xref: /llvm-project/llvm/lib/Target/AMDGPU/AMDGPUCodeGenPrepare.cpp (revision 99142003933c19d7d91e1c89fe038876cf429e4a)
1 //===-- AMDGPUCodeGenPrepare.cpp ------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file
10 /// This pass does misc. AMDGPU optimizations on IR before instruction
11 /// selection.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "AMDGPU.h"
16 #include "AMDGPUTargetMachine.h"
17 #include "llvm/Analysis/AssumptionCache.h"
18 #include "llvm/Analysis/ConstantFolding.h"
19 #include "llvm/Analysis/LegacyDivergenceAnalysis.h"
20 #include "llvm/Analysis/ValueTracking.h"
21 #include "llvm/CodeGen/TargetPassConfig.h"
22 #include "llvm/IR/Dominators.h"
23 #include "llvm/IR/InstVisitor.h"
24 #include "llvm/IR/IntrinsicsAMDGPU.h"
25 #include "llvm/IR/IRBuilder.h"
26 #include "llvm/InitializePasses.h"
27 #include "llvm/Pass.h"
28 #include "llvm/Support/KnownBits.h"
29 #include "llvm/Transforms/Utils/IntegerDivision.h"
30 
31 #define DEBUG_TYPE "amdgpu-codegenprepare"
32 
33 using namespace llvm;
34 
35 namespace {
36 
37 static cl::opt<bool> WidenLoads(
38   "amdgpu-codegenprepare-widen-constant-loads",
39   cl::desc("Widen sub-dword constant address space loads in AMDGPUCodeGenPrepare"),
40   cl::ReallyHidden,
41   cl::init(false));
42 
43 static cl::opt<bool> Widen16BitOps(
44   "amdgpu-codegenprepare-widen-16-bit-ops",
45   cl::desc("Widen uniform 16-bit instructions to 32-bit in AMDGPUCodeGenPrepare"),
46   cl::ReallyHidden,
47   cl::init(true));
48 
49 static cl::opt<bool> UseMul24Intrin(
50   "amdgpu-codegenprepare-mul24",
51   cl::desc("Introduce mul24 intrinsics in AMDGPUCodeGenPrepare"),
52   cl::ReallyHidden,
53   cl::init(true));
54 
55 // Legalize 64-bit division by using the generic IR expansion.
56 static cl::opt<bool> ExpandDiv64InIR(
57   "amdgpu-codegenprepare-expand-div64",
58   cl::desc("Expand 64-bit division in AMDGPUCodeGenPrepare"),
59   cl::ReallyHidden,
60   cl::init(false));
61 
62 // Leave all division operations as they are. This supersedes ExpandDiv64InIR
63 // and is used for testing the legalizer.
64 static cl::opt<bool> DisableIDivExpand(
65   "amdgpu-codegenprepare-disable-idiv-expansion",
66   cl::desc("Prevent expanding integer division in AMDGPUCodeGenPrepare"),
67   cl::ReallyHidden,
68   cl::init(false));
69 
70 class AMDGPUCodeGenPrepare : public FunctionPass,
71                              public InstVisitor<AMDGPUCodeGenPrepare, bool> {
72   const GCNSubtarget *ST = nullptr;
73   AssumptionCache *AC = nullptr;
74   DominatorTree *DT = nullptr;
75   LegacyDivergenceAnalysis *DA = nullptr;
76   Module *Mod = nullptr;
77   const DataLayout *DL = nullptr;
78   bool HasUnsafeFPMath = false;
79   bool HasFP32Denormals = false;
80 
81   /// Copies exact/nsw/nuw flags (if any) from binary operation \p I to
82   /// binary operation \p V.
83   ///
84   /// \returns Binary operation \p V.
85   /// \returns \p T's base element bit width.
86   unsigned getBaseElementBitWidth(const Type *T) const;
87 
88   /// \returns Equivalent 32 bit integer type for given type \p T. For example,
89   /// if \p T is i7, then i32 is returned; if \p T is <3 x i12>, then <3 x i32>
90   /// is returned.
91   Type *getI32Ty(IRBuilder<> &B, const Type *T) const;
92 
93   /// \returns True if binary operation \p I is a signed binary operation, false
94   /// otherwise.
95   bool isSigned(const BinaryOperator &I) const;
96 
97   /// \returns True if the condition of 'select' operation \p I comes from a
98   /// signed 'icmp' operation, false otherwise.
99   bool isSigned(const SelectInst &I) const;
100 
101   /// \returns True if type \p T needs to be promoted to 32 bit integer type,
102   /// false otherwise.
103   bool needsPromotionToI32(const Type *T) const;
104 
105   /// Promotes uniform binary operation \p I to equivalent 32 bit binary
106   /// operation.
107   ///
108   /// \details \p I's base element bit width must be greater than 1 and less
109   /// than or equal 16. Promotion is done by sign or zero extending operands to
110   /// 32 bits, replacing \p I with equivalent 32 bit binary operation, and
111   /// truncating the result of 32 bit binary operation back to \p I's original
112   /// type. Division operation is not promoted.
113   ///
114   /// \returns True if \p I is promoted to equivalent 32 bit binary operation,
115   /// false otherwise.
116   bool promoteUniformOpToI32(BinaryOperator &I) const;
117 
118   /// Promotes uniform 'icmp' operation \p I to 32 bit 'icmp' operation.
119   ///
120   /// \details \p I's base element bit width must be greater than 1 and less
121   /// than or equal 16. Promotion is done by sign or zero extending operands to
122   /// 32 bits, and replacing \p I with 32 bit 'icmp' operation.
123   ///
124   /// \returns True.
125   bool promoteUniformOpToI32(ICmpInst &I) const;
126 
127   /// Promotes uniform 'select' operation \p I to 32 bit 'select'
128   /// operation.
129   ///
130   /// \details \p I's base element bit width must be greater than 1 and less
131   /// than or equal 16. Promotion is done by sign or zero extending operands to
132   /// 32 bits, replacing \p I with 32 bit 'select' operation, and truncating the
133   /// result of 32 bit 'select' operation back to \p I's original type.
134   ///
135   /// \returns True.
136   bool promoteUniformOpToI32(SelectInst &I) const;
137 
138   /// Promotes uniform 'bitreverse' intrinsic \p I to 32 bit 'bitreverse'
139   /// intrinsic.
140   ///
141   /// \details \p I's base element bit width must be greater than 1 and less
142   /// than or equal 16. Promotion is done by zero extending the operand to 32
143   /// bits, replacing \p I with 32 bit 'bitreverse' intrinsic, shifting the
144   /// result of 32 bit 'bitreverse' intrinsic to the right with zero fill (the
145   /// shift amount is 32 minus \p I's base element bit width), and truncating
146   /// the result of the shift operation back to \p I's original type.
147   ///
148   /// \returns True.
149   bool promoteUniformBitreverseToI32(IntrinsicInst &I) const;
150 
151 
152   unsigned numBitsUnsigned(Value *Op, unsigned ScalarSize) const;
153   unsigned numBitsSigned(Value *Op, unsigned ScalarSize) const;
154   bool isI24(Value *V, unsigned ScalarSize) const;
155   bool isU24(Value *V, unsigned ScalarSize) const;
156 
157   /// Replace mul instructions with llvm.amdgcn.mul.u24 or llvm.amdgcn.mul.s24.
158   /// SelectionDAG has an issue where an and asserting the bits are known
159   bool replaceMulWithMul24(BinaryOperator &I) const;
160 
161   /// Perform same function as equivalently named function in DAGCombiner. Since
162   /// we expand some divisions here, we need to perform this before obscuring.
163   bool foldBinOpIntoSelect(BinaryOperator &I) const;
164 
165   bool divHasSpecialOptimization(BinaryOperator &I,
166                                  Value *Num, Value *Den) const;
167   int getDivNumBits(BinaryOperator &I,
168                     Value *Num, Value *Den,
169                     unsigned AtLeast, bool Signed) const;
170 
171   /// Expands 24 bit div or rem.
172   Value* expandDivRem24(IRBuilder<> &Builder, BinaryOperator &I,
173                         Value *Num, Value *Den,
174                         bool IsDiv, bool IsSigned) const;
175 
176   Value *expandDivRem24Impl(IRBuilder<> &Builder, BinaryOperator &I,
177                             Value *Num, Value *Den, unsigned NumBits,
178                             bool IsDiv, bool IsSigned) const;
179 
180   /// Expands 32 bit div or rem.
181   Value* expandDivRem32(IRBuilder<> &Builder, BinaryOperator &I,
182                         Value *Num, Value *Den) const;
183 
184   Value *shrinkDivRem64(IRBuilder<> &Builder, BinaryOperator &I,
185                         Value *Num, Value *Den) const;
186   void expandDivRem64(BinaryOperator &I) const;
187 
188   /// Widen a scalar load.
189   ///
190   /// \details \p Widen scalar load for uniform, small type loads from constant
191   //  memory / to a full 32-bits and then truncate the input to allow a scalar
192   //  load instead of a vector load.
193   //
194   /// \returns True.
195 
196   bool canWidenScalarExtLoad(LoadInst &I) const;
197 
198 public:
199   static char ID;
200 
201   AMDGPUCodeGenPrepare() : FunctionPass(ID) {}
202 
203   bool visitFDiv(BinaryOperator &I);
204 
205   bool visitInstruction(Instruction &I) { return false; }
206   bool visitBinaryOperator(BinaryOperator &I);
207   bool visitLoadInst(LoadInst &I);
208   bool visitICmpInst(ICmpInst &I);
209   bool visitSelectInst(SelectInst &I);
210 
211   bool visitIntrinsicInst(IntrinsicInst &I);
212   bool visitBitreverseIntrinsicInst(IntrinsicInst &I);
213 
214   bool doInitialization(Module &M) override;
215   bool runOnFunction(Function &F) override;
216 
217   StringRef getPassName() const override { return "AMDGPU IR optimizations"; }
218 
219   void getAnalysisUsage(AnalysisUsage &AU) const override {
220     AU.addRequired<AssumptionCacheTracker>();
221     AU.addRequired<LegacyDivergenceAnalysis>();
222 
223     // FIXME: Division expansion needs to preserve the dominator tree.
224     if (!ExpandDiv64InIR)
225       AU.setPreservesAll();
226  }
227 };
228 
229 } // end anonymous namespace
230 
231 unsigned AMDGPUCodeGenPrepare::getBaseElementBitWidth(const Type *T) const {
232   assert(needsPromotionToI32(T) && "T does not need promotion to i32");
233 
234   if (T->isIntegerTy())
235     return T->getIntegerBitWidth();
236   return cast<VectorType>(T)->getElementType()->getIntegerBitWidth();
237 }
238 
239 Type *AMDGPUCodeGenPrepare::getI32Ty(IRBuilder<> &B, const Type *T) const {
240   assert(needsPromotionToI32(T) && "T does not need promotion to i32");
241 
242   if (T->isIntegerTy())
243     return B.getInt32Ty();
244   return FixedVectorType::get(B.getInt32Ty(), cast<FixedVectorType>(T));
245 }
246 
247 bool AMDGPUCodeGenPrepare::isSigned(const BinaryOperator &I) const {
248   return I.getOpcode() == Instruction::AShr ||
249       I.getOpcode() == Instruction::SDiv || I.getOpcode() == Instruction::SRem;
250 }
251 
252 bool AMDGPUCodeGenPrepare::isSigned(const SelectInst &I) const {
253   return isa<ICmpInst>(I.getOperand(0)) ?
254       cast<ICmpInst>(I.getOperand(0))->isSigned() : false;
255 }
256 
257 bool AMDGPUCodeGenPrepare::needsPromotionToI32(const Type *T) const {
258   if (!Widen16BitOps)
259     return false;
260 
261   const IntegerType *IntTy = dyn_cast<IntegerType>(T);
262   if (IntTy && IntTy->getBitWidth() > 1 && IntTy->getBitWidth() <= 16)
263     return true;
264 
265   if (const VectorType *VT = dyn_cast<VectorType>(T)) {
266     // TODO: The set of packed operations is more limited, so may want to
267     // promote some anyway.
268     if (ST->hasVOP3PInsts())
269       return false;
270 
271     return needsPromotionToI32(VT->getElementType());
272   }
273 
274   return false;
275 }
276 
277 // Return true if the op promoted to i32 should have nsw set.
278 static bool promotedOpIsNSW(const Instruction &I) {
279   switch (I.getOpcode()) {
280   case Instruction::Shl:
281   case Instruction::Add:
282   case Instruction::Sub:
283     return true;
284   case Instruction::Mul:
285     return I.hasNoUnsignedWrap();
286   default:
287     return false;
288   }
289 }
290 
291 // Return true if the op promoted to i32 should have nuw set.
292 static bool promotedOpIsNUW(const Instruction &I) {
293   switch (I.getOpcode()) {
294   case Instruction::Shl:
295   case Instruction::Add:
296   case Instruction::Mul:
297     return true;
298   case Instruction::Sub:
299     return I.hasNoUnsignedWrap();
300   default:
301     return false;
302   }
303 }
304 
305 bool AMDGPUCodeGenPrepare::canWidenScalarExtLoad(LoadInst &I) const {
306   Type *Ty = I.getType();
307   const DataLayout &DL = Mod->getDataLayout();
308   int TySize = DL.getTypeSizeInBits(Ty);
309   Align Alignment = DL.getValueOrABITypeAlignment(I.getAlign(), Ty);
310 
311   return I.isSimple() && TySize < 32 && Alignment >= 4 && DA->isUniform(&I);
312 }
313 
314 bool AMDGPUCodeGenPrepare::promoteUniformOpToI32(BinaryOperator &I) const {
315   assert(needsPromotionToI32(I.getType()) &&
316          "I does not need promotion to i32");
317 
318   if (I.getOpcode() == Instruction::SDiv ||
319       I.getOpcode() == Instruction::UDiv ||
320       I.getOpcode() == Instruction::SRem ||
321       I.getOpcode() == Instruction::URem)
322     return false;
323 
324   IRBuilder<> Builder(&I);
325   Builder.SetCurrentDebugLocation(I.getDebugLoc());
326 
327   Type *I32Ty = getI32Ty(Builder, I.getType());
328   Value *ExtOp0 = nullptr;
329   Value *ExtOp1 = nullptr;
330   Value *ExtRes = nullptr;
331   Value *TruncRes = nullptr;
332 
333   if (isSigned(I)) {
334     ExtOp0 = Builder.CreateSExt(I.getOperand(0), I32Ty);
335     ExtOp1 = Builder.CreateSExt(I.getOperand(1), I32Ty);
336   } else {
337     ExtOp0 = Builder.CreateZExt(I.getOperand(0), I32Ty);
338     ExtOp1 = Builder.CreateZExt(I.getOperand(1), I32Ty);
339   }
340 
341   ExtRes = Builder.CreateBinOp(I.getOpcode(), ExtOp0, ExtOp1);
342   if (Instruction *Inst = dyn_cast<Instruction>(ExtRes)) {
343     if (promotedOpIsNSW(cast<Instruction>(I)))
344       Inst->setHasNoSignedWrap();
345 
346     if (promotedOpIsNUW(cast<Instruction>(I)))
347       Inst->setHasNoUnsignedWrap();
348 
349     if (const auto *ExactOp = dyn_cast<PossiblyExactOperator>(&I))
350       Inst->setIsExact(ExactOp->isExact());
351   }
352 
353   TruncRes = Builder.CreateTrunc(ExtRes, I.getType());
354 
355   I.replaceAllUsesWith(TruncRes);
356   I.eraseFromParent();
357 
358   return true;
359 }
360 
361 bool AMDGPUCodeGenPrepare::promoteUniformOpToI32(ICmpInst &I) const {
362   assert(needsPromotionToI32(I.getOperand(0)->getType()) &&
363          "I does not need promotion to i32");
364 
365   IRBuilder<> Builder(&I);
366   Builder.SetCurrentDebugLocation(I.getDebugLoc());
367 
368   Type *I32Ty = getI32Ty(Builder, I.getOperand(0)->getType());
369   Value *ExtOp0 = nullptr;
370   Value *ExtOp1 = nullptr;
371   Value *NewICmp  = nullptr;
372 
373   if (I.isSigned()) {
374     ExtOp0 = Builder.CreateSExt(I.getOperand(0), I32Ty);
375     ExtOp1 = Builder.CreateSExt(I.getOperand(1), I32Ty);
376   } else {
377     ExtOp0 = Builder.CreateZExt(I.getOperand(0), I32Ty);
378     ExtOp1 = Builder.CreateZExt(I.getOperand(1), I32Ty);
379   }
380   NewICmp = Builder.CreateICmp(I.getPredicate(), ExtOp0, ExtOp1);
381 
382   I.replaceAllUsesWith(NewICmp);
383   I.eraseFromParent();
384 
385   return true;
386 }
387 
388 bool AMDGPUCodeGenPrepare::promoteUniformOpToI32(SelectInst &I) const {
389   assert(needsPromotionToI32(I.getType()) &&
390          "I does not need promotion to i32");
391 
392   IRBuilder<> Builder(&I);
393   Builder.SetCurrentDebugLocation(I.getDebugLoc());
394 
395   Type *I32Ty = getI32Ty(Builder, I.getType());
396   Value *ExtOp1 = nullptr;
397   Value *ExtOp2 = nullptr;
398   Value *ExtRes = nullptr;
399   Value *TruncRes = nullptr;
400 
401   if (isSigned(I)) {
402     ExtOp1 = Builder.CreateSExt(I.getOperand(1), I32Ty);
403     ExtOp2 = Builder.CreateSExt(I.getOperand(2), I32Ty);
404   } else {
405     ExtOp1 = Builder.CreateZExt(I.getOperand(1), I32Ty);
406     ExtOp2 = Builder.CreateZExt(I.getOperand(2), I32Ty);
407   }
408   ExtRes = Builder.CreateSelect(I.getOperand(0), ExtOp1, ExtOp2);
409   TruncRes = Builder.CreateTrunc(ExtRes, I.getType());
410 
411   I.replaceAllUsesWith(TruncRes);
412   I.eraseFromParent();
413 
414   return true;
415 }
416 
417 bool AMDGPUCodeGenPrepare::promoteUniformBitreverseToI32(
418     IntrinsicInst &I) const {
419   assert(I.getIntrinsicID() == Intrinsic::bitreverse &&
420          "I must be bitreverse intrinsic");
421   assert(needsPromotionToI32(I.getType()) &&
422          "I does not need promotion to i32");
423 
424   IRBuilder<> Builder(&I);
425   Builder.SetCurrentDebugLocation(I.getDebugLoc());
426 
427   Type *I32Ty = getI32Ty(Builder, I.getType());
428   Function *I32 =
429       Intrinsic::getDeclaration(Mod, Intrinsic::bitreverse, { I32Ty });
430   Value *ExtOp = Builder.CreateZExt(I.getOperand(0), I32Ty);
431   Value *ExtRes = Builder.CreateCall(I32, { ExtOp });
432   Value *LShrOp =
433       Builder.CreateLShr(ExtRes, 32 - getBaseElementBitWidth(I.getType()));
434   Value *TruncRes =
435       Builder.CreateTrunc(LShrOp, I.getType());
436 
437   I.replaceAllUsesWith(TruncRes);
438   I.eraseFromParent();
439 
440   return true;
441 }
442 
443 unsigned AMDGPUCodeGenPrepare::numBitsUnsigned(Value *Op,
444                                                unsigned ScalarSize) const {
445   KnownBits Known = computeKnownBits(Op, *DL, 0, AC);
446   return ScalarSize - Known.countMinLeadingZeros();
447 }
448 
449 unsigned AMDGPUCodeGenPrepare::numBitsSigned(Value *Op,
450                                              unsigned ScalarSize) const {
451   // In order for this to be a signed 24-bit value, bit 23, must
452   // be a sign bit.
453   return ScalarSize - ComputeNumSignBits(Op, *DL, 0, AC);
454 }
455 
456 bool AMDGPUCodeGenPrepare::isI24(Value *V, unsigned ScalarSize) const {
457   return ScalarSize >= 24 && // Types less than 24-bit should be treated
458                                      // as unsigned 24-bit values.
459     numBitsSigned(V, ScalarSize) < 24;
460 }
461 
462 bool AMDGPUCodeGenPrepare::isU24(Value *V, unsigned ScalarSize) const {
463   return numBitsUnsigned(V, ScalarSize) <= 24;
464 }
465 
466 static void extractValues(IRBuilder<> &Builder,
467                           SmallVectorImpl<Value *> &Values, Value *V) {
468   auto *VT = dyn_cast<FixedVectorType>(V->getType());
469   if (!VT) {
470     Values.push_back(V);
471     return;
472   }
473 
474   for (int I = 0, E = VT->getNumElements(); I != E; ++I)
475     Values.push_back(Builder.CreateExtractElement(V, I));
476 }
477 
478 static Value *insertValues(IRBuilder<> &Builder,
479                            Type *Ty,
480                            SmallVectorImpl<Value *> &Values) {
481   if (Values.size() == 1)
482     return Values[0];
483 
484   Value *NewVal = UndefValue::get(Ty);
485   for (int I = 0, E = Values.size(); I != E; ++I)
486     NewVal = Builder.CreateInsertElement(NewVal, Values[I], I);
487 
488   return NewVal;
489 }
490 
491 bool AMDGPUCodeGenPrepare::replaceMulWithMul24(BinaryOperator &I) const {
492   if (I.getOpcode() != Instruction::Mul)
493     return false;
494 
495   Type *Ty = I.getType();
496   unsigned Size = Ty->getScalarSizeInBits();
497   if (Size <= 16 && ST->has16BitInsts())
498     return false;
499 
500   // Prefer scalar if this could be s_mul_i32
501   if (DA->isUniform(&I))
502     return false;
503 
504   Value *LHS = I.getOperand(0);
505   Value *RHS = I.getOperand(1);
506   IRBuilder<> Builder(&I);
507   Builder.SetCurrentDebugLocation(I.getDebugLoc());
508 
509   Intrinsic::ID IntrID = Intrinsic::not_intrinsic;
510 
511   // TODO: Should this try to match mulhi24?
512   if (ST->hasMulU24() && isU24(LHS, Size) && isU24(RHS, Size)) {
513     IntrID = Intrinsic::amdgcn_mul_u24;
514   } else if (ST->hasMulI24() && isI24(LHS, Size) && isI24(RHS, Size)) {
515     IntrID = Intrinsic::amdgcn_mul_i24;
516   } else
517     return false;
518 
519   SmallVector<Value *, 4> LHSVals;
520   SmallVector<Value *, 4> RHSVals;
521   SmallVector<Value *, 4> ResultVals;
522   extractValues(Builder, LHSVals, LHS);
523   extractValues(Builder, RHSVals, RHS);
524 
525 
526   IntegerType *I32Ty = Builder.getInt32Ty();
527   FunctionCallee Intrin = Intrinsic::getDeclaration(Mod, IntrID);
528   for (int I = 0, E = LHSVals.size(); I != E; ++I) {
529     Value *LHS, *RHS;
530     if (IntrID == Intrinsic::amdgcn_mul_u24) {
531       LHS = Builder.CreateZExtOrTrunc(LHSVals[I], I32Ty);
532       RHS = Builder.CreateZExtOrTrunc(RHSVals[I], I32Ty);
533     } else {
534       LHS = Builder.CreateSExtOrTrunc(LHSVals[I], I32Ty);
535       RHS = Builder.CreateSExtOrTrunc(RHSVals[I], I32Ty);
536     }
537 
538     Value *Result = Builder.CreateCall(Intrin, {LHS, RHS});
539 
540     if (IntrID == Intrinsic::amdgcn_mul_u24) {
541       ResultVals.push_back(Builder.CreateZExtOrTrunc(Result,
542                                                      LHSVals[I]->getType()));
543     } else {
544       ResultVals.push_back(Builder.CreateSExtOrTrunc(Result,
545                                                      LHSVals[I]->getType()));
546     }
547   }
548 
549   Value *NewVal = insertValues(Builder, Ty, ResultVals);
550   NewVal->takeName(&I);
551   I.replaceAllUsesWith(NewVal);
552   I.eraseFromParent();
553 
554   return true;
555 }
556 
557 // Find a select instruction, which may have been casted. This is mostly to deal
558 // with cases where i16 selects were promoted here to i32.
559 static SelectInst *findSelectThroughCast(Value *V, CastInst *&Cast) {
560   Cast = nullptr;
561   if (SelectInst *Sel = dyn_cast<SelectInst>(V))
562     return Sel;
563 
564   if ((Cast = dyn_cast<CastInst>(V))) {
565     if (SelectInst *Sel = dyn_cast<SelectInst>(Cast->getOperand(0)))
566       return Sel;
567   }
568 
569   return nullptr;
570 }
571 
572 bool AMDGPUCodeGenPrepare::foldBinOpIntoSelect(BinaryOperator &BO) const {
573   // Don't do this unless the old select is going away. We want to eliminate the
574   // binary operator, not replace a binop with a select.
575   int SelOpNo = 0;
576 
577   CastInst *CastOp;
578 
579   // TODO: Should probably try to handle some cases with multiple
580   // users. Duplicating the select may be profitable for division.
581   SelectInst *Sel = findSelectThroughCast(BO.getOperand(0), CastOp);
582   if (!Sel || !Sel->hasOneUse()) {
583     SelOpNo = 1;
584     Sel = findSelectThroughCast(BO.getOperand(1), CastOp);
585   }
586 
587   if (!Sel || !Sel->hasOneUse())
588     return false;
589 
590   Constant *CT = dyn_cast<Constant>(Sel->getTrueValue());
591   Constant *CF = dyn_cast<Constant>(Sel->getFalseValue());
592   Constant *CBO = dyn_cast<Constant>(BO.getOperand(SelOpNo ^ 1));
593   if (!CBO || !CT || !CF)
594     return false;
595 
596   if (CastOp) {
597     if (!CastOp->hasOneUse())
598       return false;
599     CT = ConstantFoldCastOperand(CastOp->getOpcode(), CT, BO.getType(), *DL);
600     CF = ConstantFoldCastOperand(CastOp->getOpcode(), CF, BO.getType(), *DL);
601   }
602 
603   // TODO: Handle special 0/-1 cases DAG combine does, although we only really
604   // need to handle divisions here.
605   Constant *FoldedT = SelOpNo ?
606     ConstantFoldBinaryOpOperands(BO.getOpcode(), CBO, CT, *DL) :
607     ConstantFoldBinaryOpOperands(BO.getOpcode(), CT, CBO, *DL);
608   if (isa<ConstantExpr>(FoldedT))
609     return false;
610 
611   Constant *FoldedF = SelOpNo ?
612     ConstantFoldBinaryOpOperands(BO.getOpcode(), CBO, CF, *DL) :
613     ConstantFoldBinaryOpOperands(BO.getOpcode(), CF, CBO, *DL);
614   if (isa<ConstantExpr>(FoldedF))
615     return false;
616 
617   IRBuilder<> Builder(&BO);
618   Builder.SetCurrentDebugLocation(BO.getDebugLoc());
619   if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(&BO))
620     Builder.setFastMathFlags(FPOp->getFastMathFlags());
621 
622   Value *NewSelect = Builder.CreateSelect(Sel->getCondition(),
623                                           FoldedT, FoldedF);
624   NewSelect->takeName(&BO);
625   BO.replaceAllUsesWith(NewSelect);
626   BO.eraseFromParent();
627   if (CastOp)
628     CastOp->eraseFromParent();
629   Sel->eraseFromParent();
630   return true;
631 }
632 
633 // Optimize fdiv with rcp:
634 //
635 // 1/x -> rcp(x) when rcp is sufficiently accurate or inaccurate rcp is
636 //               allowed with unsafe-fp-math or afn.
637 //
638 // a/b -> a*rcp(b) when inaccurate rcp is allowed with unsafe-fp-math or afn.
639 static Value *optimizeWithRcp(Value *Num, Value *Den, bool AllowInaccurateRcp,
640                               bool RcpIsAccurate, IRBuilder<> &Builder,
641                               Module *Mod) {
642 
643   if (!AllowInaccurateRcp && !RcpIsAccurate)
644     return nullptr;
645 
646   Type *Ty = Den->getType();
647   if (const ConstantFP *CLHS = dyn_cast<ConstantFP>(Num)) {
648     if (AllowInaccurateRcp || RcpIsAccurate) {
649       if (CLHS->isExactlyValue(1.0)) {
650         Function *Decl = Intrinsic::getDeclaration(
651           Mod, Intrinsic::amdgcn_rcp, Ty);
652 
653         // v_rcp_f32 and v_rsq_f32 do not support denormals, and according to
654         // the CI documentation has a worst case error of 1 ulp.
655         // OpenCL requires <= 2.5 ulp for 1.0 / x, so it should always be OK to
656         // use it as long as we aren't trying to use denormals.
657         //
658         // v_rcp_f16 and v_rsq_f16 DO support denormals.
659 
660         // NOTE: v_sqrt and v_rcp will be combined to v_rsq later. So we don't
661         //       insert rsq intrinsic here.
662 
663         // 1.0 / x -> rcp(x)
664         return Builder.CreateCall(Decl, { Den });
665       }
666 
667        // Same as for 1.0, but expand the sign out of the constant.
668       if (CLHS->isExactlyValue(-1.0)) {
669         Function *Decl = Intrinsic::getDeclaration(
670           Mod, Intrinsic::amdgcn_rcp, Ty);
671 
672          // -1.0 / x -> rcp (fneg x)
673          Value *FNeg = Builder.CreateFNeg(Den);
674          return Builder.CreateCall(Decl, { FNeg });
675        }
676     }
677   }
678 
679   if (AllowInaccurateRcp) {
680     Function *Decl = Intrinsic::getDeclaration(
681       Mod, Intrinsic::amdgcn_rcp, Ty);
682 
683     // Turn into multiply by the reciprocal.
684     // x / y -> x * (1.0 / y)
685     Value *Recip = Builder.CreateCall(Decl, { Den });
686     return Builder.CreateFMul(Num, Recip);
687   }
688   return nullptr;
689 }
690 
691 // optimize with fdiv.fast:
692 //
693 // a/b -> fdiv.fast(a, b) when !fpmath >= 2.5ulp with denormals flushed.
694 //
695 // 1/x -> fdiv.fast(1,x)  when !fpmath >= 2.5ulp.
696 //
697 // NOTE: optimizeWithRcp should be tried first because rcp is the preference.
698 static Value *optimizeWithFDivFast(Value *Num, Value *Den, float ReqdAccuracy,
699                                    bool HasDenormals, IRBuilder<> &Builder,
700                                    Module *Mod) {
701   // fdiv.fast can achieve 2.5 ULP accuracy.
702   if (ReqdAccuracy < 2.5f)
703     return nullptr;
704 
705   // Only have fdiv.fast for f32.
706   Type *Ty = Den->getType();
707   if (!Ty->isFloatTy())
708     return nullptr;
709 
710   bool NumIsOne = false;
711   if (const ConstantFP *CNum = dyn_cast<ConstantFP>(Num)) {
712     if (CNum->isExactlyValue(+1.0) || CNum->isExactlyValue(-1.0))
713       NumIsOne = true;
714   }
715 
716   // fdiv does not support denormals. But 1.0/x is always fine to use it.
717   if (HasDenormals && !NumIsOne)
718     return nullptr;
719 
720   Function *Decl = Intrinsic::getDeclaration(Mod, Intrinsic::amdgcn_fdiv_fast);
721   return Builder.CreateCall(Decl, { Num, Den });
722 }
723 
724 // Optimizations is performed based on fpmath, fast math flags as well as
725 // denormals to optimize fdiv with either rcp or fdiv.fast.
726 //
727 // With rcp:
728 //   1/x -> rcp(x) when rcp is sufficiently accurate or inaccurate rcp is
729 //                 allowed with unsafe-fp-math or afn.
730 //
731 //   a/b -> a*rcp(b) when inaccurate rcp is allowed with unsafe-fp-math or afn.
732 //
733 // With fdiv.fast:
734 //   a/b -> fdiv.fast(a, b) when !fpmath >= 2.5ulp with denormals flushed.
735 //
736 //   1/x -> fdiv.fast(1,x)  when !fpmath >= 2.5ulp.
737 //
738 // NOTE: rcp is the preference in cases that both are legal.
739 bool AMDGPUCodeGenPrepare::visitFDiv(BinaryOperator &FDiv) {
740 
741   Type *Ty = FDiv.getType()->getScalarType();
742 
743   // The f64 rcp/rsq approximations are pretty inaccurate. We can do an
744   // expansion around them in codegen.
745   if (Ty->isDoubleTy())
746     return false;
747 
748   // No intrinsic for fdiv16 if target does not support f16.
749   if (Ty->isHalfTy() && !ST->has16BitInsts())
750     return false;
751 
752   const FPMathOperator *FPOp = cast<const FPMathOperator>(&FDiv);
753   const float ReqdAccuracy =  FPOp->getFPAccuracy();
754 
755   // Inaccurate rcp is allowed with unsafe-fp-math or afn.
756   FastMathFlags FMF = FPOp->getFastMathFlags();
757   const bool AllowInaccurateRcp = HasUnsafeFPMath || FMF.approxFunc();
758 
759   // rcp_f16 is accurate for !fpmath >= 1.0ulp.
760   // rcp_f32 is accurate for !fpmath >= 1.0ulp and denormals are flushed.
761   // rcp_f64 is never accurate.
762   const bool RcpIsAccurate = (Ty->isHalfTy() && ReqdAccuracy >= 1.0f) ||
763             (Ty->isFloatTy() && !HasFP32Denormals && ReqdAccuracy >= 1.0f);
764 
765   IRBuilder<> Builder(FDiv.getParent(), std::next(FDiv.getIterator()));
766   Builder.setFastMathFlags(FMF);
767   Builder.SetCurrentDebugLocation(FDiv.getDebugLoc());
768 
769   Value *Num = FDiv.getOperand(0);
770   Value *Den = FDiv.getOperand(1);
771 
772   Value *NewFDiv = nullptr;
773   if (auto *VT = dyn_cast<FixedVectorType>(FDiv.getType())) {
774     NewFDiv = UndefValue::get(VT);
775 
776     // FIXME: Doesn't do the right thing for cases where the vector is partially
777     // constant. This works when the scalarizer pass is run first.
778     for (unsigned I = 0, E = VT->getNumElements(); I != E; ++I) {
779       Value *NumEltI = Builder.CreateExtractElement(Num, I);
780       Value *DenEltI = Builder.CreateExtractElement(Den, I);
781       // Try rcp first.
782       Value *NewElt = optimizeWithRcp(NumEltI, DenEltI, AllowInaccurateRcp,
783                                       RcpIsAccurate, Builder, Mod);
784       if (!NewElt) // Try fdiv.fast.
785         NewElt = optimizeWithFDivFast(NumEltI, DenEltI, ReqdAccuracy,
786                                       HasFP32Denormals, Builder, Mod);
787       if (!NewElt) // Keep the original.
788         NewElt = Builder.CreateFDiv(NumEltI, DenEltI);
789 
790       NewFDiv = Builder.CreateInsertElement(NewFDiv, NewElt, I);
791     }
792   } else { // Scalar FDiv.
793     // Try rcp first.
794     NewFDiv = optimizeWithRcp(Num, Den, AllowInaccurateRcp, RcpIsAccurate,
795                               Builder, Mod);
796     if (!NewFDiv) { // Try fdiv.fast.
797       NewFDiv = optimizeWithFDivFast(Num, Den, ReqdAccuracy, HasFP32Denormals,
798                                      Builder, Mod);
799     }
800   }
801 
802   if (NewFDiv) {
803     FDiv.replaceAllUsesWith(NewFDiv);
804     NewFDiv->takeName(&FDiv);
805     FDiv.eraseFromParent();
806   }
807 
808   return !!NewFDiv;
809 }
810 
811 static bool hasUnsafeFPMath(const Function &F) {
812   Attribute Attr = F.getFnAttribute("unsafe-fp-math");
813   return Attr.getValueAsBool();
814 }
815 
816 static std::pair<Value*, Value*> getMul64(IRBuilder<> &Builder,
817                                           Value *LHS, Value *RHS) {
818   Type *I32Ty = Builder.getInt32Ty();
819   Type *I64Ty = Builder.getInt64Ty();
820 
821   Value *LHS_EXT64 = Builder.CreateZExt(LHS, I64Ty);
822   Value *RHS_EXT64 = Builder.CreateZExt(RHS, I64Ty);
823   Value *MUL64 = Builder.CreateMul(LHS_EXT64, RHS_EXT64);
824   Value *Lo = Builder.CreateTrunc(MUL64, I32Ty);
825   Value *Hi = Builder.CreateLShr(MUL64, Builder.getInt64(32));
826   Hi = Builder.CreateTrunc(Hi, I32Ty);
827   return std::make_pair(Lo, Hi);
828 }
829 
830 static Value* getMulHu(IRBuilder<> &Builder, Value *LHS, Value *RHS) {
831   return getMul64(Builder, LHS, RHS).second;
832 }
833 
834 /// Figure out how many bits are really needed for this ddivision. \p AtLeast is
835 /// an optimization hint to bypass the second ComputeNumSignBits call if we the
836 /// first one is insufficient. Returns -1 on failure.
837 int AMDGPUCodeGenPrepare::getDivNumBits(BinaryOperator &I,
838                                         Value *Num, Value *Den,
839                                         unsigned AtLeast, bool IsSigned) const {
840   const DataLayout &DL = Mod->getDataLayout();
841   unsigned LHSSignBits = ComputeNumSignBits(Num, DL, 0, AC, &I);
842   if (LHSSignBits < AtLeast)
843     return -1;
844 
845   unsigned RHSSignBits = ComputeNumSignBits(Den, DL, 0, AC, &I);
846   if (RHSSignBits < AtLeast)
847     return -1;
848 
849   unsigned SignBits = std::min(LHSSignBits, RHSSignBits);
850   unsigned DivBits = Num->getType()->getScalarSizeInBits() - SignBits;
851   if (IsSigned)
852     ++DivBits;
853   return DivBits;
854 }
855 
856 // The fractional part of a float is enough to accurately represent up to
857 // a 24-bit signed integer.
858 Value *AMDGPUCodeGenPrepare::expandDivRem24(IRBuilder<> &Builder,
859                                             BinaryOperator &I,
860                                             Value *Num, Value *Den,
861                                             bool IsDiv, bool IsSigned) const {
862   int DivBits = getDivNumBits(I, Num, Den, 9, IsSigned);
863   if (DivBits == -1)
864     return nullptr;
865   return expandDivRem24Impl(Builder, I, Num, Den, DivBits, IsDiv, IsSigned);
866 }
867 
868 Value *AMDGPUCodeGenPrepare::expandDivRem24Impl(IRBuilder<> &Builder,
869                                                 BinaryOperator &I,
870                                                 Value *Num, Value *Den,
871                                                 unsigned DivBits,
872                                                 bool IsDiv, bool IsSigned) const {
873   Type *I32Ty = Builder.getInt32Ty();
874   Num = Builder.CreateTrunc(Num, I32Ty);
875   Den = Builder.CreateTrunc(Den, I32Ty);
876 
877   Type *F32Ty = Builder.getFloatTy();
878   ConstantInt *One = Builder.getInt32(1);
879   Value *JQ = One;
880 
881   if (IsSigned) {
882     // char|short jq = ia ^ ib;
883     JQ = Builder.CreateXor(Num, Den);
884 
885     // jq = jq >> (bitsize - 2)
886     JQ = Builder.CreateAShr(JQ, Builder.getInt32(30));
887 
888     // jq = jq | 0x1
889     JQ = Builder.CreateOr(JQ, One);
890   }
891 
892   // int ia = (int)LHS;
893   Value *IA = Num;
894 
895   // int ib, (int)RHS;
896   Value *IB = Den;
897 
898   // float fa = (float)ia;
899   Value *FA = IsSigned ? Builder.CreateSIToFP(IA, F32Ty)
900                        : Builder.CreateUIToFP(IA, F32Ty);
901 
902   // float fb = (float)ib;
903   Value *FB = IsSigned ? Builder.CreateSIToFP(IB,F32Ty)
904                        : Builder.CreateUIToFP(IB,F32Ty);
905 
906   Function *RcpDecl = Intrinsic::getDeclaration(Mod, Intrinsic::amdgcn_rcp,
907                                                 Builder.getFloatTy());
908   Value *RCP = Builder.CreateCall(RcpDecl, { FB });
909   Value *FQM = Builder.CreateFMul(FA, RCP);
910 
911   // fq = trunc(fqm);
912   CallInst *FQ = Builder.CreateUnaryIntrinsic(Intrinsic::trunc, FQM);
913   FQ->copyFastMathFlags(Builder.getFastMathFlags());
914 
915   // float fqneg = -fq;
916   Value *FQNeg = Builder.CreateFNeg(FQ);
917 
918   // float fr = mad(fqneg, fb, fa);
919   auto FMAD = !ST->hasMadMacF32Insts()
920                   ? Intrinsic::fma
921                   : (Intrinsic::ID)Intrinsic::amdgcn_fmad_ftz;
922   Value *FR = Builder.CreateIntrinsic(FMAD,
923                                       {FQNeg->getType()}, {FQNeg, FB, FA}, FQ);
924 
925   // int iq = (int)fq;
926   Value *IQ = IsSigned ? Builder.CreateFPToSI(FQ, I32Ty)
927                        : Builder.CreateFPToUI(FQ, I32Ty);
928 
929   // fr = fabs(fr);
930   FR = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, FR, FQ);
931 
932   // fb = fabs(fb);
933   FB = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, FB, FQ);
934 
935   // int cv = fr >= fb;
936   Value *CV = Builder.CreateFCmpOGE(FR, FB);
937 
938   // jq = (cv ? jq : 0);
939   JQ = Builder.CreateSelect(CV, JQ, Builder.getInt32(0));
940 
941   // dst = iq + jq;
942   Value *Div = Builder.CreateAdd(IQ, JQ);
943 
944   Value *Res = Div;
945   if (!IsDiv) {
946     // Rem needs compensation, it's easier to recompute it
947     Value *Rem = Builder.CreateMul(Div, Den);
948     Res = Builder.CreateSub(Num, Rem);
949   }
950 
951   if (DivBits != 0 && DivBits < 32) {
952     // Extend in register from the number of bits this divide really is.
953     if (IsSigned) {
954       int InRegBits = 32 - DivBits;
955 
956       Res = Builder.CreateShl(Res, InRegBits);
957       Res = Builder.CreateAShr(Res, InRegBits);
958     } else {
959       ConstantInt *TruncMask
960         = Builder.getInt32((UINT64_C(1) << DivBits) - 1);
961       Res = Builder.CreateAnd(Res, TruncMask);
962     }
963   }
964 
965   return Res;
966 }
967 
968 // Try to recognize special cases the DAG will emit special, better expansions
969 // than the general expansion we do here.
970 
971 // TODO: It would be better to just directly handle those optimizations here.
972 bool AMDGPUCodeGenPrepare::divHasSpecialOptimization(
973   BinaryOperator &I, Value *Num, Value *Den) const {
974   if (Constant *C = dyn_cast<Constant>(Den)) {
975     // Arbitrary constants get a better expansion as long as a wider mulhi is
976     // legal.
977     if (C->getType()->getScalarSizeInBits() <= 32)
978       return true;
979 
980     // TODO: Sdiv check for not exact for some reason.
981 
982     // If there's no wider mulhi, there's only a better expansion for powers of
983     // two.
984     // TODO: Should really know for each vector element.
985     if (isKnownToBeAPowerOfTwo(C, *DL, true, 0, AC, &I, DT))
986       return true;
987 
988     return false;
989   }
990 
991   if (BinaryOperator *BinOpDen = dyn_cast<BinaryOperator>(Den)) {
992     // fold (udiv x, (shl c, y)) -> x >>u (log2(c)+y) iff c is power of 2
993     if (BinOpDen->getOpcode() == Instruction::Shl &&
994         isa<Constant>(BinOpDen->getOperand(0)) &&
995         isKnownToBeAPowerOfTwo(BinOpDen->getOperand(0), *DL, true,
996                                0, AC, &I, DT)) {
997       return true;
998     }
999   }
1000 
1001   return false;
1002 }
1003 
1004 static Value *getSign32(Value *V, IRBuilder<> &Builder, const DataLayout *DL) {
1005   // Check whether the sign can be determined statically.
1006   KnownBits Known = computeKnownBits(V, *DL);
1007   if (Known.isNegative())
1008     return Constant::getAllOnesValue(V->getType());
1009   if (Known.isNonNegative())
1010     return Constant::getNullValue(V->getType());
1011   return Builder.CreateAShr(V, Builder.getInt32(31));
1012 }
1013 
1014 Value *AMDGPUCodeGenPrepare::expandDivRem32(IRBuilder<> &Builder,
1015                                             BinaryOperator &I, Value *X,
1016                                             Value *Y) const {
1017   Instruction::BinaryOps Opc = I.getOpcode();
1018   assert(Opc == Instruction::URem || Opc == Instruction::UDiv ||
1019          Opc == Instruction::SRem || Opc == Instruction::SDiv);
1020 
1021   FastMathFlags FMF;
1022   FMF.setFast();
1023   Builder.setFastMathFlags(FMF);
1024 
1025   if (divHasSpecialOptimization(I, X, Y))
1026     return nullptr;  // Keep it for later optimization.
1027 
1028   bool IsDiv = Opc == Instruction::UDiv || Opc == Instruction::SDiv;
1029   bool IsSigned = Opc == Instruction::SRem || Opc == Instruction::SDiv;
1030 
1031   Type *Ty = X->getType();
1032   Type *I32Ty = Builder.getInt32Ty();
1033   Type *F32Ty = Builder.getFloatTy();
1034 
1035   if (Ty->getScalarSizeInBits() < 32) {
1036     if (IsSigned) {
1037       X = Builder.CreateSExt(X, I32Ty);
1038       Y = Builder.CreateSExt(Y, I32Ty);
1039     } else {
1040       X = Builder.CreateZExt(X, I32Ty);
1041       Y = Builder.CreateZExt(Y, I32Ty);
1042     }
1043   }
1044 
1045   if (Value *Res = expandDivRem24(Builder, I, X, Y, IsDiv, IsSigned)) {
1046     return IsSigned ? Builder.CreateSExtOrTrunc(Res, Ty) :
1047                       Builder.CreateZExtOrTrunc(Res, Ty);
1048   }
1049 
1050   ConstantInt *Zero = Builder.getInt32(0);
1051   ConstantInt *One = Builder.getInt32(1);
1052 
1053   Value *Sign = nullptr;
1054   if (IsSigned) {
1055     Value *SignX = getSign32(X, Builder, DL);
1056     Value *SignY = getSign32(Y, Builder, DL);
1057     // Remainder sign is the same as LHS
1058     Sign = IsDiv ? Builder.CreateXor(SignX, SignY) : SignX;
1059 
1060     X = Builder.CreateAdd(X, SignX);
1061     Y = Builder.CreateAdd(Y, SignY);
1062 
1063     X = Builder.CreateXor(X, SignX);
1064     Y = Builder.CreateXor(Y, SignY);
1065   }
1066 
1067   // The algorithm here is based on ideas from "Software Integer Division", Tom
1068   // Rodeheffer, August 2008.
1069   //
1070   // unsigned udiv(unsigned x, unsigned y) {
1071   //   // Initial estimate of inv(y). The constant is less than 2^32 to ensure
1072   //   // that this is a lower bound on inv(y), even if some of the calculations
1073   //   // round up.
1074   //   unsigned z = (unsigned)((4294967296.0 - 512.0) * v_rcp_f32((float)y));
1075   //
1076   //   // One round of UNR (Unsigned integer Newton-Raphson) to improve z.
1077   //   // Empirically this is guaranteed to give a "two-y" lower bound on
1078   //   // inv(y).
1079   //   z += umulh(z, -y * z);
1080   //
1081   //   // Quotient/remainder estimate.
1082   //   unsigned q = umulh(x, z);
1083   //   unsigned r = x - q * y;
1084   //
1085   //   // Two rounds of quotient/remainder refinement.
1086   //   if (r >= y) {
1087   //     ++q;
1088   //     r -= y;
1089   //   }
1090   //   if (r >= y) {
1091   //     ++q;
1092   //     r -= y;
1093   //   }
1094   //
1095   //   return q;
1096   // }
1097 
1098   // Initial estimate of inv(y).
1099   Value *FloatY = Builder.CreateUIToFP(Y, F32Ty);
1100   Function *Rcp = Intrinsic::getDeclaration(Mod, Intrinsic::amdgcn_rcp, F32Ty);
1101   Value *RcpY = Builder.CreateCall(Rcp, {FloatY});
1102   Constant *Scale = ConstantFP::get(F32Ty, BitsToFloat(0x4F7FFFFE));
1103   Value *ScaledY = Builder.CreateFMul(RcpY, Scale);
1104   Value *Z = Builder.CreateFPToUI(ScaledY, I32Ty);
1105 
1106   // One round of UNR.
1107   Value *NegY = Builder.CreateSub(Zero, Y);
1108   Value *NegYZ = Builder.CreateMul(NegY, Z);
1109   Z = Builder.CreateAdd(Z, getMulHu(Builder, Z, NegYZ));
1110 
1111   // Quotient/remainder estimate.
1112   Value *Q = getMulHu(Builder, X, Z);
1113   Value *R = Builder.CreateSub(X, Builder.CreateMul(Q, Y));
1114 
1115   // First quotient/remainder refinement.
1116   Value *Cond = Builder.CreateICmpUGE(R, Y);
1117   if (IsDiv)
1118     Q = Builder.CreateSelect(Cond, Builder.CreateAdd(Q, One), Q);
1119   R = Builder.CreateSelect(Cond, Builder.CreateSub(R, Y), R);
1120 
1121   // Second quotient/remainder refinement.
1122   Cond = Builder.CreateICmpUGE(R, Y);
1123   Value *Res;
1124   if (IsDiv)
1125     Res = Builder.CreateSelect(Cond, Builder.CreateAdd(Q, One), Q);
1126   else
1127     Res = Builder.CreateSelect(Cond, Builder.CreateSub(R, Y), R);
1128 
1129   if (IsSigned) {
1130     Res = Builder.CreateXor(Res, Sign);
1131     Res = Builder.CreateSub(Res, Sign);
1132   }
1133 
1134   Res = Builder.CreateTrunc(Res, Ty);
1135 
1136   return Res;
1137 }
1138 
1139 Value *AMDGPUCodeGenPrepare::shrinkDivRem64(IRBuilder<> &Builder,
1140                                             BinaryOperator &I,
1141                                             Value *Num, Value *Den) const {
1142   if (!ExpandDiv64InIR && divHasSpecialOptimization(I, Num, Den))
1143     return nullptr;  // Keep it for later optimization.
1144 
1145   Instruction::BinaryOps Opc = I.getOpcode();
1146 
1147   bool IsDiv = Opc == Instruction::SDiv || Opc == Instruction::UDiv;
1148   bool IsSigned = Opc == Instruction::SDiv || Opc == Instruction::SRem;
1149 
1150   int NumDivBits = getDivNumBits(I, Num, Den, 32, IsSigned);
1151   if (NumDivBits == -1)
1152     return nullptr;
1153 
1154   Value *Narrowed = nullptr;
1155   if (NumDivBits <= 24) {
1156     Narrowed = expandDivRem24Impl(Builder, I, Num, Den, NumDivBits,
1157                                   IsDiv, IsSigned);
1158   } else if (NumDivBits <= 32) {
1159     Narrowed = expandDivRem32(Builder, I, Num, Den);
1160   }
1161 
1162   if (Narrowed) {
1163     return IsSigned ? Builder.CreateSExt(Narrowed, Num->getType()) :
1164                       Builder.CreateZExt(Narrowed, Num->getType());
1165   }
1166 
1167   return nullptr;
1168 }
1169 
1170 void AMDGPUCodeGenPrepare::expandDivRem64(BinaryOperator &I) const {
1171   Instruction::BinaryOps Opc = I.getOpcode();
1172   // Do the general expansion.
1173   if (Opc == Instruction::UDiv || Opc == Instruction::SDiv) {
1174     expandDivisionUpTo64Bits(&I);
1175     return;
1176   }
1177 
1178   if (Opc == Instruction::URem || Opc == Instruction::SRem) {
1179     expandRemainderUpTo64Bits(&I);
1180     return;
1181   }
1182 
1183   llvm_unreachable("not a division");
1184 }
1185 
1186 bool AMDGPUCodeGenPrepare::visitBinaryOperator(BinaryOperator &I) {
1187   if (foldBinOpIntoSelect(I))
1188     return true;
1189 
1190   if (ST->has16BitInsts() && needsPromotionToI32(I.getType()) &&
1191       DA->isUniform(&I) && promoteUniformOpToI32(I))
1192     return true;
1193 
1194   if (UseMul24Intrin && replaceMulWithMul24(I))
1195     return true;
1196 
1197   bool Changed = false;
1198   Instruction::BinaryOps Opc = I.getOpcode();
1199   Type *Ty = I.getType();
1200   Value *NewDiv = nullptr;
1201   unsigned ScalarSize = Ty->getScalarSizeInBits();
1202 
1203   SmallVector<BinaryOperator *, 8> Div64ToExpand;
1204 
1205   if ((Opc == Instruction::URem || Opc == Instruction::UDiv ||
1206        Opc == Instruction::SRem || Opc == Instruction::SDiv) &&
1207       ScalarSize <= 64 &&
1208       !DisableIDivExpand) {
1209     Value *Num = I.getOperand(0);
1210     Value *Den = I.getOperand(1);
1211     IRBuilder<> Builder(&I);
1212     Builder.SetCurrentDebugLocation(I.getDebugLoc());
1213 
1214     if (auto *VT = dyn_cast<FixedVectorType>(Ty)) {
1215       NewDiv = UndefValue::get(VT);
1216 
1217       for (unsigned N = 0, E = VT->getNumElements(); N != E; ++N) {
1218         Value *NumEltN = Builder.CreateExtractElement(Num, N);
1219         Value *DenEltN = Builder.CreateExtractElement(Den, N);
1220 
1221         Value *NewElt;
1222         if (ScalarSize <= 32) {
1223           NewElt = expandDivRem32(Builder, I, NumEltN, DenEltN);
1224           if (!NewElt)
1225             NewElt = Builder.CreateBinOp(Opc, NumEltN, DenEltN);
1226         } else {
1227           // See if this 64-bit division can be shrunk to 32/24-bits before
1228           // producing the general expansion.
1229           NewElt = shrinkDivRem64(Builder, I, NumEltN, DenEltN);
1230           if (!NewElt) {
1231             // The general 64-bit expansion introduces control flow and doesn't
1232             // return the new value. Just insert a scalar copy and defer
1233             // expanding it.
1234             NewElt = Builder.CreateBinOp(Opc, NumEltN, DenEltN);
1235             Div64ToExpand.push_back(cast<BinaryOperator>(NewElt));
1236           }
1237         }
1238 
1239         NewDiv = Builder.CreateInsertElement(NewDiv, NewElt, N);
1240       }
1241     } else {
1242       if (ScalarSize <= 32)
1243         NewDiv = expandDivRem32(Builder, I, Num, Den);
1244       else {
1245         NewDiv = shrinkDivRem64(Builder, I, Num, Den);
1246         if (!NewDiv)
1247           Div64ToExpand.push_back(&I);
1248       }
1249     }
1250 
1251     if (NewDiv) {
1252       I.replaceAllUsesWith(NewDiv);
1253       I.eraseFromParent();
1254       Changed = true;
1255     }
1256   }
1257 
1258   if (ExpandDiv64InIR) {
1259     // TODO: We get much worse code in specially handled constant cases.
1260     for (BinaryOperator *Div : Div64ToExpand) {
1261       expandDivRem64(*Div);
1262       Changed = true;
1263     }
1264   }
1265 
1266   return Changed;
1267 }
1268 
1269 bool AMDGPUCodeGenPrepare::visitLoadInst(LoadInst &I) {
1270   if (!WidenLoads)
1271     return false;
1272 
1273   if ((I.getPointerAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS ||
1274        I.getPointerAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS_32BIT) &&
1275       canWidenScalarExtLoad(I)) {
1276     IRBuilder<> Builder(&I);
1277     Builder.SetCurrentDebugLocation(I.getDebugLoc());
1278 
1279     Type *I32Ty = Builder.getInt32Ty();
1280     Type *PT = PointerType::get(I32Ty, I.getPointerAddressSpace());
1281     Value *BitCast= Builder.CreateBitCast(I.getPointerOperand(), PT);
1282     LoadInst *WidenLoad = Builder.CreateLoad(I32Ty, BitCast);
1283     WidenLoad->copyMetadata(I);
1284 
1285     // If we have range metadata, we need to convert the type, and not make
1286     // assumptions about the high bits.
1287     if (auto *Range = WidenLoad->getMetadata(LLVMContext::MD_range)) {
1288       ConstantInt *Lower =
1289         mdconst::extract<ConstantInt>(Range->getOperand(0));
1290 
1291       if (Lower->getValue().isNullValue()) {
1292         WidenLoad->setMetadata(LLVMContext::MD_range, nullptr);
1293       } else {
1294         Metadata *LowAndHigh[] = {
1295           ConstantAsMetadata::get(ConstantInt::get(I32Ty, Lower->getValue().zext(32))),
1296           // Don't make assumptions about the high bits.
1297           ConstantAsMetadata::get(ConstantInt::get(I32Ty, 0))
1298         };
1299 
1300         WidenLoad->setMetadata(LLVMContext::MD_range,
1301                                MDNode::get(Mod->getContext(), LowAndHigh));
1302       }
1303     }
1304 
1305     int TySize = Mod->getDataLayout().getTypeSizeInBits(I.getType());
1306     Type *IntNTy = Builder.getIntNTy(TySize);
1307     Value *ValTrunc = Builder.CreateTrunc(WidenLoad, IntNTy);
1308     Value *ValOrig = Builder.CreateBitCast(ValTrunc, I.getType());
1309     I.replaceAllUsesWith(ValOrig);
1310     I.eraseFromParent();
1311     return true;
1312   }
1313 
1314   return false;
1315 }
1316 
1317 bool AMDGPUCodeGenPrepare::visitICmpInst(ICmpInst &I) {
1318   bool Changed = false;
1319 
1320   if (ST->has16BitInsts() && needsPromotionToI32(I.getOperand(0)->getType()) &&
1321       DA->isUniform(&I))
1322     Changed |= promoteUniformOpToI32(I);
1323 
1324   return Changed;
1325 }
1326 
1327 bool AMDGPUCodeGenPrepare::visitSelectInst(SelectInst &I) {
1328   bool Changed = false;
1329 
1330   if (ST->has16BitInsts() && needsPromotionToI32(I.getType()) &&
1331       DA->isUniform(&I))
1332     Changed |= promoteUniformOpToI32(I);
1333 
1334   return Changed;
1335 }
1336 
1337 bool AMDGPUCodeGenPrepare::visitIntrinsicInst(IntrinsicInst &I) {
1338   switch (I.getIntrinsicID()) {
1339   case Intrinsic::bitreverse:
1340     return visitBitreverseIntrinsicInst(I);
1341   default:
1342     return false;
1343   }
1344 }
1345 
1346 bool AMDGPUCodeGenPrepare::visitBitreverseIntrinsicInst(IntrinsicInst &I) {
1347   bool Changed = false;
1348 
1349   if (ST->has16BitInsts() && needsPromotionToI32(I.getType()) &&
1350       DA->isUniform(&I))
1351     Changed |= promoteUniformBitreverseToI32(I);
1352 
1353   return Changed;
1354 }
1355 
1356 bool AMDGPUCodeGenPrepare::doInitialization(Module &M) {
1357   Mod = &M;
1358   DL = &Mod->getDataLayout();
1359   return false;
1360 }
1361 
1362 bool AMDGPUCodeGenPrepare::runOnFunction(Function &F) {
1363   if (skipFunction(F))
1364     return false;
1365 
1366   auto *TPC = getAnalysisIfAvailable<TargetPassConfig>();
1367   if (!TPC)
1368     return false;
1369 
1370   const AMDGPUTargetMachine &TM = TPC->getTM<AMDGPUTargetMachine>();
1371   ST = &TM.getSubtarget<GCNSubtarget>(F);
1372   AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
1373   DA = &getAnalysis<LegacyDivergenceAnalysis>();
1374 
1375   auto *DTWP = getAnalysisIfAvailable<DominatorTreeWrapperPass>();
1376   DT = DTWP ? &DTWP->getDomTree() : nullptr;
1377 
1378   HasUnsafeFPMath = hasUnsafeFPMath(F);
1379 
1380   AMDGPU::SIModeRegisterDefaults Mode(F);
1381   HasFP32Denormals = Mode.allFP32Denormals();
1382 
1383   bool MadeChange = false;
1384 
1385   Function::iterator NextBB;
1386   for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE; FI = NextBB) {
1387     BasicBlock *BB = &*FI;
1388     NextBB = std::next(FI);
1389 
1390     BasicBlock::iterator Next;
1391     for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; I = Next) {
1392       Next = std::next(I);
1393 
1394       MadeChange |= visit(*I);
1395 
1396       if (Next != E) { // Control flow changed
1397         BasicBlock *NextInstBB = Next->getParent();
1398         if (NextInstBB != BB) {
1399           BB = NextInstBB;
1400           E = BB->end();
1401           FE = F.end();
1402         }
1403       }
1404     }
1405   }
1406 
1407   return MadeChange;
1408 }
1409 
1410 INITIALIZE_PASS_BEGIN(AMDGPUCodeGenPrepare, DEBUG_TYPE,
1411                       "AMDGPU IR optimizations", false, false)
1412 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
1413 INITIALIZE_PASS_DEPENDENCY(LegacyDivergenceAnalysis)
1414 INITIALIZE_PASS_END(AMDGPUCodeGenPrepare, DEBUG_TYPE, "AMDGPU IR optimizations",
1415                     false, false)
1416 
1417 char AMDGPUCodeGenPrepare::ID = 0;
1418 
1419 FunctionPass *llvm::createAMDGPUCodeGenPreparePass() {
1420   return new AMDGPUCodeGenPrepare();
1421 }
1422