1 //===-- AMDGPUCodeGenPrepare.cpp ------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file 10 /// This pass does misc. AMDGPU optimizations on IR before instruction 11 /// selection. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "AMDGPU.h" 16 #include "AMDGPUSubtarget.h" 17 #include "AMDGPUTargetMachine.h" 18 #include "llvm/ADT/StringRef.h" 19 #include "llvm/Analysis/AssumptionCache.h" 20 #include "llvm/Analysis/ConstantFolding.h" 21 #include "llvm/Analysis/LegacyDivergenceAnalysis.h" 22 #include "llvm/Analysis/Loads.h" 23 #include "llvm/Analysis/ValueTracking.h" 24 #include "llvm/CodeGen/Passes.h" 25 #include "llvm/CodeGen/TargetPassConfig.h" 26 #include "llvm/IR/Attributes.h" 27 #include "llvm/IR/BasicBlock.h" 28 #include "llvm/IR/Constants.h" 29 #include "llvm/IR/DerivedTypes.h" 30 #include "llvm/IR/Function.h" 31 #include "llvm/IR/IRBuilder.h" 32 #include "llvm/IR/InstVisitor.h" 33 #include "llvm/IR/InstrTypes.h" 34 #include "llvm/IR/Instruction.h" 35 #include "llvm/IR/Instructions.h" 36 #include "llvm/IR/IntrinsicInst.h" 37 #include "llvm/IR/Intrinsics.h" 38 #include "llvm/IR/LLVMContext.h" 39 #include "llvm/IR/Operator.h" 40 #include "llvm/IR/Type.h" 41 #include "llvm/IR/Value.h" 42 #include "llvm/InitializePasses.h" 43 #include "llvm/Pass.h" 44 #include "llvm/Support/Casting.h" 45 #include <cassert> 46 #include <iterator> 47 48 #define DEBUG_TYPE "amdgpu-codegenprepare" 49 50 using namespace llvm; 51 52 namespace { 53 54 static cl::opt<bool> WidenLoads( 55 "amdgpu-codegenprepare-widen-constant-loads", 56 cl::desc("Widen sub-dword constant address space loads in AMDGPUCodeGenPrepare"), 57 cl::ReallyHidden, 58 cl::init(true)); 59 60 static cl::opt<bool> UseMul24Intrin( 61 "amdgpu-codegenprepare-mul24", 62 cl::desc("Introduce mul24 intrinsics in AMDGPUCodeGenPrepare"), 63 cl::ReallyHidden, 64 cl::init(true)); 65 66 class AMDGPUCodeGenPrepare : public FunctionPass, 67 public InstVisitor<AMDGPUCodeGenPrepare, bool> { 68 const GCNSubtarget *ST = nullptr; 69 AssumptionCache *AC = nullptr; 70 DominatorTree *DT = nullptr; 71 LegacyDivergenceAnalysis *DA = nullptr; 72 Module *Mod = nullptr; 73 const DataLayout *DL = nullptr; 74 bool HasUnsafeFPMath = false; 75 bool HasFP32Denormals = false; 76 77 /// Copies exact/nsw/nuw flags (if any) from binary operation \p I to 78 /// binary operation \p V. 79 /// 80 /// \returns Binary operation \p V. 81 /// \returns \p T's base element bit width. 82 unsigned getBaseElementBitWidth(const Type *T) const; 83 84 /// \returns Equivalent 32 bit integer type for given type \p T. For example, 85 /// if \p T is i7, then i32 is returned; if \p T is <3 x i12>, then <3 x i32> 86 /// is returned. 87 Type *getI32Ty(IRBuilder<> &B, const Type *T) const; 88 89 /// \returns True if binary operation \p I is a signed binary operation, false 90 /// otherwise. 91 bool isSigned(const BinaryOperator &I) const; 92 93 /// \returns True if the condition of 'select' operation \p I comes from a 94 /// signed 'icmp' operation, false otherwise. 95 bool isSigned(const SelectInst &I) const; 96 97 /// \returns True if type \p T needs to be promoted to 32 bit integer type, 98 /// false otherwise. 99 bool needsPromotionToI32(const Type *T) const; 100 101 /// Promotes uniform binary operation \p I to equivalent 32 bit binary 102 /// operation. 103 /// 104 /// \details \p I's base element bit width must be greater than 1 and less 105 /// than or equal 16. Promotion is done by sign or zero extending operands to 106 /// 32 bits, replacing \p I with equivalent 32 bit binary operation, and 107 /// truncating the result of 32 bit binary operation back to \p I's original 108 /// type. Division operation is not promoted. 109 /// 110 /// \returns True if \p I is promoted to equivalent 32 bit binary operation, 111 /// false otherwise. 112 bool promoteUniformOpToI32(BinaryOperator &I) const; 113 114 /// Promotes uniform 'icmp' operation \p I to 32 bit 'icmp' operation. 115 /// 116 /// \details \p I's base element bit width must be greater than 1 and less 117 /// than or equal 16. Promotion is done by sign or zero extending operands to 118 /// 32 bits, and replacing \p I with 32 bit 'icmp' operation. 119 /// 120 /// \returns True. 121 bool promoteUniformOpToI32(ICmpInst &I) const; 122 123 /// Promotes uniform 'select' operation \p I to 32 bit 'select' 124 /// operation. 125 /// 126 /// \details \p I's base element bit width must be greater than 1 and less 127 /// than or equal 16. Promotion is done by sign or zero extending operands to 128 /// 32 bits, replacing \p I with 32 bit 'select' operation, and truncating the 129 /// result of 32 bit 'select' operation back to \p I's original type. 130 /// 131 /// \returns True. 132 bool promoteUniformOpToI32(SelectInst &I) const; 133 134 /// Promotes uniform 'bitreverse' intrinsic \p I to 32 bit 'bitreverse' 135 /// intrinsic. 136 /// 137 /// \details \p I's base element bit width must be greater than 1 and less 138 /// than or equal 16. Promotion is done by zero extending the operand to 32 139 /// bits, replacing \p I with 32 bit 'bitreverse' intrinsic, shifting the 140 /// result of 32 bit 'bitreverse' intrinsic to the right with zero fill (the 141 /// shift amount is 32 minus \p I's base element bit width), and truncating 142 /// the result of the shift operation back to \p I's original type. 143 /// 144 /// \returns True. 145 bool promoteUniformBitreverseToI32(IntrinsicInst &I) const; 146 147 148 unsigned numBitsUnsigned(Value *Op, unsigned ScalarSize) const; 149 unsigned numBitsSigned(Value *Op, unsigned ScalarSize) const; 150 bool isI24(Value *V, unsigned ScalarSize) const; 151 bool isU24(Value *V, unsigned ScalarSize) const; 152 153 /// Replace mul instructions with llvm.amdgcn.mul.u24 or llvm.amdgcn.mul.s24. 154 /// SelectionDAG has an issue where an and asserting the bits are known 155 bool replaceMulWithMul24(BinaryOperator &I) const; 156 157 /// Perform same function as equivalently named function in DAGCombiner. Since 158 /// we expand some divisions here, we need to perform this before obscuring. 159 bool foldBinOpIntoSelect(BinaryOperator &I) const; 160 161 bool divHasSpecialOptimization(BinaryOperator &I, 162 Value *Num, Value *Den) const; 163 164 /// Expands 24 bit div or rem. 165 Value* expandDivRem24(IRBuilder<> &Builder, BinaryOperator &I, 166 Value *Num, Value *Den, 167 bool IsDiv, bool IsSigned) const; 168 169 /// Expands 32 bit div or rem. 170 Value* expandDivRem32(IRBuilder<> &Builder, BinaryOperator &I, 171 Value *Num, Value *Den) const; 172 173 /// Widen a scalar load. 174 /// 175 /// \details \p Widen scalar load for uniform, small type loads from constant 176 // memory / to a full 32-bits and then truncate the input to allow a scalar 177 // load instead of a vector load. 178 // 179 /// \returns True. 180 181 bool canWidenScalarExtLoad(LoadInst &I) const; 182 183 public: 184 static char ID; 185 186 AMDGPUCodeGenPrepare() : FunctionPass(ID) {} 187 188 bool visitFDiv(BinaryOperator &I); 189 190 bool visitInstruction(Instruction &I) { return false; } 191 bool visitBinaryOperator(BinaryOperator &I); 192 bool visitLoadInst(LoadInst &I); 193 bool visitICmpInst(ICmpInst &I); 194 bool visitSelectInst(SelectInst &I); 195 196 bool visitIntrinsicInst(IntrinsicInst &I); 197 bool visitBitreverseIntrinsicInst(IntrinsicInst &I); 198 199 bool doInitialization(Module &M) override; 200 bool runOnFunction(Function &F) override; 201 202 StringRef getPassName() const override { return "AMDGPU IR optimizations"; } 203 204 void getAnalysisUsage(AnalysisUsage &AU) const override { 205 AU.addRequired<AssumptionCacheTracker>(); 206 AU.addRequired<LegacyDivergenceAnalysis>(); 207 AU.setPreservesAll(); 208 } 209 }; 210 211 } // end anonymous namespace 212 213 unsigned AMDGPUCodeGenPrepare::getBaseElementBitWidth(const Type *T) const { 214 assert(needsPromotionToI32(T) && "T does not need promotion to i32"); 215 216 if (T->isIntegerTy()) 217 return T->getIntegerBitWidth(); 218 return cast<VectorType>(T)->getElementType()->getIntegerBitWidth(); 219 } 220 221 Type *AMDGPUCodeGenPrepare::getI32Ty(IRBuilder<> &B, const Type *T) const { 222 assert(needsPromotionToI32(T) && "T does not need promotion to i32"); 223 224 if (T->isIntegerTy()) 225 return B.getInt32Ty(); 226 return VectorType::get(B.getInt32Ty(), cast<VectorType>(T)->getNumElements()); 227 } 228 229 bool AMDGPUCodeGenPrepare::isSigned(const BinaryOperator &I) const { 230 return I.getOpcode() == Instruction::AShr || 231 I.getOpcode() == Instruction::SDiv || I.getOpcode() == Instruction::SRem; 232 } 233 234 bool AMDGPUCodeGenPrepare::isSigned(const SelectInst &I) const { 235 return isa<ICmpInst>(I.getOperand(0)) ? 236 cast<ICmpInst>(I.getOperand(0))->isSigned() : false; 237 } 238 239 bool AMDGPUCodeGenPrepare::needsPromotionToI32(const Type *T) const { 240 const IntegerType *IntTy = dyn_cast<IntegerType>(T); 241 if (IntTy && IntTy->getBitWidth() > 1 && IntTy->getBitWidth() <= 16) 242 return true; 243 244 if (const VectorType *VT = dyn_cast<VectorType>(T)) { 245 // TODO: The set of packed operations is more limited, so may want to 246 // promote some anyway. 247 if (ST->hasVOP3PInsts()) 248 return false; 249 250 return needsPromotionToI32(VT->getElementType()); 251 } 252 253 return false; 254 } 255 256 // Return true if the op promoted to i32 should have nsw set. 257 static bool promotedOpIsNSW(const Instruction &I) { 258 switch (I.getOpcode()) { 259 case Instruction::Shl: 260 case Instruction::Add: 261 case Instruction::Sub: 262 return true; 263 case Instruction::Mul: 264 return I.hasNoUnsignedWrap(); 265 default: 266 return false; 267 } 268 } 269 270 // Return true if the op promoted to i32 should have nuw set. 271 static bool promotedOpIsNUW(const Instruction &I) { 272 switch (I.getOpcode()) { 273 case Instruction::Shl: 274 case Instruction::Add: 275 case Instruction::Mul: 276 return true; 277 case Instruction::Sub: 278 return I.hasNoUnsignedWrap(); 279 default: 280 return false; 281 } 282 } 283 284 bool AMDGPUCodeGenPrepare::canWidenScalarExtLoad(LoadInst &I) const { 285 Type *Ty = I.getType(); 286 const DataLayout &DL = Mod->getDataLayout(); 287 int TySize = DL.getTypeSizeInBits(Ty); 288 unsigned Align = I.getAlignment() ? 289 I.getAlignment() : DL.getABITypeAlignment(Ty); 290 291 return I.isSimple() && TySize < 32 && Align >= 4 && DA->isUniform(&I); 292 } 293 294 bool AMDGPUCodeGenPrepare::promoteUniformOpToI32(BinaryOperator &I) const { 295 assert(needsPromotionToI32(I.getType()) && 296 "I does not need promotion to i32"); 297 298 if (I.getOpcode() == Instruction::SDiv || 299 I.getOpcode() == Instruction::UDiv || 300 I.getOpcode() == Instruction::SRem || 301 I.getOpcode() == Instruction::URem) 302 return false; 303 304 IRBuilder<> Builder(&I); 305 Builder.SetCurrentDebugLocation(I.getDebugLoc()); 306 307 Type *I32Ty = getI32Ty(Builder, I.getType()); 308 Value *ExtOp0 = nullptr; 309 Value *ExtOp1 = nullptr; 310 Value *ExtRes = nullptr; 311 Value *TruncRes = nullptr; 312 313 if (isSigned(I)) { 314 ExtOp0 = Builder.CreateSExt(I.getOperand(0), I32Ty); 315 ExtOp1 = Builder.CreateSExt(I.getOperand(1), I32Ty); 316 } else { 317 ExtOp0 = Builder.CreateZExt(I.getOperand(0), I32Ty); 318 ExtOp1 = Builder.CreateZExt(I.getOperand(1), I32Ty); 319 } 320 321 ExtRes = Builder.CreateBinOp(I.getOpcode(), ExtOp0, ExtOp1); 322 if (Instruction *Inst = dyn_cast<Instruction>(ExtRes)) { 323 if (promotedOpIsNSW(cast<Instruction>(I))) 324 Inst->setHasNoSignedWrap(); 325 326 if (promotedOpIsNUW(cast<Instruction>(I))) 327 Inst->setHasNoUnsignedWrap(); 328 329 if (const auto *ExactOp = dyn_cast<PossiblyExactOperator>(&I)) 330 Inst->setIsExact(ExactOp->isExact()); 331 } 332 333 TruncRes = Builder.CreateTrunc(ExtRes, I.getType()); 334 335 I.replaceAllUsesWith(TruncRes); 336 I.eraseFromParent(); 337 338 return true; 339 } 340 341 bool AMDGPUCodeGenPrepare::promoteUniformOpToI32(ICmpInst &I) const { 342 assert(needsPromotionToI32(I.getOperand(0)->getType()) && 343 "I does not need promotion to i32"); 344 345 IRBuilder<> Builder(&I); 346 Builder.SetCurrentDebugLocation(I.getDebugLoc()); 347 348 Type *I32Ty = getI32Ty(Builder, I.getOperand(0)->getType()); 349 Value *ExtOp0 = nullptr; 350 Value *ExtOp1 = nullptr; 351 Value *NewICmp = nullptr; 352 353 if (I.isSigned()) { 354 ExtOp0 = Builder.CreateSExt(I.getOperand(0), I32Ty); 355 ExtOp1 = Builder.CreateSExt(I.getOperand(1), I32Ty); 356 } else { 357 ExtOp0 = Builder.CreateZExt(I.getOperand(0), I32Ty); 358 ExtOp1 = Builder.CreateZExt(I.getOperand(1), I32Ty); 359 } 360 NewICmp = Builder.CreateICmp(I.getPredicate(), ExtOp0, ExtOp1); 361 362 I.replaceAllUsesWith(NewICmp); 363 I.eraseFromParent(); 364 365 return true; 366 } 367 368 bool AMDGPUCodeGenPrepare::promoteUniformOpToI32(SelectInst &I) const { 369 assert(needsPromotionToI32(I.getType()) && 370 "I does not need promotion to i32"); 371 372 IRBuilder<> Builder(&I); 373 Builder.SetCurrentDebugLocation(I.getDebugLoc()); 374 375 Type *I32Ty = getI32Ty(Builder, I.getType()); 376 Value *ExtOp1 = nullptr; 377 Value *ExtOp2 = nullptr; 378 Value *ExtRes = nullptr; 379 Value *TruncRes = nullptr; 380 381 if (isSigned(I)) { 382 ExtOp1 = Builder.CreateSExt(I.getOperand(1), I32Ty); 383 ExtOp2 = Builder.CreateSExt(I.getOperand(2), I32Ty); 384 } else { 385 ExtOp1 = Builder.CreateZExt(I.getOperand(1), I32Ty); 386 ExtOp2 = Builder.CreateZExt(I.getOperand(2), I32Ty); 387 } 388 ExtRes = Builder.CreateSelect(I.getOperand(0), ExtOp1, ExtOp2); 389 TruncRes = Builder.CreateTrunc(ExtRes, I.getType()); 390 391 I.replaceAllUsesWith(TruncRes); 392 I.eraseFromParent(); 393 394 return true; 395 } 396 397 bool AMDGPUCodeGenPrepare::promoteUniformBitreverseToI32( 398 IntrinsicInst &I) const { 399 assert(I.getIntrinsicID() == Intrinsic::bitreverse && 400 "I must be bitreverse intrinsic"); 401 assert(needsPromotionToI32(I.getType()) && 402 "I does not need promotion to i32"); 403 404 IRBuilder<> Builder(&I); 405 Builder.SetCurrentDebugLocation(I.getDebugLoc()); 406 407 Type *I32Ty = getI32Ty(Builder, I.getType()); 408 Function *I32 = 409 Intrinsic::getDeclaration(Mod, Intrinsic::bitreverse, { I32Ty }); 410 Value *ExtOp = Builder.CreateZExt(I.getOperand(0), I32Ty); 411 Value *ExtRes = Builder.CreateCall(I32, { ExtOp }); 412 Value *LShrOp = 413 Builder.CreateLShr(ExtRes, 32 - getBaseElementBitWidth(I.getType())); 414 Value *TruncRes = 415 Builder.CreateTrunc(LShrOp, I.getType()); 416 417 I.replaceAllUsesWith(TruncRes); 418 I.eraseFromParent(); 419 420 return true; 421 } 422 423 unsigned AMDGPUCodeGenPrepare::numBitsUnsigned(Value *Op, 424 unsigned ScalarSize) const { 425 KnownBits Known = computeKnownBits(Op, *DL, 0, AC); 426 return ScalarSize - Known.countMinLeadingZeros(); 427 } 428 429 unsigned AMDGPUCodeGenPrepare::numBitsSigned(Value *Op, 430 unsigned ScalarSize) const { 431 // In order for this to be a signed 24-bit value, bit 23, must 432 // be a sign bit. 433 return ScalarSize - ComputeNumSignBits(Op, *DL, 0, AC); 434 } 435 436 bool AMDGPUCodeGenPrepare::isI24(Value *V, unsigned ScalarSize) const { 437 return ScalarSize >= 24 && // Types less than 24-bit should be treated 438 // as unsigned 24-bit values. 439 numBitsSigned(V, ScalarSize) < 24; 440 } 441 442 bool AMDGPUCodeGenPrepare::isU24(Value *V, unsigned ScalarSize) const { 443 return numBitsUnsigned(V, ScalarSize) <= 24; 444 } 445 446 static void extractValues(IRBuilder<> &Builder, 447 SmallVectorImpl<Value *> &Values, Value *V) { 448 VectorType *VT = dyn_cast<VectorType>(V->getType()); 449 if (!VT) { 450 Values.push_back(V); 451 return; 452 } 453 454 for (int I = 0, E = VT->getNumElements(); I != E; ++I) 455 Values.push_back(Builder.CreateExtractElement(V, I)); 456 } 457 458 static Value *insertValues(IRBuilder<> &Builder, 459 Type *Ty, 460 SmallVectorImpl<Value *> &Values) { 461 if (Values.size() == 1) 462 return Values[0]; 463 464 Value *NewVal = UndefValue::get(Ty); 465 for (int I = 0, E = Values.size(); I != E; ++I) 466 NewVal = Builder.CreateInsertElement(NewVal, Values[I], I); 467 468 return NewVal; 469 } 470 471 bool AMDGPUCodeGenPrepare::replaceMulWithMul24(BinaryOperator &I) const { 472 if (I.getOpcode() != Instruction::Mul) 473 return false; 474 475 Type *Ty = I.getType(); 476 unsigned Size = Ty->getScalarSizeInBits(); 477 if (Size <= 16 && ST->has16BitInsts()) 478 return false; 479 480 // Prefer scalar if this could be s_mul_i32 481 if (DA->isUniform(&I)) 482 return false; 483 484 Value *LHS = I.getOperand(0); 485 Value *RHS = I.getOperand(1); 486 IRBuilder<> Builder(&I); 487 Builder.SetCurrentDebugLocation(I.getDebugLoc()); 488 489 Intrinsic::ID IntrID = Intrinsic::not_intrinsic; 490 491 // TODO: Should this try to match mulhi24? 492 if (ST->hasMulU24() && isU24(LHS, Size) && isU24(RHS, Size)) { 493 IntrID = Intrinsic::amdgcn_mul_u24; 494 } else if (ST->hasMulI24() && isI24(LHS, Size) && isI24(RHS, Size)) { 495 IntrID = Intrinsic::amdgcn_mul_i24; 496 } else 497 return false; 498 499 SmallVector<Value *, 4> LHSVals; 500 SmallVector<Value *, 4> RHSVals; 501 SmallVector<Value *, 4> ResultVals; 502 extractValues(Builder, LHSVals, LHS); 503 extractValues(Builder, RHSVals, RHS); 504 505 506 IntegerType *I32Ty = Builder.getInt32Ty(); 507 FunctionCallee Intrin = Intrinsic::getDeclaration(Mod, IntrID); 508 for (int I = 0, E = LHSVals.size(); I != E; ++I) { 509 Value *LHS, *RHS; 510 if (IntrID == Intrinsic::amdgcn_mul_u24) { 511 LHS = Builder.CreateZExtOrTrunc(LHSVals[I], I32Ty); 512 RHS = Builder.CreateZExtOrTrunc(RHSVals[I], I32Ty); 513 } else { 514 LHS = Builder.CreateSExtOrTrunc(LHSVals[I], I32Ty); 515 RHS = Builder.CreateSExtOrTrunc(RHSVals[I], I32Ty); 516 } 517 518 Value *Result = Builder.CreateCall(Intrin, {LHS, RHS}); 519 520 if (IntrID == Intrinsic::amdgcn_mul_u24) { 521 ResultVals.push_back(Builder.CreateZExtOrTrunc(Result, 522 LHSVals[I]->getType())); 523 } else { 524 ResultVals.push_back(Builder.CreateSExtOrTrunc(Result, 525 LHSVals[I]->getType())); 526 } 527 } 528 529 Value *NewVal = insertValues(Builder, Ty, ResultVals); 530 NewVal->takeName(&I); 531 I.replaceAllUsesWith(NewVal); 532 I.eraseFromParent(); 533 534 return true; 535 } 536 537 // Find a select instruction, which may have been casted. This is mostly to deal 538 // with cases where i16 selects were promoted here to i32. 539 static SelectInst *findSelectThroughCast(Value *V, CastInst *&Cast) { 540 Cast = nullptr; 541 if (SelectInst *Sel = dyn_cast<SelectInst>(V)) 542 return Sel; 543 544 if ((Cast = dyn_cast<CastInst>(V))) { 545 if (SelectInst *Sel = dyn_cast<SelectInst>(Cast->getOperand(0))) 546 return Sel; 547 } 548 549 return nullptr; 550 } 551 552 bool AMDGPUCodeGenPrepare::foldBinOpIntoSelect(BinaryOperator &BO) const { 553 // Don't do this unless the old select is going away. We want to eliminate the 554 // binary operator, not replace a binop with a select. 555 int SelOpNo = 0; 556 557 CastInst *CastOp; 558 559 // TODO: Should probably try to handle some cases with multiple 560 // users. Duplicating the select may be profitable for division. 561 SelectInst *Sel = findSelectThroughCast(BO.getOperand(0), CastOp); 562 if (!Sel || !Sel->hasOneUse()) { 563 SelOpNo = 1; 564 Sel = findSelectThroughCast(BO.getOperand(1), CastOp); 565 } 566 567 if (!Sel || !Sel->hasOneUse()) 568 return false; 569 570 Constant *CT = dyn_cast<Constant>(Sel->getTrueValue()); 571 Constant *CF = dyn_cast<Constant>(Sel->getFalseValue()); 572 Constant *CBO = dyn_cast<Constant>(BO.getOperand(SelOpNo ^ 1)); 573 if (!CBO || !CT || !CF) 574 return false; 575 576 if (CastOp) { 577 if (!CastOp->hasOneUse()) 578 return false; 579 CT = ConstantFoldCastOperand(CastOp->getOpcode(), CT, BO.getType(), *DL); 580 CF = ConstantFoldCastOperand(CastOp->getOpcode(), CF, BO.getType(), *DL); 581 } 582 583 // TODO: Handle special 0/-1 cases DAG combine does, although we only really 584 // need to handle divisions here. 585 Constant *FoldedT = SelOpNo ? 586 ConstantFoldBinaryOpOperands(BO.getOpcode(), CBO, CT, *DL) : 587 ConstantFoldBinaryOpOperands(BO.getOpcode(), CT, CBO, *DL); 588 if (isa<ConstantExpr>(FoldedT)) 589 return false; 590 591 Constant *FoldedF = SelOpNo ? 592 ConstantFoldBinaryOpOperands(BO.getOpcode(), CBO, CF, *DL) : 593 ConstantFoldBinaryOpOperands(BO.getOpcode(), CF, CBO, *DL); 594 if (isa<ConstantExpr>(FoldedF)) 595 return false; 596 597 IRBuilder<> Builder(&BO); 598 Builder.SetCurrentDebugLocation(BO.getDebugLoc()); 599 if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(&BO)) 600 Builder.setFastMathFlags(FPOp->getFastMathFlags()); 601 602 Value *NewSelect = Builder.CreateSelect(Sel->getCondition(), 603 FoldedT, FoldedF); 604 NewSelect->takeName(&BO); 605 BO.replaceAllUsesWith(NewSelect); 606 BO.eraseFromParent(); 607 if (CastOp) 608 CastOp->eraseFromParent(); 609 Sel->eraseFromParent(); 610 return true; 611 } 612 613 // Optimize fdiv with rcp: 614 // 615 // 1/x -> rcp(x) when rcp is sufficiently accurate or inaccurate rcp is 616 // allowed with unsafe-fp-math or afn. 617 // 618 // a/b -> a*rcp(b) when inaccurate rcp is allowed with unsafe-fp-math or afn. 619 static Value *optimizeWithRcp(Value *Num, Value *Den, bool AllowInaccurateRcp, 620 bool RcpIsAccurate, IRBuilder<> Builder, 621 Module *Mod) { 622 623 if (!AllowInaccurateRcp && !RcpIsAccurate) 624 return nullptr; 625 626 Type *Ty = Den->getType(); 627 if (const ConstantFP *CLHS = dyn_cast<ConstantFP>(Num)) { 628 if (AllowInaccurateRcp || RcpIsAccurate) { 629 if (CLHS->isExactlyValue(1.0)) { 630 Function *Decl = Intrinsic::getDeclaration( 631 Mod, Intrinsic::amdgcn_rcp, Ty); 632 633 // v_rcp_f32 and v_rsq_f32 do not support denormals, and according to 634 // the CI documentation has a worst case error of 1 ulp. 635 // OpenCL requires <= 2.5 ulp for 1.0 / x, so it should always be OK to 636 // use it as long as we aren't trying to use denormals. 637 // 638 // v_rcp_f16 and v_rsq_f16 DO support denormals. 639 640 // NOTE: v_sqrt and v_rcp will be combined to v_rsq later. So we don't 641 // insert rsq intrinsic here. 642 643 // 1.0 / x -> rcp(x) 644 return Builder.CreateCall(Decl, { Den }); 645 } 646 647 // Same as for 1.0, but expand the sign out of the constant. 648 if (CLHS->isExactlyValue(-1.0)) { 649 Function *Decl = Intrinsic::getDeclaration( 650 Mod, Intrinsic::amdgcn_rcp, Ty); 651 652 // -1.0 / x -> rcp (fneg x) 653 Value *FNeg = Builder.CreateFNeg(Den); 654 return Builder.CreateCall(Decl, { FNeg }); 655 } 656 } 657 } 658 659 if (AllowInaccurateRcp) { 660 Function *Decl = Intrinsic::getDeclaration( 661 Mod, Intrinsic::amdgcn_rcp, Ty); 662 663 // Turn into multiply by the reciprocal. 664 // x / y -> x * (1.0 / y) 665 Value *Recip = Builder.CreateCall(Decl, { Den }); 666 return Builder.CreateFMul(Num, Recip); 667 } 668 return nullptr; 669 } 670 671 // optimize with fdiv.fast: 672 // 673 // a/b -> fdiv.fast(a, b) when !fpmath >= 2.5ulp with denormals flushed. 674 // 675 // 1/x -> fdiv.fast(1,x) when !fpmath >= 2.5ulp. 676 // 677 // NOTE: optimizeWithRcp should be tried first because rcp is the preference. 678 static Value *optimizeWithFDivFast(Value *Num, Value *Den, float ReqdAccuracy, 679 bool HasDenormals, IRBuilder<> Builder, 680 Module *Mod) { 681 // fdiv.fast can achieve 2.5 ULP accuracy. 682 if (ReqdAccuracy < 2.5f) 683 return nullptr; 684 685 // Only have fdiv.fast for f32. 686 Type *Ty = Den->getType(); 687 if (!Ty->isFloatTy()) 688 return nullptr; 689 690 bool NumIsOne = false; 691 if (const ConstantFP *CNum = dyn_cast<ConstantFP>(Num)) { 692 if (CNum->isExactlyValue(+1.0) || CNum->isExactlyValue(-1.0)) 693 NumIsOne = true; 694 } 695 696 // fdiv does not support denormals. But 1.0/x is always fine to use it. 697 if (HasDenormals && !NumIsOne) 698 return nullptr; 699 700 Function *Decl = Intrinsic::getDeclaration(Mod, Intrinsic::amdgcn_fdiv_fast); 701 return Builder.CreateCall(Decl, { Num, Den }); 702 } 703 704 // Optimizations is performed based on fpmath, fast math flags as well as 705 // denormals to optimize fdiv with either rcp or fdiv.fast. 706 // 707 // With rcp: 708 // 1/x -> rcp(x) when rcp is sufficiently accurate or inaccurate rcp is 709 // allowed with unsafe-fp-math or afn. 710 // 711 // a/b -> a*rcp(b) when inaccurate rcp is allowed with unsafe-fp-math or afn. 712 // 713 // With fdiv.fast: 714 // a/b -> fdiv.fast(a, b) when !fpmath >= 2.5ulp with denormals flushed. 715 // 716 // 1/x -> fdiv.fast(1,x) when !fpmath >= 2.5ulp. 717 // 718 // NOTE: rcp is the preference in cases that both are legal. 719 bool AMDGPUCodeGenPrepare::visitFDiv(BinaryOperator &FDiv) { 720 721 Type *Ty = FDiv.getType()->getScalarType(); 722 723 // No intrinsic for fdiv16 if target does not support f16. 724 if (Ty->isHalfTy() && !ST->has16BitInsts()) 725 return false; 726 727 const FPMathOperator *FPOp = cast<const FPMathOperator>(&FDiv); 728 const float ReqdAccuracy = FPOp->getFPAccuracy(); 729 730 // Inaccurate rcp is allowed with unsafe-fp-math or afn. 731 FastMathFlags FMF = FPOp->getFastMathFlags(); 732 const bool AllowInaccurateRcp = HasUnsafeFPMath || FMF.approxFunc(); 733 734 // rcp_f16 is accurate for !fpmath >= 1.0ulp. 735 // rcp_f32 is accurate for !fpmath >= 1.0ulp and denormals are flushed. 736 // rcp_f64 is never accurate. 737 const bool RcpIsAccurate = (Ty->isHalfTy() && ReqdAccuracy >= 1.0f) || 738 (Ty->isFloatTy() && !HasFP32Denormals && ReqdAccuracy >= 1.0f); 739 740 IRBuilder<> Builder(FDiv.getParent(), std::next(FDiv.getIterator())); 741 Builder.setFastMathFlags(FMF); 742 Builder.SetCurrentDebugLocation(FDiv.getDebugLoc()); 743 744 Value *Num = FDiv.getOperand(0); 745 Value *Den = FDiv.getOperand(1); 746 747 Value *NewFDiv = nullptr; 748 if (VectorType *VT = dyn_cast<VectorType>(FDiv.getType())) { 749 NewFDiv = UndefValue::get(VT); 750 751 // FIXME: Doesn't do the right thing for cases where the vector is partially 752 // constant. This works when the scalarizer pass is run first. 753 for (unsigned I = 0, E = VT->getNumElements(); I != E; ++I) { 754 Value *NumEltI = Builder.CreateExtractElement(Num, I); 755 Value *DenEltI = Builder.CreateExtractElement(Den, I); 756 // Try rcp first. 757 Value *NewElt = optimizeWithRcp(NumEltI, DenEltI, AllowInaccurateRcp, 758 RcpIsAccurate, Builder, Mod); 759 if (!NewElt) // Try fdiv.fast. 760 NewElt = optimizeWithFDivFast(NumEltI, DenEltI, ReqdAccuracy, 761 HasFP32Denormals, Builder, Mod); 762 if (!NewElt) // Keep the original. 763 NewElt = Builder.CreateFDiv(NumEltI, DenEltI); 764 765 NewFDiv = Builder.CreateInsertElement(NewFDiv, NewElt, I); 766 } 767 } else { // Scalar FDiv. 768 // Try rcp first. 769 NewFDiv = optimizeWithRcp(Num, Den, AllowInaccurateRcp, RcpIsAccurate, 770 Builder, Mod); 771 if (!NewFDiv) { // Try fdiv.fast. 772 NewFDiv = optimizeWithFDivFast(Num, Den, ReqdAccuracy, HasFP32Denormals, 773 Builder, Mod); 774 } 775 } 776 777 if (NewFDiv) { 778 FDiv.replaceAllUsesWith(NewFDiv); 779 NewFDiv->takeName(&FDiv); 780 FDiv.eraseFromParent(); 781 } 782 783 return !!NewFDiv; 784 } 785 786 static bool hasUnsafeFPMath(const Function &F) { 787 Attribute Attr = F.getFnAttribute("unsafe-fp-math"); 788 return Attr.getValueAsString() == "true"; 789 } 790 791 static std::pair<Value*, Value*> getMul64(IRBuilder<> &Builder, 792 Value *LHS, Value *RHS) { 793 Type *I32Ty = Builder.getInt32Ty(); 794 Type *I64Ty = Builder.getInt64Ty(); 795 796 Value *LHS_EXT64 = Builder.CreateZExt(LHS, I64Ty); 797 Value *RHS_EXT64 = Builder.CreateZExt(RHS, I64Ty); 798 Value *MUL64 = Builder.CreateMul(LHS_EXT64, RHS_EXT64); 799 Value *Lo = Builder.CreateTrunc(MUL64, I32Ty); 800 Value *Hi = Builder.CreateLShr(MUL64, Builder.getInt64(32)); 801 Hi = Builder.CreateTrunc(Hi, I32Ty); 802 return std::make_pair(Lo, Hi); 803 } 804 805 static Value* getMulHu(IRBuilder<> &Builder, Value *LHS, Value *RHS) { 806 return getMul64(Builder, LHS, RHS).second; 807 } 808 809 // The fractional part of a float is enough to accurately represent up to 810 // a 24-bit signed integer. 811 Value* AMDGPUCodeGenPrepare::expandDivRem24(IRBuilder<> &Builder, 812 BinaryOperator &I, 813 Value *Num, Value *Den, 814 bool IsDiv, bool IsSigned) const { 815 assert(Num->getType()->isIntegerTy(32)); 816 817 const DataLayout &DL = Mod->getDataLayout(); 818 unsigned LHSSignBits = ComputeNumSignBits(Num, DL, 0, AC, &I); 819 if (LHSSignBits < 9) 820 return nullptr; 821 822 unsigned RHSSignBits = ComputeNumSignBits(Den, DL, 0, AC, &I); 823 if (RHSSignBits < 9) 824 return nullptr; 825 826 827 unsigned SignBits = std::min(LHSSignBits, RHSSignBits); 828 unsigned DivBits = 32 - SignBits; 829 if (IsSigned) 830 ++DivBits; 831 832 Type *I32Ty = Builder.getInt32Ty(); 833 Type *F32Ty = Builder.getFloatTy(); 834 ConstantInt *One = Builder.getInt32(1); 835 Value *JQ = One; 836 837 if (IsSigned) { 838 // char|short jq = ia ^ ib; 839 JQ = Builder.CreateXor(Num, Den); 840 841 // jq = jq >> (bitsize - 2) 842 JQ = Builder.CreateAShr(JQ, Builder.getInt32(30)); 843 844 // jq = jq | 0x1 845 JQ = Builder.CreateOr(JQ, One); 846 } 847 848 // int ia = (int)LHS; 849 Value *IA = Num; 850 851 // int ib, (int)RHS; 852 Value *IB = Den; 853 854 // float fa = (float)ia; 855 Value *FA = IsSigned ? Builder.CreateSIToFP(IA, F32Ty) 856 : Builder.CreateUIToFP(IA, F32Ty); 857 858 // float fb = (float)ib; 859 Value *FB = IsSigned ? Builder.CreateSIToFP(IB,F32Ty) 860 : Builder.CreateUIToFP(IB,F32Ty); 861 862 Function *RcpDecl = Intrinsic::getDeclaration(Mod, Intrinsic::amdgcn_rcp, 863 Builder.getFloatTy()); 864 Value *RCP = Builder.CreateCall(RcpDecl, { FB }); 865 Value *FQM = Builder.CreateFMul(FA, RCP); 866 867 // fq = trunc(fqm); 868 CallInst *FQ = Builder.CreateUnaryIntrinsic(Intrinsic::trunc, FQM); 869 FQ->copyFastMathFlags(Builder.getFastMathFlags()); 870 871 // float fqneg = -fq; 872 Value *FQNeg = Builder.CreateFNeg(FQ); 873 874 // float fr = mad(fqneg, fb, fa); 875 Value *FR = Builder.CreateIntrinsic(Intrinsic::amdgcn_fmad_ftz, 876 {FQNeg->getType()}, {FQNeg, FB, FA}, FQ); 877 878 // int iq = (int)fq; 879 Value *IQ = IsSigned ? Builder.CreateFPToSI(FQ, I32Ty) 880 : Builder.CreateFPToUI(FQ, I32Ty); 881 882 // fr = fabs(fr); 883 FR = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, FR, FQ); 884 885 // fb = fabs(fb); 886 FB = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, FB, FQ); 887 888 // int cv = fr >= fb; 889 Value *CV = Builder.CreateFCmpOGE(FR, FB); 890 891 // jq = (cv ? jq : 0); 892 JQ = Builder.CreateSelect(CV, JQ, Builder.getInt32(0)); 893 894 // dst = iq + jq; 895 Value *Div = Builder.CreateAdd(IQ, JQ); 896 897 Value *Res = Div; 898 if (!IsDiv) { 899 // Rem needs compensation, it's easier to recompute it 900 Value *Rem = Builder.CreateMul(Div, Den); 901 Res = Builder.CreateSub(Num, Rem); 902 } 903 904 // Extend in register from the number of bits this divide really is. 905 if (IsSigned) { 906 Res = Builder.CreateShl(Res, 32 - DivBits); 907 Res = Builder.CreateAShr(Res, 32 - DivBits); 908 } else { 909 ConstantInt *TruncMask = Builder.getInt32((UINT64_C(1) << DivBits) - 1); 910 Res = Builder.CreateAnd(Res, TruncMask); 911 } 912 913 return Res; 914 } 915 916 // Try to recognize special cases the DAG will emit special, better expansions 917 // than the general expansion we do here. 918 919 // TODO: It would be better to just directly handle those optimizations here. 920 bool AMDGPUCodeGenPrepare::divHasSpecialOptimization( 921 BinaryOperator &I, Value *Num, Value *Den) const { 922 if (Constant *C = dyn_cast<Constant>(Den)) { 923 // Arbitrary constants get a better expansion as long as a wider mulhi is 924 // legal. 925 if (C->getType()->getScalarSizeInBits() <= 32) 926 return true; 927 928 // TODO: Sdiv check for not exact for some reason. 929 930 // If there's no wider mulhi, there's only a better expansion for powers of 931 // two. 932 // TODO: Should really know for each vector element. 933 if (isKnownToBeAPowerOfTwo(C, *DL, true, 0, AC, &I, DT)) 934 return true; 935 936 return false; 937 } 938 939 if (BinaryOperator *BinOpDen = dyn_cast<BinaryOperator>(Den)) { 940 // fold (udiv x, (shl c, y)) -> x >>u (log2(c)+y) iff c is power of 2 941 if (BinOpDen->getOpcode() == Instruction::Shl && 942 isa<Constant>(BinOpDen->getOperand(0)) && 943 isKnownToBeAPowerOfTwo(BinOpDen->getOperand(0), *DL, true, 944 0, AC, &I, DT)) { 945 return true; 946 } 947 } 948 949 return false; 950 } 951 952 Value* AMDGPUCodeGenPrepare::expandDivRem32(IRBuilder<> &Builder, 953 BinaryOperator &I, 954 Value *Num, Value *Den) const { 955 Instruction::BinaryOps Opc = I.getOpcode(); 956 assert(Opc == Instruction::URem || Opc == Instruction::UDiv || 957 Opc == Instruction::SRem || Opc == Instruction::SDiv); 958 959 FastMathFlags FMF; 960 FMF.setFast(); 961 Builder.setFastMathFlags(FMF); 962 963 if (divHasSpecialOptimization(I, Num, Den)) 964 return nullptr; // Keep it for later optimization. 965 966 bool IsDiv = Opc == Instruction::UDiv || Opc == Instruction::SDiv; 967 bool IsSigned = Opc == Instruction::SRem || Opc == Instruction::SDiv; 968 969 Type *Ty = Num->getType(); 970 Type *I32Ty = Builder.getInt32Ty(); 971 Type *F32Ty = Builder.getFloatTy(); 972 973 if (Ty->getScalarSizeInBits() < 32) { 974 if (IsSigned) { 975 Num = Builder.CreateSExt(Num, I32Ty); 976 Den = Builder.CreateSExt(Den, I32Ty); 977 } else { 978 Num = Builder.CreateZExt(Num, I32Ty); 979 Den = Builder.CreateZExt(Den, I32Ty); 980 } 981 } 982 983 if (Value *Res = expandDivRem24(Builder, I, Num, Den, IsDiv, IsSigned)) { 984 Res = Builder.CreateTrunc(Res, Ty); 985 return Res; 986 } 987 988 ConstantInt *Zero = Builder.getInt32(0); 989 ConstantInt *One = Builder.getInt32(1); 990 ConstantInt *MinusOne = Builder.getInt32(~0); 991 992 Value *Sign = nullptr; 993 if (IsSigned) { 994 ConstantInt *K31 = Builder.getInt32(31); 995 Value *LHSign = Builder.CreateAShr(Num, K31); 996 Value *RHSign = Builder.CreateAShr(Den, K31); 997 // Remainder sign is the same as LHS 998 Sign = IsDiv ? Builder.CreateXor(LHSign, RHSign) : LHSign; 999 1000 Num = Builder.CreateAdd(Num, LHSign); 1001 Den = Builder.CreateAdd(Den, RHSign); 1002 1003 Num = Builder.CreateXor(Num, LHSign); 1004 Den = Builder.CreateXor(Den, RHSign); 1005 } 1006 1007 // RCP = URECIP(Den) = 2^32 / Den + e 1008 // e is rounding error. 1009 Value *DEN_F32 = Builder.CreateUIToFP(Den, F32Ty); 1010 1011 Function *RcpDecl = Intrinsic::getDeclaration(Mod, Intrinsic::amdgcn_rcp, 1012 Builder.getFloatTy()); 1013 Value *RCP_F32 = Builder.CreateCall(RcpDecl, { DEN_F32 }); 1014 Constant *UINT_MAX_PLUS_1 = ConstantFP::get(F32Ty, BitsToFloat(0x4f800000)); 1015 Value *RCP_SCALE = Builder.CreateFMul(RCP_F32, UINT_MAX_PLUS_1); 1016 Value *RCP = Builder.CreateFPToUI(RCP_SCALE, I32Ty); 1017 1018 // RCP_LO, RCP_HI = mul(RCP, Den) */ 1019 Value *RCP_LO, *RCP_HI; 1020 std::tie(RCP_LO, RCP_HI) = getMul64(Builder, RCP, Den); 1021 1022 // NEG_RCP_LO = -RCP_LO 1023 Value *NEG_RCP_LO = Builder.CreateNeg(RCP_LO); 1024 1025 // ABS_RCP_LO = (RCP_HI == 0 ? NEG_RCP_LO : RCP_LO) 1026 Value *RCP_HI_0_CC = Builder.CreateICmpEQ(RCP_HI, Zero); 1027 Value *ABS_RCP_LO = Builder.CreateSelect(RCP_HI_0_CC, NEG_RCP_LO, RCP_LO); 1028 1029 // Calculate the rounding error from the URECIP instruction 1030 // E = mulhu(ABS_RCP_LO, RCP) 1031 Value *E = getMulHu(Builder, ABS_RCP_LO, RCP); 1032 1033 // RCP_A_E = RCP + E 1034 Value *RCP_A_E = Builder.CreateAdd(RCP, E); 1035 1036 // RCP_S_E = RCP - E 1037 Value *RCP_S_E = Builder.CreateSub(RCP, E); 1038 1039 // Tmp0 = (RCP_HI == 0 ? RCP_A_E : RCP_SUB_E) 1040 Value *Tmp0 = Builder.CreateSelect(RCP_HI_0_CC, RCP_A_E, RCP_S_E); 1041 1042 // Quotient = mulhu(Tmp0, Num) 1043 Value *Quotient = getMulHu(Builder, Tmp0, Num); 1044 1045 // Num_S_Remainder = Quotient * Den 1046 Value *Num_S_Remainder = Builder.CreateMul(Quotient, Den); 1047 1048 // Remainder = Num - Num_S_Remainder 1049 Value *Remainder = Builder.CreateSub(Num, Num_S_Remainder); 1050 1051 // Remainder_GE_Den = (Remainder >= Den ? -1 : 0) 1052 Value *Rem_GE_Den_CC = Builder.CreateICmpUGE(Remainder, Den); 1053 Value *Remainder_GE_Den = Builder.CreateSelect(Rem_GE_Den_CC, MinusOne, Zero); 1054 1055 // Remainder_GE_Zero = (Num >= Num_S_Remainder ? -1 : 0) 1056 Value *Num_GE_Num_S_Rem_CC = Builder.CreateICmpUGE(Num, Num_S_Remainder); 1057 Value *Remainder_GE_Zero = Builder.CreateSelect(Num_GE_Num_S_Rem_CC, 1058 MinusOne, Zero); 1059 1060 // Tmp1 = Remainder_GE_Den & Remainder_GE_Zero 1061 Value *Tmp1 = Builder.CreateAnd(Remainder_GE_Den, Remainder_GE_Zero); 1062 Value *Tmp1_0_CC = Builder.CreateICmpEQ(Tmp1, Zero); 1063 1064 Value *Res; 1065 if (IsDiv) { 1066 // Quotient_A_One = Quotient + 1 1067 Value *Quotient_A_One = Builder.CreateAdd(Quotient, One); 1068 1069 // Quotient_S_One = Quotient - 1 1070 Value *Quotient_S_One = Builder.CreateSub(Quotient, One); 1071 1072 // Div = (Tmp1 == 0 ? Quotient : Quotient_A_One) 1073 Value *Div = Builder.CreateSelect(Tmp1_0_CC, Quotient, Quotient_A_One); 1074 1075 // Div = (Remainder_GE_Zero == 0 ? Quotient_S_One : Div) 1076 Res = Builder.CreateSelect(Num_GE_Num_S_Rem_CC, Div, Quotient_S_One); 1077 } else { 1078 // Remainder_S_Den = Remainder - Den 1079 Value *Remainder_S_Den = Builder.CreateSub(Remainder, Den); 1080 1081 // Remainder_A_Den = Remainder + Den 1082 Value *Remainder_A_Den = Builder.CreateAdd(Remainder, Den); 1083 1084 // Rem = (Tmp1 == 0 ? Remainder : Remainder_S_Den) 1085 Value *Rem = Builder.CreateSelect(Tmp1_0_CC, Remainder, Remainder_S_Den); 1086 1087 // Rem = (Remainder_GE_Zero == 0 ? Remainder_A_Den : Rem) 1088 Res = Builder.CreateSelect(Num_GE_Num_S_Rem_CC, Rem, Remainder_A_Den); 1089 } 1090 1091 if (IsSigned) { 1092 Res = Builder.CreateXor(Res, Sign); 1093 Res = Builder.CreateSub(Res, Sign); 1094 } 1095 1096 Res = Builder.CreateTrunc(Res, Ty); 1097 1098 return Res; 1099 } 1100 1101 bool AMDGPUCodeGenPrepare::visitBinaryOperator(BinaryOperator &I) { 1102 if (foldBinOpIntoSelect(I)) 1103 return true; 1104 1105 if (ST->has16BitInsts() && needsPromotionToI32(I.getType()) && 1106 DA->isUniform(&I) && promoteUniformOpToI32(I)) 1107 return true; 1108 1109 if (UseMul24Intrin && replaceMulWithMul24(I)) 1110 return true; 1111 1112 bool Changed = false; 1113 Instruction::BinaryOps Opc = I.getOpcode(); 1114 Type *Ty = I.getType(); 1115 Value *NewDiv = nullptr; 1116 if ((Opc == Instruction::URem || Opc == Instruction::UDiv || 1117 Opc == Instruction::SRem || Opc == Instruction::SDiv) && 1118 Ty->getScalarSizeInBits() <= 32) { 1119 Value *Num = I.getOperand(0); 1120 Value *Den = I.getOperand(1); 1121 IRBuilder<> Builder(&I); 1122 Builder.SetCurrentDebugLocation(I.getDebugLoc()); 1123 1124 if (VectorType *VT = dyn_cast<VectorType>(Ty)) { 1125 NewDiv = UndefValue::get(VT); 1126 1127 for (unsigned N = 0, E = VT->getNumElements(); N != E; ++N) { 1128 Value *NumEltN = Builder.CreateExtractElement(Num, N); 1129 Value *DenEltN = Builder.CreateExtractElement(Den, N); 1130 Value *NewElt = expandDivRem32(Builder, I, NumEltN, DenEltN); 1131 if (!NewElt) 1132 NewElt = Builder.CreateBinOp(Opc, NumEltN, DenEltN); 1133 NewDiv = Builder.CreateInsertElement(NewDiv, NewElt, N); 1134 } 1135 } else { 1136 NewDiv = expandDivRem32(Builder, I, Num, Den); 1137 } 1138 1139 if (NewDiv) { 1140 I.replaceAllUsesWith(NewDiv); 1141 I.eraseFromParent(); 1142 Changed = true; 1143 } 1144 } 1145 1146 return Changed; 1147 } 1148 1149 bool AMDGPUCodeGenPrepare::visitLoadInst(LoadInst &I) { 1150 if (!WidenLoads) 1151 return false; 1152 1153 if ((I.getPointerAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS || 1154 I.getPointerAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS_32BIT) && 1155 canWidenScalarExtLoad(I)) { 1156 IRBuilder<> Builder(&I); 1157 Builder.SetCurrentDebugLocation(I.getDebugLoc()); 1158 1159 Type *I32Ty = Builder.getInt32Ty(); 1160 Type *PT = PointerType::get(I32Ty, I.getPointerAddressSpace()); 1161 Value *BitCast= Builder.CreateBitCast(I.getPointerOperand(), PT); 1162 LoadInst *WidenLoad = Builder.CreateLoad(I32Ty, BitCast); 1163 WidenLoad->copyMetadata(I); 1164 1165 // If we have range metadata, we need to convert the type, and not make 1166 // assumptions about the high bits. 1167 if (auto *Range = WidenLoad->getMetadata(LLVMContext::MD_range)) { 1168 ConstantInt *Lower = 1169 mdconst::extract<ConstantInt>(Range->getOperand(0)); 1170 1171 if (Lower->getValue().isNullValue()) { 1172 WidenLoad->setMetadata(LLVMContext::MD_range, nullptr); 1173 } else { 1174 Metadata *LowAndHigh[] = { 1175 ConstantAsMetadata::get(ConstantInt::get(I32Ty, Lower->getValue().zext(32))), 1176 // Don't make assumptions about the high bits. 1177 ConstantAsMetadata::get(ConstantInt::get(I32Ty, 0)) 1178 }; 1179 1180 WidenLoad->setMetadata(LLVMContext::MD_range, 1181 MDNode::get(Mod->getContext(), LowAndHigh)); 1182 } 1183 } 1184 1185 int TySize = Mod->getDataLayout().getTypeSizeInBits(I.getType()); 1186 Type *IntNTy = Builder.getIntNTy(TySize); 1187 Value *ValTrunc = Builder.CreateTrunc(WidenLoad, IntNTy); 1188 Value *ValOrig = Builder.CreateBitCast(ValTrunc, I.getType()); 1189 I.replaceAllUsesWith(ValOrig); 1190 I.eraseFromParent(); 1191 return true; 1192 } 1193 1194 return false; 1195 } 1196 1197 bool AMDGPUCodeGenPrepare::visitICmpInst(ICmpInst &I) { 1198 bool Changed = false; 1199 1200 if (ST->has16BitInsts() && needsPromotionToI32(I.getOperand(0)->getType()) && 1201 DA->isUniform(&I)) 1202 Changed |= promoteUniformOpToI32(I); 1203 1204 return Changed; 1205 } 1206 1207 bool AMDGPUCodeGenPrepare::visitSelectInst(SelectInst &I) { 1208 bool Changed = false; 1209 1210 if (ST->has16BitInsts() && needsPromotionToI32(I.getType()) && 1211 DA->isUniform(&I)) 1212 Changed |= promoteUniformOpToI32(I); 1213 1214 return Changed; 1215 } 1216 1217 bool AMDGPUCodeGenPrepare::visitIntrinsicInst(IntrinsicInst &I) { 1218 switch (I.getIntrinsicID()) { 1219 case Intrinsic::bitreverse: 1220 return visitBitreverseIntrinsicInst(I); 1221 default: 1222 return false; 1223 } 1224 } 1225 1226 bool AMDGPUCodeGenPrepare::visitBitreverseIntrinsicInst(IntrinsicInst &I) { 1227 bool Changed = false; 1228 1229 if (ST->has16BitInsts() && needsPromotionToI32(I.getType()) && 1230 DA->isUniform(&I)) 1231 Changed |= promoteUniformBitreverseToI32(I); 1232 1233 return Changed; 1234 } 1235 1236 bool AMDGPUCodeGenPrepare::doInitialization(Module &M) { 1237 Mod = &M; 1238 DL = &Mod->getDataLayout(); 1239 return false; 1240 } 1241 1242 bool AMDGPUCodeGenPrepare::runOnFunction(Function &F) { 1243 if (skipFunction(F)) 1244 return false; 1245 1246 auto *TPC = getAnalysisIfAvailable<TargetPassConfig>(); 1247 if (!TPC) 1248 return false; 1249 1250 const AMDGPUTargetMachine &TM = TPC->getTM<AMDGPUTargetMachine>(); 1251 ST = &TM.getSubtarget<GCNSubtarget>(F); 1252 AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 1253 DA = &getAnalysis<LegacyDivergenceAnalysis>(); 1254 1255 auto *DTWP = getAnalysisIfAvailable<DominatorTreeWrapperPass>(); 1256 DT = DTWP ? &DTWP->getDomTree() : nullptr; 1257 1258 HasUnsafeFPMath = hasUnsafeFPMath(F); 1259 HasFP32Denormals = ST->hasFP32Denormals(F); 1260 1261 bool MadeChange = false; 1262 1263 for (BasicBlock &BB : F) { 1264 BasicBlock::iterator Next; 1265 for (BasicBlock::iterator I = BB.begin(), E = BB.end(); I != E; I = Next) { 1266 Next = std::next(I); 1267 MadeChange |= visit(*I); 1268 } 1269 } 1270 1271 return MadeChange; 1272 } 1273 1274 INITIALIZE_PASS_BEGIN(AMDGPUCodeGenPrepare, DEBUG_TYPE, 1275 "AMDGPU IR optimizations", false, false) 1276 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 1277 INITIALIZE_PASS_DEPENDENCY(LegacyDivergenceAnalysis) 1278 INITIALIZE_PASS_END(AMDGPUCodeGenPrepare, DEBUG_TYPE, "AMDGPU IR optimizations", 1279 false, false) 1280 1281 char AMDGPUCodeGenPrepare::ID = 0; 1282 1283 FunctionPass *llvm::createAMDGPUCodeGenPreparePass() { 1284 return new AMDGPUCodeGenPrepare(); 1285 } 1286