 AssumptionCache *AC = nullptr; 91 DominatorTree *DT = nullptr; 92 UniformityInfo *UA = nullptr; 93 Module *Mod = nullptr; 94 const DataLayout *DL = nullptr; 95 bool HasUnsafeFPMath = false; 96 bool HasFP32Denormals = false; 97 98 /// Copies exact/nsw/nuw flags (if any) from binary operation \p I to 99 /// binary operation \p V. 100 /// 101 /// \returns Binary operation \p V. 102 /// \returns \p T's base element bit width. 103 unsigned getBaseElementBitWidth(const Type *T) const; 104 105 /// \returns Equivalent 32 bit integer type for given type \p T. For example, 106 /// if \p T is i7, then i32 is returned; if \p T is <3 x i12>, then <3 x i32> 107 /// is returned. 108 Type *getI32Ty(IRBuilder<> &B, const Type *T) const; 109 110 /// \returns True if binary operation \p I is a signed binary operation, false 111 /// otherwise. 112 bool isSigned(const BinaryOperator &I) const; 113 114 /// \returns True if the condition of 'select' operation \p I comes from a 115 /// signed 'icmp' operation, false otherwise. 116 bool isSigned(const SelectInst &I) const; 117 118 /// \returns True if type \p T needs to be promoted to 32 bit integer type, 119 /// false otherwise. 120 bool needsPromotionToI32(const Type *T) const; 121 122 /// Promotes uniform binary operation \p I to equivalent 32 bit binary 123 /// operation. 124 /// 125 /// \details \p I's base element bit width must be greater than 1 and less 126 /// than or equal 16. Promotion is done by sign or zero extending operands to 127 /// 32 bits, replacing \p I with equivalent 32 bit binary operation, and 128 /// truncating the result of 32 bit binary operation back to \p I's original 129 /// type. Division operation is not promoted. 130 /// 131 /// \returns True if \p I is promoted to equivalent 32 bit binary operation, 132 /// false otherwise. 133 bool promoteUniformOpToI32(BinaryOperator &I) const; 134 135 /// Promotes uniform 'icmp' operation \p I to 32 bit 'icmp' operation. 136 /// 137 /// \details \p I's base element bit width must be greater than 1 and less 138 /// than or equal 16. Promotion is done by sign or zero extending operands to 139 /// 32 bits, and replacing \p I with 32 bit 'icmp' operation. 140 /// 141 /// \returns True. 142 bool promoteUniformOpToI32(ICmpInst &I) const; 143 144 /// Promotes uniform 'select' operation \p I to 32 bit 'select' 145 /// operation. 146 /// 147 /// \details \p I's base element bit width must be greater than 1 and less 148 /// than or equal 16. Promotion is done by sign or zero extending operands to 149 /// 32 bits, replacing \p I with 32 bit 'select' operation, and truncating the 150 /// result of 32 bit 'select' operation back to \p I's original type. 151 /// 152 /// \returns True. 153 bool promoteUniformOpToI32(SelectInst &I) const; 154 155 /// Promotes uniform 'bitreverse' intrinsic \p I to 32 bit 'bitreverse' 156 /// intrinsic. 157 /// 158 /// \details \p I's base element bit width must be greater than 1 and less 159 /// than or equal 16. Promotion is done by zero extending the operand to 32 160 /// bits, replacing \p I with 32 bit 'bitreverse' intrinsic, shifting the 161 /// result of 32 bit 'bitreverse' intrinsic to the right with zero fill (the 162 /// shift amount is 32 minus \p I's base element bit width), and truncating 163 /// the result of the shift operation back to \p I's original type. 164 /// 165 /// \returns True. 166 bool promoteUniformBitreverseToI32(IntrinsicInst &I) const; 167 168 /// \returns The minimum number of bits needed to store the value of \Op as an 169 /// unsigned integer. Truncating to this size and then zero-extending to 170 /// the original will not change the value. 171 unsigned numBitsUnsigned(Value *Op) const; 172 173 /// \returns The minimum number of bits needed to store the value of \Op as a 174 /// signed integer. Truncating to this size and then sign-extending to 175 /// the original size will not change the value. 176 unsigned numBitsSigned(Value *Op) const; 177 178 /// Replace mul instructions with llvm.amdgcn.mul.u24 or llvm.amdgcn.mul.s24. 179 /// SelectionDAG has an issue where an and asserting the bits are known 180 bool replaceMulWithMul24(BinaryOperator &I) const; 181 182 /// Perform same function as equivalently named function in DAGCombiner. Since 183 /// we expand some divisions here, we need to perform this before obscuring. 184 bool foldBinOpIntoSelect(BinaryOperator &I) const; 185 186 bool divHasSpecialOptimization(BinaryOperator &I, 187 Value *Num, Value *Den) const; 188 int getDivNumBits(BinaryOperator &I, 189 Value *Num, Value *Den, 190 unsigned AtLeast, bool Signed) const; 191 192 /// Expands 24 bit div or rem. 193 Value* expandDivRem24(IRBuilder<> &Builder, BinaryOperator &I, 194 Value *Num, Value *Den, 195 bool IsDiv, bool IsSigned) const; 196 197 Value *expandDivRem24Impl(IRBuilder<> &Builder, BinaryOperator &I, 198 Value *Num, Value *Den, unsigned NumBits, 199 bool IsDiv, bool IsSigned) const; 200 201 /// Expands 32 bit div or rem. 202 Value* expandDivRem32(IRBuilder<> &Builder, BinaryOperator &I, 203 Value *Num, Value *Den) const; 204 205 Value *shrinkDivRem64(IRBuilder<> &Builder, BinaryOperator &I, 206 Value *Num, Value *Den) const; 207 void expandDivRem64(BinaryOperator &I) const; 208 209 /// Widen a scalar load. 210 /// 211 /// \details \p Widen scalar load for uniform, small type loads from constant 212 // memory / to a full 32-bits and then truncate the input to allow a scalar 213 // load instead of a vector load. 214 // 215 /// \returns True. 216 217 bool canWidenScalarExtLoad(LoadInst &I) const; 218 219 public: 220 static char ID; 221 222 AMDGPUCodeGenPrepare() : FunctionPass(ID) {} 223 224 bool visitFDiv(BinaryOperator &I); 225 bool visitXor(BinaryOperator &I); 226 227 bool visitInstruction(Instruction &I) { return false; } 228 bool visitBinaryOperator(BinaryOperator &I); 229 bool visitLoadInst(LoadInst &I); 230 bool visitICmpInst(ICmpInst &I); 231 bool visitSelectInst(SelectInst &I); 232 bool visitPHINode(PHINode &I); 233 234 bool visitIntrinsicInst(IntrinsicInst &I); 235 bool visitBitreverseIntrinsicInst(IntrinsicInst &I); 236 237 bool doInitialization(Module &M) override; 238 bool runOnFunction(Function &F) override; 239 240 StringRef getPassName() const override { return "AMDGPU IR optimizations"; } 241 242 void getAnalysisUsage(AnalysisUsage &AU) const override { 243 AU.addRequired<AssumptionCacheTracker>(); 244 AU.addRequired<UniformityInfoWrapperPass>(); 245 246 // FIXME: Division expansion needs to preserve the dominator tree. 247 if (!ExpandDiv64InIR) 248 AU.setPreservesAll(); 249 } 250 }; 251 252 } // end anonymous namespace 253 254 unsigned AMDGPUCodeGenPrepare::getBaseElementBitWidth(const Type *T) const { 255 assert(needsPromotionToI32(T) && "T does not need promotion to i32"); 256 257 if (T->isIntegerTy()) 258 return T->getIntegerBitWidth(); 259 return cast<VectorType>(T)->getElementType()->getIntegerBitWidth(); 260 } 261 262 Type *AMDGPUCodeGenPrepare::getI32Ty(IRBuilder<> &B, const Type *T) const { 263 assert(needsPromotionToI32(T) && "T does not need promotion to i32"); 264 265 if (T->isIntegerTy()) 266 return B.getInt32Ty(); 267 return FixedVectorType::get(B.getInt32Ty(), cast<FixedVectorType>(T)); 268 } 269 270 bool AMDGPUCodeGenPrepare::isSigned(const BinaryOperator &I) const { 271 return I.getOpcode() == Instruction::AShr || 272 I.getOpcode() == Instruction::SDiv || I.getOpcode() == Instruction::SRem; 273 } 274 275 bool AMDGPUCodeGenPrepare::isSigned(const SelectInst &I) const { 276 return isa<ICmpInst>(I.getOperand(0)) ? 277 cast<ICmpInst>(I.getOperand(0))->isSigned() : false; 278 } 279 280 bool AMDGPUCodeGenPrepare::needsPromotionToI32(const Type *T) const { 281 if (!Widen16BitOps) 282 return false; 283 284 const IntegerType *IntTy = dyn_cast<IntegerType>(T); 285 if (IntTy && IntTy->getBitWidth() > 1 && IntTy->getBitWidth() <= 16) 286 return true; 287 288 if (const VectorType *VT = dyn_cast<VectorType>(T)) { 289 // TODO: The set of packed operations is more limited, so may want to 290 // promote some anyway. 291 if (ST->hasVOP3PInsts()) 292 return false; 293 294 return needsPromotionToI32(VT->getElementType()); 295 } 296 297 return false; 298 } 299 300 // Return true if the op promoted to i32 should have nsw set. 301 static bool promotedOpIsNSW(const Instruction &I) { 302 switch (I.getOpcode()) { 303 case Instruction::Shl: 304 case Instruction::Add: 305 case Instruction::Sub: 306 return true; 307 case Instruction::Mul: 308 return I.hasNoUnsignedWrap(); 309 default: 310 return false; 311 } 312 } 313 314 // Return true if the op promoted to i32 should have nuw set. 315 static bool promotedOpIsNUW(const Instruction &I) { 316 switch (I.getOpcode()) { 317 case Instruction::Shl: 318 case Instruction::Add: 319 case Instruction::Mul: 320 return true; 321 case Instruction::Sub: 322 return I.hasNoUnsignedWrap(); 323 default: 324 return false; 325 } 326 } 327 328 bool AMDGPUCodeGenPrepare::canWidenScalarExtLoad(LoadInst &I) const { 329 Type *Ty = I.getType(); 330 const DataLayout &DL = Mod->getDataLayout(); 331 int TySize = DL.getTypeSizeInBits(Ty); 332 Align Alignment = DL.getValueOrABITypeAlignment(I.getAlign(), Ty); 333 334 return I.isSimple() && TySize < 32 && Alignment >= 4 && UA->isUniform(&I); 335 } 336 337 bool AMDGPUCodeGenPrepare::promoteUniformOpToI32(BinaryOperator &I) const { 338 assert(needsPromotionToI32(I.getType()) && 339 "I does not need promotion to i32"); 340 341 if (I.getOpcode() == Instruction::SDiv || 342 I.getOpcode() == Instruction::UDiv || 343 I.getOpcode() == Instruction::SRem || 344 I.getOpcode() == Instruction::URem) 345 return false; 346 347 IRBuilder<> Builder(&I); 348 Builder.SetCurrentDebugLocation(I.getDebugLoc()); 349 350 Type *I32Ty = getI32Ty(Builder, I.getType()); 351 Value *ExtOp0 = nullptr; 352 Value *ExtOp1 = nullptr; 353 Value *ExtRes = nullptr; 354 Value *TruncRes = nullptr; 355 356 if (isSigned(I)) { 357 ExtOp0 = Builder.CreateSExt(I.getOperand(0), I32Ty); 358 ExtOp1 = Builder.CreateSExt(I.getOperand(1), I32Ty); 359 } else { 360 ExtOp0 = Builder.CreateZExt(I.getOperand(0), I32Ty); 361 ExtOp1 = Builder.CreateZExt(I.getOperand(1), I32Ty); 362 } 363 364 ExtRes = Builder.CreateBinOp(I.getOpcode(), ExtOp0, ExtOp1); 365 if (Instruction *Inst = dyn_cast<Instruction>(ExtRes)) { 366 if (promotedOpIsNSW(cast<Instruction>(I))) 367 Inst->setHasNoSignedWrap(); 368 369 if (promotedOpIsNUW(cast<Instruction>(I))) 370 Inst->setHasNoUnsignedWrap(); 371 372 if (const auto *ExactOp = dyn_cast<PossiblyExactOperator>(&I)) 373 Inst->setIsExact(ExactOp->isExact()); 374 } 375 376 TruncRes = Builder.CreateTrunc(ExtRes, I.getType()); 377 378 I.replaceAllUsesWith(TruncRes); 379 I.eraseFromParent(); 380 381 return true; 382 } 383 384 bool AMDGPUCodeGenPrepare::promoteUniformOpToI32(ICmpInst &I) const { 385 assert(needsPromotionToI32(I.getOperand(0)->getType()) && 386 "I does not need promotion to i32"); 387 388 IRBuilder<> Builder(&I); 389 Builder.SetCurrentDebugLocation(I.getDebugLoc()); 390 391 Type *I32Ty = getI32Ty(Builder, I.getOperand(0)->getType()); 392 Value *ExtOp0 = nullptr; 393 Value *ExtOp1 = nullptr; 394 Value *NewICmp = nullptr; 395 396 if (I.isSigned()) { 397 ExtOp0 = Builder.CreateSExt(I.getOperand(0), I32Ty); 398 ExtOp1 = Builder.CreateSExt(I.getOperand(1), I32Ty); 399 } else { 400 ExtOp0 = Builder.CreateZExt(I.getOperand(0), I32Ty); 401 ExtOp1 = Builder.CreateZExt(I.getOperand(1), I32Ty); 402 } 403 NewICmp = Builder.CreateICmp(I.getPredicate(), ExtOp0, ExtOp1); 404 405 I.replaceAllUsesWith(NewICmp); 406 I.eraseFromParent(); 407 408 return true; 409 } 410 411 bool AMDGPUCodeGenPrepare::promoteUniformOpToI32(SelectInst &I) const { 412 assert(needsPromotionToI32(I.getType()) && 413 "I does not need promotion to i32"); 414 415 IRBuilder<> Builder(&I); 416 Builder.SetCurrentDebugLocation(I.getDebugLoc()); 417 418 Type *I32Ty = getI32Ty(Builder, I.getType()); 419 Value *ExtOp1 = nullptr; 420 Value *ExtOp2 = nullptr; 421 Value *ExtRes = nullptr; 422 Value *TruncRes = nullptr; 423 424 if (isSigned(I)) { 425 ExtOp1 = Builder.CreateSExt(I.getOperand(1), I32Ty); 426 ExtOp2 = Builder.CreateSExt(I.getOperand(2), I32Ty); 427 } else { 428 ExtOp1 = Builder.CreateZExt(I.getOperand(1), I32Ty); 429 ExtOp2 = Builder.CreateZExt(I.getOperand(2), I32Ty); 430 } 431 ExtRes = Builder.CreateSelect(I.getOperand(0), ExtOp1, ExtOp2); 432 TruncRes = Builder.CreateTrunc(ExtRes, I.getType()); 433 434 I.replaceAllUsesWith(TruncRes); 435 I.eraseFromParent(); 436 437 return true; 438 } 439 440 bool AMDGPUCodeGenPrepare::promoteUniformBitreverseToI32( 441 IntrinsicInst &I) const { 442 assert(I.getIntrinsicID() == Intrinsic::bitreverse && 443 "I must be bitreverse intrinsic"); 444 assert(needsPromotionToI32(I.getType()) && 445 "I does not need promotion to i32"); 446 447 IRBuilder<> Builder(&I); 448 Builder.SetCurrentDebugLocation(I.getDebugLoc()); 449 450 Type *I32Ty = getI32Ty(Builder, I.getType()); 451 Function *I32 = 452 Intrinsic::getDeclaration(Mod, Intrinsic::bitreverse, { I32Ty }); 453 Value *ExtOp = Builder.CreateZExt(I.getOperand(0), I32Ty); 454 Value *ExtRes = Builder.CreateCall(I32, { ExtOp }); 455 Value *LShrOp = 456 Builder.CreateLShr(ExtRes, 32 - getBaseElementBitWidth(I.getType())); 457 Value *TruncRes = 458 Builder.CreateTrunc(LShrOp, I.getType()); 459 460 I.replaceAllUsesWith(TruncRes); 461 I.eraseFromParent(); 462 463 return true; 464 } 465 466 unsigned AMDGPUCodeGenPrepare::numBitsUnsigned(Value *Op) const { 467 return computeKnownBits(Op, *DL, 0, AC).countMaxActiveBits(); 468 } 469 470 unsigned AMDGPUCodeGenPrepare::numBitsSigned(Value *Op) const { 471 return ComputeMaxSignificantBits(Op, *DL, 0, AC); 472 } 473 474 static void extractValues(IRBuilder<> &Builder, 475 SmallVectorImpl<Value *> &Values, Value *V) { 476 auto *VT = dyn_cast<FixedVectorType>(V->getType()); 477 if (!VT) { 478 Values.push_back(V); 479 return; 480 } 481 482 for (int I = 0, E = VT->getNumElements(); I != E; ++I) 483 Values.push_back(Builder.CreateExtractElement(V, I)); 484 } 485 486 static Value *insertValues(IRBuilder<> &Builder, 487 Type *Ty, 488 SmallVectorImpl<Value *> &Values) { 489 if (!Ty->isVectorTy()) { 490 assert(Values.size() == 1); 491 return Values[0]; 492 } 493 494 Value *NewVal = PoisonValue::get(Ty); 495 for (int I = 0, E = Values.size(); I != E; ++I) 496 NewVal = Builder.CreateInsertElement(NewVal, Values[I], I); 497 498 return NewVal; 499 } 500 501 // Returns 24-bit or 48-bit (as per `NumBits` and `Size`) mul of `LHS` and 502 // `RHS`. `NumBits` is the number of KnownBits of the result and `Size` is the 503 // width of the original destination. 504 static Value *getMul24(IRBuilder<> &Builder, Value *LHS, Value *RHS, 505 unsigned Size, unsigned NumBits, bool IsSigned) { 506 if (Size <= 32 || NumBits <= 32) { 507 Intrinsic::ID ID = 508 IsSigned ? Intrinsic::amdgcn_mul_i24 : Intrinsic::amdgcn_mul_u24; 509 return Builder.CreateIntrinsic(ID, {}, {LHS, RHS}); 510 } 511 512 assert(NumBits <= 48); 513 514 Intrinsic::ID LoID = 515 IsSigned ? Intrinsic::amdgcn_mul_i24 : Intrinsic::amdgcn_mul_u24; 516 Intrinsic::ID HiID = 517 IsSigned ? Intrinsic::amdgcn_mulhi_i24 : Intrinsic::amdgcn_mulhi_u24; 518 519 Value *Lo = Builder.CreateIntrinsic(LoID, {}, {LHS, RHS}); 520 Value *Hi = Builder.CreateIntrinsic(HiID, {}, {LHS, RHS}); 521 522 IntegerType *I64Ty = Builder.getInt64Ty(); 523 Lo = Builder.CreateZExtOrTrunc(Lo, I64Ty); 524 Hi = Builder.CreateZExtOrTrunc(Hi, I64Ty); 525 526 return Builder.CreateOr(Lo, Builder.CreateShl(Hi, 32)); 527 } 528 529 bool AMDGPUCodeGenPrepare::replaceMulWithMul24(BinaryOperator &I) const { 530 if (I.getOpcode() != Instruction::Mul) 531 return false; 532 533 Type *Ty = I.getType(); 534 unsigned Size = Ty->getScalarSizeInBits(); 535 if (Size <= 16 && ST->has16BitInsts()) 536 return false; 537 538 // Prefer scalar if this could be s_mul_i32 539 if (UA->isUniform(&I)) 540 return false; 541 542 Value *LHS = I.getOperand(0); 543 Value *RHS = I.getOperand(1); 544 IRBuilder<> Builder(&I); 545 Builder.SetCurrentDebugLocation(I.getDebugLoc()); 546 547 unsigned LHSBits = 0, RHSBits = 0; 548 bool IsSigned = false; 549 550 if (ST->hasMulU24() && (LHSBits = numBitsUnsigned(LHS)) <= 24 && 551 (RHSBits = numBitsUnsigned(RHS)) <= 24) { 552 IsSigned = false; 553 554 } else if (ST->hasMulI24() && (LHSBits = numBitsSigned(LHS)) <= 24 && 555 (RHSBits = numBitsSigned(RHS)) <= 24) { 556 IsSigned = true; 557 558 } else 559 return false; 560 561 SmallVector<Value *, 4> LHSVals; 562 SmallVector<Value *, 4> RHSVals; 563 SmallVector<Value *, 4> ResultVals; 564 extractValues(Builder, LHSVals, LHS); 565 extractValues(Builder, RHSVals, RHS); 566 567 IntegerType *I32Ty = Builder.getInt32Ty(); 568 for (int I = 0, E = LHSVals.size(); I != E; ++I) { 569 Value *LHS, *RHS; 570 if (IsSigned) { 571 LHS = Builder.CreateSExtOrTrunc(LHSVals[I], I32Ty); 572 RHS = Builder.CreateSExtOrTrunc(RHSVals[I], I32Ty); 573 } else { 574 LHS = Builder.CreateZExtOrTrunc(LHSVals[I], I32Ty); 575 RHS = Builder.CreateZExtOrTrunc(RHSVals[I], I32Ty); 576 } 577 578 Value *Result = 579 getMul24(Builder, LHS, RHS, Size, LHSBits + RHSBits, IsSigned); 580 581 if (IsSigned) { 582 ResultVals.push_back( 583 Builder.CreateSExtOrTrunc(Result, LHSVals[I]->getType())); 584 } else { 585 ResultVals.push_back( 586 Builder.CreateZExtOrTrunc(Result, LHSVals[I]->getType())); 587 } 588 } 589 590 Value *NewVal = insertValues(Builder, Ty, ResultVals); 591 NewVal->takeName(&I); 592 I.replaceAllUsesWith(NewVal); 593 I.eraseFromParent(); 594 595 return true; 596 } 597 598 // Find a select instruction, which may have been casted. This is mostly to deal 599 // with cases where i16 selects were promoted here to i32. 600 static SelectInst *findSelectThroughCast(Value *V, CastInst *&Cast) { 601 Cast = nullptr; 602 if (SelectInst *Sel = dyn_cast<SelectInst>(V)) 603 return Sel; 604 605 if ((Cast = dyn_cast<CastInst>(V))) { 606 if (SelectInst *Sel = dyn_cast<SelectInst>(Cast->getOperand(0))) 607 return Sel; 608 } 609 610 return nullptr; 611 } 612 613 bool AMDGPUCodeGenPrepare::foldBinOpIntoSelect(BinaryOperator &BO) const { 614 // Don't do this unless the old select is going away. We want to eliminate the 615 // binary operator, not replace a binop with a select. 616 int SelOpNo = 0; 617 618 CastInst *CastOp; 619 620 // TODO: Should probably try to handle some cases with multiple 621 // users. Duplicating the select may be profitable for division. 622 SelectInst *Sel = findSelectThroughCast(BO.getOperand(0), CastOp); 623 if (!Sel || !Sel->hasOneUse()) { 624 SelOpNo = 1; 625 Sel = findSelectThroughCast(BO.getOperand(1), CastOp); 626 } 627 628 if (!Sel || !Sel->hasOneUse()) 629 return false; 630 631 Constant *CT = dyn_cast<Constant>(Sel->getTrueValue()); 632 Constant *CF = dyn_cast<Constant>(Sel->getFalseValue()); 633 Constant *CBO = dyn_cast<Constant>(BO.getOperand(SelOpNo ^ 1)); 634 if (!CBO || !CT || !CF) 635 return false; 636 637 if (CastOp) { 638 if (!CastOp->hasOneUse()) 639 return false; 640 CT = ConstantFoldCastOperand(CastOp->getOpcode(), CT, BO.getType(), *DL); 641 CF = ConstantFoldCastOperand(CastOp->getOpcode(), CF, BO.getType(), *DL); 642 } 643 644 // TODO: Handle special 0/-1 cases DAG combine does, although we only really 645 // need to handle divisions here. 646 Constant *FoldedT = SelOpNo ? 647 ConstantFoldBinaryOpOperands(BO.getOpcode(), CBO, CT, *DL) : 648 ConstantFoldBinaryOpOperands(BO.getOpcode(), CT, CBO, *DL); 649 if (!FoldedT || isa<ConstantExpr>(FoldedT)) 650 return false; 651 652 Constant *FoldedF = SelOpNo ? 653 ConstantFoldBinaryOpOperands(BO.getOpcode(), CBO, CF, *DL) : 654 ConstantFoldBinaryOpOperands(BO.getOpcode(), CF, CBO, *DL); 655 if (!FoldedF || isa<ConstantExpr>(FoldedF)) 656 return false; 657 658 IRBuilder<> Builder(&BO); 659 Builder.SetCurrentDebugLocation(BO.getDebugLoc()); 660 if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(&BO)) 661 Builder.setFastMathFlags(FPOp->getFastMathFlags()); 662 663 Value *NewSelect = Builder.CreateSelect(Sel->getCondition(), 664 FoldedT, FoldedF); 665 NewSelect->takeName(&BO); 666 BO.replaceAllUsesWith(NewSelect); 667 BO.eraseFromParent(); 668 if (CastOp) 669 CastOp->eraseFromParent(); 670 Sel->eraseFromParent(); 671 return true; 672 } 673 674 // Optimize fdiv with rcp: 675 // 676 // 1/x -> rcp(x) when rcp is sufficiently accurate or inaccurate rcp is 677 // allowed with unsafe-fp-math or afn. 678 // 679 // a/b -> a*rcp(b) when inaccurate rcp is allowed with unsafe-fp-math or afn. 680 static Value *optimizeWithRcp(Value *Num, Value *Den, bool AllowInaccurateRcp, 681 bool RcpIsAccurate, IRBuilder<> &Builder, 682 Module *Mod) { 683 684 if (!AllowInaccurateRcp && !RcpIsAccurate) 685 return nullptr; 686 687 Type *Ty = Den->getType(); 688 if (const ConstantFP *CLHS = dyn_cast<ConstantFP>(Num)) { 689 if (AllowInaccurateRcp || RcpIsAccurate) { 690 if (CLHS->isExactlyValue(1.0)) { 691 Function *Decl = Intrinsic::getDeclaration( 692 Mod, Intrinsic::amdgcn_rcp, Ty); 693 694 // v_rcp_f32 and v_rsq_f32 do not support denormals, and according to 695 // the CI documentation has a worst case error of 1 ulp. 696 // OpenCL requires <= 2.5 ulp for 1.0 / x, so it should always be OK to 697 // use it as long as we aren't trying to use denormals. 698 // 699 // v_rcp_f16 and v_rsq_f16 DO support denormals. 700 701 // NOTE: v_sqrt and v_rcp will be combined to v_rsq later. So we don't 702 // insert rsq intrinsic here. 703 704 // 1.0 / x -> rcp(x) 705 return Builder.CreateCall(Decl, { Den }); 706 } 707 708 // Same as for 1.0, but expand the sign out of the constant. 709 if (CLHS->isExactlyValue(-1.0)) { 710 Function *Decl = Intrinsic::getDeclaration( 711 Mod, Intrinsic::amdgcn_rcp, Ty); 712 713 // -1.0 / x -> rcp (fneg x) 714 Value *FNeg = Builder.CreateFNeg(Den); 715 return Builder.CreateCall(Decl, { FNeg }); 716 } 717 } 718 } 719 720 if (AllowInaccurateRcp) { 721 Function *Decl = Intrinsic::getDeclaration( 722 Mod, Intrinsic::amdgcn_rcp, Ty); 723 724 // Turn into multiply by the reciprocal. 725 // x / y -> x * (1.0 / y) 726 Value *Recip = Builder.CreateCall(Decl, { Den }); 727 return Builder.CreateFMul(Num, Recip); 728 } 729 return nullptr; 730 } 731 732 // optimize with fdiv.fast: 733 // 734 // a/b -> fdiv.fast(a, b) when !fpmath >= 2.5ulp with denormals flushed. 735 // 736 // 1/x -> fdiv.fast(1,x) when !fpmath >= 2.5ulp. 737 // 738 // NOTE: optimizeWithRcp should be tried first because rcp is the preference. 739 static Value *optimizeWithFDivFast(Value *Num, Value *Den, float ReqdAccuracy, 740 bool HasDenormals, IRBuilder<> &Builder, 741 Module *Mod) { 742 // fdiv.fast can achieve 2.5 ULP accuracy. 743 if (ReqdAccuracy < 2.5f) 744 return nullptr; 745 746 // Only have fdiv.fast for f32. 747 Type *Ty = Den->getType(); 748 if (!Ty->isFloatTy()) 749 return nullptr; 750 751 bool NumIsOne = false; 752 if (const ConstantFP *CNum = dyn_cast<ConstantFP>(Num)) { 753 if (CNum->isExactlyValue(+1.0) || CNum->isExactlyValue(-1.0)) 754 NumIsOne = true; 755 } 756 757 // fdiv does not support denormals. But 1.0/x is always fine to use it. 758 if (HasDenormals && !NumIsOne) 759 return nullptr; 760 761 Function *Decl = Intrinsic::getDeclaration(Mod, Intrinsic::amdgcn_fdiv_fast); 762 return Builder.CreateCall(Decl, { Num, Den }); 763 } 764 765 // Optimizations is performed based on fpmath, fast math flags as well as 766 // denormals to optimize fdiv with either rcp or fdiv.fast. 767 // 768 // With rcp: 769 // 1/x -> rcp(x) when rcp is sufficiently accurate or inaccurate rcp is 770 // allowed with unsafe-fp-math or afn. 771 // 772 // a/b -> a*rcp(b) when inaccurate rcp is allowed with unsafe-fp-math or afn. 773 // 774 // With fdiv.fast: 775 // a/b -> fdiv.fast(a, b) when !fpmath >= 2.5ulp with denormals flushed. 776 // 777 // 1/x -> fdiv.fast(1,x) when !fpmath >= 2.5ulp. 778 // 779 // NOTE: rcp is the preference in cases that both are legal. 780 bool AMDGPUCodeGenPrepare::visitFDiv(BinaryOperator &FDiv) { 781 782 Type *Ty = FDiv.getType()->getScalarType(); 783 784 // The f64 rcp/rsq approximations are pretty inaccurate. We can do an 785 // expansion around them in codegen. 786 if (Ty->isDoubleTy()) 787 return false; 788 789 // No intrinsic for fdiv16 if target does not support f16. 790 if (Ty->isHalfTy() && !ST->has16BitInsts()) 791 return false; 792 793 const FPMathOperator *FPOp = cast<const FPMathOperator>(&FDiv); 794 const float ReqdAccuracy = FPOp->getFPAccuracy(); 795 796 // Inaccurate rcp is allowed with unsafe-fp-math or afn. 797 FastMathFlags FMF = FPOp->getFastMathFlags(); 798 const bool AllowInaccurateRcp = HasUnsafeFPMath || FMF.approxFunc(); 799 800 // rcp_f16 is accurate for !fpmath >= 1.0ulp. 801 // rcp_f32 is accurate for !fpmath >= 1.0ulp and denormals are flushed. 802 // rcp_f64 is never accurate. 803 const bool RcpIsAccurate = (Ty->isHalfTy() && ReqdAccuracy >= 1.0f) || 804 (Ty->isFloatTy() && !HasFP32Denormals && ReqdAccuracy >= 1.0f); 805 806 IRBuilder<> Builder(FDiv.getParent(), std::next(FDiv.getIterator())); 807 Builder.setFastMathFlags(FMF); 808 Builder.SetCurrentDebugLocation(FDiv.getDebugLoc()); 809 810 Value *Num = FDiv.getOperand(0); 811 Value *Den = FDiv.getOperand(1); 812 813 Value *NewFDiv = nullptr; 814 if (auto *VT = dyn_cast<FixedVectorType>(FDiv.getType())) { 815 NewFDiv = PoisonValue::get(VT); 816 817 // FIXME: Doesn't do the right thing for cases where the vector is partially 818 // constant. This works when the scalarizer pass is run first. 819 for (unsigned I = 0, E = VT->getNumElements(); I != E; ++I) { 820 Value *NumEltI = Builder.CreateExtractElement(Num, I); 821 Value *DenEltI = Builder.CreateExtractElement(Den, I); 822 // Try rcp first. 823 Value *NewElt = optimizeWithRcp(NumEltI, DenEltI, AllowInaccurateRcp, 824 RcpIsAccurate, Builder, Mod); 825 if (!NewElt) // Try fdiv.fast. 826 NewElt = optimizeWithFDivFast(NumEltI, DenEltI, ReqdAccuracy, 827 HasFP32Denormals, Builder, Mod); 828 if (!NewElt) // Keep the original. 829 NewElt = Builder.CreateFDiv(NumEltI, DenEltI); 830 831 NewFDiv = Builder.CreateInsertElement(NewFDiv, NewElt, I); 832 } 833 } else { // Scalar FDiv. 834 // Try rcp first. 835 NewFDiv = optimizeWithRcp(Num, Den, AllowInaccurateRcp, RcpIsAccurate, 836 Builder, Mod); 837 if (!NewFDiv) { // Try fdiv.fast. 838 NewFDiv = optimizeWithFDivFast(Num, Den, ReqdAccuracy, HasFP32Denormals, 839 Builder, Mod); 840 } 841 } 842 843 if (NewFDiv) { 844 FDiv.replaceAllUsesWith(NewFDiv); 845 NewFDiv->takeName(&FDiv); 846 FDiv.eraseFromParent(); 847 } 848 849 return !!NewFDiv; 850 } 851 852 bool AMDGPUCodeGenPrepare::visitXor(BinaryOperator &I) { 853 // Match the Xor instruction, its type and its operands 854 IntrinsicInst *IntrinsicCall = dyn_cast<IntrinsicInst>(I.getOperand(0)); 855 ConstantInt *RHS = dyn_cast<ConstantInt>(I.getOperand(1)); 856 if (!RHS || !IntrinsicCall || RHS->getSExtValue() != -1) 857 return visitBinaryOperator(I); 858 859 // Check if the Call is an intrinsic instruction to amdgcn_class intrinsic 860 // has only one use 861 if (IntrinsicCall->getIntrinsicID() != Intrinsic::amdgcn_class || 862 !IntrinsicCall->hasOneUse()) 863 return visitBinaryOperator(I); 864 865 // "Not" the second argument of the intrinsic call 866 ConstantInt *Arg = dyn_cast<ConstantInt>(IntrinsicCall->getOperand(1)); 867 if (!Arg) 868 return visitBinaryOperator(I); 869 870 IntrinsicCall->setOperand( 871 1, ConstantInt::get(Arg->getType(), Arg->getZExtValue() ^ 0x3ff)); 872 I.replaceAllUsesWith(IntrinsicCall); 873 I.eraseFromParent(); 874 return true; 875 } 876 877 static bool hasUnsafeFPMath(const Function &F) { 878 Attribute Attr = F.getFnAttribute("unsafe-fp-math"); 879 return Attr.getValueAsBool(); 880 } 881 882 static std::pair<Value*, Value*> getMul64(IRBuilder<> &Builder, 883 Value *LHS, Value *RHS) { 884 Type *I32Ty = Builder.getInt32Ty(); 885 Type *I64Ty = Builder.getInt64Ty(); 886 887 Value *LHS_EXT64 = Builder.CreateZExt(LHS, I64Ty); 888 Value *RHS_EXT64 = Builder.CreateZExt(RHS, I64Ty); 889 Value *MUL64 = Builder.CreateMul(LHS_EXT64, RHS_EXT64); 890 Value *Lo = Builder.CreateTrunc(MUL64, I32Ty); 891 Value *Hi = Builder.CreateLShr(MUL64, Builder.getInt64(32)); 892 Hi = Builder.CreateTrunc(Hi, I32Ty); 893 return std::pair(Lo, Hi); 894 } 895 896 static Value* getMulHu(IRBuilder<> &Builder, Value *LHS, Value *RHS) { 897 return getMul64(Builder, LHS, RHS).second; 898 } 899 900 /// Figure out how many bits are really needed for this division. \p AtLeast is 901 /// an optimization hint to bypass the second ComputeNumSignBits call if we the 902 /// first one is insufficient. Returns -1 on failure. 903 int AMDGPUCodeGenPrepare::getDivNumBits(BinaryOperator &I, 904 Value *Num, Value *Den, 905 unsigned AtLeast, bool IsSigned) const { 906 const DataLayout &DL = Mod->getDataLayout(); 907 unsigned LHSSignBits = ComputeNumSignBits(Num, DL, 0, AC, &I); 908 if (LHSSignBits < AtLeast) 909 return -1; 910 911 unsigned RHSSignBits = ComputeNumSignBits(Den, DL, 0, AC, &I); 912 if (RHSSignBits < AtLeast) 913 return -1; 914 915 unsigned SignBits = std::min(LHSSignBits, RHSSignBits); 916 unsigned DivBits = Num->getType()->getScalarSizeInBits() - SignBits; 917 if (IsSigned) 918 ++DivBits; 919 return DivBits; 920 } 921 922 // The fractional part of a float is enough to accurately represent up to 923 // a 24-bit signed integer. 924 Value *AMDGPUCodeGenPrepare::expandDivRem24(IRBuilder<> &Builder, 925 BinaryOperator &I, 926 Value *Num, Value *Den, 927 bool IsDiv, bool IsSigned) const { 928 int DivBits = getDivNumBits(I, Num, Den, 9, IsSigned); 929 if (DivBits == -1) 930 return nullptr; 931 return expandDivRem24Impl(Builder, I, Num, Den, DivBits, IsDiv, IsSigned); 932 } 933 934 Value *AMDGPUCodeGenPrepare::expandDivRem24Impl(IRBuilder<> &Builder, 935 BinaryOperator &I, 936 Value *Num, Value *Den, 937 unsigned DivBits, 938 bool IsDiv, bool IsSigned) const { 939 Type *I32Ty = Builder.getInt32Ty(); 940 Num = Builder.CreateTrunc(Num, I32Ty); 941 Den = Builder.CreateTrunc(Den, I32Ty); 942 943 Type *F32Ty = Builder.getFloatTy(); 944 ConstantInt *One = Builder.getInt32(1); 945 Value *JQ = One; 946 947 if (IsSigned) { 948 // char|short jq = ia ^ ib; 949 JQ = Builder.CreateXor(Num, Den); 950 951 // jq = jq >> (bitsize - 2) 952 JQ = Builder.CreateAShr(JQ, Builder.getInt32(30)); 953 954 // jq = jq | 0x1 955 JQ = Builder.CreateOr(JQ, One); 956 } 957 958 // int ia = (int)LHS; 959 Value *IA = Num; 960 961 // int ib, (int)RHS; 962 Value *IB = Den; 963 964 // float fa = (float)ia; 965 Value *FA = IsSigned ? Builder.CreateSIToFP(IA, F32Ty) 966 : Builder.CreateUIToFP(IA, F32Ty); 967 968 // float fb = (float)ib; 969 Value *FB = IsSigned ? Builder.CreateSIToFP(IB,F32Ty) 970 : Builder.CreateUIToFP(IB,F32Ty); 971 972 Function *RcpDecl = Intrinsic::getDeclaration(Mod, Intrinsic::amdgcn_rcp, 973 Builder.getFloatTy()); 974 Value *RCP = Builder.CreateCall(RcpDecl, { FB }); 975 Value *FQM = Builder.CreateFMul(FA, RCP); 976 977 // fq = trunc(fqm); 978 CallInst *FQ = Builder.CreateUnaryIntrinsic(Intrinsic::trunc, FQM); 979 FQ->copyFastMathFlags(Builder.getFastMathFlags()); 980 981 // float fqneg = -fq; 982 Value *FQNeg = Builder.CreateFNeg(FQ); 983 984 // float fr = mad(fqneg, fb, fa); 985 auto FMAD = !ST->hasMadMacF32Insts() 986 ? Intrinsic::fma 987 : (Intrinsic::ID)Intrinsic::amdgcn_fmad_ftz; 988 Value *FR = Builder.CreateIntrinsic(FMAD, 989 {FQNeg->getType()}, {FQNeg, FB, FA}, FQ); 990 991 // int iq = (int)fq; 992 Value *IQ = IsSigned ? Builder.CreateFPToSI(FQ, I32Ty) 993 : Builder.CreateFPToUI(FQ, I32Ty); 994 995 // fr = fabs(fr); 996 FR = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, FR, FQ); 997 998 // fb = fabs(fb); 999 FB = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, FB, FQ); 1000 1001 // int cv = fr >= fb; 1002 Value *CV = Builder.CreateFCmpOGE(FR, FB); 1003 1004 // jq = (cv ? jq : 0); 1005 JQ = Builder.CreateSelect(CV, JQ, Builder.getInt32(0)); 1006 1007 // dst = iq + jq; 1008 Value *Div = Builder.CreateAdd(IQ, JQ); 1009 1010 Value *Res = Div; 1011 if (!IsDiv) { 1012 // Rem needs compensation, it's easier to recompute it 1013 Value *Rem = Builder.CreateMul(Div, Den); 1014 Res = Builder.CreateSub(Num, Rem); 1015 } 1016 1017 if (DivBits != 0 && DivBits < 32) { 1018 // Extend in register from the number of bits this divide really is. 1019 if (IsSigned) { 1020 int InRegBits = 32 - DivBits; 1021 1022 Res = Builder.CreateShl(Res, InRegBits); 1023 Res = Builder.CreateAShr(Res, InRegBits); 1024 } else { 1025 ConstantInt *TruncMask 1026 = Builder.getInt32((UINT64_C(1) << DivBits) - 1); 1027 Res = Builder.CreateAnd(Res, TruncMask); 1028 } 1029 } 1030 1031 return Res; 1032 } 1033 1034 // Try to recognize special cases the DAG will emit special, better expansions 1035 // than the general expansion we do here. 1036 1037 // TODO: It would be better to just directly handle those optimizations here. 1038 bool AMDGPUCodeGenPrepare::divHasSpecialOptimization( 1039 BinaryOperator &I, Value *Num, Value *Den) const { 1040 if (Constant *C = dyn_cast<Constant>(Den)) { 1041 // Arbitrary constants get a better expansion as long as a wider mulhi is 1042 // legal. 1043 if (C->getType()->getScalarSizeInBits() <= 32) 1044 return true; 1045 1046 // TODO: Sdiv check for not exact for some reason. 1047 1048 // If there's no wider mulhi, there's only a better expansion for powers of 1049 // two. 1050 // TODO: Should really know for each vector element. 1051 if (isKnownToBeAPowerOfTwo(C, *DL, true, 0, AC, &I, DT)) 1052 return true; 1053 1054 return false; 1055 } 1056 1057 if (BinaryOperator *BinOpDen = dyn_cast<BinaryOperator>(Den)) { 1058 // fold (udiv x, (shl c, y)) -> x >>u (log2(c)+y) iff c is power of 2 1059 if (BinOpDen->getOpcode() == Instruction::Shl && 1060 isa<Constant>(BinOpDen->getOperand(0)) && 1061 isKnownToBeAPowerOfTwo(BinOpDen->getOperand(0), *DL, true, 1062 0, AC, &I, DT)) { 1063 return true; 1064 } 1065 } 1066 1067 return false; 1068 } 1069 1070 static Value *getSign32(Value *V, IRBuilder<> &Builder, const DataLayout *DL) { 1071 // Check whether the sign can be determined statically. 1072 KnownBits Known = computeKnownBits(V, *DL); 1073 if (Known.isNegative()) 1074 return Constant::getAllOnesValue(V->getType()); 1075 if (Known.isNonNegative()) 1076 return Constant::getNullValue(V->getType()); 1077 return Builder.CreateAShr(V, Builder.getInt32(31)); 1078 } 1079 1080 Value *AMDGPUCodeGenPrepare::expandDivRem32(IRBuilder<> &Builder, 1081 BinaryOperator &I, Value *X, 1082 Value *Y) const { 1083 Instruction::BinaryOps Opc = I.getOpcode(); 1084 assert(Opc == Instruction::URem || Opc == Instruction::UDiv || 1085 Opc == Instruction::SRem || Opc == Instruction::SDiv); 1086 1087 FastMathFlags FMF; 1088 FMF.setFast(); 1089 Builder.setFastMathFlags(FMF); 1090 1091 if (divHasSpecialOptimization(I, X, Y)) 1092 return nullptr; // Keep it for later optimization. 1093 1094 bool IsDiv = Opc == Instruction::UDiv || Opc == Instruction::SDiv; 1095 bool IsSigned = Opc == Instruction::SRem || Opc == Instruction::SDiv; 1096 1097 Type *Ty = X->getType(); 1098 Type *I32Ty = Builder.getInt32Ty(); 1099 Type *F32Ty = Builder.getFloatTy(); 1100 1101 if (Ty->getScalarSizeInBits() < 32) { 1102 if (IsSigned) { 1103 X = Builder.CreateSExt(X, I32Ty); 1104 Y = Builder.CreateSExt(Y, I32Ty); 1105 } else { 1106 X = Builder.CreateZExt(X, I32Ty); 1107 Y = Builder.CreateZExt(Y, I32Ty); 1108 } 1109 } 1110 1111 if (Value *Res = expandDivRem24(Builder, I, X, Y, IsDiv, IsSigned)) { 1112 return IsSigned ? Builder.CreateSExtOrTrunc(Res, Ty) : 1113 Builder.CreateZExtOrTrunc(Res, Ty); 1114 } 1115 1116 ConstantInt *Zero = Builder.getInt32(0); 1117 ConstantInt *One = Builder.getInt32(1); 1118 1119 Value *Sign = nullptr; 1120 if (IsSigned) { 1121 Value *SignX = getSign32(X, Builder, DL); 1122 Value *SignY = getSign32(Y, Builder, DL); 1123 // Remainder sign is the same as LHS 1124 Sign = IsDiv ? Builder.CreateXor(SignX, SignY) : SignX; 1125 1126 X = Builder.CreateAdd(X, SignX); 1127 Y = Builder.CreateAdd(Y, SignY); 1128 1129 X = Builder.CreateXor(X, SignX); 1130 Y = Builder.CreateXor(Y, SignY); 1131 } 1132 1133 // The algorithm here is based on ideas from "Software Integer Division", Tom 1134 // Rodeheffer, August 2008. 1135 // 1136 // unsigned udiv(unsigned x, unsigned y) { 1137 // // Initial estimate of inv(y). The constant is less than 2^32 to ensure 1138 // // that this is a lower bound on inv(y), even if some of the calculations 1139 // // round up. 1140 // unsigned z = (unsigned)((4294967296.0 - 512.0) * v_rcp_f32((float)y)); 1141 // 1142 // // One round of UNR (Unsigned integer Newton-Raphson) to improve z. 1143 // // Empirically this is guaranteed to give a "two-y" lower bound on 1144 // // inv(y). 1145 // z += umulh(z, -y * z); 1146 // 1147 // // Quotient/remainder estimate. 1148 // unsigned q = umulh(x, z); 1149 // unsigned r = x - q * y; 1150 // 1151 // // Two rounds of quotient/remainder refinement. 1152 // if (r >= y) { 1153 // ++q; 1154 // r -= y; 1155 // } 1156 // if (r >= y) { 1157 // ++q; 1158 // r -= y; 1159 // } 1160 // 1161 // return q; 1162 // } 1163 1164 // Initial estimate of inv(y). 1165 Value *FloatY = Builder.CreateUIToFP(Y, F32Ty); 1166 Function *Rcp = Intrinsic::getDeclaration(Mod, Intrinsic::amdgcn_rcp, F32Ty); 1167 Value *RcpY = Builder.CreateCall(Rcp, {FloatY}); 1168 Constant *Scale = ConstantFP::get(F32Ty, llvm::bit_cast<float>(0x4F7FFFFE)); 1169 Value *ScaledY = Builder.CreateFMul(RcpY, Scale); 1170 Value *Z = Builder.CreateFPToUI(ScaledY, I32Ty); 1171 1172 // One round of UNR. 1173 Value *NegY = Builder.CreateSub(Zero, Y); 1174 Value *NegYZ = Builder.CreateMul(NegY, Z); 1175 Z = Builder.CreateAdd(Z, getMulHu(Builder, Z, NegYZ)); 1176 1177 // Quotient/remainder estimate. 1178 Value *Q = getMulHu(Builder, X, Z); 1179 Value *R = Builder.CreateSub(X, Builder.CreateMul(Q, Y)); 1180 1181 // First quotient/remainder refinement. 1182 Value *Cond = Builder.CreateICmpUGE(R, Y); 1183 if (IsDiv) 1184 Q = Builder.CreateSelect(Cond, Builder.CreateAdd(Q, One), Q); 1185 R = Builder.CreateSelect(Cond, Builder.CreateSub(R, Y), R); 1186 1187 // Second quotient/remainder refinement. 1188 Cond = Builder.CreateICmpUGE(R, Y); 1189 Value *Res; 1190 if (IsDiv) 1191 Res = Builder.CreateSelect(Cond, Builder.CreateAdd(Q, One), Q); 1192 else 1193 Res = Builder.CreateSelect(Cond, Builder.CreateSub(R, Y), R); 1194 1195 if (IsSigned) { 1196 Res = Builder.CreateXor(Res, Sign); 1197 Res = Builder.CreateSub(Res, Sign); 1198 } 1199 1200 Res = Builder.CreateTrunc(Res, Ty); 1201 1202 return Res; 1203 } 1204 1205 Value *AMDGPUCodeGenPrepare::shrinkDivRem64(IRBuilder<> &Builder, 1206 BinaryOperator &I, 1207 Value *Num, Value *Den) const { 1208 if (!ExpandDiv64InIR && divHasSpecialOptimization(I, Num, Den)) 1209 return nullptr; // Keep it for later optimization. 1210 1211 Instruction::BinaryOps Opc = I.getOpcode(); 1212 1213 bool IsDiv = Opc == Instruction::SDiv || Opc == Instruction::UDiv; 1214 bool IsSigned = Opc == Instruction::SDiv || Opc == Instruction::SRem; 1215 1216 int NumDivBits = getDivNumBits(I, Num, Den, 32, IsSigned); 1217 if (NumDivBits == -1) 1218 return nullptr; 1219 1220 Value *Narrowed = nullptr; 1221 if (NumDivBits <= 24) { 1222 Narrowed = expandDivRem24Impl(Builder, I, Num, Den, NumDivBits, 1223 IsDiv, IsSigned); 1224 } else if (NumDivBits <= 32) { 1225 Narrowed = expandDivRem32(Builder, I, Num, Den); 1226 } 1227 1228 if (Narrowed) { 1229 return IsSigned ? Builder.CreateSExt(Narrowed, Num->getType()) : 1230 Builder.CreateZExt(Narrowed, Num->getType()); 1231 } 1232 1233 return nullptr; 1234 } 1235 1236 void AMDGPUCodeGenPrepare::expandDivRem64(BinaryOperator &I) const { 1237 Instruction::BinaryOps Opc = I.getOpcode(); 1238 // Do the general expansion. 1239 if (Opc == Instruction::UDiv || Opc == Instruction::SDiv) { 1240 expandDivisionUpTo64Bits(&I); 1241 return; 1242 } 1243 1244 if (Opc == Instruction::URem || Opc == Instruction::SRem) { 1245 expandRemainderUpTo64Bits(&I); 1246 return; 1247 } 1248 1249 llvm_unreachable("not a division"); 1250 } 1251 1252 bool AMDGPUCodeGenPrepare::visitBinaryOperator(BinaryOperator &I) { 1253 if (foldBinOpIntoSelect(I)) 1254 return true; 1255 1256 if (ST->has16BitInsts() && needsPromotionToI32(I.getType()) && 1257 UA->isUniform(&I) && promoteUniformOpToI32(I)) 1258 return true; 1259 1260 if (UseMul24Intrin && replaceMulWithMul24(I)) 1261 return true; 1262 1263 bool Changed = false; 1264 Instruction::BinaryOps Opc = I.getOpcode(); 1265 Type *Ty = I.getType(); 1266 Value *NewDiv = nullptr; 1267 unsigned ScalarSize = Ty->getScalarSizeInBits(); 1268 1269 SmallVector<BinaryOperator *, 8> Div64ToExpand; 1270 1271 if ((Opc == Instruction::URem || Opc == Instruction::UDiv || 1272 Opc == Instruction::SRem || Opc == Instruction::SDiv) && 1273 ScalarSize <= 64 && 1274 !DisableIDivExpand) { 1275 Value *Num = I.getOperand(0); 1276 Value *Den = I.getOperand(1); 1277 IRBuilder<> Builder(&I); 1278 Builder.SetCurrentDebugLocation(I.getDebugLoc()); 1279 1280 if (auto *VT = dyn_cast<FixedVectorType>(Ty)) { 1281 NewDiv = PoisonValue::get(VT); 1282 1283 for (unsigned N = 0, E = VT->getNumElements(); N != E; ++N) { 1284 Value *NumEltN = Builder.CreateExtractElement(Num, N); 1285 Value *DenEltN = Builder.CreateExtractElement(Den, N); 1286 1287 Value *NewElt; 1288 if (ScalarSize <= 32) { 1289 NewElt = expandDivRem32(Builder, I, NumEltN, DenEltN); 1290 if (!NewElt) 1291 NewElt = Builder.CreateBinOp(Opc, NumEltN, DenEltN); 1292 } else { 1293 // See if this 64-bit division can be shrunk to 32/24-bits before 1294 // producing the general expansion. 1295 NewElt = shrinkDivRem64(Builder, I, NumEltN, DenEltN); 1296 if (!NewElt) { 1297 // The general 64-bit expansion introduces control flow and doesn't 1298 // return the new value. Just insert a scalar copy and defer 1299 // expanding it. 1300 NewElt = Builder.CreateBinOp(Opc, NumEltN, DenEltN); 1301 Div64ToExpand.push_back(cast<BinaryOperator>(NewElt)); 1302 } 1303 } 1304 1305 NewDiv = Builder.CreateInsertElement(NewDiv, NewElt, N); 1306 } 1307 } else { 1308 if (ScalarSize <= 32) 1309 NewDiv = expandDivRem32(Builder, I, Num, Den); 1310 else { 1311 NewDiv = shrinkDivRem64(Builder, I, Num, Den); 1312 if (!NewDiv) 1313 Div64ToExpand.push_back(&I); 1314 } 1315 } 1316 1317 if (NewDiv) { 1318 I.replaceAllUsesWith(NewDiv); 1319 I.eraseFromParent(); 1320 Changed = true; 1321 } 1322 } 1323 1324 if (ExpandDiv64InIR) { 1325 // TODO: We get much worse code in specially handled constant cases. 1326 for (BinaryOperator *Div : Div64ToExpand) { 1327 expandDivRem64(*Div); 1328 Changed = true; 1329 } 1330 } 1331 1332 return Changed; 1333 } 1334 1335 bool AMDGPUCodeGenPrepare::visitLoadInst(LoadInst &I) { 1336 if (!WidenLoads) 1337 return false; 1338 1339 if ((I.getPointerAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS || 1340 I.getPointerAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS_32BIT) && 1341 canWidenScalarExtLoad(I)) { 1342 IRBuilder<> Builder(&I); 1343 Builder.SetCurrentDebugLocation(I.getDebugLoc()); 1344 1345 Type *I32Ty = Builder.getInt32Ty(); 1346 Type *PT = PointerType::get(I32Ty, I.getPointerAddressSpace()); 1347 Value *BitCast= Builder.CreateBitCast(I.getPointerOperand(), PT); 1348 LoadInst *WidenLoad = Builder.CreateLoad(I32Ty, BitCast); 1349 WidenLoad->copyMetadata(I); 1350 1351 // If we have range metadata, we need to convert the type, and not make 1352 // assumptions about the high bits. 1353 if (auto *Range = WidenLoad->getMetadata(LLVMContext::MD_range)) { 1354 ConstantInt *Lower = 1355 mdconst::extract<ConstantInt>(Range->getOperand(0)); 1356 1357 if (Lower->isNullValue()) { 1358 WidenLoad->setMetadata(LLVMContext::MD_range, nullptr); 1359 } else { 1360 Metadata *LowAndHigh[] = { 1361 ConstantAsMetadata::get(ConstantInt::get(I32Ty, Lower->getValue().zext(32))), 1362 // Don't make assumptions about the high bits. 1363 ConstantAsMetadata::get(ConstantInt::get(I32Ty, 0)) 1364 }; 1365 1366 WidenLoad->setMetadata(LLVMContext::MD_range, 1367 MDNode::get(Mod->getContext(), LowAndHigh)); 1368 } 1369 } 1370 1371 int TySize = Mod->getDataLayout().getTypeSizeInBits(I.getType()); 1372 Type *IntNTy = Builder.getIntNTy(TySize); 1373 Value *ValTrunc = Builder.CreateTrunc(WidenLoad, IntNTy); 1374 Value *ValOrig = Builder.CreateBitCast(ValTrunc, I.getType()); 1375 I.replaceAllUsesWith(ValOrig); 1376 I.eraseFromParent(); 1377 return true; 1378 } 1379 1380 return false; 1381 } 1382 1383 bool AMDGPUCodeGenPrepare::visitICmpInst(ICmpInst &I) { 1384 bool Changed = false; 1385 1386 if (ST->has16BitInsts() && needsPromotionToI32(I.getOperand(0)->getType()) && 1387 UA->isUniform(&I)) 1388 Changed |= promoteUniformOpToI32(I); 1389 1390 return Changed; 1391 } 1392 1393 bool AMDGPUCodeGenPrepare::visitSelectInst(SelectInst &I) { 1394 bool Changed = false; 1395 1396 if (ST->has16BitInsts() && needsPromotionToI32(I.getType()) && 1397 UA->isUniform(&I)) 1398 Changed |= promoteUniformOpToI32(I); 1399 1400 return Changed; 1401 } 1402 1403 // Helper for breaking large PHIs that returns true when an extractelement on V 1404 // is likely to be folded away by the DAG combiner. 1405 static bool isInterestingPHIIncomingValue(Value *V, FixedVectorType *FVT) { 1406 InsertElementInst *IE = dyn_cast<InsertElementInst>(V); 1407 1408 // Constants & InsertElements chains are interesting. 1409 if (!IE) 1410 return isa<Constant>(V); 1411 1412 // Check if this is a simple chain of insertelement that fills the vector. If 1413 // that's the case, we can break up this PHI node profitably because the 1414 // extractelement we will insert will get folded out. 1415 BasicBlock *BB = IE->getParent(); 1416 BitVector EltsCovered(FVT->getNumElements()); 1417 InsertElementInst *Next = IE; 1418 while (Next && !EltsCovered.all()) { 1419 ConstantInt *Idx = dyn_cast<ConstantInt>(Next->getOperand(2)); 1420 1421 // Non constant index/out of bounds index -> folding is unlikely. 1422 // Note that this is more of a sanity check - canonical IR should 1423 // already have replaced those with poison. 1424 if (!Idx || Idx->getSExtValue() >= FVT->getNumElements()) 1425 return false; 1426 1427 EltsCovered.set(Idx->getSExtValue()); 1428 1429 // If the insertelement chain ends with a constant, it's fine. 1430 if (isa<Constant>(Next->getOperand(0))) 1431 return true; 1432 1433 Next = dyn_cast<InsertElementInst>(Next->getOperand(0)); 1434 1435 // If the chain is spread across basic blocks, the DAG combiner 1436 // won't see it in its entirety and is unlikely to be able to fold 1437 // evevrything away. 1438 if (Next && Next->getParent() != BB) 1439 return false; 1440 } 1441 1442 // All elements covered, all of the extract elements will likely be 1443 // combined. 1444 return EltsCovered.all(); 1445 } 1446 1447 bool AMDGPUCodeGenPrepare::visitPHINode(PHINode &I) { 1448 // Break-up fixed-vector PHIs into smaller pieces. 1449 // Default threshold is 32, so it breaks up any vector that's >32 bits into 1450 // its elements, or into 32-bit pieces (for 8/16 bit elts). 1451 // 1452 // This is only helpful for DAGISel because it doesn't handle large PHIs as 1453 // well as GlobalISel. DAGISel lowers PHIs by using CopyToReg/CopyFromReg. 1454 // With large, odd-sized PHIs we may end up needing many `build_vector` 1455 // operations with most elements being "undef". This inhibits a lot of 1456 // optimization opportunities and can result in unreasonably high register 1457 // pressure and the inevitable stack spilling. 1458 if (!ScalarizeLargePHIs || getCGPassBuilderOption().EnableGlobalISelOption) 1459 return false; 1460 1461 FixedVectorType *FVT = dyn_cast<FixedVectorType>(I.getType()); 1462 if (!FVT || DL->getTypeSizeInBits(FVT) <= ScalarizeLargePHIsThreshold) 1463 return false; 1464 1465 // Try to avoid unprofitable cases: 1466 // - Don't break PHIs that have no interesting incoming values. That is, where 1467 // there is no clear opportunity to fold the "extractelement" instructions we 1468 // would add. 1469 // - Note: IC does not run after this pass, so we're only interested in the 1470 // folding that the DAG combiner can do. 1471 // - For simplicity, don't break PHIs that are used by other PHIs because it'd 1472 // require us to determine if the whole "chain" can be converted or not. e.g. 1473 // if we broke this PHI but not its user, we would actually make things worse. 1474 if (!ForceScalarizeLargePHIs) { 1475 if (none_of( 1476 I.incoming_values(), 1477 [&](Value *V) { return isInterestingPHIIncomingValue(V, FVT); }) || 1478 any_of(I.users(), [&](User *U) { return isa<PHINode>(U); })) { 1479 return false; 1480 } 1481 } 1482 1483 struct VectorSlice { 1484 Type *Ty = nullptr; 1485 unsigned Idx = 0; 1486 unsigned NumElts = 0; 1487 std::vector<Value *> IncomingValues = {}; 1488 PHINode *NewPHI = nullptr; 1489 }; 1490 1491 std::vector<VectorSlice> Slices; 1492 1493 Type *EltTy = FVT->getElementType(); 1494 { 1495 unsigned Idx = 0; 1496 // For 8/16 bits type, don't scalarize fully but break it up into as many 1497 // 32-bit slices as we can, and scalarize the tail. 1498 const unsigned EltSize = DL->getTypeSizeInBits(EltTy); 1499 const unsigned NumElts = FVT->getNumElements(); 1500 if (EltSize == 8 || EltSize == 16) { 1501 const unsigned SubVecSize = (32 / EltSize); 1502 Type *SubVecTy = FixedVectorType::get(EltTy, SubVecSize); 1503 for (unsigned End = alignDown(NumElts, SubVecSize); Idx < End; 1504 Idx += SubVecSize) 1505 Slices.push_back(VectorSlice{SubVecTy, Idx, SubVecSize}); 1506 } 1507 1508 // Scalarize all remaining elements. 1509 for (; Idx < NumElts; ++Idx) 1510 Slices.push_back(VectorSlice{EltTy, Idx, 1}); 1511 } 1512 1513 if (Slices.size() == 1) 1514 return false; 1515 1516 // Break up this PHI's incoming values. 1517 for (unsigned Idx = 0; Idx < I.getNumIncomingValues(); ++Idx) { 1518 Value *Inc = I.getIncomingValue(Idx); 1519 1520 IRBuilder<> B(I.getIncomingBlock(Idx)->getTerminator()); 1521 if (Instruction *IncInst = dyn_cast<Instruction>(Inc)) 1522 B.SetCurrentDebugLocation(IncInst->getDebugLoc()); 1523 1524 unsigned NameSuffix = 0; 1525 for (VectorSlice &S : Slices) { 1526 const auto ValName = 1527 "largephi.extractslice" + std::to_string(NameSuffix++); 1528 if (S.NumElts > 1) { 1529 SmallVector<int, 4> Mask; 1530 for (unsigned K = S.Idx; K < (S.Idx + S.NumElts); ++K) 1531 Mask.push_back(K); 1532 S.IncomingValues.push_back(B.CreateShuffleVector(Inc, Mask, ValName)); 1533 } else 1534 S.IncomingValues.push_back(B.CreateExtractElement(Inc, S.Idx, ValName)); 1535 } 1536 } 1537 1538 // Now create one PHI per vector piece. 1539 IRBuilder<> B(I.getParent()->getFirstNonPHI()); 1540 B.SetCurrentDebugLocation(I.getDebugLoc()); 1541 1542 for (VectorSlice &S : Slices) { 1543 S.NewPHI = B.CreatePHI(S.Ty, I.getNumIncomingValues()); 1544 for (const auto &[Idx, BB] : enumerate(I.blocks())) 1545 S.NewPHI->addIncoming(S.IncomingValues[Idx], BB); 1546 } 1547 1548 // And replace this PHI with a vector of all the previous PHI values. 1549 Value *Vec = PoisonValue::get(FVT); 1550 unsigned NameSuffix = 0; 1551 for (VectorSlice &S : Slices) { 1552 const auto ValName = "largephi.insertslice" + std::to_string(NameSuffix++); 1553 if (S.NumElts > 1) 1554 Vec = 1555 B.CreateInsertVector(FVT, Vec, S.NewPHI, B.getInt64(S.Idx), ValName); 1556 else 1557 Vec = B.CreateInsertElement(Vec, S.NewPHI, S.Idx, ValName); 1558 } 1559 1560 I.replaceAllUsesWith(Vec); 1561 I.eraseFromParent(); 1562 return true; 1563 } 1564 1565 bool AMDGPUCodeGenPrepare::visitIntrinsicInst(IntrinsicInst &I) { 1566 switch (I.getIntrinsicID()) { 1567 case Intrinsic::bitreverse: 1568 return visitBitreverseIntrinsicInst(I); 1569 default: 1570 return false; 1571 } 1572 } 1573 1574 bool AMDGPUCodeGenPrepare::visitBitreverseIntrinsicInst(IntrinsicInst &I) { 1575 bool Changed = false; 1576 1577 if (ST->has16BitInsts() && needsPromotionToI32(I.getType()) && 1578 UA->isUniform(&I)) 1579 Changed |= promoteUniformBitreverseToI32(I); 1580 1581 return Changed; 1582 } 1583 1584 bool AMDGPUCodeGenPrepare::doInitialization(Module &M) { 1585 Mod = &M; 1586 DL = &Mod->getDataLayout(); 1587 return false; 1588 } 1589 1590 bool AMDGPUCodeGenPrepare::runOnFunction(Function &F) { 1591 if (skipFunction(F)) 1592 return false; 1593 1594 auto *TPC = getAnalysisIfAvailable<TargetPassConfig>(); 1595 if (!TPC) 1596 return false; 1597 1598 const AMDGPUTargetMachine &TM = TPC->getTM<AMDGPUTargetMachine>(); 1599 ST = &TM.getSubtarget<GCNSubtarget>(F); 1600 AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 1601 UA = &getAnalysis<UniformityInfoWrapperPass>().getUniformityInfo(); 1602 1603 auto *DTWP = getAnalysisIfAvailable<DominatorTreeWrapperPass>(); 1604 DT = DTWP ? &DTWP->getDomTree() : nullptr; 1605 1606 HasUnsafeFPMath = hasUnsafeFPMath(F); 1607 1608 SIModeRegisterDefaults Mode(F); 1609 HasFP32Denormals = Mode.allFP32Denormals(); 1610 1611 bool MadeChange = false; 1612 1613 Function::iterator NextBB; 1614 for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE; FI = NextBB) { 1615 BasicBlock *BB = &*FI; 1616 NextBB = std::next(FI); 1617 1618 BasicBlock::iterator Next; 1619 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; I = Next) { 1620 Next = std::next(I); 1621 1622 MadeChange |= visit(*I); 1623 1624 if (Next != E) { // Control flow changed 1625 BasicBlock *NextInstBB = Next->getParent(); 1626 if (NextInstBB != BB) { 1627 BB = NextInstBB; 1628 E = BB->end(); 1629 FE = F.end(); 1630 } 1631 } 1632 } 1633 } 1634 1635 return MadeChange; 1636 } 1637 1638 INITIALIZE_PASS_BEGIN(AMDGPUCodeGenPrepare, DEBUG_TYPE, 1639 "AMDGPU IR optimizations", false, false) 1640 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 1641 INITIALIZE_PASS_DEPENDENCY(UniformityInfoWrapperPass) 1642 INITIALIZE_PASS_END(AMDGPUCodeGenPrepare, DEBUG_TYPE, "AMDGPU IR optimizations", 1643 false, false) 1644 1645 char AMDGPUCodeGenPrepare::ID = 0; 1646 1647 FunctionPass *llvm::createAMDGPUCodeGenPreparePass() { 1648 return new AMDGPUCodeGenPrepare(); 1649 } 1650