1 //===-- AMDGPUCodeGenPrepare.cpp ------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file 10 /// This pass does misc. AMDGPU optimizations on IR before instruction 11 /// selection. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "AMDGPU.h" 16 #include "AMDGPUTargetMachine.h" 17 #include "SIModeRegisterDefaults.h" 18 #include "llvm/Analysis/AssumptionCache.h" 19 #include "llvm/Analysis/ConstantFolding.h" 20 #include "llvm/Analysis/TargetLibraryInfo.h" 21 #include "llvm/Analysis/UniformityAnalysis.h" 22 #include "llvm/Analysis/ValueTracking.h" 23 #include "llvm/CodeGen/TargetPassConfig.h" 24 #include "llvm/IR/Dominators.h" 25 #include "llvm/IR/IRBuilder.h" 26 #include "llvm/IR/InstVisitor.h" 27 #include "llvm/IR/IntrinsicsAMDGPU.h" 28 #include "llvm/IR/PatternMatch.h" 29 #include "llvm/InitializePasses.h" 30 #include "llvm/Pass.h" 31 #include "llvm/Support/KnownBits.h" 32 #include "llvm/Transforms/Utils/IntegerDivision.h" 33 #include "llvm/Transforms/Utils/Local.h" 34 35 #define DEBUG_TYPE "amdgpu-codegenprepare" 36 37 using namespace llvm; 38 using namespace llvm::PatternMatch; 39 40 namespace { 41 42 static cl::opt<bool> WidenLoads( 43 "amdgpu-codegenprepare-widen-constant-loads", 44 cl::desc("Widen sub-dword constant address space loads in AMDGPUCodeGenPrepare"), 45 cl::ReallyHidden, 46 cl::init(false)); 47 48 static cl::opt<bool> Widen16BitOps( 49 "amdgpu-codegenprepare-widen-16-bit-ops", 50 cl::desc("Widen uniform 16-bit instructions to 32-bit in AMDGPUCodeGenPrepare"), 51 cl::ReallyHidden, 52 cl::init(true)); 53 54 static cl::opt<bool> 55 ScalarizeLargePHIs("amdgpu-codegenprepare-break-large-phis", 56 cl::desc("Break large PHI nodes for DAGISel"), 57 cl::ReallyHidden, cl::init(true)); 58 59 static cl::opt<bool> 60 ForceScalarizeLargePHIs("amdgpu-codegenprepare-force-break-large-phis", 61 cl::desc("For testing purposes, always break large " 62 "PHIs even if it isn't profitable."), 63 cl::ReallyHidden, cl::init(false)); 64 65 static cl::opt<unsigned> ScalarizeLargePHIsThreshold( 66 "amdgpu-codegenprepare-break-large-phis-threshold", 67 cl::desc("Minimum type size in bits for breaking large PHI nodes"), 68 cl::ReallyHidden, cl::init(32)); 69 70 static cl::opt<bool> UseMul24Intrin( 71 "amdgpu-codegenprepare-mul24", 72 cl::desc("Introduce mul24 intrinsics in AMDGPUCodeGenPrepare"), 73 cl::ReallyHidden, 74 cl::init(true)); 75 76 // Legalize 64-bit division by using the generic IR expansion. 77 static cl::opt<bool> ExpandDiv64InIR( 78 "amdgpu-codegenprepare-expand-div64", 79 cl::desc("Expand 64-bit division in AMDGPUCodeGenPrepare"), 80 cl::ReallyHidden, 81 cl::init(false)); 82 83 // Leave all division operations as they are. This supersedes ExpandDiv64InIR 84 // and is used for testing the legalizer. 85 static cl::opt<bool> DisableIDivExpand( 86 "amdgpu-codegenprepare-disable-idiv-expansion", 87 cl::desc("Prevent expanding integer division in AMDGPUCodeGenPrepare"), 88 cl::ReallyHidden, 89 cl::init(false)); 90 91 class AMDGPUCodeGenPrepareImpl 92 : public InstVisitor<AMDGPUCodeGenPrepareImpl, bool> { 93 public: 94 const GCNSubtarget *ST = nullptr; 95 const TargetLibraryInfo *TLInfo = nullptr; 96 AssumptionCache *AC = nullptr; 97 DominatorTree *DT = nullptr; 98 UniformityInfo *UA = nullptr; 99 Module *Mod = nullptr; 100 const DataLayout *DL = nullptr; 101 bool HasUnsafeFPMath = false; 102 bool HasFP32Denormals = false; 103 bool FlowChanged = false; 104 105 DenseMap<const PHINode *, bool> BreakPhiNodesCache; 106 107 bool canBreakPHINode(const PHINode &I); 108 109 /// Copies exact/nsw/nuw flags (if any) from binary operation \p I to 110 /// binary operation \p V. 111 /// 112 /// \returns Binary operation \p V. 113 /// \returns \p T's base element bit width. 114 unsigned getBaseElementBitWidth(const Type *T) const; 115 116 /// \returns Equivalent 32 bit integer type for given type \p T. For example, 117 /// if \p T is i7, then i32 is returned; if \p T is <3 x i12>, then <3 x i32> 118 /// is returned. 119 Type *getI32Ty(IRBuilder<> &B, const Type *T) const; 120 121 /// \returns True if binary operation \p I is a signed binary operation, false 122 /// otherwise. 123 bool isSigned(const BinaryOperator &I) const; 124 125 /// \returns True if the condition of 'select' operation \p I comes from a 126 /// signed 'icmp' operation, false otherwise. 127 bool isSigned(const SelectInst &I) const; 128 129 /// \returns True if type \p T needs to be promoted to 32 bit integer type, 130 /// false otherwise. 131 bool needsPromotionToI32(const Type *T) const; 132 133 /// Return true if \p T is a legal scalar floating point type. 134 bool isLegalFloatingTy(const Type *T) const; 135 136 /// Promotes uniform binary operation \p I to equivalent 32 bit binary 137 /// operation. 138 /// 139 /// \details \p I's base element bit width must be greater than 1 and less 140 /// than or equal 16. Promotion is done by sign or zero extending operands to 141 /// 32 bits, replacing \p I with equivalent 32 bit binary operation, and 142 /// truncating the result of 32 bit binary operation back to \p I's original 143 /// type. Division operation is not promoted. 144 /// 145 /// \returns True if \p I is promoted to equivalent 32 bit binary operation, 146 /// false otherwise. 147 bool promoteUniformOpToI32(BinaryOperator &I) const; 148 149 /// Promotes uniform 'icmp' operation \p I to 32 bit 'icmp' operation. 150 /// 151 /// \details \p I's base element bit width must be greater than 1 and less 152 /// than or equal 16. Promotion is done by sign or zero extending operands to 153 /// 32 bits, and replacing \p I with 32 bit 'icmp' operation. 154 /// 155 /// \returns True. 156 bool promoteUniformOpToI32(ICmpInst &I) const; 157 158 /// Promotes uniform 'select' operation \p I to 32 bit 'select' 159 /// operation. 160 /// 161 /// \details \p I's base element bit width must be greater than 1 and less 162 /// than or equal 16. Promotion is done by sign or zero extending operands to 163 /// 32 bits, replacing \p I with 32 bit 'select' operation, and truncating the 164 /// result of 32 bit 'select' operation back to \p I's original type. 165 /// 166 /// \returns True. 167 bool promoteUniformOpToI32(SelectInst &I) const; 168 169 /// Promotes uniform 'bitreverse' intrinsic \p I to 32 bit 'bitreverse' 170 /// intrinsic. 171 /// 172 /// \details \p I's base element bit width must be greater than 1 and less 173 /// than or equal 16. Promotion is done by zero extending the operand to 32 174 /// bits, replacing \p I with 32 bit 'bitreverse' intrinsic, shifting the 175 /// result of 32 bit 'bitreverse' intrinsic to the right with zero fill (the 176 /// shift amount is 32 minus \p I's base element bit width), and truncating 177 /// the result of the shift operation back to \p I's original type. 178 /// 179 /// \returns True. 180 bool promoteUniformBitreverseToI32(IntrinsicInst &I) const; 181 182 /// \returns The minimum number of bits needed to store the value of \Op as an 183 /// unsigned integer. Truncating to this size and then zero-extending to 184 /// the original will not change the value. 185 unsigned numBitsUnsigned(Value *Op) const; 186 187 /// \returns The minimum number of bits needed to store the value of \Op as a 188 /// signed integer. Truncating to this size and then sign-extending to 189 /// the original size will not change the value. 190 unsigned numBitsSigned(Value *Op) const; 191 192 /// Replace mul instructions with llvm.amdgcn.mul.u24 or llvm.amdgcn.mul.s24. 193 /// SelectionDAG has an issue where an and asserting the bits are known 194 bool replaceMulWithMul24(BinaryOperator &I) const; 195 196 /// Perform same function as equivalently named function in DAGCombiner. Since 197 /// we expand some divisions here, we need to perform this before obscuring. 198 bool foldBinOpIntoSelect(BinaryOperator &I) const; 199 200 bool divHasSpecialOptimization(BinaryOperator &I, 201 Value *Num, Value *Den) const; 202 int getDivNumBits(BinaryOperator &I, 203 Value *Num, Value *Den, 204 unsigned AtLeast, bool Signed) const; 205 206 /// Expands 24 bit div or rem. 207 Value* expandDivRem24(IRBuilder<> &Builder, BinaryOperator &I, 208 Value *Num, Value *Den, 209 bool IsDiv, bool IsSigned) const; 210 211 Value *expandDivRem24Impl(IRBuilder<> &Builder, BinaryOperator &I, 212 Value *Num, Value *Den, unsigned NumBits, 213 bool IsDiv, bool IsSigned) const; 214 215 /// Expands 32 bit div or rem. 216 Value* expandDivRem32(IRBuilder<> &Builder, BinaryOperator &I, 217 Value *Num, Value *Den) const; 218 219 Value *shrinkDivRem64(IRBuilder<> &Builder, BinaryOperator &I, 220 Value *Num, Value *Den) const; 221 void expandDivRem64(BinaryOperator &I) const; 222 223 /// Widen a scalar load. 224 /// 225 /// \details \p Widen scalar load for uniform, small type loads from constant 226 // memory / to a full 32-bits and then truncate the input to allow a scalar 227 // load instead of a vector load. 228 // 229 /// \returns True. 230 231 bool canWidenScalarExtLoad(LoadInst &I) const; 232 233 Value *matchFractPat(IntrinsicInst &I); 234 Value *applyFractPat(IRBuilder<> &Builder, Value *FractArg); 235 236 public: 237 bool visitFDiv(BinaryOperator &I); 238 bool visitXor(BinaryOperator &I); 239 240 bool visitInstruction(Instruction &I) { return false; } 241 bool visitBinaryOperator(BinaryOperator &I); 242 bool visitLoadInst(LoadInst &I); 243 bool visitICmpInst(ICmpInst &I); 244 bool visitSelectInst(SelectInst &I); 245 bool visitPHINode(PHINode &I); 246 247 bool visitIntrinsicInst(IntrinsicInst &I); 248 bool visitBitreverseIntrinsicInst(IntrinsicInst &I); 249 bool visitMinNum(IntrinsicInst &I); 250 bool run(Function &F); 251 }; 252 253 class AMDGPUCodeGenPrepare : public FunctionPass { 254 private: 255 AMDGPUCodeGenPrepareImpl Impl; 256 257 public: 258 static char ID; 259 AMDGPUCodeGenPrepare() : FunctionPass(ID) { 260 initializeAMDGPUCodeGenPreparePass(*PassRegistry::getPassRegistry()); 261 } 262 void getAnalysisUsage(AnalysisUsage &AU) const override { 263 AU.addRequired<AssumptionCacheTracker>(); 264 AU.addRequired<UniformityInfoWrapperPass>(); 265 AU.addRequired<TargetLibraryInfoWrapperPass>(); 266 267 // FIXME: Division expansion needs to preserve the dominator tree. 268 if (!ExpandDiv64InIR) 269 AU.setPreservesAll(); 270 } 271 bool runOnFunction(Function &F) override; 272 bool doInitialization(Module &M) override; 273 StringRef getPassName() const override { return "AMDGPU IR optimizations"; } 274 }; 275 276 } // end anonymous namespace 277 278 bool AMDGPUCodeGenPrepareImpl::run(Function &F) { 279 bool MadeChange = false; 280 281 Function::iterator NextBB; 282 for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE; FI = NextBB) { 283 BasicBlock *BB = &*FI; 284 NextBB = std::next(FI); 285 286 BasicBlock::iterator Next; 287 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; 288 I = Next) { 289 Next = std::next(I); 290 291 MadeChange |= visit(*I); 292 293 if (Next != E) { // Control flow changed 294 BasicBlock *NextInstBB = Next->getParent(); 295 if (NextInstBB != BB) { 296 BB = NextInstBB; 297 E = BB->end(); 298 FE = F.end(); 299 } 300 } 301 } 302 } 303 return MadeChange; 304 } 305 306 unsigned AMDGPUCodeGenPrepareImpl::getBaseElementBitWidth(const Type *T) const { 307 assert(needsPromotionToI32(T) && "T does not need promotion to i32"); 308 309 if (T->isIntegerTy()) 310 return T->getIntegerBitWidth(); 311 return cast<VectorType>(T)->getElementType()->getIntegerBitWidth(); 312 } 313 314 Type *AMDGPUCodeGenPrepareImpl::getI32Ty(IRBuilder<> &B, const Type *T) const { 315 assert(needsPromotionToI32(T) && "T does not need promotion to i32"); 316 317 if (T->isIntegerTy()) 318 return B.getInt32Ty(); 319 return FixedVectorType::get(B.getInt32Ty(), cast<FixedVectorType>(T)); 320 } 321 322 bool AMDGPUCodeGenPrepareImpl::isSigned(const BinaryOperator &I) const { 323 return I.getOpcode() == Instruction::AShr || 324 I.getOpcode() == Instruction::SDiv || I.getOpcode() == Instruction::SRem; 325 } 326 327 bool AMDGPUCodeGenPrepareImpl::isSigned(const SelectInst &I) const { 328 return isa<ICmpInst>(I.getOperand(0)) ? 329 cast<ICmpInst>(I.getOperand(0))->isSigned() : false; 330 } 331 332 bool AMDGPUCodeGenPrepareImpl::needsPromotionToI32(const Type *T) const { 333 if (!Widen16BitOps) 334 return false; 335 336 const IntegerType *IntTy = dyn_cast<IntegerType>(T); 337 if (IntTy && IntTy->getBitWidth() > 1 && IntTy->getBitWidth() <= 16) 338 return true; 339 340 if (const VectorType *VT = dyn_cast<VectorType>(T)) { 341 // TODO: The set of packed operations is more limited, so may want to 342 // promote some anyway. 343 if (ST->hasVOP3PInsts()) 344 return false; 345 346 return needsPromotionToI32(VT->getElementType()); 347 } 348 349 return false; 350 } 351 352 bool AMDGPUCodeGenPrepareImpl::isLegalFloatingTy(const Type *Ty) const { 353 return Ty->isFloatTy() || Ty->isDoubleTy() || 354 (Ty->isHalfTy() && ST->has16BitInsts()); 355 } 356 357 // Return true if the op promoted to i32 should have nsw set. 358 static bool promotedOpIsNSW(const Instruction &I) { 359 switch (I.getOpcode()) { 360 case Instruction::Shl: 361 case Instruction::Add: 362 case Instruction::Sub: 363 return true; 364 case Instruction::Mul: 365 return I.hasNoUnsignedWrap(); 366 default: 367 return false; 368 } 369 } 370 371 // Return true if the op promoted to i32 should have nuw set. 372 static bool promotedOpIsNUW(const Instruction &I) { 373 switch (I.getOpcode()) { 374 case Instruction::Shl: 375 case Instruction::Add: 376 case Instruction::Mul: 377 return true; 378 case Instruction::Sub: 379 return I.hasNoUnsignedWrap(); 380 default: 381 return false; 382 } 383 } 384 385 bool AMDGPUCodeGenPrepareImpl::canWidenScalarExtLoad(LoadInst &I) const { 386 Type *Ty = I.getType(); 387 const DataLayout &DL = Mod->getDataLayout(); 388 int TySize = DL.getTypeSizeInBits(Ty); 389 Align Alignment = DL.getValueOrABITypeAlignment(I.getAlign(), Ty); 390 391 return I.isSimple() && TySize < 32 && Alignment >= 4 && UA->isUniform(&I); 392 } 393 394 bool AMDGPUCodeGenPrepareImpl::promoteUniformOpToI32(BinaryOperator &I) const { 395 assert(needsPromotionToI32(I.getType()) && 396 "I does not need promotion to i32"); 397 398 if (I.getOpcode() == Instruction::SDiv || 399 I.getOpcode() == Instruction::UDiv || 400 I.getOpcode() == Instruction::SRem || 401 I.getOpcode() == Instruction::URem) 402 return false; 403 404 IRBuilder<> Builder(&I); 405 Builder.SetCurrentDebugLocation(I.getDebugLoc()); 406 407 Type *I32Ty = getI32Ty(Builder, I.getType()); 408 Value *ExtOp0 = nullptr; 409 Value *ExtOp1 = nullptr; 410 Value *ExtRes = nullptr; 411 Value *TruncRes = nullptr; 412 413 if (isSigned(I)) { 414 ExtOp0 = Builder.CreateSExt(I.getOperand(0), I32Ty); 415 ExtOp1 = Builder.CreateSExt(I.getOperand(1), I32Ty); 416 } else { 417 ExtOp0 = Builder.CreateZExt(I.getOperand(0), I32Ty); 418 ExtOp1 = Builder.CreateZExt(I.getOperand(1), I32Ty); 419 } 420 421 ExtRes = Builder.CreateBinOp(I.getOpcode(), ExtOp0, ExtOp1); 422 if (Instruction *Inst = dyn_cast<Instruction>(ExtRes)) { 423 if (promotedOpIsNSW(cast<Instruction>(I))) 424 Inst->setHasNoSignedWrap(); 425 426 if (promotedOpIsNUW(cast<Instruction>(I))) 427 Inst->setHasNoUnsignedWrap(); 428 429 if (const auto *ExactOp = dyn_cast<PossiblyExactOperator>(&I)) 430 Inst->setIsExact(ExactOp->isExact()); 431 } 432 433 TruncRes = Builder.CreateTrunc(ExtRes, I.getType()); 434 435 I.replaceAllUsesWith(TruncRes); 436 I.eraseFromParent(); 437 438 return true; 439 } 440 441 bool AMDGPUCodeGenPrepareImpl::promoteUniformOpToI32(ICmpInst &I) const { 442 assert(needsPromotionToI32(I.getOperand(0)->getType()) && 443 "I does not need promotion to i32"); 444 445 IRBuilder<> Builder(&I); 446 Builder.SetCurrentDebugLocation(I.getDebugLoc()); 447 448 Type *I32Ty = getI32Ty(Builder, I.getOperand(0)->getType()); 449 Value *ExtOp0 = nullptr; 450 Value *ExtOp1 = nullptr; 451 Value *NewICmp = nullptr; 452 453 if (I.isSigned()) { 454 ExtOp0 = Builder.CreateSExt(I.getOperand(0), I32Ty); 455 ExtOp1 = Builder.CreateSExt(I.getOperand(1), I32Ty); 456 } else { 457 ExtOp0 = Builder.CreateZExt(I.getOperand(0), I32Ty); 458 ExtOp1 = Builder.CreateZExt(I.getOperand(1), I32Ty); 459 } 460 NewICmp = Builder.CreateICmp(I.getPredicate(), ExtOp0, ExtOp1); 461 462 I.replaceAllUsesWith(NewICmp); 463 I.eraseFromParent(); 464 465 return true; 466 } 467 468 bool AMDGPUCodeGenPrepareImpl::promoteUniformOpToI32(SelectInst &I) const { 469 assert(needsPromotionToI32(I.getType()) && 470 "I does not need promotion to i32"); 471 472 IRBuilder<> Builder(&I); 473 Builder.SetCurrentDebugLocation(I.getDebugLoc()); 474 475 Type *I32Ty = getI32Ty(Builder, I.getType()); 476 Value *ExtOp1 = nullptr; 477 Value *ExtOp2 = nullptr; 478 Value *ExtRes = nullptr; 479 Value *TruncRes = nullptr; 480 481 if (isSigned(I)) { 482 ExtOp1 = Builder.CreateSExt(I.getOperand(1), I32Ty); 483 ExtOp2 = Builder.CreateSExt(I.getOperand(2), I32Ty); 484 } else { 485 ExtOp1 = Builder.CreateZExt(I.getOperand(1), I32Ty); 486 ExtOp2 = Builder.CreateZExt(I.getOperand(2), I32Ty); 487 } 488 ExtRes = Builder.CreateSelect(I.getOperand(0), ExtOp1, ExtOp2); 489 TruncRes = Builder.CreateTrunc(ExtRes, I.getType()); 490 491 I.replaceAllUsesWith(TruncRes); 492 I.eraseFromParent(); 493 494 return true; 495 } 496 497 bool AMDGPUCodeGenPrepareImpl::promoteUniformBitreverseToI32( 498 IntrinsicInst &I) const { 499 assert(I.getIntrinsicID() == Intrinsic::bitreverse && 500 "I must be bitreverse intrinsic"); 501 assert(needsPromotionToI32(I.getType()) && 502 "I does not need promotion to i32"); 503 504 IRBuilder<> Builder(&I); 505 Builder.SetCurrentDebugLocation(I.getDebugLoc()); 506 507 Type *I32Ty = getI32Ty(Builder, I.getType()); 508 Function *I32 = 509 Intrinsic::getDeclaration(Mod, Intrinsic::bitreverse, { I32Ty }); 510 Value *ExtOp = Builder.CreateZExt(I.getOperand(0), I32Ty); 511 Value *ExtRes = Builder.CreateCall(I32, { ExtOp }); 512 Value *LShrOp = 513 Builder.CreateLShr(ExtRes, 32 - getBaseElementBitWidth(I.getType())); 514 Value *TruncRes = 515 Builder.CreateTrunc(LShrOp, I.getType()); 516 517 I.replaceAllUsesWith(TruncRes); 518 I.eraseFromParent(); 519 520 return true; 521 } 522 523 unsigned AMDGPUCodeGenPrepareImpl::numBitsUnsigned(Value *Op) const { 524 return computeKnownBits(Op, *DL, 0, AC).countMaxActiveBits(); 525 } 526 527 unsigned AMDGPUCodeGenPrepareImpl::numBitsSigned(Value *Op) const { 528 return ComputeMaxSignificantBits(Op, *DL, 0, AC); 529 } 530 531 static void extractValues(IRBuilder<> &Builder, 532 SmallVectorImpl<Value *> &Values, Value *V) { 533 auto *VT = dyn_cast<FixedVectorType>(V->getType()); 534 if (!VT) { 535 Values.push_back(V); 536 return; 537 } 538 539 for (int I = 0, E = VT->getNumElements(); I != E; ++I) 540 Values.push_back(Builder.CreateExtractElement(V, I)); 541 } 542 543 static Value *insertValues(IRBuilder<> &Builder, 544 Type *Ty, 545 SmallVectorImpl<Value *> &Values) { 546 if (!Ty->isVectorTy()) { 547 assert(Values.size() == 1); 548 return Values[0]; 549 } 550 551 Value *NewVal = PoisonValue::get(Ty); 552 for (int I = 0, E = Values.size(); I != E; ++I) 553 NewVal = Builder.CreateInsertElement(NewVal, Values[I], I); 554 555 return NewVal; 556 } 557 558 // Returns 24-bit or 48-bit (as per `NumBits` and `Size`) mul of `LHS` and 559 // `RHS`. `NumBits` is the number of KnownBits of the result and `Size` is the 560 // width of the original destination. 561 static Value *getMul24(IRBuilder<> &Builder, Value *LHS, Value *RHS, 562 unsigned Size, unsigned NumBits, bool IsSigned) { 563 if (Size <= 32 || NumBits <= 32) { 564 Intrinsic::ID ID = 565 IsSigned ? Intrinsic::amdgcn_mul_i24 : Intrinsic::amdgcn_mul_u24; 566 return Builder.CreateIntrinsic(ID, {}, {LHS, RHS}); 567 } 568 569 assert(NumBits <= 48); 570 571 Intrinsic::ID LoID = 572 IsSigned ? Intrinsic::amdgcn_mul_i24 : Intrinsic::amdgcn_mul_u24; 573 Intrinsic::ID HiID = 574 IsSigned ? Intrinsic::amdgcn_mulhi_i24 : Intrinsic::amdgcn_mulhi_u24; 575 576 Value *Lo = Builder.CreateIntrinsic(LoID, {}, {LHS, RHS}); 577 Value *Hi = Builder.CreateIntrinsic(HiID, {}, {LHS, RHS}); 578 579 IntegerType *I64Ty = Builder.getInt64Ty(); 580 Lo = Builder.CreateZExtOrTrunc(Lo, I64Ty); 581 Hi = Builder.CreateZExtOrTrunc(Hi, I64Ty); 582 583 return Builder.CreateOr(Lo, Builder.CreateShl(Hi, 32)); 584 } 585 586 bool AMDGPUCodeGenPrepareImpl::replaceMulWithMul24(BinaryOperator &I) const { 587 if (I.getOpcode() != Instruction::Mul) 588 return false; 589 590 Type *Ty = I.getType(); 591 unsigned Size = Ty->getScalarSizeInBits(); 592 if (Size <= 16 && ST->has16BitInsts()) 593 return false; 594 595 // Prefer scalar if this could be s_mul_i32 596 if (UA->isUniform(&I)) 597 return false; 598 599 Value *LHS = I.getOperand(0); 600 Value *RHS = I.getOperand(1); 601 IRBuilder<> Builder(&I); 602 Builder.SetCurrentDebugLocation(I.getDebugLoc()); 603 604 unsigned LHSBits = 0, RHSBits = 0; 605 bool IsSigned = false; 606 607 if (ST->hasMulU24() && (LHSBits = numBitsUnsigned(LHS)) <= 24 && 608 (RHSBits = numBitsUnsigned(RHS)) <= 24) { 609 IsSigned = false; 610 611 } else if (ST->hasMulI24() && (LHSBits = numBitsSigned(LHS)) <= 24 && 612 (RHSBits = numBitsSigned(RHS)) <= 24) { 613 IsSigned = true; 614 615 } else 616 return false; 617 618 SmallVector<Value *, 4> LHSVals; 619 SmallVector<Value *, 4> RHSVals; 620 SmallVector<Value *, 4> ResultVals; 621 extractValues(Builder, LHSVals, LHS); 622 extractValues(Builder, RHSVals, RHS); 623 624 IntegerType *I32Ty = Builder.getInt32Ty(); 625 for (int I = 0, E = LHSVals.size(); I != E; ++I) { 626 Value *LHS, *RHS; 627 if (IsSigned) { 628 LHS = Builder.CreateSExtOrTrunc(LHSVals[I], I32Ty); 629 RHS = Builder.CreateSExtOrTrunc(RHSVals[I], I32Ty); 630 } else { 631 LHS = Builder.CreateZExtOrTrunc(LHSVals[I], I32Ty); 632 RHS = Builder.CreateZExtOrTrunc(RHSVals[I], I32Ty); 633 } 634 635 Value *Result = 636 getMul24(Builder, LHS, RHS, Size, LHSBits + RHSBits, IsSigned); 637 638 if (IsSigned) { 639 ResultVals.push_back( 640 Builder.CreateSExtOrTrunc(Result, LHSVals[I]->getType())); 641 } else { 642 ResultVals.push_back( 643 Builder.CreateZExtOrTrunc(Result, LHSVals[I]->getType())); 644 } 645 } 646 647 Value *NewVal = insertValues(Builder, Ty, ResultVals); 648 NewVal->takeName(&I); 649 I.replaceAllUsesWith(NewVal); 650 I.eraseFromParent(); 651 652 return true; 653 } 654 655 // Find a select instruction, which may have been casted. This is mostly to deal 656 // with cases where i16 selects were promoted here to i32. 657 static SelectInst *findSelectThroughCast(Value *V, CastInst *&Cast) { 658 Cast = nullptr; 659 if (SelectInst *Sel = dyn_cast<SelectInst>(V)) 660 return Sel; 661 662 if ((Cast = dyn_cast<CastInst>(V))) { 663 if (SelectInst *Sel = dyn_cast<SelectInst>(Cast->getOperand(0))) 664 return Sel; 665 } 666 667 return nullptr; 668 } 669 670 bool AMDGPUCodeGenPrepareImpl::foldBinOpIntoSelect(BinaryOperator &BO) const { 671 // Don't do this unless the old select is going away. We want to eliminate the 672 // binary operator, not replace a binop with a select. 673 int SelOpNo = 0; 674 675 CastInst *CastOp; 676 677 // TODO: Should probably try to handle some cases with multiple 678 // users. Duplicating the select may be profitable for division. 679 SelectInst *Sel = findSelectThroughCast(BO.getOperand(0), CastOp); 680 if (!Sel || !Sel->hasOneUse()) { 681 SelOpNo = 1; 682 Sel = findSelectThroughCast(BO.getOperand(1), CastOp); 683 } 684 685 if (!Sel || !Sel->hasOneUse()) 686 return false; 687 688 Constant *CT = dyn_cast<Constant>(Sel->getTrueValue()); 689 Constant *CF = dyn_cast<Constant>(Sel->getFalseValue()); 690 Constant *CBO = dyn_cast<Constant>(BO.getOperand(SelOpNo ^ 1)); 691 if (!CBO || !CT || !CF) 692 return false; 693 694 if (CastOp) { 695 if (!CastOp->hasOneUse()) 696 return false; 697 CT = ConstantFoldCastOperand(CastOp->getOpcode(), CT, BO.getType(), *DL); 698 CF = ConstantFoldCastOperand(CastOp->getOpcode(), CF, BO.getType(), *DL); 699 } 700 701 // TODO: Handle special 0/-1 cases DAG combine does, although we only really 702 // need to handle divisions here. 703 Constant *FoldedT = SelOpNo ? 704 ConstantFoldBinaryOpOperands(BO.getOpcode(), CBO, CT, *DL) : 705 ConstantFoldBinaryOpOperands(BO.getOpcode(), CT, CBO, *DL); 706 if (!FoldedT || isa<ConstantExpr>(FoldedT)) 707 return false; 708 709 Constant *FoldedF = SelOpNo ? 710 ConstantFoldBinaryOpOperands(BO.getOpcode(), CBO, CF, *DL) : 711 ConstantFoldBinaryOpOperands(BO.getOpcode(), CF, CBO, *DL); 712 if (!FoldedF || isa<ConstantExpr>(FoldedF)) 713 return false; 714 715 IRBuilder<> Builder(&BO); 716 Builder.SetCurrentDebugLocation(BO.getDebugLoc()); 717 if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(&BO)) 718 Builder.setFastMathFlags(FPOp->getFastMathFlags()); 719 720 Value *NewSelect = Builder.CreateSelect(Sel->getCondition(), 721 FoldedT, FoldedF); 722 NewSelect->takeName(&BO); 723 BO.replaceAllUsesWith(NewSelect); 724 BO.eraseFromParent(); 725 if (CastOp) 726 CastOp->eraseFromParent(); 727 Sel->eraseFromParent(); 728 return true; 729 } 730 731 // Optimize fdiv with rcp: 732 // 733 // 1/x -> rcp(x) when rcp is sufficiently accurate or inaccurate rcp is 734 // allowed with unsafe-fp-math or afn. 735 // 736 // a/b -> a*rcp(b) when inaccurate rcp is allowed with unsafe-fp-math or afn. 737 static Value *optimizeWithRcp(Value *Num, Value *Den, bool AllowInaccurateRcp, 738 bool RcpIsAccurate, IRBuilder<> &Builder, 739 Module *Mod) { 740 741 if (!AllowInaccurateRcp && !RcpIsAccurate) 742 return nullptr; 743 744 Type *Ty = Den->getType(); 745 if (const ConstantFP *CLHS = dyn_cast<ConstantFP>(Num)) { 746 if (AllowInaccurateRcp || RcpIsAccurate) { 747 if (CLHS->isExactlyValue(1.0)) { 748 Function *Decl = Intrinsic::getDeclaration( 749 Mod, Intrinsic::amdgcn_rcp, Ty); 750 751 // v_rcp_f32 and v_rsq_f32 do not support denormals, and according to 752 // the CI documentation has a worst case error of 1 ulp. 753 // OpenCL requires <= 2.5 ulp for 1.0 / x, so it should always be OK to 754 // use it as long as we aren't trying to use denormals. 755 // 756 // v_rcp_f16 and v_rsq_f16 DO support denormals. 757 758 // NOTE: v_sqrt and v_rcp will be combined to v_rsq later. So we don't 759 // insert rsq intrinsic here. 760 761 // 1.0 / x -> rcp(x) 762 return Builder.CreateCall(Decl, { Den }); 763 } 764 765 // Same as for 1.0, but expand the sign out of the constant. 766 if (CLHS->isExactlyValue(-1.0)) { 767 Function *Decl = Intrinsic::getDeclaration( 768 Mod, Intrinsic::amdgcn_rcp, Ty); 769 770 // -1.0 / x -> rcp (fneg x) 771 Value *FNeg = Builder.CreateFNeg(Den); 772 return Builder.CreateCall(Decl, { FNeg }); 773 } 774 } 775 } 776 777 if (AllowInaccurateRcp) { 778 Function *Decl = Intrinsic::getDeclaration( 779 Mod, Intrinsic::amdgcn_rcp, Ty); 780 781 // Turn into multiply by the reciprocal. 782 // x / y -> x * (1.0 / y) 783 Value *Recip = Builder.CreateCall(Decl, { Den }); 784 return Builder.CreateFMul(Num, Recip); 785 } 786 return nullptr; 787 } 788 789 // optimize with fdiv.fast: 790 // 791 // a/b -> fdiv.fast(a, b) when !fpmath >= 2.5ulp with denormals flushed. 792 // 793 // 1/x -> fdiv.fast(1,x) when !fpmath >= 2.5ulp. 794 // 795 // NOTE: optimizeWithRcp should be tried first because rcp is the preference. 796 static Value *optimizeWithFDivFast(Value *Num, Value *Den, float ReqdAccuracy, 797 bool HasDenormals, IRBuilder<> &Builder, 798 Module *Mod) { 799 // fdiv.fast can achieve 2.5 ULP accuracy. 800 if (ReqdAccuracy < 2.5f) 801 return nullptr; 802 803 // Only have fdiv.fast for f32. 804 Type *Ty = Den->getType(); 805 if (!Ty->isFloatTy()) 806 return nullptr; 807 808 bool NumIsOne = false; 809 if (const ConstantFP *CNum = dyn_cast<ConstantFP>(Num)) { 810 if (CNum->isExactlyValue(+1.0) || CNum->isExactlyValue(-1.0)) 811 NumIsOne = true; 812 } 813 814 // fdiv does not support denormals. But 1.0/x is always fine to use it. 815 if (HasDenormals && !NumIsOne) 816 return nullptr; 817 818 Function *Decl = Intrinsic::getDeclaration(Mod, Intrinsic::amdgcn_fdiv_fast); 819 return Builder.CreateCall(Decl, { Num, Den }); 820 } 821 822 // Optimizations is performed based on fpmath, fast math flags as well as 823 // denormals to optimize fdiv with either rcp or fdiv.fast. 824 // 825 // With rcp: 826 // 1/x -> rcp(x) when rcp is sufficiently accurate or inaccurate rcp is 827 // allowed with unsafe-fp-math or afn. 828 // 829 // a/b -> a*rcp(b) when inaccurate rcp is allowed with unsafe-fp-math or afn. 830 // 831 // With fdiv.fast: 832 // a/b -> fdiv.fast(a, b) when !fpmath >= 2.5ulp with denormals flushed. 833 // 834 // 1/x -> fdiv.fast(1,x) when !fpmath >= 2.5ulp. 835 // 836 // NOTE: rcp is the preference in cases that both are legal. 837 bool AMDGPUCodeGenPrepareImpl::visitFDiv(BinaryOperator &FDiv) { 838 839 Type *Ty = FDiv.getType()->getScalarType(); 840 841 // The f64 rcp/rsq approximations are pretty inaccurate. We can do an 842 // expansion around them in codegen. 843 if (Ty->isDoubleTy()) 844 return false; 845 846 // No intrinsic for fdiv16 if target does not support f16. 847 if (Ty->isHalfTy() && !ST->has16BitInsts()) 848 return false; 849 850 const FPMathOperator *FPOp = cast<const FPMathOperator>(&FDiv); 851 const float ReqdAccuracy = FPOp->getFPAccuracy(); 852 853 // Inaccurate rcp is allowed with unsafe-fp-math or afn. 854 FastMathFlags FMF = FPOp->getFastMathFlags(); 855 const bool AllowInaccurateRcp = HasUnsafeFPMath || FMF.approxFunc(); 856 857 // rcp_f16 is accurate for !fpmath >= 1.0ulp. 858 // rcp_f32 is accurate for !fpmath >= 1.0ulp and denormals are flushed. 859 // rcp_f64 is never accurate. 860 const bool RcpIsAccurate = (Ty->isHalfTy() && ReqdAccuracy >= 1.0f) || 861 (Ty->isFloatTy() && !HasFP32Denormals && ReqdAccuracy >= 1.0f); 862 863 IRBuilder<> Builder(FDiv.getParent(), std::next(FDiv.getIterator())); 864 Builder.setFastMathFlags(FMF); 865 Builder.SetCurrentDebugLocation(FDiv.getDebugLoc()); 866 867 Value *Num = FDiv.getOperand(0); 868 Value *Den = FDiv.getOperand(1); 869 870 Value *NewFDiv = nullptr; 871 if (auto *VT = dyn_cast<FixedVectorType>(FDiv.getType())) { 872 NewFDiv = PoisonValue::get(VT); 873 874 // FIXME: Doesn't do the right thing for cases where the vector is partially 875 // constant. This works when the scalarizer pass is run first. 876 for (unsigned I = 0, E = VT->getNumElements(); I != E; ++I) { 877 Value *NumEltI = Builder.CreateExtractElement(Num, I); 878 Value *DenEltI = Builder.CreateExtractElement(Den, I); 879 // Try rcp first. 880 Value *NewElt = optimizeWithRcp(NumEltI, DenEltI, AllowInaccurateRcp, 881 RcpIsAccurate, Builder, Mod); 882 if (!NewElt) // Try fdiv.fast. 883 NewElt = optimizeWithFDivFast(NumEltI, DenEltI, ReqdAccuracy, 884 HasFP32Denormals, Builder, Mod); 885 if (!NewElt) // Keep the original. 886 NewElt = Builder.CreateFDiv(NumEltI, DenEltI); 887 888 NewFDiv = Builder.CreateInsertElement(NewFDiv, NewElt, I); 889 } 890 } else { // Scalar FDiv. 891 // Try rcp first. 892 NewFDiv = optimizeWithRcp(Num, Den, AllowInaccurateRcp, RcpIsAccurate, 893 Builder, Mod); 894 if (!NewFDiv) { // Try fdiv.fast. 895 NewFDiv = optimizeWithFDivFast(Num, Den, ReqdAccuracy, HasFP32Denormals, 896 Builder, Mod); 897 } 898 } 899 900 if (NewFDiv) { 901 FDiv.replaceAllUsesWith(NewFDiv); 902 NewFDiv->takeName(&FDiv); 903 FDiv.eraseFromParent(); 904 } 905 906 return !!NewFDiv; 907 } 908 909 bool AMDGPUCodeGenPrepareImpl::visitXor(BinaryOperator &I) { 910 // Match the Xor instruction, its type and its operands 911 IntrinsicInst *IntrinsicCall = dyn_cast<IntrinsicInst>(I.getOperand(0)); 912 ConstantInt *RHS = dyn_cast<ConstantInt>(I.getOperand(1)); 913 if (!RHS || !IntrinsicCall || RHS->getSExtValue() != -1) 914 return visitBinaryOperator(I); 915 916 // Check if the Call is an intrinsic instruction to amdgcn_class intrinsic 917 // has only one use 918 if (IntrinsicCall->getIntrinsicID() != Intrinsic::amdgcn_class || 919 !IntrinsicCall->hasOneUse()) 920 return visitBinaryOperator(I); 921 922 // "Not" the second argument of the intrinsic call 923 ConstantInt *Arg = dyn_cast<ConstantInt>(IntrinsicCall->getOperand(1)); 924 if (!Arg) 925 return visitBinaryOperator(I); 926 927 IntrinsicCall->setOperand( 928 1, ConstantInt::get(Arg->getType(), Arg->getZExtValue() ^ 0x3ff)); 929 I.replaceAllUsesWith(IntrinsicCall); 930 I.eraseFromParent(); 931 return true; 932 } 933 934 static bool hasUnsafeFPMath(const Function &F) { 935 Attribute Attr = F.getFnAttribute("unsafe-fp-math"); 936 return Attr.getValueAsBool(); 937 } 938 939 static std::pair<Value*, Value*> getMul64(IRBuilder<> &Builder, 940 Value *LHS, Value *RHS) { 941 Type *I32Ty = Builder.getInt32Ty(); 942 Type *I64Ty = Builder.getInt64Ty(); 943 944 Value *LHS_EXT64 = Builder.CreateZExt(LHS, I64Ty); 945 Value *RHS_EXT64 = Builder.CreateZExt(RHS, I64Ty); 946 Value *MUL64 = Builder.CreateMul(LHS_EXT64, RHS_EXT64); 947 Value *Lo = Builder.CreateTrunc(MUL64, I32Ty); 948 Value *Hi = Builder.CreateLShr(MUL64, Builder.getInt64(32)); 949 Hi = Builder.CreateTrunc(Hi, I32Ty); 950 return std::pair(Lo, Hi); 951 } 952 953 static Value* getMulHu(IRBuilder<> &Builder, Value *LHS, Value *RHS) { 954 return getMul64(Builder, LHS, RHS).second; 955 } 956 957 /// Figure out how many bits are really needed for this division. \p AtLeast is 958 /// an optimization hint to bypass the second ComputeNumSignBits call if we the 959 /// first one is insufficient. Returns -1 on failure. 960 int AMDGPUCodeGenPrepareImpl::getDivNumBits(BinaryOperator &I, Value *Num, 961 Value *Den, unsigned AtLeast, 962 bool IsSigned) const { 963 const DataLayout &DL = Mod->getDataLayout(); 964 unsigned LHSSignBits = ComputeNumSignBits(Num, DL, 0, AC, &I); 965 if (LHSSignBits < AtLeast) 966 return -1; 967 968 unsigned RHSSignBits = ComputeNumSignBits(Den, DL, 0, AC, &I); 969 if (RHSSignBits < AtLeast) 970 return -1; 971 972 unsigned SignBits = std::min(LHSSignBits, RHSSignBits); 973 unsigned DivBits = Num->getType()->getScalarSizeInBits() - SignBits; 974 if (IsSigned) 975 ++DivBits; 976 return DivBits; 977 } 978 979 // The fractional part of a float is enough to accurately represent up to 980 // a 24-bit signed integer. 981 Value *AMDGPUCodeGenPrepareImpl::expandDivRem24(IRBuilder<> &Builder, 982 BinaryOperator &I, Value *Num, 983 Value *Den, bool IsDiv, 984 bool IsSigned) const { 985 int DivBits = getDivNumBits(I, Num, Den, 9, IsSigned); 986 if (DivBits == -1) 987 return nullptr; 988 return expandDivRem24Impl(Builder, I, Num, Den, DivBits, IsDiv, IsSigned); 989 } 990 991 Value *AMDGPUCodeGenPrepareImpl::expandDivRem24Impl( 992 IRBuilder<> &Builder, BinaryOperator &I, Value *Num, Value *Den, 993 unsigned DivBits, bool IsDiv, bool IsSigned) const { 994 Type *I32Ty = Builder.getInt32Ty(); 995 Num = Builder.CreateTrunc(Num, I32Ty); 996 Den = Builder.CreateTrunc(Den, I32Ty); 997 998 Type *F32Ty = Builder.getFloatTy(); 999 ConstantInt *One = Builder.getInt32(1); 1000 Value *JQ = One; 1001 1002 if (IsSigned) { 1003 // char|short jq = ia ^ ib; 1004 JQ = Builder.CreateXor(Num, Den); 1005 1006 // jq = jq >> (bitsize - 2) 1007 JQ = Builder.CreateAShr(JQ, Builder.getInt32(30)); 1008 1009 // jq = jq | 0x1 1010 JQ = Builder.CreateOr(JQ, One); 1011 } 1012 1013 // int ia = (int)LHS; 1014 Value *IA = Num; 1015 1016 // int ib, (int)RHS; 1017 Value *IB = Den; 1018 1019 // float fa = (float)ia; 1020 Value *FA = IsSigned ? Builder.CreateSIToFP(IA, F32Ty) 1021 : Builder.CreateUIToFP(IA, F32Ty); 1022 1023 // float fb = (float)ib; 1024 Value *FB = IsSigned ? Builder.CreateSIToFP(IB,F32Ty) 1025 : Builder.CreateUIToFP(IB,F32Ty); 1026 1027 Function *RcpDecl = Intrinsic::getDeclaration(Mod, Intrinsic::amdgcn_rcp, 1028 Builder.getFloatTy()); 1029 Value *RCP = Builder.CreateCall(RcpDecl, { FB }); 1030 Value *FQM = Builder.CreateFMul(FA, RCP); 1031 1032 // fq = trunc(fqm); 1033 CallInst *FQ = Builder.CreateUnaryIntrinsic(Intrinsic::trunc, FQM); 1034 FQ->copyFastMathFlags(Builder.getFastMathFlags()); 1035 1036 // float fqneg = -fq; 1037 Value *FQNeg = Builder.CreateFNeg(FQ); 1038 1039 // float fr = mad(fqneg, fb, fa); 1040 auto FMAD = !ST->hasMadMacF32Insts() 1041 ? Intrinsic::fma 1042 : (Intrinsic::ID)Intrinsic::amdgcn_fmad_ftz; 1043 Value *FR = Builder.CreateIntrinsic(FMAD, 1044 {FQNeg->getType()}, {FQNeg, FB, FA}, FQ); 1045 1046 // int iq = (int)fq; 1047 Value *IQ = IsSigned ? Builder.CreateFPToSI(FQ, I32Ty) 1048 : Builder.CreateFPToUI(FQ, I32Ty); 1049 1050 // fr = fabs(fr); 1051 FR = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, FR, FQ); 1052 1053 // fb = fabs(fb); 1054 FB = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, FB, FQ); 1055 1056 // int cv = fr >= fb; 1057 Value *CV = Builder.CreateFCmpOGE(FR, FB); 1058 1059 // jq = (cv ? jq : 0); 1060 JQ = Builder.CreateSelect(CV, JQ, Builder.getInt32(0)); 1061 1062 // dst = iq + jq; 1063 Value *Div = Builder.CreateAdd(IQ, JQ); 1064 1065 Value *Res = Div; 1066 if (!IsDiv) { 1067 // Rem needs compensation, it's easier to recompute it 1068 Value *Rem = Builder.CreateMul(Div, Den); 1069 Res = Builder.CreateSub(Num, Rem); 1070 } 1071 1072 if (DivBits != 0 && DivBits < 32) { 1073 // Extend in register from the number of bits this divide really is. 1074 if (IsSigned) { 1075 int InRegBits = 32 - DivBits; 1076 1077 Res = Builder.CreateShl(Res, InRegBits); 1078 Res = Builder.CreateAShr(Res, InRegBits); 1079 } else { 1080 ConstantInt *TruncMask 1081 = Builder.getInt32((UINT64_C(1) << DivBits) - 1); 1082 Res = Builder.CreateAnd(Res, TruncMask); 1083 } 1084 } 1085 1086 return Res; 1087 } 1088 1089 // Try to recognize special cases the DAG will emit special, better expansions 1090 // than the general expansion we do here. 1091 1092 // TODO: It would be better to just directly handle those optimizations here. 1093 bool AMDGPUCodeGenPrepareImpl::divHasSpecialOptimization(BinaryOperator &I, 1094 Value *Num, 1095 Value *Den) const { 1096 if (Constant *C = dyn_cast<Constant>(Den)) { 1097 // Arbitrary constants get a better expansion as long as a wider mulhi is 1098 // legal. 1099 if (C->getType()->getScalarSizeInBits() <= 32) 1100 return true; 1101 1102 // TODO: Sdiv check for not exact for some reason. 1103 1104 // If there's no wider mulhi, there's only a better expansion for powers of 1105 // two. 1106 // TODO: Should really know for each vector element. 1107 if (isKnownToBeAPowerOfTwo(C, *DL, true, 0, AC, &I, DT)) 1108 return true; 1109 1110 return false; 1111 } 1112 1113 if (BinaryOperator *BinOpDen = dyn_cast<BinaryOperator>(Den)) { 1114 // fold (udiv x, (shl c, y)) -> x >>u (log2(c)+y) iff c is power of 2 1115 if (BinOpDen->getOpcode() == Instruction::Shl && 1116 isa<Constant>(BinOpDen->getOperand(0)) && 1117 isKnownToBeAPowerOfTwo(BinOpDen->getOperand(0), *DL, true, 1118 0, AC, &I, DT)) { 1119 return true; 1120 } 1121 } 1122 1123 return false; 1124 } 1125 1126 static Value *getSign32(Value *V, IRBuilder<> &Builder, const DataLayout *DL) { 1127 // Check whether the sign can be determined statically. 1128 KnownBits Known = computeKnownBits(V, *DL); 1129 if (Known.isNegative()) 1130 return Constant::getAllOnesValue(V->getType()); 1131 if (Known.isNonNegative()) 1132 return Constant::getNullValue(V->getType()); 1133 return Builder.CreateAShr(V, Builder.getInt32(31)); 1134 } 1135 1136 Value *AMDGPUCodeGenPrepareImpl::expandDivRem32(IRBuilder<> &Builder, 1137 BinaryOperator &I, Value *X, 1138 Value *Y) const { 1139 Instruction::BinaryOps Opc = I.getOpcode(); 1140 assert(Opc == Instruction::URem || Opc == Instruction::UDiv || 1141 Opc == Instruction::SRem || Opc == Instruction::SDiv); 1142 1143 FastMathFlags FMF; 1144 FMF.setFast(); 1145 Builder.setFastMathFlags(FMF); 1146 1147 if (divHasSpecialOptimization(I, X, Y)) 1148 return nullptr; // Keep it for later optimization. 1149 1150 bool IsDiv = Opc == Instruction::UDiv || Opc == Instruction::SDiv; 1151 bool IsSigned = Opc == Instruction::SRem || Opc == Instruction::SDiv; 1152 1153 Type *Ty = X->getType(); 1154 Type *I32Ty = Builder.getInt32Ty(); 1155 Type *F32Ty = Builder.getFloatTy(); 1156 1157 if (Ty->getScalarSizeInBits() < 32) { 1158 if (IsSigned) { 1159 X = Builder.CreateSExt(X, I32Ty); 1160 Y = Builder.CreateSExt(Y, I32Ty); 1161 } else { 1162 X = Builder.CreateZExt(X, I32Ty); 1163 Y = Builder.CreateZExt(Y, I32Ty); 1164 } 1165 } 1166 1167 if (Value *Res = expandDivRem24(Builder, I, X, Y, IsDiv, IsSigned)) { 1168 return IsSigned ? Builder.CreateSExtOrTrunc(Res, Ty) : 1169 Builder.CreateZExtOrTrunc(Res, Ty); 1170 } 1171 1172 ConstantInt *Zero = Builder.getInt32(0); 1173 ConstantInt *One = Builder.getInt32(1); 1174 1175 Value *Sign = nullptr; 1176 if (IsSigned) { 1177 Value *SignX = getSign32(X, Builder, DL); 1178 Value *SignY = getSign32(Y, Builder, DL); 1179 // Remainder sign is the same as LHS 1180 Sign = IsDiv ? Builder.CreateXor(SignX, SignY) : SignX; 1181 1182 X = Builder.CreateAdd(X, SignX); 1183 Y = Builder.CreateAdd(Y, SignY); 1184 1185 X = Builder.CreateXor(X, SignX); 1186 Y = Builder.CreateXor(Y, SignY); 1187 } 1188 1189 // The algorithm here is based on ideas from "Software Integer Division", Tom 1190 // Rodeheffer, August 2008. 1191 // 1192 // unsigned udiv(unsigned x, unsigned y) { 1193 // // Initial estimate of inv(y). The constant is less than 2^32 to ensure 1194 // // that this is a lower bound on inv(y), even if some of the calculations 1195 // // round up. 1196 // unsigned z = (unsigned)((4294967296.0 - 512.0) * v_rcp_f32((float)y)); 1197 // 1198 // // One round of UNR (Unsigned integer Newton-Raphson) to improve z. 1199 // // Empirically this is guaranteed to give a "two-y" lower bound on 1200 // // inv(y). 1201 // z += umulh(z, -y * z); 1202 // 1203 // // Quotient/remainder estimate. 1204 // unsigned q = umulh(x, z); 1205 // unsigned r = x - q * y; 1206 // 1207 // // Two rounds of quotient/remainder refinement. 1208 // if (r >= y) { 1209 // ++q; 1210 // r -= y; 1211 // } 1212 // if (r >= y) { 1213 // ++q; 1214 // r -= y; 1215 // } 1216 // 1217 // return q; 1218 // } 1219 1220 // Initial estimate of inv(y). 1221 Value *FloatY = Builder.CreateUIToFP(Y, F32Ty); 1222 Function *Rcp = Intrinsic::getDeclaration(Mod, Intrinsic::amdgcn_rcp, F32Ty); 1223 Value *RcpY = Builder.CreateCall(Rcp, {FloatY}); 1224 Constant *Scale = ConstantFP::get(F32Ty, llvm::bit_cast<float>(0x4F7FFFFE)); 1225 Value *ScaledY = Builder.CreateFMul(RcpY, Scale); 1226 Value *Z = Builder.CreateFPToUI(ScaledY, I32Ty); 1227 1228 // One round of UNR. 1229 Value *NegY = Builder.CreateSub(Zero, Y); 1230 Value *NegYZ = Builder.CreateMul(NegY, Z); 1231 Z = Builder.CreateAdd(Z, getMulHu(Builder, Z, NegYZ)); 1232 1233 // Quotient/remainder estimate. 1234 Value *Q = getMulHu(Builder, X, Z); 1235 Value *R = Builder.CreateSub(X, Builder.CreateMul(Q, Y)); 1236 1237 // First quotient/remainder refinement. 1238 Value *Cond = Builder.CreateICmpUGE(R, Y); 1239 if (IsDiv) 1240 Q = Builder.CreateSelect(Cond, Builder.CreateAdd(Q, One), Q); 1241 R = Builder.CreateSelect(Cond, Builder.CreateSub(R, Y), R); 1242 1243 // Second quotient/remainder refinement. 1244 Cond = Builder.CreateICmpUGE(R, Y); 1245 Value *Res; 1246 if (IsDiv) 1247 Res = Builder.CreateSelect(Cond, Builder.CreateAdd(Q, One), Q); 1248 else 1249 Res = Builder.CreateSelect(Cond, Builder.CreateSub(R, Y), R); 1250 1251 if (IsSigned) { 1252 Res = Builder.CreateXor(Res, Sign); 1253 Res = Builder.CreateSub(Res, Sign); 1254 } 1255 1256 Res = Builder.CreateTrunc(Res, Ty); 1257 1258 return Res; 1259 } 1260 1261 Value *AMDGPUCodeGenPrepareImpl::shrinkDivRem64(IRBuilder<> &Builder, 1262 BinaryOperator &I, Value *Num, 1263 Value *Den) const { 1264 if (!ExpandDiv64InIR && divHasSpecialOptimization(I, Num, Den)) 1265 return nullptr; // Keep it for later optimization. 1266 1267 Instruction::BinaryOps Opc = I.getOpcode(); 1268 1269 bool IsDiv = Opc == Instruction::SDiv || Opc == Instruction::UDiv; 1270 bool IsSigned = Opc == Instruction::SDiv || Opc == Instruction::SRem; 1271 1272 int NumDivBits = getDivNumBits(I, Num, Den, 32, IsSigned); 1273 if (NumDivBits == -1) 1274 return nullptr; 1275 1276 Value *Narrowed = nullptr; 1277 if (NumDivBits <= 24) { 1278 Narrowed = expandDivRem24Impl(Builder, I, Num, Den, NumDivBits, 1279 IsDiv, IsSigned); 1280 } else if (NumDivBits <= 32) { 1281 Narrowed = expandDivRem32(Builder, I, Num, Den); 1282 } 1283 1284 if (Narrowed) { 1285 return IsSigned ? Builder.CreateSExt(Narrowed, Num->getType()) : 1286 Builder.CreateZExt(Narrowed, Num->getType()); 1287 } 1288 1289 return nullptr; 1290 } 1291 1292 void AMDGPUCodeGenPrepareImpl::expandDivRem64(BinaryOperator &I) const { 1293 Instruction::BinaryOps Opc = I.getOpcode(); 1294 // Do the general expansion. 1295 if (Opc == Instruction::UDiv || Opc == Instruction::SDiv) { 1296 expandDivisionUpTo64Bits(&I); 1297 return; 1298 } 1299 1300 if (Opc == Instruction::URem || Opc == Instruction::SRem) { 1301 expandRemainderUpTo64Bits(&I); 1302 return; 1303 } 1304 1305 llvm_unreachable("not a division"); 1306 } 1307 1308 bool AMDGPUCodeGenPrepareImpl::visitBinaryOperator(BinaryOperator &I) { 1309 if (foldBinOpIntoSelect(I)) 1310 return true; 1311 1312 if (ST->has16BitInsts() && needsPromotionToI32(I.getType()) && 1313 UA->isUniform(&I) && promoteUniformOpToI32(I)) 1314 return true; 1315 1316 if (UseMul24Intrin && replaceMulWithMul24(I)) 1317 return true; 1318 1319 bool Changed = false; 1320 Instruction::BinaryOps Opc = I.getOpcode(); 1321 Type *Ty = I.getType(); 1322 Value *NewDiv = nullptr; 1323 unsigned ScalarSize = Ty->getScalarSizeInBits(); 1324 1325 SmallVector<BinaryOperator *, 8> Div64ToExpand; 1326 1327 if ((Opc == Instruction::URem || Opc == Instruction::UDiv || 1328 Opc == Instruction::SRem || Opc == Instruction::SDiv) && 1329 ScalarSize <= 64 && 1330 !DisableIDivExpand) { 1331 Value *Num = I.getOperand(0); 1332 Value *Den = I.getOperand(1); 1333 IRBuilder<> Builder(&I); 1334 Builder.SetCurrentDebugLocation(I.getDebugLoc()); 1335 1336 if (auto *VT = dyn_cast<FixedVectorType>(Ty)) { 1337 NewDiv = PoisonValue::get(VT); 1338 1339 for (unsigned N = 0, E = VT->getNumElements(); N != E; ++N) { 1340 Value *NumEltN = Builder.CreateExtractElement(Num, N); 1341 Value *DenEltN = Builder.CreateExtractElement(Den, N); 1342 1343 Value *NewElt; 1344 if (ScalarSize <= 32) { 1345 NewElt = expandDivRem32(Builder, I, NumEltN, DenEltN); 1346 if (!NewElt) 1347 NewElt = Builder.CreateBinOp(Opc, NumEltN, DenEltN); 1348 } else { 1349 // See if this 64-bit division can be shrunk to 32/24-bits before 1350 // producing the general expansion. 1351 NewElt = shrinkDivRem64(Builder, I, NumEltN, DenEltN); 1352 if (!NewElt) { 1353 // The general 64-bit expansion introduces control flow and doesn't 1354 // return the new value. Just insert a scalar copy and defer 1355 // expanding it. 1356 NewElt = Builder.CreateBinOp(Opc, NumEltN, DenEltN); 1357 Div64ToExpand.push_back(cast<BinaryOperator>(NewElt)); 1358 } 1359 } 1360 1361 NewDiv = Builder.CreateInsertElement(NewDiv, NewElt, N); 1362 } 1363 } else { 1364 if (ScalarSize <= 32) 1365 NewDiv = expandDivRem32(Builder, I, Num, Den); 1366 else { 1367 NewDiv = shrinkDivRem64(Builder, I, Num, Den); 1368 if (!NewDiv) 1369 Div64ToExpand.push_back(&I); 1370 } 1371 } 1372 1373 if (NewDiv) { 1374 I.replaceAllUsesWith(NewDiv); 1375 I.eraseFromParent(); 1376 Changed = true; 1377 } 1378 } 1379 1380 if (ExpandDiv64InIR) { 1381 // TODO: We get much worse code in specially handled constant cases. 1382 for (BinaryOperator *Div : Div64ToExpand) { 1383 expandDivRem64(*Div); 1384 FlowChanged = true; 1385 Changed = true; 1386 } 1387 } 1388 1389 return Changed; 1390 } 1391 1392 bool AMDGPUCodeGenPrepareImpl::visitLoadInst(LoadInst &I) { 1393 if (!WidenLoads) 1394 return false; 1395 1396 if ((I.getPointerAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS || 1397 I.getPointerAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS_32BIT) && 1398 canWidenScalarExtLoad(I)) { 1399 IRBuilder<> Builder(&I); 1400 Builder.SetCurrentDebugLocation(I.getDebugLoc()); 1401 1402 Type *I32Ty = Builder.getInt32Ty(); 1403 LoadInst *WidenLoad = Builder.CreateLoad(I32Ty, I.getPointerOperand()); 1404 WidenLoad->copyMetadata(I); 1405 1406 // If we have range metadata, we need to convert the type, and not make 1407 // assumptions about the high bits. 1408 if (auto *Range = WidenLoad->getMetadata(LLVMContext::MD_range)) { 1409 ConstantInt *Lower = 1410 mdconst::extract<ConstantInt>(Range->getOperand(0)); 1411 1412 if (Lower->isNullValue()) { 1413 WidenLoad->setMetadata(LLVMContext::MD_range, nullptr); 1414 } else { 1415 Metadata *LowAndHigh[] = { 1416 ConstantAsMetadata::get(ConstantInt::get(I32Ty, Lower->getValue().zext(32))), 1417 // Don't make assumptions about the high bits. 1418 ConstantAsMetadata::get(ConstantInt::get(I32Ty, 0)) 1419 }; 1420 1421 WidenLoad->setMetadata(LLVMContext::MD_range, 1422 MDNode::get(Mod->getContext(), LowAndHigh)); 1423 } 1424 } 1425 1426 int TySize = Mod->getDataLayout().getTypeSizeInBits(I.getType()); 1427 Type *IntNTy = Builder.getIntNTy(TySize); 1428 Value *ValTrunc = Builder.CreateTrunc(WidenLoad, IntNTy); 1429 Value *ValOrig = Builder.CreateBitCast(ValTrunc, I.getType()); 1430 I.replaceAllUsesWith(ValOrig); 1431 I.eraseFromParent(); 1432 return true; 1433 } 1434 1435 return false; 1436 } 1437 1438 bool AMDGPUCodeGenPrepareImpl::visitICmpInst(ICmpInst &I) { 1439 bool Changed = false; 1440 1441 if (ST->has16BitInsts() && needsPromotionToI32(I.getOperand(0)->getType()) && 1442 UA->isUniform(&I)) 1443 Changed |= promoteUniformOpToI32(I); 1444 1445 return Changed; 1446 } 1447 1448 bool AMDGPUCodeGenPrepareImpl::visitSelectInst(SelectInst &I) { 1449 Value *Cond = I.getCondition(); 1450 Value *TrueVal = I.getTrueValue(); 1451 Value *FalseVal = I.getFalseValue(); 1452 Value *CmpVal; 1453 FCmpInst::Predicate Pred; 1454 1455 if (ST->has16BitInsts() && needsPromotionToI32(I.getType())) { 1456 if (UA->isUniform(&I)) 1457 return promoteUniformOpToI32(I); 1458 return false; 1459 } 1460 1461 // Match fract pattern with nan check. 1462 if (!match(Cond, m_FCmp(Pred, m_Value(CmpVal), m_NonNaN()))) 1463 return false; 1464 1465 FPMathOperator *FPOp = dyn_cast<FPMathOperator>(&I); 1466 if (!FPOp) 1467 return false; 1468 1469 IRBuilder<> Builder(&I); 1470 Builder.setFastMathFlags(FPOp->getFastMathFlags()); 1471 1472 auto *IITrue = dyn_cast<IntrinsicInst>(TrueVal); 1473 auto *IIFalse = dyn_cast<IntrinsicInst>(FalseVal); 1474 1475 Value *Fract = nullptr; 1476 if (Pred == FCmpInst::FCMP_UNO && TrueVal == CmpVal && IIFalse && 1477 CmpVal == matchFractPat(*IIFalse)) { 1478 // isnan(x) ? x : fract(x) 1479 Fract = applyFractPat(Builder, CmpVal); 1480 } else if (Pred == FCmpInst::FCMP_ORD && FalseVal == CmpVal && IITrue && 1481 CmpVal == matchFractPat(*IITrue)) { 1482 // !isnan(x) ? fract(x) : x 1483 Fract = applyFractPat(Builder, CmpVal); 1484 } else 1485 return false; 1486 1487 Fract->takeName(&I); 1488 I.replaceAllUsesWith(Fract); 1489 RecursivelyDeleteTriviallyDeadInstructions(&I, TLInfo); 1490 return true; 1491 } 1492 1493 static bool areInSameBB(const Value *A, const Value *B) { 1494 const auto *IA = dyn_cast<Instruction>(A); 1495 const auto *IB = dyn_cast<Instruction>(B); 1496 return IA && IB && IA->getParent() == IB->getParent(); 1497 } 1498 1499 // Helper for breaking large PHIs that returns true when an extractelement on V 1500 // is likely to be folded away by the DAG combiner. 1501 static bool isInterestingPHIIncomingValue(const Value *V) { 1502 const auto *FVT = dyn_cast<FixedVectorType>(V->getType()); 1503 if (!FVT) 1504 return false; 1505 1506 const Value *CurVal = V; 1507 1508 // Check for insertelements, keeping track of the elements covered. 1509 BitVector EltsCovered(FVT->getNumElements()); 1510 while (const auto *IE = dyn_cast<InsertElementInst>(CurVal)) { 1511 const auto *Idx = dyn_cast<ConstantInt>(IE->getOperand(2)); 1512 1513 // Non constant index/out of bounds index -> folding is unlikely. 1514 // The latter is more of a sanity check because canonical IR should just 1515 // have replaced those with poison. 1516 if (!Idx || Idx->getSExtValue() >= FVT->getNumElements()) 1517 return false; 1518 1519 const auto *VecSrc = IE->getOperand(0); 1520 1521 // If the vector source is another instruction, it must be in the same basic 1522 // block. Otherwise, the DAGCombiner won't see the whole thing and is 1523 // unlikely to be able to do anything interesting here. 1524 if (isa<Instruction>(VecSrc) && !areInSameBB(VecSrc, IE)) 1525 return false; 1526 1527 CurVal = VecSrc; 1528 EltsCovered.set(Idx->getSExtValue()); 1529 1530 // All elements covered. 1531 if (EltsCovered.all()) 1532 return true; 1533 } 1534 1535 // We either didn't find a single insertelement, or the insertelement chain 1536 // ended before all elements were covered. Check for other interesting values. 1537 1538 // Constants are always interesting because we can just constant fold the 1539 // extractelements. 1540 if (isa<Constant>(CurVal)) 1541 return true; 1542 1543 // shufflevector is likely to be profitable if either operand is a constant, 1544 // or if either source is in the same block. 1545 // This is because shufflevector is most often lowered as a series of 1546 // insert/extract elements anyway. 1547 if (const auto *SV = dyn_cast<ShuffleVectorInst>(CurVal)) { 1548 return isa<Constant>(SV->getOperand(1)) || 1549 areInSameBB(SV, SV->getOperand(0)) || 1550 areInSameBB(SV, SV->getOperand(1)); 1551 } 1552 1553 return false; 1554 } 1555 1556 bool AMDGPUCodeGenPrepareImpl::canBreakPHINode(const PHINode &I) { 1557 // Check in the cache, or add an entry for this node. 1558 // 1559 // We init with false because we consider all PHI nodes unbreakable until we 1560 // reach a conclusion. Doing the opposite - assuming they're break-able until 1561 // proven otherwise - can be harmful in some pathological cases so we're 1562 // conservative for now. 1563 const auto [It, DidInsert] = BreakPhiNodesCache.insert({&I, false}); 1564 if (!DidInsert) 1565 return It->second; 1566 1567 // This function may recurse, so to guard against infinite looping, this PHI 1568 // is conservatively considered unbreakable until we reach a conclusion. 1569 1570 // Don't break PHIs that have no interesting incoming values. That is, where 1571 // there is no clear opportunity to fold the "extractelement" instructions we 1572 // would add. 1573 // 1574 // Note: IC does not run after this pass, so we're only interested in the 1575 // foldings that the DAG combiner can do. 1576 if (none_of(I.incoming_values(), 1577 [&](Value *V) { return isInterestingPHIIncomingValue(V); })) 1578 return false; 1579 1580 // Now, check users for unbreakable PHI nodes. If we have an unbreakable PHI 1581 // node as user, we don't want to break this PHI either because it's unlikely 1582 // to be beneficial. We would just explode the vector and reassemble it 1583 // directly, wasting instructions. 1584 for (const Value *U : I.users()) { 1585 if (const auto *PU = dyn_cast<PHINode>(U)) { 1586 if (!canBreakPHINode(*PU)) 1587 return false; 1588 } 1589 } 1590 1591 return BreakPhiNodesCache[&I] = true; 1592 } 1593 1594 /// Helper class for "break large PHIs" (visitPHINode). 1595 /// 1596 /// This represents a slice of a PHI's incoming value, which is made up of: 1597 /// - The type of the slice (Ty) 1598 /// - The index in the incoming value's vector where the slice starts (Idx) 1599 /// - The number of elements in the slice (NumElts). 1600 /// It also keeps track of the NewPHI node inserted for this particular slice. 1601 /// 1602 /// Slice examples: 1603 /// <4 x i64> -> Split into four i64 slices. 1604 /// -> [i64, 0, 1], [i64, 1, 1], [i64, 2, 1], [i64, 3, 1] 1605 /// <5 x i16> -> Split into 2 <2 x i16> slices + a i16 tail. 1606 /// -> [<2 x i16>, 0, 2], [<2 x i16>, 2, 2], [i16, 4, 1] 1607 class VectorSlice { 1608 public: 1609 VectorSlice(Type *Ty, unsigned Idx, unsigned NumElts) 1610 : Ty(Ty), Idx(Idx), NumElts(NumElts) {} 1611 1612 Type *Ty = nullptr; 1613 unsigned Idx = 0; 1614 unsigned NumElts = 0; 1615 PHINode *NewPHI = nullptr; 1616 1617 /// Slice \p Inc according to the information contained within this slice. 1618 /// This is cached, so if called multiple times for the same \p BB & \p Inc 1619 /// pair, it returns the same Sliced value as well. 1620 /// 1621 /// Note this *intentionally* does not return the same value for, say, 1622 /// [%bb.0, %0] & [%bb.1, %0] as: 1623 /// - It could cause issues with dominance (e.g. if bb.1 is seen first, then 1624 /// the value in bb.1 may not be reachable from bb.0 if it's its 1625 /// predecessor.) 1626 /// - We also want to make our extract instructions as local as possible so 1627 /// the DAG has better chances of folding them out. Duplicating them like 1628 /// that is beneficial in that regard. 1629 /// 1630 /// This is both a minor optimization to avoid creating duplicate 1631 /// instructions, but also a requirement for correctness. It is not forbidden 1632 /// for a PHI node to have the same [BB, Val] pair multiple times. If we 1633 /// returned a new value each time, those previously identical pairs would all 1634 /// have different incoming values (from the same block) and it'd cause a "PHI 1635 /// node has multiple entries for the same basic block with different incoming 1636 /// values!" verifier error. 1637 Value *getSlicedVal(BasicBlock *BB, Value *Inc, StringRef NewValName) { 1638 Value *&Res = SlicedVals[{BB, Inc}]; 1639 if (Res) 1640 return Res; 1641 1642 IRBuilder<> B(BB->getTerminator()); 1643 if (Instruction *IncInst = dyn_cast<Instruction>(Inc)) 1644 B.SetCurrentDebugLocation(IncInst->getDebugLoc()); 1645 1646 if (NumElts > 1) { 1647 SmallVector<int, 4> Mask; 1648 for (unsigned K = Idx; K < (Idx + NumElts); ++K) 1649 Mask.push_back(K); 1650 Res = B.CreateShuffleVector(Inc, Mask, NewValName); 1651 } else 1652 Res = B.CreateExtractElement(Inc, Idx, NewValName); 1653 1654 return Res; 1655 } 1656 1657 private: 1658 SmallDenseMap<std::pair<BasicBlock *, Value *>, Value *> SlicedVals; 1659 }; 1660 1661 bool AMDGPUCodeGenPrepareImpl::visitPHINode(PHINode &I) { 1662 // Break-up fixed-vector PHIs into smaller pieces. 1663 // Default threshold is 32, so it breaks up any vector that's >32 bits into 1664 // its elements, or into 32-bit pieces (for 8/16 bit elts). 1665 // 1666 // This is only helpful for DAGISel because it doesn't handle large PHIs as 1667 // well as GlobalISel. DAGISel lowers PHIs by using CopyToReg/CopyFromReg. 1668 // With large, odd-sized PHIs we may end up needing many `build_vector` 1669 // operations with most elements being "undef". This inhibits a lot of 1670 // optimization opportunities and can result in unreasonably high register 1671 // pressure and the inevitable stack spilling. 1672 if (!ScalarizeLargePHIs || getCGPassBuilderOption().EnableGlobalISelOption) 1673 return false; 1674 1675 FixedVectorType *FVT = dyn_cast<FixedVectorType>(I.getType()); 1676 if (!FVT || DL->getTypeSizeInBits(FVT) <= ScalarizeLargePHIsThreshold) 1677 return false; 1678 1679 if (!ForceScalarizeLargePHIs && !canBreakPHINode(I)) 1680 return false; 1681 1682 std::vector<VectorSlice> Slices; 1683 1684 Type *EltTy = FVT->getElementType(); 1685 { 1686 unsigned Idx = 0; 1687 // For 8/16 bits type, don't scalarize fully but break it up into as many 1688 // 32-bit slices as we can, and scalarize the tail. 1689 const unsigned EltSize = DL->getTypeSizeInBits(EltTy); 1690 const unsigned NumElts = FVT->getNumElements(); 1691 if (EltSize == 8 || EltSize == 16) { 1692 const unsigned SubVecSize = (32 / EltSize); 1693 Type *SubVecTy = FixedVectorType::get(EltTy, SubVecSize); 1694 for (unsigned End = alignDown(NumElts, SubVecSize); Idx < End; 1695 Idx += SubVecSize) 1696 Slices.emplace_back(SubVecTy, Idx, SubVecSize); 1697 } 1698 1699 // Scalarize all remaining elements. 1700 for (; Idx < NumElts; ++Idx) 1701 Slices.emplace_back(EltTy, Idx, 1); 1702 } 1703 1704 if (Slices.size() == 1) 1705 return false; 1706 1707 // Create one PHI per vector piece. The "VectorSlice" class takes care of 1708 // creating the necessary instruction to extract the relevant slices of each 1709 // incoming value. 1710 IRBuilder<> B(I.getParent()); 1711 B.SetCurrentDebugLocation(I.getDebugLoc()); 1712 1713 unsigned IncNameSuffix = 0; 1714 for (VectorSlice &S : Slices) { 1715 // We need to reset the build on each iteration, because getSlicedVal may 1716 // have inserted something into I's BB. 1717 B.SetInsertPoint(I.getParent()->getFirstNonPHI()); 1718 S.NewPHI = B.CreatePHI(S.Ty, I.getNumIncomingValues()); 1719 1720 for (const auto &[Idx, BB] : enumerate(I.blocks())) { 1721 S.NewPHI->addIncoming(S.getSlicedVal(BB, I.getIncomingValue(Idx), 1722 "largephi.extractslice" + 1723 std::to_string(IncNameSuffix++)), 1724 BB); 1725 } 1726 } 1727 1728 // And replace this PHI with a vector of all the previous PHI values. 1729 Value *Vec = PoisonValue::get(FVT); 1730 unsigned NameSuffix = 0; 1731 for (VectorSlice &S : Slices) { 1732 const auto ValName = "largephi.insertslice" + std::to_string(NameSuffix++); 1733 if (S.NumElts > 1) 1734 Vec = 1735 B.CreateInsertVector(FVT, Vec, S.NewPHI, B.getInt64(S.Idx), ValName); 1736 else 1737 Vec = B.CreateInsertElement(Vec, S.NewPHI, S.Idx, ValName); 1738 } 1739 1740 I.replaceAllUsesWith(Vec); 1741 I.eraseFromParent(); 1742 return true; 1743 } 1744 1745 bool AMDGPUCodeGenPrepareImpl::visitIntrinsicInst(IntrinsicInst &I) { 1746 switch (I.getIntrinsicID()) { 1747 case Intrinsic::bitreverse: 1748 return visitBitreverseIntrinsicInst(I); 1749 case Intrinsic::minnum: 1750 return visitMinNum(I); 1751 default: 1752 return false; 1753 } 1754 } 1755 1756 bool AMDGPUCodeGenPrepareImpl::visitBitreverseIntrinsicInst(IntrinsicInst &I) { 1757 bool Changed = false; 1758 1759 if (ST->has16BitInsts() && needsPromotionToI32(I.getType()) && 1760 UA->isUniform(&I)) 1761 Changed |= promoteUniformBitreverseToI32(I); 1762 1763 return Changed; 1764 } 1765 1766 /// Match non-nan fract pattern. 1767 /// minnum(fsub(x, floor(x)), nextafter(1.0, -1.0) 1768 /// 1769 /// If fract is a useful instruction for the subtarget. Does not account for the 1770 /// nan handling; the instruction has a nan check on the input value. 1771 Value *AMDGPUCodeGenPrepareImpl::matchFractPat(IntrinsicInst &I) { 1772 if (ST->hasFractBug()) 1773 return nullptr; 1774 1775 if (I.getIntrinsicID() != Intrinsic::minnum) 1776 return nullptr; 1777 1778 Type *Ty = I.getType(); 1779 if (!isLegalFloatingTy(Ty->getScalarType())) 1780 return nullptr; 1781 1782 Value *Arg0 = I.getArgOperand(0); 1783 Value *Arg1 = I.getArgOperand(1); 1784 1785 const APFloat *C; 1786 if (!match(Arg1, m_APFloat(C))) 1787 return nullptr; 1788 1789 APFloat One(1.0); 1790 bool LosesInfo; 1791 One.convert(C->getSemantics(), APFloat::rmNearestTiesToEven, &LosesInfo); 1792 1793 // Match nextafter(1.0, -1) 1794 One.next(true); 1795 if (One != *C) 1796 return nullptr; 1797 1798 Value *FloorSrc; 1799 if (match(Arg0, m_FSub(m_Value(FloorSrc), 1800 m_Intrinsic<Intrinsic::floor>(m_Deferred(FloorSrc))))) 1801 return FloorSrc; 1802 return nullptr; 1803 } 1804 1805 Value *AMDGPUCodeGenPrepareImpl::applyFractPat(IRBuilder<> &Builder, 1806 Value *FractArg) { 1807 SmallVector<Value *, 4> FractVals; 1808 extractValues(Builder, FractVals, FractArg); 1809 1810 SmallVector<Value *, 4> ResultVals(FractVals.size()); 1811 1812 Type *Ty = FractArg->getType()->getScalarType(); 1813 for (unsigned I = 0, E = FractVals.size(); I != E; ++I) { 1814 ResultVals[I] = 1815 Builder.CreateIntrinsic(Intrinsic::amdgcn_fract, {Ty}, {FractVals[I]}); 1816 } 1817 1818 return insertValues(Builder, FractArg->getType(), ResultVals); 1819 } 1820 1821 bool AMDGPUCodeGenPrepareImpl::visitMinNum(IntrinsicInst &I) { 1822 Value *FractArg = matchFractPat(I); 1823 if (!FractArg) 1824 return false; 1825 1826 // Match pattern for fract intrinsic in contexts where the nan check has been 1827 // optimized out (and hope the knowledge the source can't be nan wasn't lost). 1828 if (!I.hasNoNaNs() && !isKnownNeverNaN(FractArg, *DL, TLInfo)) 1829 return false; 1830 1831 IRBuilder<> Builder(&I); 1832 FastMathFlags FMF = I.getFastMathFlags(); 1833 FMF.setNoNaNs(); 1834 Builder.setFastMathFlags(FMF); 1835 1836 Value *Fract = applyFractPat(Builder, FractArg); 1837 Fract->takeName(&I); 1838 I.replaceAllUsesWith(Fract); 1839 1840 RecursivelyDeleteTriviallyDeadInstructions(&I, TLInfo); 1841 return true; 1842 } 1843 1844 bool AMDGPUCodeGenPrepare::doInitialization(Module &M) { 1845 Impl.Mod = &M; 1846 Impl.DL = &Impl.Mod->getDataLayout(); 1847 return false; 1848 } 1849 1850 bool AMDGPUCodeGenPrepare::runOnFunction(Function &F) { 1851 if (skipFunction(F)) 1852 return false; 1853 1854 auto *TPC = getAnalysisIfAvailable<TargetPassConfig>(); 1855 if (!TPC) 1856 return false; 1857 1858 const AMDGPUTargetMachine &TM = TPC->getTM<AMDGPUTargetMachine>(); 1859 Impl.TLInfo = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F); 1860 Impl.ST = &TM.getSubtarget<GCNSubtarget>(F); 1861 Impl.AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 1862 Impl.UA = &getAnalysis<UniformityInfoWrapperPass>().getUniformityInfo(); 1863 auto *DTWP = getAnalysisIfAvailable<DominatorTreeWrapperPass>(); 1864 Impl.DT = DTWP ? &DTWP->getDomTree() : nullptr; 1865 Impl.HasUnsafeFPMath = hasUnsafeFPMath(F); 1866 SIModeRegisterDefaults Mode(F); 1867 Impl.HasFP32Denormals = Mode.allFP32Denormals(); 1868 return Impl.run(F); 1869 } 1870 1871 PreservedAnalyses AMDGPUCodeGenPreparePass::run(Function &F, 1872 FunctionAnalysisManager &FAM) { 1873 AMDGPUCodeGenPrepareImpl Impl; 1874 Impl.Mod = F.getParent(); 1875 Impl.DL = &Impl.Mod->getDataLayout(); 1876 Impl.TLInfo = &FAM.getResult<TargetLibraryAnalysis>(F); 1877 Impl.ST = &TM.getSubtarget<GCNSubtarget>(F); 1878 Impl.AC = &FAM.getResult<AssumptionAnalysis>(F); 1879 Impl.UA = &FAM.getResult<UniformityInfoAnalysis>(F); 1880 Impl.DT = FAM.getCachedResult<DominatorTreeAnalysis>(F); 1881 Impl.HasUnsafeFPMath = hasUnsafeFPMath(F); 1882 SIModeRegisterDefaults Mode(F); 1883 Impl.HasFP32Denormals = Mode.allFP32Denormals(); 1884 PreservedAnalyses PA = PreservedAnalyses::none(); 1885 if (!Impl.FlowChanged) 1886 PA.preserveSet<CFGAnalyses>(); 1887 return Impl.run(F) ? PA : PreservedAnalyses::all(); 1888 } 1889 1890 INITIALIZE_PASS_BEGIN(AMDGPUCodeGenPrepare, DEBUG_TYPE, 1891 "AMDGPU IR optimizations", false, false) 1892 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 1893 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 1894 INITIALIZE_PASS_DEPENDENCY(UniformityInfoWrapperPass) 1895 INITIALIZE_PASS_END(AMDGPUCodeGenPrepare, DEBUG_TYPE, "AMDGPU IR optimizations", 1896 false, false) 1897 1898 char AMDGPUCodeGenPrepare::ID = 0; 1899 1900 FunctionPass *llvm::createAMDGPUCodeGenPreparePass() { 1901 return new AMDGPUCodeGenPrepare(); 1902 } 1903