xref: /llvm-project/llvm/lib/Target/AMDGPU/AMDGPUCodeGenPrepare.cpp (revision 9ec668606b3a8d71ca327d9857844fb9c607a54b)
1 //===-- AMDGPUCodeGenPrepare.cpp ------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file
10 /// This pass does misc. AMDGPU optimizations on IR before instruction
11 /// selection.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "AMDGPU.h"
16 #include "AMDGPUSubtarget.h"
17 #include "AMDGPUTargetMachine.h"
18 #include "llvm/ADT/StringRef.h"
19 #include "llvm/Analysis/AssumptionCache.h"
20 #include "llvm/Analysis/ConstantFolding.h"
21 #include "llvm/Analysis/LegacyDivergenceAnalysis.h"
22 #include "llvm/Analysis/Loads.h"
23 #include "llvm/Analysis/ValueTracking.h"
24 #include "llvm/CodeGen/Passes.h"
25 #include "llvm/CodeGen/TargetPassConfig.h"
26 #include "llvm/IR/Attributes.h"
27 #include "llvm/IR/BasicBlock.h"
28 #include "llvm/IR/Constants.h"
29 #include "llvm/IR/DerivedTypes.h"
30 #include "llvm/IR/Function.h"
31 #include "llvm/IR/IRBuilder.h"
32 #include "llvm/IR/InstVisitor.h"
33 #include "llvm/IR/InstrTypes.h"
34 #include "llvm/IR/Instruction.h"
35 #include "llvm/IR/Instructions.h"
36 #include "llvm/IR/IntrinsicInst.h"
37 #include "llvm/IR/Intrinsics.h"
38 #include "llvm/IR/LLVMContext.h"
39 #include "llvm/IR/Operator.h"
40 #include "llvm/IR/Type.h"
41 #include "llvm/IR/Value.h"
42 #include "llvm/Transforms/Utils/IntegerDivision.h"
43 #include "llvm/InitializePasses.h"
44 #include "llvm/Pass.h"
45 #include "llvm/Support/Casting.h"
46 #include <cassert>
47 #include <iterator>
48 
49 #define DEBUG_TYPE "amdgpu-codegenprepare"
50 
51 using namespace llvm;
52 
53 namespace {
54 
55 static cl::opt<bool> WidenLoads(
56   "amdgpu-codegenprepare-widen-constant-loads",
57   cl::desc("Widen sub-dword constant address space loads in AMDGPUCodeGenPrepare"),
58   cl::ReallyHidden,
59   cl::init(true));
60 
61 static cl::opt<bool> UseMul24Intrin(
62   "amdgpu-codegenprepare-mul24",
63   cl::desc("Introduce mul24 intrinsics in AMDGPUCodeGenPrepare"),
64   cl::ReallyHidden,
65   cl::init(true));
66 
67 // Legalize 64-bit division by using the generic IR expansion.
68 static cl::opt<bool> ExpandDiv64InIR(
69   "amdgpu-codegenprepare-expand-div64",
70   cl::desc("Expand 64-bit division in AMDGPUCodeGenPrepare"),
71   cl::ReallyHidden,
72   cl::init(false));
73 
74 // Leave all division operations as they are. This supersedes ExpandDiv64InIR
75 // and is used for testing the legalizer.
76 static cl::opt<bool> DisableIDivExpand(
77   "amdgpu-codegenprepare-disable-idiv-expansion",
78   cl::desc("Prevent expanding integer division in AMDGPUCodeGenPrepare"),
79   cl::ReallyHidden,
80   cl::init(false));
81 
82 class AMDGPUCodeGenPrepare : public FunctionPass,
83                              public InstVisitor<AMDGPUCodeGenPrepare, bool> {
84   const GCNSubtarget *ST = nullptr;
85   AssumptionCache *AC = nullptr;
86   DominatorTree *DT = nullptr;
87   LegacyDivergenceAnalysis *DA = nullptr;
88   Module *Mod = nullptr;
89   const DataLayout *DL = nullptr;
90   bool HasUnsafeFPMath = false;
91   bool HasFP32Denormals = false;
92 
93   /// Copies exact/nsw/nuw flags (if any) from binary operation \p I to
94   /// binary operation \p V.
95   ///
96   /// \returns Binary operation \p V.
97   /// \returns \p T's base element bit width.
98   unsigned getBaseElementBitWidth(const Type *T) const;
99 
100   /// \returns Equivalent 32 bit integer type for given type \p T. For example,
101   /// if \p T is i7, then i32 is returned; if \p T is <3 x i12>, then <3 x i32>
102   /// is returned.
103   Type *getI32Ty(IRBuilder<> &B, const Type *T) const;
104 
105   /// \returns True if binary operation \p I is a signed binary operation, false
106   /// otherwise.
107   bool isSigned(const BinaryOperator &I) const;
108 
109   /// \returns True if the condition of 'select' operation \p I comes from a
110   /// signed 'icmp' operation, false otherwise.
111   bool isSigned(const SelectInst &I) const;
112 
113   /// \returns True if type \p T needs to be promoted to 32 bit integer type,
114   /// false otherwise.
115   bool needsPromotionToI32(const Type *T) const;
116 
117   /// Promotes uniform binary operation \p I to equivalent 32 bit binary
118   /// operation.
119   ///
120   /// \details \p I's base element bit width must be greater than 1 and less
121   /// than or equal 16. Promotion is done by sign or zero extending operands to
122   /// 32 bits, replacing \p I with equivalent 32 bit binary operation, and
123   /// truncating the result of 32 bit binary operation back to \p I's original
124   /// type. Division operation is not promoted.
125   ///
126   /// \returns True if \p I is promoted to equivalent 32 bit binary operation,
127   /// false otherwise.
128   bool promoteUniformOpToI32(BinaryOperator &I) const;
129 
130   /// Promotes uniform 'icmp' operation \p I to 32 bit 'icmp' operation.
131   ///
132   /// \details \p I's base element bit width must be greater than 1 and less
133   /// than or equal 16. Promotion is done by sign or zero extending operands to
134   /// 32 bits, and replacing \p I with 32 bit 'icmp' operation.
135   ///
136   /// \returns True.
137   bool promoteUniformOpToI32(ICmpInst &I) const;
138 
139   /// Promotes uniform 'select' operation \p I to 32 bit 'select'
140   /// operation.
141   ///
142   /// \details \p I's base element bit width must be greater than 1 and less
143   /// than or equal 16. Promotion is done by sign or zero extending operands to
144   /// 32 bits, replacing \p I with 32 bit 'select' operation, and truncating the
145   /// result of 32 bit 'select' operation back to \p I's original type.
146   ///
147   /// \returns True.
148   bool promoteUniformOpToI32(SelectInst &I) const;
149 
150   /// Promotes uniform 'bitreverse' intrinsic \p I to 32 bit 'bitreverse'
151   /// intrinsic.
152   ///
153   /// \details \p I's base element bit width must be greater than 1 and less
154   /// than or equal 16. Promotion is done by zero extending the operand to 32
155   /// bits, replacing \p I with 32 bit 'bitreverse' intrinsic, shifting the
156   /// result of 32 bit 'bitreverse' intrinsic to the right with zero fill (the
157   /// shift amount is 32 minus \p I's base element bit width), and truncating
158   /// the result of the shift operation back to \p I's original type.
159   ///
160   /// \returns True.
161   bool promoteUniformBitreverseToI32(IntrinsicInst &I) const;
162 
163 
164   unsigned numBitsUnsigned(Value *Op, unsigned ScalarSize) const;
165   unsigned numBitsSigned(Value *Op, unsigned ScalarSize) const;
166   bool isI24(Value *V, unsigned ScalarSize) const;
167   bool isU24(Value *V, unsigned ScalarSize) const;
168 
169   /// Replace mul instructions with llvm.amdgcn.mul.u24 or llvm.amdgcn.mul.s24.
170   /// SelectionDAG has an issue where an and asserting the bits are known
171   bool replaceMulWithMul24(BinaryOperator &I) const;
172 
173   /// Perform same function as equivalently named function in DAGCombiner. Since
174   /// we expand some divisions here, we need to perform this before obscuring.
175   bool foldBinOpIntoSelect(BinaryOperator &I) const;
176 
177   bool divHasSpecialOptimization(BinaryOperator &I,
178                                  Value *Num, Value *Den) const;
179   int getDivNumBits(BinaryOperator &I,
180                     Value *Num, Value *Den,
181                     unsigned AtLeast, bool Signed) const;
182 
183   /// Expands 24 bit div or rem.
184   Value* expandDivRem24(IRBuilder<> &Builder, BinaryOperator &I,
185                         Value *Num, Value *Den,
186                         bool IsDiv, bool IsSigned) const;
187 
188   Value *expandDivRem24Impl(IRBuilder<> &Builder, BinaryOperator &I,
189                             Value *Num, Value *Den, unsigned NumBits,
190                             bool IsDiv, bool IsSigned) const;
191 
192   /// Expands 32 bit div or rem.
193   Value* expandDivRem32(IRBuilder<> &Builder, BinaryOperator &I,
194                         Value *Num, Value *Den) const;
195 
196   Value *shrinkDivRem64(IRBuilder<> &Builder, BinaryOperator &I,
197                         Value *Num, Value *Den) const;
198   void expandDivRem64(BinaryOperator &I) const;
199 
200   /// Widen a scalar load.
201   ///
202   /// \details \p Widen scalar load for uniform, small type loads from constant
203   //  memory / to a full 32-bits and then truncate the input to allow a scalar
204   //  load instead of a vector load.
205   //
206   /// \returns True.
207 
208   bool canWidenScalarExtLoad(LoadInst &I) const;
209 
210 public:
211   static char ID;
212 
213   AMDGPUCodeGenPrepare() : FunctionPass(ID) {}
214 
215   bool visitFDiv(BinaryOperator &I);
216 
217   bool visitInstruction(Instruction &I) { return false; }
218   bool visitBinaryOperator(BinaryOperator &I);
219   bool visitLoadInst(LoadInst &I);
220   bool visitICmpInst(ICmpInst &I);
221   bool visitSelectInst(SelectInst &I);
222 
223   bool visitIntrinsicInst(IntrinsicInst &I);
224   bool visitBitreverseIntrinsicInst(IntrinsicInst &I);
225 
226   bool doInitialization(Module &M) override;
227   bool runOnFunction(Function &F) override;
228 
229   StringRef getPassName() const override { return "AMDGPU IR optimizations"; }
230 
231   void getAnalysisUsage(AnalysisUsage &AU) const override {
232     AU.addRequired<AssumptionCacheTracker>();
233     AU.addRequired<LegacyDivergenceAnalysis>();
234     AU.setPreservesAll();
235  }
236 };
237 
238 } // end anonymous namespace
239 
240 unsigned AMDGPUCodeGenPrepare::getBaseElementBitWidth(const Type *T) const {
241   assert(needsPromotionToI32(T) && "T does not need promotion to i32");
242 
243   if (T->isIntegerTy())
244     return T->getIntegerBitWidth();
245   return cast<VectorType>(T)->getElementType()->getIntegerBitWidth();
246 }
247 
248 Type *AMDGPUCodeGenPrepare::getI32Ty(IRBuilder<> &B, const Type *T) const {
249   assert(needsPromotionToI32(T) && "T does not need promotion to i32");
250 
251   if (T->isIntegerTy())
252     return B.getInt32Ty();
253   return VectorType::get(B.getInt32Ty(), cast<VectorType>(T)->getNumElements());
254 }
255 
256 bool AMDGPUCodeGenPrepare::isSigned(const BinaryOperator &I) const {
257   return I.getOpcode() == Instruction::AShr ||
258       I.getOpcode() == Instruction::SDiv || I.getOpcode() == Instruction::SRem;
259 }
260 
261 bool AMDGPUCodeGenPrepare::isSigned(const SelectInst &I) const {
262   return isa<ICmpInst>(I.getOperand(0)) ?
263       cast<ICmpInst>(I.getOperand(0))->isSigned() : false;
264 }
265 
266 bool AMDGPUCodeGenPrepare::needsPromotionToI32(const Type *T) const {
267   const IntegerType *IntTy = dyn_cast<IntegerType>(T);
268   if (IntTy && IntTy->getBitWidth() > 1 && IntTy->getBitWidth() <= 16)
269     return true;
270 
271   if (const VectorType *VT = dyn_cast<VectorType>(T)) {
272     // TODO: The set of packed operations is more limited, so may want to
273     // promote some anyway.
274     if (ST->hasVOP3PInsts())
275       return false;
276 
277     return needsPromotionToI32(VT->getElementType());
278   }
279 
280   return false;
281 }
282 
283 // Return true if the op promoted to i32 should have nsw set.
284 static bool promotedOpIsNSW(const Instruction &I) {
285   switch (I.getOpcode()) {
286   case Instruction::Shl:
287   case Instruction::Add:
288   case Instruction::Sub:
289     return true;
290   case Instruction::Mul:
291     return I.hasNoUnsignedWrap();
292   default:
293     return false;
294   }
295 }
296 
297 // Return true if the op promoted to i32 should have nuw set.
298 static bool promotedOpIsNUW(const Instruction &I) {
299   switch (I.getOpcode()) {
300   case Instruction::Shl:
301   case Instruction::Add:
302   case Instruction::Mul:
303     return true;
304   case Instruction::Sub:
305     return I.hasNoUnsignedWrap();
306   default:
307     return false;
308   }
309 }
310 
311 bool AMDGPUCodeGenPrepare::canWidenScalarExtLoad(LoadInst &I) const {
312   Type *Ty = I.getType();
313   const DataLayout &DL = Mod->getDataLayout();
314   int TySize = DL.getTypeSizeInBits(Ty);
315   unsigned Align = I.getAlignment() ?
316                    I.getAlignment() : DL.getABITypeAlignment(Ty);
317 
318   return I.isSimple() && TySize < 32 && Align >= 4 && DA->isUniform(&I);
319 }
320 
321 bool AMDGPUCodeGenPrepare::promoteUniformOpToI32(BinaryOperator &I) const {
322   assert(needsPromotionToI32(I.getType()) &&
323          "I does not need promotion to i32");
324 
325   if (I.getOpcode() == Instruction::SDiv ||
326       I.getOpcode() == Instruction::UDiv ||
327       I.getOpcode() == Instruction::SRem ||
328       I.getOpcode() == Instruction::URem)
329     return false;
330 
331   IRBuilder<> Builder(&I);
332   Builder.SetCurrentDebugLocation(I.getDebugLoc());
333 
334   Type *I32Ty = getI32Ty(Builder, I.getType());
335   Value *ExtOp0 = nullptr;
336   Value *ExtOp1 = nullptr;
337   Value *ExtRes = nullptr;
338   Value *TruncRes = nullptr;
339 
340   if (isSigned(I)) {
341     ExtOp0 = Builder.CreateSExt(I.getOperand(0), I32Ty);
342     ExtOp1 = Builder.CreateSExt(I.getOperand(1), I32Ty);
343   } else {
344     ExtOp0 = Builder.CreateZExt(I.getOperand(0), I32Ty);
345     ExtOp1 = Builder.CreateZExt(I.getOperand(1), I32Ty);
346   }
347 
348   ExtRes = Builder.CreateBinOp(I.getOpcode(), ExtOp0, ExtOp1);
349   if (Instruction *Inst = dyn_cast<Instruction>(ExtRes)) {
350     if (promotedOpIsNSW(cast<Instruction>(I)))
351       Inst->setHasNoSignedWrap();
352 
353     if (promotedOpIsNUW(cast<Instruction>(I)))
354       Inst->setHasNoUnsignedWrap();
355 
356     if (const auto *ExactOp = dyn_cast<PossiblyExactOperator>(&I))
357       Inst->setIsExact(ExactOp->isExact());
358   }
359 
360   TruncRes = Builder.CreateTrunc(ExtRes, I.getType());
361 
362   I.replaceAllUsesWith(TruncRes);
363   I.eraseFromParent();
364 
365   return true;
366 }
367 
368 bool AMDGPUCodeGenPrepare::promoteUniformOpToI32(ICmpInst &I) const {
369   assert(needsPromotionToI32(I.getOperand(0)->getType()) &&
370          "I does not need promotion to i32");
371 
372   IRBuilder<> Builder(&I);
373   Builder.SetCurrentDebugLocation(I.getDebugLoc());
374 
375   Type *I32Ty = getI32Ty(Builder, I.getOperand(0)->getType());
376   Value *ExtOp0 = nullptr;
377   Value *ExtOp1 = nullptr;
378   Value *NewICmp  = nullptr;
379 
380   if (I.isSigned()) {
381     ExtOp0 = Builder.CreateSExt(I.getOperand(0), I32Ty);
382     ExtOp1 = Builder.CreateSExt(I.getOperand(1), I32Ty);
383   } else {
384     ExtOp0 = Builder.CreateZExt(I.getOperand(0), I32Ty);
385     ExtOp1 = Builder.CreateZExt(I.getOperand(1), I32Ty);
386   }
387   NewICmp = Builder.CreateICmp(I.getPredicate(), ExtOp0, ExtOp1);
388 
389   I.replaceAllUsesWith(NewICmp);
390   I.eraseFromParent();
391 
392   return true;
393 }
394 
395 bool AMDGPUCodeGenPrepare::promoteUniformOpToI32(SelectInst &I) const {
396   assert(needsPromotionToI32(I.getType()) &&
397          "I does not need promotion to i32");
398 
399   IRBuilder<> Builder(&I);
400   Builder.SetCurrentDebugLocation(I.getDebugLoc());
401 
402   Type *I32Ty = getI32Ty(Builder, I.getType());
403   Value *ExtOp1 = nullptr;
404   Value *ExtOp2 = nullptr;
405   Value *ExtRes = nullptr;
406   Value *TruncRes = nullptr;
407 
408   if (isSigned(I)) {
409     ExtOp1 = Builder.CreateSExt(I.getOperand(1), I32Ty);
410     ExtOp2 = Builder.CreateSExt(I.getOperand(2), I32Ty);
411   } else {
412     ExtOp1 = Builder.CreateZExt(I.getOperand(1), I32Ty);
413     ExtOp2 = Builder.CreateZExt(I.getOperand(2), I32Ty);
414   }
415   ExtRes = Builder.CreateSelect(I.getOperand(0), ExtOp1, ExtOp2);
416   TruncRes = Builder.CreateTrunc(ExtRes, I.getType());
417 
418   I.replaceAllUsesWith(TruncRes);
419   I.eraseFromParent();
420 
421   return true;
422 }
423 
424 bool AMDGPUCodeGenPrepare::promoteUniformBitreverseToI32(
425     IntrinsicInst &I) const {
426   assert(I.getIntrinsicID() == Intrinsic::bitreverse &&
427          "I must be bitreverse intrinsic");
428   assert(needsPromotionToI32(I.getType()) &&
429          "I does not need promotion to i32");
430 
431   IRBuilder<> Builder(&I);
432   Builder.SetCurrentDebugLocation(I.getDebugLoc());
433 
434   Type *I32Ty = getI32Ty(Builder, I.getType());
435   Function *I32 =
436       Intrinsic::getDeclaration(Mod, Intrinsic::bitreverse, { I32Ty });
437   Value *ExtOp = Builder.CreateZExt(I.getOperand(0), I32Ty);
438   Value *ExtRes = Builder.CreateCall(I32, { ExtOp });
439   Value *LShrOp =
440       Builder.CreateLShr(ExtRes, 32 - getBaseElementBitWidth(I.getType()));
441   Value *TruncRes =
442       Builder.CreateTrunc(LShrOp, I.getType());
443 
444   I.replaceAllUsesWith(TruncRes);
445   I.eraseFromParent();
446 
447   return true;
448 }
449 
450 unsigned AMDGPUCodeGenPrepare::numBitsUnsigned(Value *Op,
451                                                unsigned ScalarSize) const {
452   KnownBits Known = computeKnownBits(Op, *DL, 0, AC);
453   return ScalarSize - Known.countMinLeadingZeros();
454 }
455 
456 unsigned AMDGPUCodeGenPrepare::numBitsSigned(Value *Op,
457                                              unsigned ScalarSize) const {
458   // In order for this to be a signed 24-bit value, bit 23, must
459   // be a sign bit.
460   return ScalarSize - ComputeNumSignBits(Op, *DL, 0, AC);
461 }
462 
463 bool AMDGPUCodeGenPrepare::isI24(Value *V, unsigned ScalarSize) const {
464   return ScalarSize >= 24 && // Types less than 24-bit should be treated
465                                      // as unsigned 24-bit values.
466     numBitsSigned(V, ScalarSize) < 24;
467 }
468 
469 bool AMDGPUCodeGenPrepare::isU24(Value *V, unsigned ScalarSize) const {
470   return numBitsUnsigned(V, ScalarSize) <= 24;
471 }
472 
473 static void extractValues(IRBuilder<> &Builder,
474                           SmallVectorImpl<Value *> &Values, Value *V) {
475   VectorType *VT = dyn_cast<VectorType>(V->getType());
476   if (!VT) {
477     Values.push_back(V);
478     return;
479   }
480 
481   for (int I = 0, E = VT->getNumElements(); I != E; ++I)
482     Values.push_back(Builder.CreateExtractElement(V, I));
483 }
484 
485 static Value *insertValues(IRBuilder<> &Builder,
486                            Type *Ty,
487                            SmallVectorImpl<Value *> &Values) {
488   if (Values.size() == 1)
489     return Values[0];
490 
491   Value *NewVal = UndefValue::get(Ty);
492   for (int I = 0, E = Values.size(); I != E; ++I)
493     NewVal = Builder.CreateInsertElement(NewVal, Values[I], I);
494 
495   return NewVal;
496 }
497 
498 bool AMDGPUCodeGenPrepare::replaceMulWithMul24(BinaryOperator &I) const {
499   if (I.getOpcode() != Instruction::Mul)
500     return false;
501 
502   Type *Ty = I.getType();
503   unsigned Size = Ty->getScalarSizeInBits();
504   if (Size <= 16 && ST->has16BitInsts())
505     return false;
506 
507   // Prefer scalar if this could be s_mul_i32
508   if (DA->isUniform(&I))
509     return false;
510 
511   Value *LHS = I.getOperand(0);
512   Value *RHS = I.getOperand(1);
513   IRBuilder<> Builder(&I);
514   Builder.SetCurrentDebugLocation(I.getDebugLoc());
515 
516   Intrinsic::ID IntrID = Intrinsic::not_intrinsic;
517 
518   // TODO: Should this try to match mulhi24?
519   if (ST->hasMulU24() && isU24(LHS, Size) && isU24(RHS, Size)) {
520     IntrID = Intrinsic::amdgcn_mul_u24;
521   } else if (ST->hasMulI24() && isI24(LHS, Size) && isI24(RHS, Size)) {
522     IntrID = Intrinsic::amdgcn_mul_i24;
523   } else
524     return false;
525 
526   SmallVector<Value *, 4> LHSVals;
527   SmallVector<Value *, 4> RHSVals;
528   SmallVector<Value *, 4> ResultVals;
529   extractValues(Builder, LHSVals, LHS);
530   extractValues(Builder, RHSVals, RHS);
531 
532 
533   IntegerType *I32Ty = Builder.getInt32Ty();
534   FunctionCallee Intrin = Intrinsic::getDeclaration(Mod, IntrID);
535   for (int I = 0, E = LHSVals.size(); I != E; ++I) {
536     Value *LHS, *RHS;
537     if (IntrID == Intrinsic::amdgcn_mul_u24) {
538       LHS = Builder.CreateZExtOrTrunc(LHSVals[I], I32Ty);
539       RHS = Builder.CreateZExtOrTrunc(RHSVals[I], I32Ty);
540     } else {
541       LHS = Builder.CreateSExtOrTrunc(LHSVals[I], I32Ty);
542       RHS = Builder.CreateSExtOrTrunc(RHSVals[I], I32Ty);
543     }
544 
545     Value *Result = Builder.CreateCall(Intrin, {LHS, RHS});
546 
547     if (IntrID == Intrinsic::amdgcn_mul_u24) {
548       ResultVals.push_back(Builder.CreateZExtOrTrunc(Result,
549                                                      LHSVals[I]->getType()));
550     } else {
551       ResultVals.push_back(Builder.CreateSExtOrTrunc(Result,
552                                                      LHSVals[I]->getType()));
553     }
554   }
555 
556   Value *NewVal = insertValues(Builder, Ty, ResultVals);
557   NewVal->takeName(&I);
558   I.replaceAllUsesWith(NewVal);
559   I.eraseFromParent();
560 
561   return true;
562 }
563 
564 // Find a select instruction, which may have been casted. This is mostly to deal
565 // with cases where i16 selects were promoted here to i32.
566 static SelectInst *findSelectThroughCast(Value *V, CastInst *&Cast) {
567   Cast = nullptr;
568   if (SelectInst *Sel = dyn_cast<SelectInst>(V))
569     return Sel;
570 
571   if ((Cast = dyn_cast<CastInst>(V))) {
572     if (SelectInst *Sel = dyn_cast<SelectInst>(Cast->getOperand(0)))
573       return Sel;
574   }
575 
576   return nullptr;
577 }
578 
579 bool AMDGPUCodeGenPrepare::foldBinOpIntoSelect(BinaryOperator &BO) const {
580   // Don't do this unless the old select is going away. We want to eliminate the
581   // binary operator, not replace a binop with a select.
582   int SelOpNo = 0;
583 
584   CastInst *CastOp;
585 
586   // TODO: Should probably try to handle some cases with multiple
587   // users. Duplicating the select may be profitable for division.
588   SelectInst *Sel = findSelectThroughCast(BO.getOperand(0), CastOp);
589   if (!Sel || !Sel->hasOneUse()) {
590     SelOpNo = 1;
591     Sel = findSelectThroughCast(BO.getOperand(1), CastOp);
592   }
593 
594   if (!Sel || !Sel->hasOneUse())
595     return false;
596 
597   Constant *CT = dyn_cast<Constant>(Sel->getTrueValue());
598   Constant *CF = dyn_cast<Constant>(Sel->getFalseValue());
599   Constant *CBO = dyn_cast<Constant>(BO.getOperand(SelOpNo ^ 1));
600   if (!CBO || !CT || !CF)
601     return false;
602 
603   if (CastOp) {
604     if (!CastOp->hasOneUse())
605       return false;
606     CT = ConstantFoldCastOperand(CastOp->getOpcode(), CT, BO.getType(), *DL);
607     CF = ConstantFoldCastOperand(CastOp->getOpcode(), CF, BO.getType(), *DL);
608   }
609 
610   // TODO: Handle special 0/-1 cases DAG combine does, although we only really
611   // need to handle divisions here.
612   Constant *FoldedT = SelOpNo ?
613     ConstantFoldBinaryOpOperands(BO.getOpcode(), CBO, CT, *DL) :
614     ConstantFoldBinaryOpOperands(BO.getOpcode(), CT, CBO, *DL);
615   if (isa<ConstantExpr>(FoldedT))
616     return false;
617 
618   Constant *FoldedF = SelOpNo ?
619     ConstantFoldBinaryOpOperands(BO.getOpcode(), CBO, CF, *DL) :
620     ConstantFoldBinaryOpOperands(BO.getOpcode(), CF, CBO, *DL);
621   if (isa<ConstantExpr>(FoldedF))
622     return false;
623 
624   IRBuilder<> Builder(&BO);
625   Builder.SetCurrentDebugLocation(BO.getDebugLoc());
626   if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(&BO))
627     Builder.setFastMathFlags(FPOp->getFastMathFlags());
628 
629   Value *NewSelect = Builder.CreateSelect(Sel->getCondition(),
630                                           FoldedT, FoldedF);
631   NewSelect->takeName(&BO);
632   BO.replaceAllUsesWith(NewSelect);
633   BO.eraseFromParent();
634   if (CastOp)
635     CastOp->eraseFromParent();
636   Sel->eraseFromParent();
637   return true;
638 }
639 
640 // Optimize fdiv with rcp:
641 //
642 // 1/x -> rcp(x) when rcp is sufficiently accurate or inaccurate rcp is
643 //               allowed with unsafe-fp-math or afn.
644 //
645 // a/b -> a*rcp(b) when inaccurate rcp is allowed with unsafe-fp-math or afn.
646 static Value *optimizeWithRcp(Value *Num, Value *Den, bool AllowInaccurateRcp,
647                               bool RcpIsAccurate, IRBuilder<> Builder,
648                               Module *Mod) {
649 
650   if (!AllowInaccurateRcp && !RcpIsAccurate)
651     return nullptr;
652 
653   Type *Ty = Den->getType();
654   if (const ConstantFP *CLHS = dyn_cast<ConstantFP>(Num)) {
655     if (AllowInaccurateRcp || RcpIsAccurate) {
656       if (CLHS->isExactlyValue(1.0)) {
657         Function *Decl = Intrinsic::getDeclaration(
658           Mod, Intrinsic::amdgcn_rcp, Ty);
659 
660         // v_rcp_f32 and v_rsq_f32 do not support denormals, and according to
661         // the CI documentation has a worst case error of 1 ulp.
662         // OpenCL requires <= 2.5 ulp for 1.0 / x, so it should always be OK to
663         // use it as long as we aren't trying to use denormals.
664         //
665         // v_rcp_f16 and v_rsq_f16 DO support denormals.
666 
667         // NOTE: v_sqrt and v_rcp will be combined to v_rsq later. So we don't
668         //       insert rsq intrinsic here.
669 
670         // 1.0 / x -> rcp(x)
671         return Builder.CreateCall(Decl, { Den });
672       }
673 
674        // Same as for 1.0, but expand the sign out of the constant.
675       if (CLHS->isExactlyValue(-1.0)) {
676         Function *Decl = Intrinsic::getDeclaration(
677           Mod, Intrinsic::amdgcn_rcp, Ty);
678 
679          // -1.0 / x -> rcp (fneg x)
680          Value *FNeg = Builder.CreateFNeg(Den);
681          return Builder.CreateCall(Decl, { FNeg });
682        }
683     }
684   }
685 
686   if (AllowInaccurateRcp) {
687     Function *Decl = Intrinsic::getDeclaration(
688       Mod, Intrinsic::amdgcn_rcp, Ty);
689 
690     // Turn into multiply by the reciprocal.
691     // x / y -> x * (1.0 / y)
692     Value *Recip = Builder.CreateCall(Decl, { Den });
693     return Builder.CreateFMul(Num, Recip);
694   }
695   return nullptr;
696 }
697 
698 // optimize with fdiv.fast:
699 //
700 // a/b -> fdiv.fast(a, b) when !fpmath >= 2.5ulp with denormals flushed.
701 //
702 // 1/x -> fdiv.fast(1,x)  when !fpmath >= 2.5ulp.
703 //
704 // NOTE: optimizeWithRcp should be tried first because rcp is the preference.
705 static Value *optimizeWithFDivFast(Value *Num, Value *Den, float ReqdAccuracy,
706                                    bool HasDenormals, IRBuilder<> Builder,
707                                    Module *Mod) {
708   // fdiv.fast can achieve 2.5 ULP accuracy.
709   if (ReqdAccuracy < 2.5f)
710     return nullptr;
711 
712   // Only have fdiv.fast for f32.
713   Type *Ty = Den->getType();
714   if (!Ty->isFloatTy())
715     return nullptr;
716 
717   bool NumIsOne = false;
718   if (const ConstantFP *CNum = dyn_cast<ConstantFP>(Num)) {
719     if (CNum->isExactlyValue(+1.0) || CNum->isExactlyValue(-1.0))
720       NumIsOne = true;
721   }
722 
723   // fdiv does not support denormals. But 1.0/x is always fine to use it.
724   if (HasDenormals && !NumIsOne)
725     return nullptr;
726 
727   Function *Decl = Intrinsic::getDeclaration(Mod, Intrinsic::amdgcn_fdiv_fast);
728   return Builder.CreateCall(Decl, { Num, Den });
729 }
730 
731 // Optimizations is performed based on fpmath, fast math flags as well as
732 // denormals to optimize fdiv with either rcp or fdiv.fast.
733 //
734 // With rcp:
735 //   1/x -> rcp(x) when rcp is sufficiently accurate or inaccurate rcp is
736 //                 allowed with unsafe-fp-math or afn.
737 //
738 //   a/b -> a*rcp(b) when inaccurate rcp is allowed with unsafe-fp-math or afn.
739 //
740 // With fdiv.fast:
741 //   a/b -> fdiv.fast(a, b) when !fpmath >= 2.5ulp with denormals flushed.
742 //
743 //   1/x -> fdiv.fast(1,x)  when !fpmath >= 2.5ulp.
744 //
745 // NOTE: rcp is the preference in cases that both are legal.
746 bool AMDGPUCodeGenPrepare::visitFDiv(BinaryOperator &FDiv) {
747 
748   Type *Ty = FDiv.getType()->getScalarType();
749 
750   // No intrinsic for fdiv16 if target does not support f16.
751   if (Ty->isHalfTy() && !ST->has16BitInsts())
752     return false;
753 
754   const FPMathOperator *FPOp = cast<const FPMathOperator>(&FDiv);
755   const float ReqdAccuracy =  FPOp->getFPAccuracy();
756 
757   // Inaccurate rcp is allowed with unsafe-fp-math or afn.
758   FastMathFlags FMF = FPOp->getFastMathFlags();
759   const bool AllowInaccurateRcp = HasUnsafeFPMath || FMF.approxFunc();
760 
761   // rcp_f16 is accurate for !fpmath >= 1.0ulp.
762   // rcp_f32 is accurate for !fpmath >= 1.0ulp and denormals are flushed.
763   // rcp_f64 is never accurate.
764   const bool RcpIsAccurate = (Ty->isHalfTy() && ReqdAccuracy >= 1.0f) ||
765             (Ty->isFloatTy() && !HasFP32Denormals && ReqdAccuracy >= 1.0f);
766 
767   IRBuilder<> Builder(FDiv.getParent(), std::next(FDiv.getIterator()));
768   Builder.setFastMathFlags(FMF);
769   Builder.SetCurrentDebugLocation(FDiv.getDebugLoc());
770 
771   Value *Num = FDiv.getOperand(0);
772   Value *Den = FDiv.getOperand(1);
773 
774   Value *NewFDiv = nullptr;
775   if (VectorType *VT = dyn_cast<VectorType>(FDiv.getType())) {
776     NewFDiv = UndefValue::get(VT);
777 
778     // FIXME: Doesn't do the right thing for cases where the vector is partially
779     // constant. This works when the scalarizer pass is run first.
780     for (unsigned I = 0, E = VT->getNumElements(); I != E; ++I) {
781       Value *NumEltI = Builder.CreateExtractElement(Num, I);
782       Value *DenEltI = Builder.CreateExtractElement(Den, I);
783       // Try rcp first.
784       Value *NewElt = optimizeWithRcp(NumEltI, DenEltI, AllowInaccurateRcp,
785                                       RcpIsAccurate, Builder, Mod);
786       if (!NewElt) // Try fdiv.fast.
787         NewElt = optimizeWithFDivFast(NumEltI, DenEltI, ReqdAccuracy,
788                                       HasFP32Denormals, Builder, Mod);
789       if (!NewElt) // Keep the original.
790         NewElt = Builder.CreateFDiv(NumEltI, DenEltI);
791 
792       NewFDiv = Builder.CreateInsertElement(NewFDiv, NewElt, I);
793     }
794   } else { // Scalar FDiv.
795     // Try rcp first.
796     NewFDiv = optimizeWithRcp(Num, Den, AllowInaccurateRcp, RcpIsAccurate,
797                               Builder, Mod);
798     if (!NewFDiv) { // Try fdiv.fast.
799       NewFDiv = optimizeWithFDivFast(Num, Den, ReqdAccuracy, HasFP32Denormals,
800                                      Builder, Mod);
801     }
802   }
803 
804   if (NewFDiv) {
805     FDiv.replaceAllUsesWith(NewFDiv);
806     NewFDiv->takeName(&FDiv);
807     FDiv.eraseFromParent();
808   }
809 
810   return !!NewFDiv;
811 }
812 
813 static bool hasUnsafeFPMath(const Function &F) {
814   Attribute Attr = F.getFnAttribute("unsafe-fp-math");
815   return Attr.getValueAsString() == "true";
816 }
817 
818 static std::pair<Value*, Value*> getMul64(IRBuilder<> &Builder,
819                                           Value *LHS, Value *RHS) {
820   Type *I32Ty = Builder.getInt32Ty();
821   Type *I64Ty = Builder.getInt64Ty();
822 
823   Value *LHS_EXT64 = Builder.CreateZExt(LHS, I64Ty);
824   Value *RHS_EXT64 = Builder.CreateZExt(RHS, I64Ty);
825   Value *MUL64 = Builder.CreateMul(LHS_EXT64, RHS_EXT64);
826   Value *Lo = Builder.CreateTrunc(MUL64, I32Ty);
827   Value *Hi = Builder.CreateLShr(MUL64, Builder.getInt64(32));
828   Hi = Builder.CreateTrunc(Hi, I32Ty);
829   return std::make_pair(Lo, Hi);
830 }
831 
832 static Value* getMulHu(IRBuilder<> &Builder, Value *LHS, Value *RHS) {
833   return getMul64(Builder, LHS, RHS).second;
834 }
835 
836 /// Figure out how many bits are really needed for this ddivision. \p AtLeast is
837 /// an optimization hint to bypass the second ComputeNumSignBits call if we the
838 /// first one is insufficient. Returns -1 on failure.
839 int AMDGPUCodeGenPrepare::getDivNumBits(BinaryOperator &I,
840                                         Value *Num, Value *Den,
841                                         unsigned AtLeast, bool IsSigned) const {
842   const DataLayout &DL = Mod->getDataLayout();
843   unsigned LHSSignBits = ComputeNumSignBits(Num, DL, 0, AC, &I);
844   if (LHSSignBits < AtLeast)
845     return -1;
846 
847   unsigned RHSSignBits = ComputeNumSignBits(Den, DL, 0, AC, &I);
848   if (RHSSignBits < AtLeast)
849     return -1;
850 
851   unsigned SignBits = std::min(LHSSignBits, RHSSignBits);
852   unsigned DivBits = Num->getType()->getScalarSizeInBits() - SignBits;
853   if (IsSigned)
854     ++DivBits;
855   return DivBits;
856 }
857 
858 // The fractional part of a float is enough to accurately represent up to
859 // a 24-bit signed integer.
860 Value *AMDGPUCodeGenPrepare::expandDivRem24(IRBuilder<> &Builder,
861                                             BinaryOperator &I,
862                                             Value *Num, Value *Den,
863                                             bool IsDiv, bool IsSigned) const {
864   int DivBits = getDivNumBits(I, Num, Den, 9, IsSigned);
865   if (DivBits == -1)
866     return nullptr;
867   return expandDivRem24Impl(Builder, I, Num, Den, DivBits, IsDiv, IsSigned);
868 }
869 
870 Value *AMDGPUCodeGenPrepare::expandDivRem24Impl(IRBuilder<> &Builder,
871                                                 BinaryOperator &I,
872                                                 Value *Num, Value *Den,
873                                                 unsigned DivBits,
874                                                 bool IsDiv, bool IsSigned) const {
875   Type *I32Ty = Builder.getInt32Ty();
876   Num = Builder.CreateTrunc(Num, I32Ty);
877   Den = Builder.CreateTrunc(Den, I32Ty);
878 
879   Type *F32Ty = Builder.getFloatTy();
880   ConstantInt *One = Builder.getInt32(1);
881   Value *JQ = One;
882 
883   if (IsSigned) {
884     // char|short jq = ia ^ ib;
885     JQ = Builder.CreateXor(Num, Den);
886 
887     // jq = jq >> (bitsize - 2)
888     JQ = Builder.CreateAShr(JQ, Builder.getInt32(30));
889 
890     // jq = jq | 0x1
891     JQ = Builder.CreateOr(JQ, One);
892   }
893 
894   // int ia = (int)LHS;
895   Value *IA = Num;
896 
897   // int ib, (int)RHS;
898   Value *IB = Den;
899 
900   // float fa = (float)ia;
901   Value *FA = IsSigned ? Builder.CreateSIToFP(IA, F32Ty)
902                        : Builder.CreateUIToFP(IA, F32Ty);
903 
904   // float fb = (float)ib;
905   Value *FB = IsSigned ? Builder.CreateSIToFP(IB,F32Ty)
906                        : Builder.CreateUIToFP(IB,F32Ty);
907 
908   Function *RcpDecl = Intrinsic::getDeclaration(Mod, Intrinsic::amdgcn_rcp,
909                                                 Builder.getFloatTy());
910   Value *RCP = Builder.CreateCall(RcpDecl, { FB });
911   Value *FQM = Builder.CreateFMul(FA, RCP);
912 
913   // fq = trunc(fqm);
914   CallInst *FQ = Builder.CreateUnaryIntrinsic(Intrinsic::trunc, FQM);
915   FQ->copyFastMathFlags(Builder.getFastMathFlags());
916 
917   // float fqneg = -fq;
918   Value *FQNeg = Builder.CreateFNeg(FQ);
919 
920   // float fr = mad(fqneg, fb, fa);
921   Value *FR = Builder.CreateIntrinsic(Intrinsic::amdgcn_fmad_ftz,
922                                       {FQNeg->getType()}, {FQNeg, FB, FA}, FQ);
923 
924   // int iq = (int)fq;
925   Value *IQ = IsSigned ? Builder.CreateFPToSI(FQ, I32Ty)
926                        : Builder.CreateFPToUI(FQ, I32Ty);
927 
928   // fr = fabs(fr);
929   FR = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, FR, FQ);
930 
931   // fb = fabs(fb);
932   FB = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, FB, FQ);
933 
934   // int cv = fr >= fb;
935   Value *CV = Builder.CreateFCmpOGE(FR, FB);
936 
937   // jq = (cv ? jq : 0);
938   JQ = Builder.CreateSelect(CV, JQ, Builder.getInt32(0));
939 
940   // dst = iq + jq;
941   Value *Div = Builder.CreateAdd(IQ, JQ);
942 
943   Value *Res = Div;
944   if (!IsDiv) {
945     // Rem needs compensation, it's easier to recompute it
946     Value *Rem = Builder.CreateMul(Div, Den);
947     Res = Builder.CreateSub(Num, Rem);
948   }
949 
950   if (DivBits != 0 && DivBits < 32) {
951     // Extend in register from the number of bits this divide really is.
952     if (IsSigned) {
953       int InRegBits = 32 - DivBits;
954 
955       Res = Builder.CreateShl(Res, InRegBits);
956       Res = Builder.CreateAShr(Res, InRegBits);
957     } else {
958       ConstantInt *TruncMask
959         = Builder.getInt32((UINT64_C(1) << DivBits) - 1);
960       Res = Builder.CreateAnd(Res, TruncMask);
961     }
962   }
963 
964   return Res;
965 }
966 
967 // Try to recognize special cases the DAG will emit special, better expansions
968 // than the general expansion we do here.
969 
970 // TODO: It would be better to just directly handle those optimizations here.
971 bool AMDGPUCodeGenPrepare::divHasSpecialOptimization(
972   BinaryOperator &I, Value *Num, Value *Den) const {
973   if (Constant *C = dyn_cast<Constant>(Den)) {
974     // Arbitrary constants get a better expansion as long as a wider mulhi is
975     // legal.
976     if (C->getType()->getScalarSizeInBits() <= 32)
977       return true;
978 
979     // TODO: Sdiv check for not exact for some reason.
980 
981     // If there's no wider mulhi, there's only a better expansion for powers of
982     // two.
983     // TODO: Should really know for each vector element.
984     if (isKnownToBeAPowerOfTwo(C, *DL, true, 0, AC, &I, DT))
985       return true;
986 
987     return false;
988   }
989 
990   if (BinaryOperator *BinOpDen = dyn_cast<BinaryOperator>(Den)) {
991     // fold (udiv x, (shl c, y)) -> x >>u (log2(c)+y) iff c is power of 2
992     if (BinOpDen->getOpcode() == Instruction::Shl &&
993         isa<Constant>(BinOpDen->getOperand(0)) &&
994         isKnownToBeAPowerOfTwo(BinOpDen->getOperand(0), *DL, true,
995                                0, AC, &I, DT)) {
996       return true;
997     }
998   }
999 
1000   return false;
1001 }
1002 
1003 Value* AMDGPUCodeGenPrepare::expandDivRem32(IRBuilder<> &Builder,
1004                                             BinaryOperator &I,
1005                                             Value *Num, Value *Den) const {
1006   Instruction::BinaryOps Opc = I.getOpcode();
1007   assert(Opc == Instruction::URem || Opc == Instruction::UDiv ||
1008          Opc == Instruction::SRem || Opc == Instruction::SDiv);
1009 
1010   FastMathFlags FMF;
1011   FMF.setFast();
1012   Builder.setFastMathFlags(FMF);
1013 
1014   if (divHasSpecialOptimization(I, Num, Den))
1015     return nullptr;  // Keep it for later optimization.
1016 
1017   bool IsDiv = Opc == Instruction::UDiv || Opc == Instruction::SDiv;
1018   bool IsSigned = Opc == Instruction::SRem || Opc == Instruction::SDiv;
1019 
1020   Type *Ty = Num->getType();
1021   Type *I32Ty = Builder.getInt32Ty();
1022   Type *F32Ty = Builder.getFloatTy();
1023 
1024   if (Ty->getScalarSizeInBits() < 32) {
1025     if (IsSigned) {
1026       Num = Builder.CreateSExt(Num, I32Ty);
1027       Den = Builder.CreateSExt(Den, I32Ty);
1028     } else {
1029       Num = Builder.CreateZExt(Num, I32Ty);
1030       Den = Builder.CreateZExt(Den, I32Ty);
1031     }
1032   }
1033 
1034   if (Value *Res = expandDivRem24(Builder, I, Num, Den, IsDiv, IsSigned)) {
1035     return IsSigned ? Builder.CreateSExtOrTrunc(Res, Ty) :
1036                       Builder.CreateZExtOrTrunc(Res, Ty);
1037   }
1038 
1039   ConstantInt *Zero = Builder.getInt32(0);
1040   ConstantInt *One = Builder.getInt32(1);
1041 
1042   Value *Sign = nullptr;
1043   if (IsSigned) {
1044     ConstantInt *K31 = Builder.getInt32(31);
1045     Value *LHSign = Builder.CreateAShr(Num, K31);
1046     Value *RHSign = Builder.CreateAShr(Den, K31);
1047     // Remainder sign is the same as LHS
1048     Sign = IsDiv ? Builder.CreateXor(LHSign, RHSign) : LHSign;
1049 
1050     Num = Builder.CreateAdd(Num, LHSign);
1051     Den = Builder.CreateAdd(Den, RHSign);
1052 
1053     Num = Builder.CreateXor(Num, LHSign);
1054     Den = Builder.CreateXor(Den, RHSign);
1055   }
1056 
1057   // RCP =  URECIP(Den) = 2^32 / Den + e
1058   // e is rounding error.
1059   Value *DEN_F32 = Builder.CreateUIToFP(Den, F32Ty);
1060 
1061   Function *RcpDecl = Intrinsic::getDeclaration(Mod, Intrinsic::amdgcn_rcp,
1062                                                 Builder.getFloatTy());
1063   Value *RCP_F32 = Builder.CreateCall(RcpDecl, { DEN_F32 });
1064   Constant *UINT_MAX_PLUS_1 = ConstantFP::get(F32Ty, BitsToFloat(0x4f800000));
1065   Value *RCP_SCALE = Builder.CreateFMul(RCP_F32, UINT_MAX_PLUS_1);
1066   Value *RCP = Builder.CreateFPToUI(RCP_SCALE, I32Ty);
1067 
1068   // RCP_LO, RCP_HI = mul(RCP, Den) */
1069   Value *RCP_LO, *RCP_HI;
1070   std::tie(RCP_LO, RCP_HI) = getMul64(Builder, RCP, Den);
1071 
1072   // NEG_RCP_LO = -RCP_LO
1073   Value *NEG_RCP_LO = Builder.CreateNeg(RCP_LO);
1074 
1075   // ABS_RCP_LO = (RCP_HI == 0 ? NEG_RCP_LO : RCP_LO)
1076   Value *RCP_HI_0_CC = Builder.CreateICmpEQ(RCP_HI, Zero);
1077   Value *ABS_RCP_LO = Builder.CreateSelect(RCP_HI_0_CC, NEG_RCP_LO, RCP_LO);
1078 
1079   // Calculate the rounding error from the URECIP instruction
1080   // E = mulhu(ABS_RCP_LO, RCP)
1081   Value *E = getMulHu(Builder, ABS_RCP_LO, RCP);
1082 
1083   // RCP_A_E = RCP + E
1084   Value *RCP_A_E = Builder.CreateAdd(RCP, E);
1085 
1086   // RCP_S_E = RCP - E
1087   Value *RCP_S_E = Builder.CreateSub(RCP, E);
1088 
1089   // Tmp0 = (RCP_HI == 0 ? RCP_A_E : RCP_SUB_E)
1090   Value *Tmp0 = Builder.CreateSelect(RCP_HI_0_CC, RCP_A_E, RCP_S_E);
1091 
1092   // Quotient = mulhu(Tmp0, Num)
1093   Value *Quotient = getMulHu(Builder, Tmp0, Num);
1094 
1095   // Num_S_Remainder = Quotient * Den
1096   Value *Num_S_Remainder = Builder.CreateMul(Quotient, Den);
1097 
1098   // Remainder = Num - Num_S_Remainder
1099   Value *Remainder = Builder.CreateSub(Num, Num_S_Remainder);
1100 
1101   // Remainder_GE_Den = Remainder >= Den;
1102   Value *Remainder_GE_Den = Builder.CreateICmpUGE(Remainder, Den);
1103 
1104   // Remainder_GE_Zero = Num >= Num_S_Remainder
1105   Value *Remainder_GE_Zero = Builder.CreateICmpUGE(Num, Num_S_Remainder);
1106 
1107   // Tmp1 = Remainder_GE_Den & Remainder_GE_Zero
1108   Value *Tmp1 = Builder.CreateAnd(Remainder_GE_Den, Remainder_GE_Zero);
1109 
1110   Value *Res;
1111   if (IsDiv) {
1112     // Quotient_A_One = Quotient + 1
1113     Value *Quotient_A_One = Builder.CreateAdd(Quotient, One);
1114 
1115     // Quotient_S_One = Quotient - 1
1116     Value *Quotient_S_One = Builder.CreateSub(Quotient, One);
1117 
1118     // Div = (Tmp1 ? Quotient_A_One : Quotient)
1119     Value *Div = Builder.CreateSelect(Tmp1, Quotient_A_One, Quotient);
1120 
1121     // Div = (Remainder_GE_Zero ? Div : Quotient_S_One)
1122     Res = Builder.CreateSelect(Remainder_GE_Zero, Div, Quotient_S_One);
1123   } else {
1124     // Remainder_S_Den = Remainder - Den
1125     Value *Remainder_S_Den = Builder.CreateSub(Remainder, Den);
1126 
1127     // Remainder_A_Den = Remainder + Den
1128     Value *Remainder_A_Den = Builder.CreateAdd(Remainder, Den);
1129 
1130     // Rem = (Tmp1 ?  Remainder_S_Den : Remainder)
1131     Value *Rem = Builder.CreateSelect(Tmp1, Remainder_S_Den, Remainder);
1132 
1133     // Rem = (Remainder_GE_Zero ? Rem : Remainder_A_Den)
1134     Res = Builder.CreateSelect(Remainder_GE_Zero, Rem, Remainder_A_Den);
1135   }
1136 
1137   if (IsSigned) {
1138     Res = Builder.CreateXor(Res, Sign);
1139     Res = Builder.CreateSub(Res, Sign);
1140   }
1141 
1142   Res = Builder.CreateTrunc(Res, Ty);
1143 
1144   return Res;
1145 }
1146 
1147 Value *AMDGPUCodeGenPrepare::shrinkDivRem64(IRBuilder<> &Builder,
1148                                             BinaryOperator &I,
1149                                             Value *Num, Value *Den) const {
1150   if (!ExpandDiv64InIR && divHasSpecialOptimization(I, Num, Den))
1151     return nullptr;  // Keep it for later optimization.
1152 
1153   Instruction::BinaryOps Opc = I.getOpcode();
1154 
1155   bool IsDiv = Opc == Instruction::SDiv || Opc == Instruction::UDiv;
1156   bool IsSigned = Opc == Instruction::SDiv || Opc == Instruction::SRem;
1157 
1158   int NumDivBits = getDivNumBits(I, Num, Den, 32, IsSigned);
1159   if (NumDivBits == -1)
1160     return nullptr;
1161 
1162   Value *Narrowed = nullptr;
1163   if (NumDivBits <= 24) {
1164     Narrowed = expandDivRem24Impl(Builder, I, Num, Den, NumDivBits,
1165                                   IsDiv, IsSigned);
1166   } else if (NumDivBits <= 32) {
1167     Narrowed = expandDivRem32(Builder, I, Num, Den);
1168   }
1169 
1170   if (Narrowed) {
1171     return IsSigned ? Builder.CreateSExt(Narrowed, Num->getType()) :
1172                       Builder.CreateZExt(Narrowed, Num->getType());
1173   }
1174 
1175   return nullptr;
1176 }
1177 
1178 void AMDGPUCodeGenPrepare::expandDivRem64(BinaryOperator &I) const {
1179   Instruction::BinaryOps Opc = I.getOpcode();
1180   // Do the general expansion.
1181   if (Opc == Instruction::UDiv || Opc == Instruction::SDiv) {
1182     expandDivisionUpTo64Bits(&I);
1183     return;
1184   }
1185 
1186   if (Opc == Instruction::URem || Opc == Instruction::SRem) {
1187     expandRemainderUpTo64Bits(&I);
1188     return;
1189   }
1190 
1191   llvm_unreachable("not a division");
1192 }
1193 
1194 bool AMDGPUCodeGenPrepare::visitBinaryOperator(BinaryOperator &I) {
1195   if (foldBinOpIntoSelect(I))
1196     return true;
1197 
1198   if (ST->has16BitInsts() && needsPromotionToI32(I.getType()) &&
1199       DA->isUniform(&I) && promoteUniformOpToI32(I))
1200     return true;
1201 
1202   if (UseMul24Intrin && replaceMulWithMul24(I))
1203     return true;
1204 
1205   bool Changed = false;
1206   Instruction::BinaryOps Opc = I.getOpcode();
1207   Type *Ty = I.getType();
1208   Value *NewDiv = nullptr;
1209   unsigned ScalarSize = Ty->getScalarSizeInBits();
1210 
1211   SmallVector<BinaryOperator *, 8> Div64ToExpand;
1212 
1213   if ((Opc == Instruction::URem || Opc == Instruction::UDiv ||
1214        Opc == Instruction::SRem || Opc == Instruction::SDiv) &&
1215       ScalarSize <= 64 &&
1216       !DisableIDivExpand) {
1217     Value *Num = I.getOperand(0);
1218     Value *Den = I.getOperand(1);
1219     IRBuilder<> Builder(&I);
1220     Builder.SetCurrentDebugLocation(I.getDebugLoc());
1221 
1222     if (VectorType *VT = dyn_cast<VectorType>(Ty)) {
1223       NewDiv = UndefValue::get(VT);
1224 
1225       for (unsigned N = 0, E = VT->getNumElements(); N != E; ++N) {
1226         Value *NumEltN = Builder.CreateExtractElement(Num, N);
1227         Value *DenEltN = Builder.CreateExtractElement(Den, N);
1228 
1229         Value *NewElt;
1230         if (ScalarSize <= 32) {
1231           NewElt = expandDivRem32(Builder, I, NumEltN, DenEltN);
1232           if (!NewElt)
1233             NewElt = Builder.CreateBinOp(Opc, NumEltN, DenEltN);
1234         } else {
1235           // See if this 64-bit division can be shrunk to 32/24-bits before
1236           // producing the general expansion.
1237           NewElt = shrinkDivRem64(Builder, I, NumEltN, DenEltN);
1238           if (!NewElt) {
1239             // The general 64-bit expansion introduces control flow and doesn't
1240             // return the new value. Just insert a scalar copy and defer
1241             // expanding it.
1242             NewElt = Builder.CreateBinOp(Opc, NumEltN, DenEltN);
1243             Div64ToExpand.push_back(cast<BinaryOperator>(NewElt));
1244           }
1245         }
1246 
1247         NewDiv = Builder.CreateInsertElement(NewDiv, NewElt, N);
1248       }
1249     } else {
1250       if (ScalarSize <= 32)
1251         NewDiv = expandDivRem32(Builder, I, Num, Den);
1252       else {
1253         NewDiv = shrinkDivRem64(Builder, I, Num, Den);
1254         if (!NewDiv)
1255           Div64ToExpand.push_back(&I);
1256       }
1257     }
1258 
1259     if (NewDiv) {
1260       I.replaceAllUsesWith(NewDiv);
1261       I.eraseFromParent();
1262       Changed = true;
1263     }
1264   }
1265 
1266   if (ExpandDiv64InIR) {
1267     // TODO: We get much worse code in specially handled constant cases.
1268     for (BinaryOperator *Div : Div64ToExpand) {
1269       expandDivRem64(*Div);
1270       Changed = true;
1271     }
1272   }
1273 
1274   return Changed;
1275 }
1276 
1277 bool AMDGPUCodeGenPrepare::visitLoadInst(LoadInst &I) {
1278   if (!WidenLoads)
1279     return false;
1280 
1281   if ((I.getPointerAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS ||
1282        I.getPointerAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS_32BIT) &&
1283       canWidenScalarExtLoad(I)) {
1284     IRBuilder<> Builder(&I);
1285     Builder.SetCurrentDebugLocation(I.getDebugLoc());
1286 
1287     Type *I32Ty = Builder.getInt32Ty();
1288     Type *PT = PointerType::get(I32Ty, I.getPointerAddressSpace());
1289     Value *BitCast= Builder.CreateBitCast(I.getPointerOperand(), PT);
1290     LoadInst *WidenLoad = Builder.CreateLoad(I32Ty, BitCast);
1291     WidenLoad->copyMetadata(I);
1292 
1293     // If we have range metadata, we need to convert the type, and not make
1294     // assumptions about the high bits.
1295     if (auto *Range = WidenLoad->getMetadata(LLVMContext::MD_range)) {
1296       ConstantInt *Lower =
1297         mdconst::extract<ConstantInt>(Range->getOperand(0));
1298 
1299       if (Lower->getValue().isNullValue()) {
1300         WidenLoad->setMetadata(LLVMContext::MD_range, nullptr);
1301       } else {
1302         Metadata *LowAndHigh[] = {
1303           ConstantAsMetadata::get(ConstantInt::get(I32Ty, Lower->getValue().zext(32))),
1304           // Don't make assumptions about the high bits.
1305           ConstantAsMetadata::get(ConstantInt::get(I32Ty, 0))
1306         };
1307 
1308         WidenLoad->setMetadata(LLVMContext::MD_range,
1309                                MDNode::get(Mod->getContext(), LowAndHigh));
1310       }
1311     }
1312 
1313     int TySize = Mod->getDataLayout().getTypeSizeInBits(I.getType());
1314     Type *IntNTy = Builder.getIntNTy(TySize);
1315     Value *ValTrunc = Builder.CreateTrunc(WidenLoad, IntNTy);
1316     Value *ValOrig = Builder.CreateBitCast(ValTrunc, I.getType());
1317     I.replaceAllUsesWith(ValOrig);
1318     I.eraseFromParent();
1319     return true;
1320   }
1321 
1322   return false;
1323 }
1324 
1325 bool AMDGPUCodeGenPrepare::visitICmpInst(ICmpInst &I) {
1326   bool Changed = false;
1327 
1328   if (ST->has16BitInsts() && needsPromotionToI32(I.getOperand(0)->getType()) &&
1329       DA->isUniform(&I))
1330     Changed |= promoteUniformOpToI32(I);
1331 
1332   return Changed;
1333 }
1334 
1335 bool AMDGPUCodeGenPrepare::visitSelectInst(SelectInst &I) {
1336   bool Changed = false;
1337 
1338   if (ST->has16BitInsts() && needsPromotionToI32(I.getType()) &&
1339       DA->isUniform(&I))
1340     Changed |= promoteUniformOpToI32(I);
1341 
1342   return Changed;
1343 }
1344 
1345 bool AMDGPUCodeGenPrepare::visitIntrinsicInst(IntrinsicInst &I) {
1346   switch (I.getIntrinsicID()) {
1347   case Intrinsic::bitreverse:
1348     return visitBitreverseIntrinsicInst(I);
1349   default:
1350     return false;
1351   }
1352 }
1353 
1354 bool AMDGPUCodeGenPrepare::visitBitreverseIntrinsicInst(IntrinsicInst &I) {
1355   bool Changed = false;
1356 
1357   if (ST->has16BitInsts() && needsPromotionToI32(I.getType()) &&
1358       DA->isUniform(&I))
1359     Changed |= promoteUniformBitreverseToI32(I);
1360 
1361   return Changed;
1362 }
1363 
1364 bool AMDGPUCodeGenPrepare::doInitialization(Module &M) {
1365   Mod = &M;
1366   DL = &Mod->getDataLayout();
1367   return false;
1368 }
1369 
1370 bool AMDGPUCodeGenPrepare::runOnFunction(Function &F) {
1371   if (skipFunction(F))
1372     return false;
1373 
1374   auto *TPC = getAnalysisIfAvailable<TargetPassConfig>();
1375   if (!TPC)
1376     return false;
1377 
1378   const AMDGPUTargetMachine &TM = TPC->getTM<AMDGPUTargetMachine>();
1379   ST = &TM.getSubtarget<GCNSubtarget>(F);
1380   AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
1381   DA = &getAnalysis<LegacyDivergenceAnalysis>();
1382 
1383   auto *DTWP = getAnalysisIfAvailable<DominatorTreeWrapperPass>();
1384   DT = DTWP ? &DTWP->getDomTree() : nullptr;
1385 
1386   HasUnsafeFPMath = hasUnsafeFPMath(F);
1387   HasFP32Denormals = ST->hasFP32Denormals(F);
1388 
1389   bool MadeChange = false;
1390 
1391   Function::iterator NextBB;
1392   for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE; FI = NextBB) {
1393     BasicBlock *BB = &*FI;
1394     NextBB = std::next(FI);
1395 
1396     BasicBlock::iterator Next;
1397     for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; I = Next) {
1398       Next = std::next(I);
1399 
1400       MadeChange |= visit(*I);
1401 
1402       if (Next != E) { // Control flow changed
1403         BasicBlock *NextInstBB = Next->getParent();
1404         if (NextInstBB != BB) {
1405           BB = NextInstBB;
1406           E = BB->end();
1407           FE = F.end();
1408         }
1409       }
1410     }
1411   }
1412 
1413   return MadeChange;
1414 }
1415 
1416 INITIALIZE_PASS_BEGIN(AMDGPUCodeGenPrepare, DEBUG_TYPE,
1417                       "AMDGPU IR optimizations", false, false)
1418 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
1419 INITIALIZE_PASS_DEPENDENCY(LegacyDivergenceAnalysis)
1420 INITIALIZE_PASS_END(AMDGPUCodeGenPrepare, DEBUG_TYPE, "AMDGPU IR optimizations",
1421                     false, false)
1422 
1423 char AMDGPUCodeGenPrepare::ID = 0;
1424 
1425 FunctionPass *llvm::createAMDGPUCodeGenPreparePass() {
1426   return new AMDGPUCodeGenPrepare();
1427 }
1428