xref: /llvm-project/llvm/lib/Target/AMDGPU/AMDGPUCodeGenPrepare.cpp (revision 98ed613cccd329d3892216b15d6e335f7c42a35b)
1 //===-- AMDGPUCodeGenPrepare.cpp ------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file
10 /// This pass does misc. AMDGPU optimizations on IR before instruction
11 /// selection.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "AMDGPU.h"
16 #include "AMDGPUSubtarget.h"
17 #include "AMDGPUTargetMachine.h"
18 #include "llvm/ADT/StringRef.h"
19 #include "llvm/Analysis/AssumptionCache.h"
20 #include "llvm/Analysis/ConstantFolding.h"
21 #include "llvm/Analysis/LegacyDivergenceAnalysis.h"
22 #include "llvm/Analysis/Loads.h"
23 #include "llvm/Analysis/ValueTracking.h"
24 #include "llvm/CodeGen/Passes.h"
25 #include "llvm/CodeGen/TargetPassConfig.h"
26 #include "llvm/IR/Attributes.h"
27 #include "llvm/IR/BasicBlock.h"
28 #include "llvm/IR/Constants.h"
29 #include "llvm/IR/DerivedTypes.h"
30 #include "llvm/IR/Function.h"
31 #include "llvm/IR/IRBuilder.h"
32 #include "llvm/IR/InstVisitor.h"
33 #include "llvm/IR/InstrTypes.h"
34 #include "llvm/IR/Instruction.h"
35 #include "llvm/IR/Instructions.h"
36 #include "llvm/IR/IntrinsicInst.h"
37 #include "llvm/IR/Intrinsics.h"
38 #include "llvm/IR/LLVMContext.h"
39 #include "llvm/IR/Operator.h"
40 #include "llvm/IR/Type.h"
41 #include "llvm/IR/Value.h"
42 #include "llvm/Transforms/Utils/IntegerDivision.h"
43 #include "llvm/InitializePasses.h"
44 #include "llvm/Pass.h"
45 #include "llvm/Support/Casting.h"
46 #include <cassert>
47 #include <iterator>
48 
49 #define DEBUG_TYPE "amdgpu-codegenprepare"
50 
51 using namespace llvm;
52 
53 namespace {
54 
55 static cl::opt<bool> WidenLoads(
56   "amdgpu-codegenprepare-widen-constant-loads",
57   cl::desc("Widen sub-dword constant address space loads in AMDGPUCodeGenPrepare"),
58   cl::ReallyHidden,
59   cl::init(true));
60 
61 static cl::opt<bool> UseMul24Intrin(
62   "amdgpu-codegenprepare-mul24",
63   cl::desc("Introduce mul24 intrinsics in AMDGPUCodeGenPrepare"),
64   cl::ReallyHidden,
65   cl::init(true));
66 
67 // Legalize 64-bit division by using the generic IR expansion.
68 static cl::opt<bool> ExpandDiv64InIR(
69   "amdgpu-codegenprepare-expand-div64",
70   cl::desc("Expand 64-bit division in AMDGPUCodeGenPrepare"),
71   cl::ReallyHidden,
72   cl::init(false));
73 
74 // Leave all division operations as they are. This supersedes ExpandDiv64InIR
75 // and is used for testing the legalizer.
76 static cl::opt<bool> DisableIDivExpand(
77   "amdgpu-codegenprepare-disable-idiv-expansion",
78   cl::desc("Prevent expanding integer division in AMDGPUCodeGenPrepare"),
79   cl::ReallyHidden,
80   cl::init(false));
81 
82 class AMDGPUCodeGenPrepare : public FunctionPass,
83                              public InstVisitor<AMDGPUCodeGenPrepare, bool> {
84   const GCNSubtarget *ST = nullptr;
85   AssumptionCache *AC = nullptr;
86   DominatorTree *DT = nullptr;
87   LegacyDivergenceAnalysis *DA = nullptr;
88   Module *Mod = nullptr;
89   const DataLayout *DL = nullptr;
90   bool HasUnsafeFPMath = false;
91   bool HasFP32Denormals = false;
92 
93   /// Copies exact/nsw/nuw flags (if any) from binary operation \p I to
94   /// binary operation \p V.
95   ///
96   /// \returns Binary operation \p V.
97   /// \returns \p T's base element bit width.
98   unsigned getBaseElementBitWidth(const Type *T) const;
99 
100   /// \returns Equivalent 32 bit integer type for given type \p T. For example,
101   /// if \p T is i7, then i32 is returned; if \p T is <3 x i12>, then <3 x i32>
102   /// is returned.
103   Type *getI32Ty(IRBuilder<> &B, const Type *T) const;
104 
105   /// \returns True if binary operation \p I is a signed binary operation, false
106   /// otherwise.
107   bool isSigned(const BinaryOperator &I) const;
108 
109   /// \returns True if the condition of 'select' operation \p I comes from a
110   /// signed 'icmp' operation, false otherwise.
111   bool isSigned(const SelectInst &I) const;
112 
113   /// \returns True if type \p T needs to be promoted to 32 bit integer type,
114   /// false otherwise.
115   bool needsPromotionToI32(const Type *T) const;
116 
117   /// Promotes uniform binary operation \p I to equivalent 32 bit binary
118   /// operation.
119   ///
120   /// \details \p I's base element bit width must be greater than 1 and less
121   /// than or equal 16. Promotion is done by sign or zero extending operands to
122   /// 32 bits, replacing \p I with equivalent 32 bit binary operation, and
123   /// truncating the result of 32 bit binary operation back to \p I's original
124   /// type. Division operation is not promoted.
125   ///
126   /// \returns True if \p I is promoted to equivalent 32 bit binary operation,
127   /// false otherwise.
128   bool promoteUniformOpToI32(BinaryOperator &I) const;
129 
130   /// Promotes uniform 'icmp' operation \p I to 32 bit 'icmp' operation.
131   ///
132   /// \details \p I's base element bit width must be greater than 1 and less
133   /// than or equal 16. Promotion is done by sign or zero extending operands to
134   /// 32 bits, and replacing \p I with 32 bit 'icmp' operation.
135   ///
136   /// \returns True.
137   bool promoteUniformOpToI32(ICmpInst &I) const;
138 
139   /// Promotes uniform 'select' operation \p I to 32 bit 'select'
140   /// operation.
141   ///
142   /// \details \p I's base element bit width must be greater than 1 and less
143   /// than or equal 16. Promotion is done by sign or zero extending operands to
144   /// 32 bits, replacing \p I with 32 bit 'select' operation, and truncating the
145   /// result of 32 bit 'select' operation back to \p I's original type.
146   ///
147   /// \returns True.
148   bool promoteUniformOpToI32(SelectInst &I) const;
149 
150   /// Promotes uniform 'bitreverse' intrinsic \p I to 32 bit 'bitreverse'
151   /// intrinsic.
152   ///
153   /// \details \p I's base element bit width must be greater than 1 and less
154   /// than or equal 16. Promotion is done by zero extending the operand to 32
155   /// bits, replacing \p I with 32 bit 'bitreverse' intrinsic, shifting the
156   /// result of 32 bit 'bitreverse' intrinsic to the right with zero fill (the
157   /// shift amount is 32 minus \p I's base element bit width), and truncating
158   /// the result of the shift operation back to \p I's original type.
159   ///
160   /// \returns True.
161   bool promoteUniformBitreverseToI32(IntrinsicInst &I) const;
162 
163 
164   unsigned numBitsUnsigned(Value *Op, unsigned ScalarSize) const;
165   unsigned numBitsSigned(Value *Op, unsigned ScalarSize) const;
166   bool isI24(Value *V, unsigned ScalarSize) const;
167   bool isU24(Value *V, unsigned ScalarSize) const;
168 
169   /// Replace mul instructions with llvm.amdgcn.mul.u24 or llvm.amdgcn.mul.s24.
170   /// SelectionDAG has an issue where an and asserting the bits are known
171   bool replaceMulWithMul24(BinaryOperator &I) const;
172 
173   /// Perform same function as equivalently named function in DAGCombiner. Since
174   /// we expand some divisions here, we need to perform this before obscuring.
175   bool foldBinOpIntoSelect(BinaryOperator &I) const;
176 
177   bool divHasSpecialOptimization(BinaryOperator &I,
178                                  Value *Num, Value *Den) const;
179   int getDivNumBits(BinaryOperator &I,
180                     Value *Num, Value *Den,
181                     unsigned AtLeast, bool Signed) const;
182 
183   /// Expands 24 bit div or rem.
184   Value* expandDivRem24(IRBuilder<> &Builder, BinaryOperator &I,
185                         Value *Num, Value *Den,
186                         bool IsDiv, bool IsSigned) const;
187 
188   Value *expandDivRem24Impl(IRBuilder<> &Builder, BinaryOperator &I,
189                             Value *Num, Value *Den, unsigned NumBits,
190                             bool IsDiv, bool IsSigned) const;
191 
192   /// Expands 32 bit div or rem.
193   Value* expandDivRem32(IRBuilder<> &Builder, BinaryOperator &I,
194                         Value *Num, Value *Den) const;
195 
196   Value *shrinkDivRem64(IRBuilder<> &Builder, BinaryOperator &I,
197                         Value *Num, Value *Den) const;
198   void expandDivRem64(BinaryOperator &I) const;
199 
200   /// Widen a scalar load.
201   ///
202   /// \details \p Widen scalar load for uniform, small type loads from constant
203   //  memory / to a full 32-bits and then truncate the input to allow a scalar
204   //  load instead of a vector load.
205   //
206   /// \returns True.
207 
208   bool canWidenScalarExtLoad(LoadInst &I) const;
209 
210 public:
211   static char ID;
212 
213   AMDGPUCodeGenPrepare() : FunctionPass(ID) {}
214 
215   bool visitFDiv(BinaryOperator &I);
216 
217   bool visitInstruction(Instruction &I) { return false; }
218   bool visitBinaryOperator(BinaryOperator &I);
219   bool visitLoadInst(LoadInst &I);
220   bool visitICmpInst(ICmpInst &I);
221   bool visitSelectInst(SelectInst &I);
222 
223   bool visitIntrinsicInst(IntrinsicInst &I);
224   bool visitBitreverseIntrinsicInst(IntrinsicInst &I);
225 
226   bool doInitialization(Module &M) override;
227   bool runOnFunction(Function &F) override;
228 
229   StringRef getPassName() const override { return "AMDGPU IR optimizations"; }
230 
231   void getAnalysisUsage(AnalysisUsage &AU) const override {
232     AU.addRequired<AssumptionCacheTracker>();
233     AU.addRequired<LegacyDivergenceAnalysis>();
234 
235     // FIXME: Division expansion needs to preserve the dominator tree.
236     if (!ExpandDiv64InIR)
237       AU.setPreservesAll();
238  }
239 };
240 
241 } // end anonymous namespace
242 
243 unsigned AMDGPUCodeGenPrepare::getBaseElementBitWidth(const Type *T) const {
244   assert(needsPromotionToI32(T) && "T does not need promotion to i32");
245 
246   if (T->isIntegerTy())
247     return T->getIntegerBitWidth();
248   return cast<VectorType>(T)->getElementType()->getIntegerBitWidth();
249 }
250 
251 Type *AMDGPUCodeGenPrepare::getI32Ty(IRBuilder<> &B, const Type *T) const {
252   assert(needsPromotionToI32(T) && "T does not need promotion to i32");
253 
254   if (T->isIntegerTy())
255     return B.getInt32Ty();
256   return VectorType::get(B.getInt32Ty(), cast<VectorType>(T)->getNumElements());
257 }
258 
259 bool AMDGPUCodeGenPrepare::isSigned(const BinaryOperator &I) const {
260   return I.getOpcode() == Instruction::AShr ||
261       I.getOpcode() == Instruction::SDiv || I.getOpcode() == Instruction::SRem;
262 }
263 
264 bool AMDGPUCodeGenPrepare::isSigned(const SelectInst &I) const {
265   return isa<ICmpInst>(I.getOperand(0)) ?
266       cast<ICmpInst>(I.getOperand(0))->isSigned() : false;
267 }
268 
269 bool AMDGPUCodeGenPrepare::needsPromotionToI32(const Type *T) const {
270   const IntegerType *IntTy = dyn_cast<IntegerType>(T);
271   if (IntTy && IntTy->getBitWidth() > 1 && IntTy->getBitWidth() <= 16)
272     return true;
273 
274   if (const VectorType *VT = dyn_cast<VectorType>(T)) {
275     // TODO: The set of packed operations is more limited, so may want to
276     // promote some anyway.
277     if (ST->hasVOP3PInsts())
278       return false;
279 
280     return needsPromotionToI32(VT->getElementType());
281   }
282 
283   return false;
284 }
285 
286 // Return true if the op promoted to i32 should have nsw set.
287 static bool promotedOpIsNSW(const Instruction &I) {
288   switch (I.getOpcode()) {
289   case Instruction::Shl:
290   case Instruction::Add:
291   case Instruction::Sub:
292     return true;
293   case Instruction::Mul:
294     return I.hasNoUnsignedWrap();
295   default:
296     return false;
297   }
298 }
299 
300 // Return true if the op promoted to i32 should have nuw set.
301 static bool promotedOpIsNUW(const Instruction &I) {
302   switch (I.getOpcode()) {
303   case Instruction::Shl:
304   case Instruction::Add:
305   case Instruction::Mul:
306     return true;
307   case Instruction::Sub:
308     return I.hasNoUnsignedWrap();
309   default:
310     return false;
311   }
312 }
313 
314 bool AMDGPUCodeGenPrepare::canWidenScalarExtLoad(LoadInst &I) const {
315   Type *Ty = I.getType();
316   const DataLayout &DL = Mod->getDataLayout();
317   int TySize = DL.getTypeSizeInBits(Ty);
318   unsigned Align = I.getAlignment() ?
319                    I.getAlignment() : DL.getABITypeAlignment(Ty);
320 
321   return I.isSimple() && TySize < 32 && Align >= 4 && DA->isUniform(&I);
322 }
323 
324 bool AMDGPUCodeGenPrepare::promoteUniformOpToI32(BinaryOperator &I) const {
325   assert(needsPromotionToI32(I.getType()) &&
326          "I does not need promotion to i32");
327 
328   if (I.getOpcode() == Instruction::SDiv ||
329       I.getOpcode() == Instruction::UDiv ||
330       I.getOpcode() == Instruction::SRem ||
331       I.getOpcode() == Instruction::URem)
332     return false;
333 
334   IRBuilder<> Builder(&I);
335   Builder.SetCurrentDebugLocation(I.getDebugLoc());
336 
337   Type *I32Ty = getI32Ty(Builder, I.getType());
338   Value *ExtOp0 = nullptr;
339   Value *ExtOp1 = nullptr;
340   Value *ExtRes = nullptr;
341   Value *TruncRes = nullptr;
342 
343   if (isSigned(I)) {
344     ExtOp0 = Builder.CreateSExt(I.getOperand(0), I32Ty);
345     ExtOp1 = Builder.CreateSExt(I.getOperand(1), I32Ty);
346   } else {
347     ExtOp0 = Builder.CreateZExt(I.getOperand(0), I32Ty);
348     ExtOp1 = Builder.CreateZExt(I.getOperand(1), I32Ty);
349   }
350 
351   ExtRes = Builder.CreateBinOp(I.getOpcode(), ExtOp0, ExtOp1);
352   if (Instruction *Inst = dyn_cast<Instruction>(ExtRes)) {
353     if (promotedOpIsNSW(cast<Instruction>(I)))
354       Inst->setHasNoSignedWrap();
355 
356     if (promotedOpIsNUW(cast<Instruction>(I)))
357       Inst->setHasNoUnsignedWrap();
358 
359     if (const auto *ExactOp = dyn_cast<PossiblyExactOperator>(&I))
360       Inst->setIsExact(ExactOp->isExact());
361   }
362 
363   TruncRes = Builder.CreateTrunc(ExtRes, I.getType());
364 
365   I.replaceAllUsesWith(TruncRes);
366   I.eraseFromParent();
367 
368   return true;
369 }
370 
371 bool AMDGPUCodeGenPrepare::promoteUniformOpToI32(ICmpInst &I) const {
372   assert(needsPromotionToI32(I.getOperand(0)->getType()) &&
373          "I does not need promotion to i32");
374 
375   IRBuilder<> Builder(&I);
376   Builder.SetCurrentDebugLocation(I.getDebugLoc());
377 
378   Type *I32Ty = getI32Ty(Builder, I.getOperand(0)->getType());
379   Value *ExtOp0 = nullptr;
380   Value *ExtOp1 = nullptr;
381   Value *NewICmp  = nullptr;
382 
383   if (I.isSigned()) {
384     ExtOp0 = Builder.CreateSExt(I.getOperand(0), I32Ty);
385     ExtOp1 = Builder.CreateSExt(I.getOperand(1), I32Ty);
386   } else {
387     ExtOp0 = Builder.CreateZExt(I.getOperand(0), I32Ty);
388     ExtOp1 = Builder.CreateZExt(I.getOperand(1), I32Ty);
389   }
390   NewICmp = Builder.CreateICmp(I.getPredicate(), ExtOp0, ExtOp1);
391 
392   I.replaceAllUsesWith(NewICmp);
393   I.eraseFromParent();
394 
395   return true;
396 }
397 
398 bool AMDGPUCodeGenPrepare::promoteUniformOpToI32(SelectInst &I) const {
399   assert(needsPromotionToI32(I.getType()) &&
400          "I does not need promotion to i32");
401 
402   IRBuilder<> Builder(&I);
403   Builder.SetCurrentDebugLocation(I.getDebugLoc());
404 
405   Type *I32Ty = getI32Ty(Builder, I.getType());
406   Value *ExtOp1 = nullptr;
407   Value *ExtOp2 = nullptr;
408   Value *ExtRes = nullptr;
409   Value *TruncRes = nullptr;
410 
411   if (isSigned(I)) {
412     ExtOp1 = Builder.CreateSExt(I.getOperand(1), I32Ty);
413     ExtOp2 = Builder.CreateSExt(I.getOperand(2), I32Ty);
414   } else {
415     ExtOp1 = Builder.CreateZExt(I.getOperand(1), I32Ty);
416     ExtOp2 = Builder.CreateZExt(I.getOperand(2), I32Ty);
417   }
418   ExtRes = Builder.CreateSelect(I.getOperand(0), ExtOp1, ExtOp2);
419   TruncRes = Builder.CreateTrunc(ExtRes, I.getType());
420 
421   I.replaceAllUsesWith(TruncRes);
422   I.eraseFromParent();
423 
424   return true;
425 }
426 
427 bool AMDGPUCodeGenPrepare::promoteUniformBitreverseToI32(
428     IntrinsicInst &I) const {
429   assert(I.getIntrinsicID() == Intrinsic::bitreverse &&
430          "I must be bitreverse intrinsic");
431   assert(needsPromotionToI32(I.getType()) &&
432          "I does not need promotion to i32");
433 
434   IRBuilder<> Builder(&I);
435   Builder.SetCurrentDebugLocation(I.getDebugLoc());
436 
437   Type *I32Ty = getI32Ty(Builder, I.getType());
438   Function *I32 =
439       Intrinsic::getDeclaration(Mod, Intrinsic::bitreverse, { I32Ty });
440   Value *ExtOp = Builder.CreateZExt(I.getOperand(0), I32Ty);
441   Value *ExtRes = Builder.CreateCall(I32, { ExtOp });
442   Value *LShrOp =
443       Builder.CreateLShr(ExtRes, 32 - getBaseElementBitWidth(I.getType()));
444   Value *TruncRes =
445       Builder.CreateTrunc(LShrOp, I.getType());
446 
447   I.replaceAllUsesWith(TruncRes);
448   I.eraseFromParent();
449 
450   return true;
451 }
452 
453 unsigned AMDGPUCodeGenPrepare::numBitsUnsigned(Value *Op,
454                                                unsigned ScalarSize) const {
455   KnownBits Known = computeKnownBits(Op, *DL, 0, AC);
456   return ScalarSize - Known.countMinLeadingZeros();
457 }
458 
459 unsigned AMDGPUCodeGenPrepare::numBitsSigned(Value *Op,
460                                              unsigned ScalarSize) const {
461   // In order for this to be a signed 24-bit value, bit 23, must
462   // be a sign bit.
463   return ScalarSize - ComputeNumSignBits(Op, *DL, 0, AC);
464 }
465 
466 bool AMDGPUCodeGenPrepare::isI24(Value *V, unsigned ScalarSize) const {
467   return ScalarSize >= 24 && // Types less than 24-bit should be treated
468                                      // as unsigned 24-bit values.
469     numBitsSigned(V, ScalarSize) < 24;
470 }
471 
472 bool AMDGPUCodeGenPrepare::isU24(Value *V, unsigned ScalarSize) const {
473   return numBitsUnsigned(V, ScalarSize) <= 24;
474 }
475 
476 static void extractValues(IRBuilder<> &Builder,
477                           SmallVectorImpl<Value *> &Values, Value *V) {
478   VectorType *VT = dyn_cast<VectorType>(V->getType());
479   if (!VT) {
480     Values.push_back(V);
481     return;
482   }
483 
484   for (int I = 0, E = VT->getNumElements(); I != E; ++I)
485     Values.push_back(Builder.CreateExtractElement(V, I));
486 }
487 
488 static Value *insertValues(IRBuilder<> &Builder,
489                            Type *Ty,
490                            SmallVectorImpl<Value *> &Values) {
491   if (Values.size() == 1)
492     return Values[0];
493 
494   Value *NewVal = UndefValue::get(Ty);
495   for (int I = 0, E = Values.size(); I != E; ++I)
496     NewVal = Builder.CreateInsertElement(NewVal, Values[I], I);
497 
498   return NewVal;
499 }
500 
501 bool AMDGPUCodeGenPrepare::replaceMulWithMul24(BinaryOperator &I) const {
502   if (I.getOpcode() != Instruction::Mul)
503     return false;
504 
505   Type *Ty = I.getType();
506   unsigned Size = Ty->getScalarSizeInBits();
507   if (Size <= 16 && ST->has16BitInsts())
508     return false;
509 
510   // Prefer scalar if this could be s_mul_i32
511   if (DA->isUniform(&I))
512     return false;
513 
514   Value *LHS = I.getOperand(0);
515   Value *RHS = I.getOperand(1);
516   IRBuilder<> Builder(&I);
517   Builder.SetCurrentDebugLocation(I.getDebugLoc());
518 
519   Intrinsic::ID IntrID = Intrinsic::not_intrinsic;
520 
521   // TODO: Should this try to match mulhi24?
522   if (ST->hasMulU24() && isU24(LHS, Size) && isU24(RHS, Size)) {
523     IntrID = Intrinsic::amdgcn_mul_u24;
524   } else if (ST->hasMulI24() && isI24(LHS, Size) && isI24(RHS, Size)) {
525     IntrID = Intrinsic::amdgcn_mul_i24;
526   } else
527     return false;
528 
529   SmallVector<Value *, 4> LHSVals;
530   SmallVector<Value *, 4> RHSVals;
531   SmallVector<Value *, 4> ResultVals;
532   extractValues(Builder, LHSVals, LHS);
533   extractValues(Builder, RHSVals, RHS);
534 
535 
536   IntegerType *I32Ty = Builder.getInt32Ty();
537   FunctionCallee Intrin = Intrinsic::getDeclaration(Mod, IntrID);
538   for (int I = 0, E = LHSVals.size(); I != E; ++I) {
539     Value *LHS, *RHS;
540     if (IntrID == Intrinsic::amdgcn_mul_u24) {
541       LHS = Builder.CreateZExtOrTrunc(LHSVals[I], I32Ty);
542       RHS = Builder.CreateZExtOrTrunc(RHSVals[I], I32Ty);
543     } else {
544       LHS = Builder.CreateSExtOrTrunc(LHSVals[I], I32Ty);
545       RHS = Builder.CreateSExtOrTrunc(RHSVals[I], I32Ty);
546     }
547 
548     Value *Result = Builder.CreateCall(Intrin, {LHS, RHS});
549 
550     if (IntrID == Intrinsic::amdgcn_mul_u24) {
551       ResultVals.push_back(Builder.CreateZExtOrTrunc(Result,
552                                                      LHSVals[I]->getType()));
553     } else {
554       ResultVals.push_back(Builder.CreateSExtOrTrunc(Result,
555                                                      LHSVals[I]->getType()));
556     }
557   }
558 
559   Value *NewVal = insertValues(Builder, Ty, ResultVals);
560   NewVal->takeName(&I);
561   I.replaceAllUsesWith(NewVal);
562   I.eraseFromParent();
563 
564   return true;
565 }
566 
567 // Find a select instruction, which may have been casted. This is mostly to deal
568 // with cases where i16 selects were promoted here to i32.
569 static SelectInst *findSelectThroughCast(Value *V, CastInst *&Cast) {
570   Cast = nullptr;
571   if (SelectInst *Sel = dyn_cast<SelectInst>(V))
572     return Sel;
573 
574   if ((Cast = dyn_cast<CastInst>(V))) {
575     if (SelectInst *Sel = dyn_cast<SelectInst>(Cast->getOperand(0)))
576       return Sel;
577   }
578 
579   return nullptr;
580 }
581 
582 bool AMDGPUCodeGenPrepare::foldBinOpIntoSelect(BinaryOperator &BO) const {
583   // Don't do this unless the old select is going away. We want to eliminate the
584   // binary operator, not replace a binop with a select.
585   int SelOpNo = 0;
586 
587   CastInst *CastOp;
588 
589   // TODO: Should probably try to handle some cases with multiple
590   // users. Duplicating the select may be profitable for division.
591   SelectInst *Sel = findSelectThroughCast(BO.getOperand(0), CastOp);
592   if (!Sel || !Sel->hasOneUse()) {
593     SelOpNo = 1;
594     Sel = findSelectThroughCast(BO.getOperand(1), CastOp);
595   }
596 
597   if (!Sel || !Sel->hasOneUse())
598     return false;
599 
600   Constant *CT = dyn_cast<Constant>(Sel->getTrueValue());
601   Constant *CF = dyn_cast<Constant>(Sel->getFalseValue());
602   Constant *CBO = dyn_cast<Constant>(BO.getOperand(SelOpNo ^ 1));
603   if (!CBO || !CT || !CF)
604     return false;
605 
606   if (CastOp) {
607     if (!CastOp->hasOneUse())
608       return false;
609     CT = ConstantFoldCastOperand(CastOp->getOpcode(), CT, BO.getType(), *DL);
610     CF = ConstantFoldCastOperand(CastOp->getOpcode(), CF, BO.getType(), *DL);
611   }
612 
613   // TODO: Handle special 0/-1 cases DAG combine does, although we only really
614   // need to handle divisions here.
615   Constant *FoldedT = SelOpNo ?
616     ConstantFoldBinaryOpOperands(BO.getOpcode(), CBO, CT, *DL) :
617     ConstantFoldBinaryOpOperands(BO.getOpcode(), CT, CBO, *DL);
618   if (isa<ConstantExpr>(FoldedT))
619     return false;
620 
621   Constant *FoldedF = SelOpNo ?
622     ConstantFoldBinaryOpOperands(BO.getOpcode(), CBO, CF, *DL) :
623     ConstantFoldBinaryOpOperands(BO.getOpcode(), CF, CBO, *DL);
624   if (isa<ConstantExpr>(FoldedF))
625     return false;
626 
627   IRBuilder<> Builder(&BO);
628   Builder.SetCurrentDebugLocation(BO.getDebugLoc());
629   if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(&BO))
630     Builder.setFastMathFlags(FPOp->getFastMathFlags());
631 
632   Value *NewSelect = Builder.CreateSelect(Sel->getCondition(),
633                                           FoldedT, FoldedF);
634   NewSelect->takeName(&BO);
635   BO.replaceAllUsesWith(NewSelect);
636   BO.eraseFromParent();
637   if (CastOp)
638     CastOp->eraseFromParent();
639   Sel->eraseFromParent();
640   return true;
641 }
642 
643 // Optimize fdiv with rcp:
644 //
645 // 1/x -> rcp(x) when rcp is sufficiently accurate or inaccurate rcp is
646 //               allowed with unsafe-fp-math or afn.
647 //
648 // a/b -> a*rcp(b) when inaccurate rcp is allowed with unsafe-fp-math or afn.
649 static Value *optimizeWithRcp(Value *Num, Value *Den, bool AllowInaccurateRcp,
650                               bool RcpIsAccurate, IRBuilder<> &Builder,
651                               Module *Mod) {
652 
653   if (!AllowInaccurateRcp && !RcpIsAccurate)
654     return nullptr;
655 
656   Type *Ty = Den->getType();
657   if (const ConstantFP *CLHS = dyn_cast<ConstantFP>(Num)) {
658     if (AllowInaccurateRcp || RcpIsAccurate) {
659       if (CLHS->isExactlyValue(1.0)) {
660         Function *Decl = Intrinsic::getDeclaration(
661           Mod, Intrinsic::amdgcn_rcp, Ty);
662 
663         // v_rcp_f32 and v_rsq_f32 do not support denormals, and according to
664         // the CI documentation has a worst case error of 1 ulp.
665         // OpenCL requires <= 2.5 ulp for 1.0 / x, so it should always be OK to
666         // use it as long as we aren't trying to use denormals.
667         //
668         // v_rcp_f16 and v_rsq_f16 DO support denormals.
669 
670         // NOTE: v_sqrt and v_rcp will be combined to v_rsq later. So we don't
671         //       insert rsq intrinsic here.
672 
673         // 1.0 / x -> rcp(x)
674         return Builder.CreateCall(Decl, { Den });
675       }
676 
677        // Same as for 1.0, but expand the sign out of the constant.
678       if (CLHS->isExactlyValue(-1.0)) {
679         Function *Decl = Intrinsic::getDeclaration(
680           Mod, Intrinsic::amdgcn_rcp, Ty);
681 
682          // -1.0 / x -> rcp (fneg x)
683          Value *FNeg = Builder.CreateFNeg(Den);
684          return Builder.CreateCall(Decl, { FNeg });
685        }
686     }
687   }
688 
689   if (AllowInaccurateRcp) {
690     Function *Decl = Intrinsic::getDeclaration(
691       Mod, Intrinsic::amdgcn_rcp, Ty);
692 
693     // Turn into multiply by the reciprocal.
694     // x / y -> x * (1.0 / y)
695     Value *Recip = Builder.CreateCall(Decl, { Den });
696     return Builder.CreateFMul(Num, Recip);
697   }
698   return nullptr;
699 }
700 
701 // optimize with fdiv.fast:
702 //
703 // a/b -> fdiv.fast(a, b) when !fpmath >= 2.5ulp with denormals flushed.
704 //
705 // 1/x -> fdiv.fast(1,x)  when !fpmath >= 2.5ulp.
706 //
707 // NOTE: optimizeWithRcp should be tried first because rcp is the preference.
708 static Value *optimizeWithFDivFast(Value *Num, Value *Den, float ReqdAccuracy,
709                                    bool HasDenormals, IRBuilder<> &Builder,
710                                    Module *Mod) {
711   // fdiv.fast can achieve 2.5 ULP accuracy.
712   if (ReqdAccuracy < 2.5f)
713     return nullptr;
714 
715   // Only have fdiv.fast for f32.
716   Type *Ty = Den->getType();
717   if (!Ty->isFloatTy())
718     return nullptr;
719 
720   bool NumIsOne = false;
721   if (const ConstantFP *CNum = dyn_cast<ConstantFP>(Num)) {
722     if (CNum->isExactlyValue(+1.0) || CNum->isExactlyValue(-1.0))
723       NumIsOne = true;
724   }
725 
726   // fdiv does not support denormals. But 1.0/x is always fine to use it.
727   if (HasDenormals && !NumIsOne)
728     return nullptr;
729 
730   Function *Decl = Intrinsic::getDeclaration(Mod, Intrinsic::amdgcn_fdiv_fast);
731   return Builder.CreateCall(Decl, { Num, Den });
732 }
733 
734 // Optimizations is performed based on fpmath, fast math flags as well as
735 // denormals to optimize fdiv with either rcp or fdiv.fast.
736 //
737 // With rcp:
738 //   1/x -> rcp(x) when rcp is sufficiently accurate or inaccurate rcp is
739 //                 allowed with unsafe-fp-math or afn.
740 //
741 //   a/b -> a*rcp(b) when inaccurate rcp is allowed with unsafe-fp-math or afn.
742 //
743 // With fdiv.fast:
744 //   a/b -> fdiv.fast(a, b) when !fpmath >= 2.5ulp with denormals flushed.
745 //
746 //   1/x -> fdiv.fast(1,x)  when !fpmath >= 2.5ulp.
747 //
748 // NOTE: rcp is the preference in cases that both are legal.
749 bool AMDGPUCodeGenPrepare::visitFDiv(BinaryOperator &FDiv) {
750 
751   Type *Ty = FDiv.getType()->getScalarType();
752 
753   // No intrinsic for fdiv16 if target does not support f16.
754   if (Ty->isHalfTy() && !ST->has16BitInsts())
755     return false;
756 
757   const FPMathOperator *FPOp = cast<const FPMathOperator>(&FDiv);
758   const float ReqdAccuracy =  FPOp->getFPAccuracy();
759 
760   // Inaccurate rcp is allowed with unsafe-fp-math or afn.
761   FastMathFlags FMF = FPOp->getFastMathFlags();
762   const bool AllowInaccurateRcp = HasUnsafeFPMath || FMF.approxFunc();
763 
764   // rcp_f16 is accurate for !fpmath >= 1.0ulp.
765   // rcp_f32 is accurate for !fpmath >= 1.0ulp and denormals are flushed.
766   // rcp_f64 is never accurate.
767   const bool RcpIsAccurate = (Ty->isHalfTy() && ReqdAccuracy >= 1.0f) ||
768             (Ty->isFloatTy() && !HasFP32Denormals && ReqdAccuracy >= 1.0f);
769 
770   IRBuilder<> Builder(FDiv.getParent(), std::next(FDiv.getIterator()));
771   Builder.setFastMathFlags(FMF);
772   Builder.SetCurrentDebugLocation(FDiv.getDebugLoc());
773 
774   Value *Num = FDiv.getOperand(0);
775   Value *Den = FDiv.getOperand(1);
776 
777   Value *NewFDiv = nullptr;
778   if (VectorType *VT = dyn_cast<VectorType>(FDiv.getType())) {
779     NewFDiv = UndefValue::get(VT);
780 
781     // FIXME: Doesn't do the right thing for cases where the vector is partially
782     // constant. This works when the scalarizer pass is run first.
783     for (unsigned I = 0, E = VT->getNumElements(); I != E; ++I) {
784       Value *NumEltI = Builder.CreateExtractElement(Num, I);
785       Value *DenEltI = Builder.CreateExtractElement(Den, I);
786       // Try rcp first.
787       Value *NewElt = optimizeWithRcp(NumEltI, DenEltI, AllowInaccurateRcp,
788                                       RcpIsAccurate, Builder, Mod);
789       if (!NewElt) // Try fdiv.fast.
790         NewElt = optimizeWithFDivFast(NumEltI, DenEltI, ReqdAccuracy,
791                                       HasFP32Denormals, Builder, Mod);
792       if (!NewElt) // Keep the original.
793         NewElt = Builder.CreateFDiv(NumEltI, DenEltI);
794 
795       NewFDiv = Builder.CreateInsertElement(NewFDiv, NewElt, I);
796     }
797   } else { // Scalar FDiv.
798     // Try rcp first.
799     NewFDiv = optimizeWithRcp(Num, Den, AllowInaccurateRcp, RcpIsAccurate,
800                               Builder, Mod);
801     if (!NewFDiv) { // Try fdiv.fast.
802       NewFDiv = optimizeWithFDivFast(Num, Den, ReqdAccuracy, HasFP32Denormals,
803                                      Builder, Mod);
804     }
805   }
806 
807   if (NewFDiv) {
808     FDiv.replaceAllUsesWith(NewFDiv);
809     NewFDiv->takeName(&FDiv);
810     FDiv.eraseFromParent();
811   }
812 
813   return !!NewFDiv;
814 }
815 
816 static bool hasUnsafeFPMath(const Function &F) {
817   Attribute Attr = F.getFnAttribute("unsafe-fp-math");
818   return Attr.getValueAsString() == "true";
819 }
820 
821 static std::pair<Value*, Value*> getMul64(IRBuilder<> &Builder,
822                                           Value *LHS, Value *RHS) {
823   Type *I32Ty = Builder.getInt32Ty();
824   Type *I64Ty = Builder.getInt64Ty();
825 
826   Value *LHS_EXT64 = Builder.CreateZExt(LHS, I64Ty);
827   Value *RHS_EXT64 = Builder.CreateZExt(RHS, I64Ty);
828   Value *MUL64 = Builder.CreateMul(LHS_EXT64, RHS_EXT64);
829   Value *Lo = Builder.CreateTrunc(MUL64, I32Ty);
830   Value *Hi = Builder.CreateLShr(MUL64, Builder.getInt64(32));
831   Hi = Builder.CreateTrunc(Hi, I32Ty);
832   return std::make_pair(Lo, Hi);
833 }
834 
835 static Value* getMulHu(IRBuilder<> &Builder, Value *LHS, Value *RHS) {
836   return getMul64(Builder, LHS, RHS).second;
837 }
838 
839 /// Figure out how many bits are really needed for this ddivision. \p AtLeast is
840 /// an optimization hint to bypass the second ComputeNumSignBits call if we the
841 /// first one is insufficient. Returns -1 on failure.
842 int AMDGPUCodeGenPrepare::getDivNumBits(BinaryOperator &I,
843                                         Value *Num, Value *Den,
844                                         unsigned AtLeast, bool IsSigned) const {
845   const DataLayout &DL = Mod->getDataLayout();
846   unsigned LHSSignBits = ComputeNumSignBits(Num, DL, 0, AC, &I);
847   if (LHSSignBits < AtLeast)
848     return -1;
849 
850   unsigned RHSSignBits = ComputeNumSignBits(Den, DL, 0, AC, &I);
851   if (RHSSignBits < AtLeast)
852     return -1;
853 
854   unsigned SignBits = std::min(LHSSignBits, RHSSignBits);
855   unsigned DivBits = Num->getType()->getScalarSizeInBits() - SignBits;
856   if (IsSigned)
857     ++DivBits;
858   return DivBits;
859 }
860 
861 // The fractional part of a float is enough to accurately represent up to
862 // a 24-bit signed integer.
863 Value *AMDGPUCodeGenPrepare::expandDivRem24(IRBuilder<> &Builder,
864                                             BinaryOperator &I,
865                                             Value *Num, Value *Den,
866                                             bool IsDiv, bool IsSigned) const {
867   int DivBits = getDivNumBits(I, Num, Den, 9, IsSigned);
868   if (DivBits == -1)
869     return nullptr;
870   return expandDivRem24Impl(Builder, I, Num, Den, DivBits, IsDiv, IsSigned);
871 }
872 
873 Value *AMDGPUCodeGenPrepare::expandDivRem24Impl(IRBuilder<> &Builder,
874                                                 BinaryOperator &I,
875                                                 Value *Num, Value *Den,
876                                                 unsigned DivBits,
877                                                 bool IsDiv, bool IsSigned) const {
878   Type *I32Ty = Builder.getInt32Ty();
879   Num = Builder.CreateTrunc(Num, I32Ty);
880   Den = Builder.CreateTrunc(Den, I32Ty);
881 
882   Type *F32Ty = Builder.getFloatTy();
883   ConstantInt *One = Builder.getInt32(1);
884   Value *JQ = One;
885 
886   if (IsSigned) {
887     // char|short jq = ia ^ ib;
888     JQ = Builder.CreateXor(Num, Den);
889 
890     // jq = jq >> (bitsize - 2)
891     JQ = Builder.CreateAShr(JQ, Builder.getInt32(30));
892 
893     // jq = jq | 0x1
894     JQ = Builder.CreateOr(JQ, One);
895   }
896 
897   // int ia = (int)LHS;
898   Value *IA = Num;
899 
900   // int ib, (int)RHS;
901   Value *IB = Den;
902 
903   // float fa = (float)ia;
904   Value *FA = IsSigned ? Builder.CreateSIToFP(IA, F32Ty)
905                        : Builder.CreateUIToFP(IA, F32Ty);
906 
907   // float fb = (float)ib;
908   Value *FB = IsSigned ? Builder.CreateSIToFP(IB,F32Ty)
909                        : Builder.CreateUIToFP(IB,F32Ty);
910 
911   Function *RcpDecl = Intrinsic::getDeclaration(Mod, Intrinsic::amdgcn_rcp,
912                                                 Builder.getFloatTy());
913   Value *RCP = Builder.CreateCall(RcpDecl, { FB });
914   Value *FQM = Builder.CreateFMul(FA, RCP);
915 
916   // fq = trunc(fqm);
917   CallInst *FQ = Builder.CreateUnaryIntrinsic(Intrinsic::trunc, FQM);
918   FQ->copyFastMathFlags(Builder.getFastMathFlags());
919 
920   // float fqneg = -fq;
921   Value *FQNeg = Builder.CreateFNeg(FQ);
922 
923   // float fr = mad(fqneg, fb, fa);
924   Value *FR = Builder.CreateIntrinsic(Intrinsic::amdgcn_fmad_ftz,
925                                       {FQNeg->getType()}, {FQNeg, FB, FA}, FQ);
926 
927   // int iq = (int)fq;
928   Value *IQ = IsSigned ? Builder.CreateFPToSI(FQ, I32Ty)
929                        : Builder.CreateFPToUI(FQ, I32Ty);
930 
931   // fr = fabs(fr);
932   FR = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, FR, FQ);
933 
934   // fb = fabs(fb);
935   FB = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, FB, FQ);
936 
937   // int cv = fr >= fb;
938   Value *CV = Builder.CreateFCmpOGE(FR, FB);
939 
940   // jq = (cv ? jq : 0);
941   JQ = Builder.CreateSelect(CV, JQ, Builder.getInt32(0));
942 
943   // dst = iq + jq;
944   Value *Div = Builder.CreateAdd(IQ, JQ);
945 
946   Value *Res = Div;
947   if (!IsDiv) {
948     // Rem needs compensation, it's easier to recompute it
949     Value *Rem = Builder.CreateMul(Div, Den);
950     Res = Builder.CreateSub(Num, Rem);
951   }
952 
953   if (DivBits != 0 && DivBits < 32) {
954     // Extend in register from the number of bits this divide really is.
955     if (IsSigned) {
956       int InRegBits = 32 - DivBits;
957 
958       Res = Builder.CreateShl(Res, InRegBits);
959       Res = Builder.CreateAShr(Res, InRegBits);
960     } else {
961       ConstantInt *TruncMask
962         = Builder.getInt32((UINT64_C(1) << DivBits) - 1);
963       Res = Builder.CreateAnd(Res, TruncMask);
964     }
965   }
966 
967   return Res;
968 }
969 
970 // Try to recognize special cases the DAG will emit special, better expansions
971 // than the general expansion we do here.
972 
973 // TODO: It would be better to just directly handle those optimizations here.
974 bool AMDGPUCodeGenPrepare::divHasSpecialOptimization(
975   BinaryOperator &I, Value *Num, Value *Den) const {
976   if (Constant *C = dyn_cast<Constant>(Den)) {
977     // Arbitrary constants get a better expansion as long as a wider mulhi is
978     // legal.
979     if (C->getType()->getScalarSizeInBits() <= 32)
980       return true;
981 
982     // TODO: Sdiv check for not exact for some reason.
983 
984     // If there's no wider mulhi, there's only a better expansion for powers of
985     // two.
986     // TODO: Should really know for each vector element.
987     if (isKnownToBeAPowerOfTwo(C, *DL, true, 0, AC, &I, DT))
988       return true;
989 
990     return false;
991   }
992 
993   if (BinaryOperator *BinOpDen = dyn_cast<BinaryOperator>(Den)) {
994     // fold (udiv x, (shl c, y)) -> x >>u (log2(c)+y) iff c is power of 2
995     if (BinOpDen->getOpcode() == Instruction::Shl &&
996         isa<Constant>(BinOpDen->getOperand(0)) &&
997         isKnownToBeAPowerOfTwo(BinOpDen->getOperand(0), *DL, true,
998                                0, AC, &I, DT)) {
999       return true;
1000     }
1001   }
1002 
1003   return false;
1004 }
1005 
1006 Value* AMDGPUCodeGenPrepare::expandDivRem32(IRBuilder<> &Builder,
1007                                             BinaryOperator &I,
1008                                             Value *Num, Value *Den) const {
1009   Instruction::BinaryOps Opc = I.getOpcode();
1010   assert(Opc == Instruction::URem || Opc == Instruction::UDiv ||
1011          Opc == Instruction::SRem || Opc == Instruction::SDiv);
1012 
1013   FastMathFlags FMF;
1014   FMF.setFast();
1015   Builder.setFastMathFlags(FMF);
1016 
1017   if (divHasSpecialOptimization(I, Num, Den))
1018     return nullptr;  // Keep it for later optimization.
1019 
1020   bool IsDiv = Opc == Instruction::UDiv || Opc == Instruction::SDiv;
1021   bool IsSigned = Opc == Instruction::SRem || Opc == Instruction::SDiv;
1022 
1023   Type *Ty = Num->getType();
1024   Type *I32Ty = Builder.getInt32Ty();
1025   Type *F32Ty = Builder.getFloatTy();
1026 
1027   if (Ty->getScalarSizeInBits() < 32) {
1028     if (IsSigned) {
1029       Num = Builder.CreateSExt(Num, I32Ty);
1030       Den = Builder.CreateSExt(Den, I32Ty);
1031     } else {
1032       Num = Builder.CreateZExt(Num, I32Ty);
1033       Den = Builder.CreateZExt(Den, I32Ty);
1034     }
1035   }
1036 
1037   if (Value *Res = expandDivRem24(Builder, I, Num, Den, IsDiv, IsSigned)) {
1038     return IsSigned ? Builder.CreateSExtOrTrunc(Res, Ty) :
1039                       Builder.CreateZExtOrTrunc(Res, Ty);
1040   }
1041 
1042   ConstantInt *Zero = Builder.getInt32(0);
1043   ConstantInt *One = Builder.getInt32(1);
1044 
1045   Value *Sign = nullptr;
1046   if (IsSigned) {
1047     ConstantInt *K31 = Builder.getInt32(31);
1048     Value *LHSign = Builder.CreateAShr(Num, K31);
1049     Value *RHSign = Builder.CreateAShr(Den, K31);
1050     // Remainder sign is the same as LHS
1051     Sign = IsDiv ? Builder.CreateXor(LHSign, RHSign) : LHSign;
1052 
1053     Num = Builder.CreateAdd(Num, LHSign);
1054     Den = Builder.CreateAdd(Den, RHSign);
1055 
1056     Num = Builder.CreateXor(Num, LHSign);
1057     Den = Builder.CreateXor(Den, RHSign);
1058   }
1059 
1060   // RCP =  URECIP(Den) = 2^32 / Den + e
1061   // e is rounding error.
1062   Value *DEN_F32 = Builder.CreateUIToFP(Den, F32Ty);
1063 
1064   Function *RcpDecl = Intrinsic::getDeclaration(Mod, Intrinsic::amdgcn_rcp,
1065                                                 Builder.getFloatTy());
1066   Value *RCP_F32 = Builder.CreateCall(RcpDecl, { DEN_F32 });
1067   Constant *UINT_MAX_PLUS_1 = ConstantFP::get(F32Ty, BitsToFloat(0x4f800000));
1068   Value *RCP_SCALE = Builder.CreateFMul(RCP_F32, UINT_MAX_PLUS_1);
1069   Value *RCP = Builder.CreateFPToUI(RCP_SCALE, I32Ty);
1070 
1071   // RCP_LO, RCP_HI = mul(RCP, Den) */
1072   Value *RCP_LO, *RCP_HI;
1073   std::tie(RCP_LO, RCP_HI) = getMul64(Builder, RCP, Den);
1074 
1075   // NEG_RCP_LO = -RCP_LO
1076   Value *NEG_RCP_LO = Builder.CreateNeg(RCP_LO);
1077 
1078   // ABS_RCP_LO = (RCP_HI == 0 ? NEG_RCP_LO : RCP_LO)
1079   Value *RCP_HI_0_CC = Builder.CreateICmpEQ(RCP_HI, Zero);
1080   Value *ABS_RCP_LO = Builder.CreateSelect(RCP_HI_0_CC, NEG_RCP_LO, RCP_LO);
1081 
1082   // Calculate the rounding error from the URECIP instruction
1083   // E = mulhu(ABS_RCP_LO, RCP)
1084   Value *E = getMulHu(Builder, ABS_RCP_LO, RCP);
1085 
1086   // RCP_A_E = RCP + E
1087   Value *RCP_A_E = Builder.CreateAdd(RCP, E);
1088 
1089   // RCP_S_E = RCP - E
1090   Value *RCP_S_E = Builder.CreateSub(RCP, E);
1091 
1092   // Tmp0 = (RCP_HI == 0 ? RCP_A_E : RCP_SUB_E)
1093   Value *Tmp0 = Builder.CreateSelect(RCP_HI_0_CC, RCP_A_E, RCP_S_E);
1094 
1095   // Quotient = mulhu(Tmp0, Num)
1096   Value *Quotient = getMulHu(Builder, Tmp0, Num);
1097 
1098   // Num_S_Remainder = Quotient * Den
1099   Value *Num_S_Remainder = Builder.CreateMul(Quotient, Den);
1100 
1101   // Remainder = Num - Num_S_Remainder
1102   Value *Remainder = Builder.CreateSub(Num, Num_S_Remainder);
1103 
1104   // Remainder_GE_Den = Remainder >= Den;
1105   Value *Remainder_GE_Den = Builder.CreateICmpUGE(Remainder, Den);
1106 
1107   // Remainder_GE_Zero = Num >= Num_S_Remainder
1108   Value *Remainder_GE_Zero = Builder.CreateICmpUGE(Num, Num_S_Remainder);
1109 
1110   // Tmp1 = Remainder_GE_Den & Remainder_GE_Zero
1111   Value *Tmp1 = Builder.CreateAnd(Remainder_GE_Den, Remainder_GE_Zero);
1112 
1113   Value *Res;
1114   if (IsDiv) {
1115     // Quotient_A_One = Quotient + 1
1116     Value *Quotient_A_One = Builder.CreateAdd(Quotient, One);
1117 
1118     // Quotient_S_One = Quotient - 1
1119     Value *Quotient_S_One = Builder.CreateSub(Quotient, One);
1120 
1121     // Div = (Tmp1 ? Quotient_A_One : Quotient)
1122     Value *Div = Builder.CreateSelect(Tmp1, Quotient_A_One, Quotient);
1123 
1124     // Div = (Remainder_GE_Zero ? Div : Quotient_S_One)
1125     Res = Builder.CreateSelect(Remainder_GE_Zero, Div, Quotient_S_One);
1126   } else {
1127     // Remainder_S_Den = Remainder - Den
1128     Value *Remainder_S_Den = Builder.CreateSub(Remainder, Den);
1129 
1130     // Remainder_A_Den = Remainder + Den
1131     Value *Remainder_A_Den = Builder.CreateAdd(Remainder, Den);
1132 
1133     // Rem = (Tmp1 ?  Remainder_S_Den : Remainder)
1134     Value *Rem = Builder.CreateSelect(Tmp1, Remainder_S_Den, Remainder);
1135 
1136     // Rem = (Remainder_GE_Zero ? Rem : Remainder_A_Den)
1137     Res = Builder.CreateSelect(Remainder_GE_Zero, Rem, Remainder_A_Den);
1138   }
1139 
1140   if (IsSigned) {
1141     Res = Builder.CreateXor(Res, Sign);
1142     Res = Builder.CreateSub(Res, Sign);
1143   }
1144 
1145   Res = Builder.CreateTrunc(Res, Ty);
1146 
1147   return Res;
1148 }
1149 
1150 Value *AMDGPUCodeGenPrepare::shrinkDivRem64(IRBuilder<> &Builder,
1151                                             BinaryOperator &I,
1152                                             Value *Num, Value *Den) const {
1153   if (!ExpandDiv64InIR && divHasSpecialOptimization(I, Num, Den))
1154     return nullptr;  // Keep it for later optimization.
1155 
1156   Instruction::BinaryOps Opc = I.getOpcode();
1157 
1158   bool IsDiv = Opc == Instruction::SDiv || Opc == Instruction::UDiv;
1159   bool IsSigned = Opc == Instruction::SDiv || Opc == Instruction::SRem;
1160 
1161   int NumDivBits = getDivNumBits(I, Num, Den, 32, IsSigned);
1162   if (NumDivBits == -1)
1163     return nullptr;
1164 
1165   Value *Narrowed = nullptr;
1166   if (NumDivBits <= 24) {
1167     Narrowed = expandDivRem24Impl(Builder, I, Num, Den, NumDivBits,
1168                                   IsDiv, IsSigned);
1169   } else if (NumDivBits <= 32) {
1170     Narrowed = expandDivRem32(Builder, I, Num, Den);
1171   }
1172 
1173   if (Narrowed) {
1174     return IsSigned ? Builder.CreateSExt(Narrowed, Num->getType()) :
1175                       Builder.CreateZExt(Narrowed, Num->getType());
1176   }
1177 
1178   return nullptr;
1179 }
1180 
1181 void AMDGPUCodeGenPrepare::expandDivRem64(BinaryOperator &I) const {
1182   Instruction::BinaryOps Opc = I.getOpcode();
1183   // Do the general expansion.
1184   if (Opc == Instruction::UDiv || Opc == Instruction::SDiv) {
1185     expandDivisionUpTo64Bits(&I);
1186     return;
1187   }
1188 
1189   if (Opc == Instruction::URem || Opc == Instruction::SRem) {
1190     expandRemainderUpTo64Bits(&I);
1191     return;
1192   }
1193 
1194   llvm_unreachable("not a division");
1195 }
1196 
1197 bool AMDGPUCodeGenPrepare::visitBinaryOperator(BinaryOperator &I) {
1198   if (foldBinOpIntoSelect(I))
1199     return true;
1200 
1201   if (ST->has16BitInsts() && needsPromotionToI32(I.getType()) &&
1202       DA->isUniform(&I) && promoteUniformOpToI32(I))
1203     return true;
1204 
1205   if (UseMul24Intrin && replaceMulWithMul24(I))
1206     return true;
1207 
1208   bool Changed = false;
1209   Instruction::BinaryOps Opc = I.getOpcode();
1210   Type *Ty = I.getType();
1211   Value *NewDiv = nullptr;
1212   unsigned ScalarSize = Ty->getScalarSizeInBits();
1213 
1214   SmallVector<BinaryOperator *, 8> Div64ToExpand;
1215 
1216   if ((Opc == Instruction::URem || Opc == Instruction::UDiv ||
1217        Opc == Instruction::SRem || Opc == Instruction::SDiv) &&
1218       ScalarSize <= 64 &&
1219       !DisableIDivExpand) {
1220     Value *Num = I.getOperand(0);
1221     Value *Den = I.getOperand(1);
1222     IRBuilder<> Builder(&I);
1223     Builder.SetCurrentDebugLocation(I.getDebugLoc());
1224 
1225     if (VectorType *VT = dyn_cast<VectorType>(Ty)) {
1226       NewDiv = UndefValue::get(VT);
1227 
1228       for (unsigned N = 0, E = VT->getNumElements(); N != E; ++N) {
1229         Value *NumEltN = Builder.CreateExtractElement(Num, N);
1230         Value *DenEltN = Builder.CreateExtractElement(Den, N);
1231 
1232         Value *NewElt;
1233         if (ScalarSize <= 32) {
1234           NewElt = expandDivRem32(Builder, I, NumEltN, DenEltN);
1235           if (!NewElt)
1236             NewElt = Builder.CreateBinOp(Opc, NumEltN, DenEltN);
1237         } else {
1238           // See if this 64-bit division can be shrunk to 32/24-bits before
1239           // producing the general expansion.
1240           NewElt = shrinkDivRem64(Builder, I, NumEltN, DenEltN);
1241           if (!NewElt) {
1242             // The general 64-bit expansion introduces control flow and doesn't
1243             // return the new value. Just insert a scalar copy and defer
1244             // expanding it.
1245             NewElt = Builder.CreateBinOp(Opc, NumEltN, DenEltN);
1246             Div64ToExpand.push_back(cast<BinaryOperator>(NewElt));
1247           }
1248         }
1249 
1250         NewDiv = Builder.CreateInsertElement(NewDiv, NewElt, N);
1251       }
1252     } else {
1253       if (ScalarSize <= 32)
1254         NewDiv = expandDivRem32(Builder, I, Num, Den);
1255       else {
1256         NewDiv = shrinkDivRem64(Builder, I, Num, Den);
1257         if (!NewDiv)
1258           Div64ToExpand.push_back(&I);
1259       }
1260     }
1261 
1262     if (NewDiv) {
1263       I.replaceAllUsesWith(NewDiv);
1264       I.eraseFromParent();
1265       Changed = true;
1266     }
1267   }
1268 
1269   if (ExpandDiv64InIR) {
1270     // TODO: We get much worse code in specially handled constant cases.
1271     for (BinaryOperator *Div : Div64ToExpand) {
1272       expandDivRem64(*Div);
1273       Changed = true;
1274     }
1275   }
1276 
1277   return Changed;
1278 }
1279 
1280 bool AMDGPUCodeGenPrepare::visitLoadInst(LoadInst &I) {
1281   if (!WidenLoads)
1282     return false;
1283 
1284   if ((I.getPointerAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS ||
1285        I.getPointerAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS_32BIT) &&
1286       canWidenScalarExtLoad(I)) {
1287     IRBuilder<> Builder(&I);
1288     Builder.SetCurrentDebugLocation(I.getDebugLoc());
1289 
1290     Type *I32Ty = Builder.getInt32Ty();
1291     Type *PT = PointerType::get(I32Ty, I.getPointerAddressSpace());
1292     Value *BitCast= Builder.CreateBitCast(I.getPointerOperand(), PT);
1293     LoadInst *WidenLoad = Builder.CreateLoad(I32Ty, BitCast);
1294     WidenLoad->copyMetadata(I);
1295 
1296     // If we have range metadata, we need to convert the type, and not make
1297     // assumptions about the high bits.
1298     if (auto *Range = WidenLoad->getMetadata(LLVMContext::MD_range)) {
1299       ConstantInt *Lower =
1300         mdconst::extract<ConstantInt>(Range->getOperand(0));
1301 
1302       if (Lower->getValue().isNullValue()) {
1303         WidenLoad->setMetadata(LLVMContext::MD_range, nullptr);
1304       } else {
1305         Metadata *LowAndHigh[] = {
1306           ConstantAsMetadata::get(ConstantInt::get(I32Ty, Lower->getValue().zext(32))),
1307           // Don't make assumptions about the high bits.
1308           ConstantAsMetadata::get(ConstantInt::get(I32Ty, 0))
1309         };
1310 
1311         WidenLoad->setMetadata(LLVMContext::MD_range,
1312                                MDNode::get(Mod->getContext(), LowAndHigh));
1313       }
1314     }
1315 
1316     int TySize = Mod->getDataLayout().getTypeSizeInBits(I.getType());
1317     Type *IntNTy = Builder.getIntNTy(TySize);
1318     Value *ValTrunc = Builder.CreateTrunc(WidenLoad, IntNTy);
1319     Value *ValOrig = Builder.CreateBitCast(ValTrunc, I.getType());
1320     I.replaceAllUsesWith(ValOrig);
1321     I.eraseFromParent();
1322     return true;
1323   }
1324 
1325   return false;
1326 }
1327 
1328 bool AMDGPUCodeGenPrepare::visitICmpInst(ICmpInst &I) {
1329   bool Changed = false;
1330 
1331   if (ST->has16BitInsts() && needsPromotionToI32(I.getOperand(0)->getType()) &&
1332       DA->isUniform(&I))
1333     Changed |= promoteUniformOpToI32(I);
1334 
1335   return Changed;
1336 }
1337 
1338 bool AMDGPUCodeGenPrepare::visitSelectInst(SelectInst &I) {
1339   bool Changed = false;
1340 
1341   if (ST->has16BitInsts() && needsPromotionToI32(I.getType()) &&
1342       DA->isUniform(&I))
1343     Changed |= promoteUniformOpToI32(I);
1344 
1345   return Changed;
1346 }
1347 
1348 bool AMDGPUCodeGenPrepare::visitIntrinsicInst(IntrinsicInst &I) {
1349   switch (I.getIntrinsicID()) {
1350   case Intrinsic::bitreverse:
1351     return visitBitreverseIntrinsicInst(I);
1352   default:
1353     return false;
1354   }
1355 }
1356 
1357 bool AMDGPUCodeGenPrepare::visitBitreverseIntrinsicInst(IntrinsicInst &I) {
1358   bool Changed = false;
1359 
1360   if (ST->has16BitInsts() && needsPromotionToI32(I.getType()) &&
1361       DA->isUniform(&I))
1362     Changed |= promoteUniformBitreverseToI32(I);
1363 
1364   return Changed;
1365 }
1366 
1367 bool AMDGPUCodeGenPrepare::doInitialization(Module &M) {
1368   Mod = &M;
1369   DL = &Mod->getDataLayout();
1370   return false;
1371 }
1372 
1373 bool AMDGPUCodeGenPrepare::runOnFunction(Function &F) {
1374   if (skipFunction(F))
1375     return false;
1376 
1377   auto *TPC = getAnalysisIfAvailable<TargetPassConfig>();
1378   if (!TPC)
1379     return false;
1380 
1381   const AMDGPUTargetMachine &TM = TPC->getTM<AMDGPUTargetMachine>();
1382   ST = &TM.getSubtarget<GCNSubtarget>(F);
1383   AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
1384   DA = &getAnalysis<LegacyDivergenceAnalysis>();
1385 
1386   auto *DTWP = getAnalysisIfAvailable<DominatorTreeWrapperPass>();
1387   DT = DTWP ? &DTWP->getDomTree() : nullptr;
1388 
1389   HasUnsafeFPMath = hasUnsafeFPMath(F);
1390   HasFP32Denormals = ST->hasFP32Denormals(F);
1391 
1392   bool MadeChange = false;
1393 
1394   Function::iterator NextBB;
1395   for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE; FI = NextBB) {
1396     BasicBlock *BB = &*FI;
1397     NextBB = std::next(FI);
1398 
1399     BasicBlock::iterator Next;
1400     for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; I = Next) {
1401       Next = std::next(I);
1402 
1403       MadeChange |= visit(*I);
1404 
1405       if (Next != E) { // Control flow changed
1406         BasicBlock *NextInstBB = Next->getParent();
1407         if (NextInstBB != BB) {
1408           BB = NextInstBB;
1409           E = BB->end();
1410           FE = F.end();
1411         }
1412       }
1413     }
1414   }
1415 
1416   return MadeChange;
1417 }
1418 
1419 INITIALIZE_PASS_BEGIN(AMDGPUCodeGenPrepare, DEBUG_TYPE,
1420                       "AMDGPU IR optimizations", false, false)
1421 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
1422 INITIALIZE_PASS_DEPENDENCY(LegacyDivergenceAnalysis)
1423 INITIALIZE_PASS_END(AMDGPUCodeGenPrepare, DEBUG_TYPE, "AMDGPU IR optimizations",
1424                     false, false)
1425 
1426 char AMDGPUCodeGenPrepare::ID = 0;
1427 
1428 FunctionPass *llvm::createAMDGPUCodeGenPreparePass() {
1429   return new AMDGPUCodeGenPrepare();
1430 }
1431