1 //===-- AMDGPUCodeGenPrepare.cpp ------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file 10 /// This pass does misc. AMDGPU optimizations on IR before instruction 11 /// selection. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "AMDGPU.h" 16 #include "AMDGPUSubtarget.h" 17 #include "AMDGPUTargetMachine.h" 18 #include "llvm/ADT/StringRef.h" 19 #include "llvm/Analysis/AssumptionCache.h" 20 #include "llvm/Analysis/ConstantFolding.h" 21 #include "llvm/Analysis/LegacyDivergenceAnalysis.h" 22 #include "llvm/Analysis/Loads.h" 23 #include "llvm/Analysis/ValueTracking.h" 24 #include "llvm/CodeGen/Passes.h" 25 #include "llvm/CodeGen/TargetPassConfig.h" 26 #include "llvm/IR/Attributes.h" 27 #include "llvm/IR/BasicBlock.h" 28 #include "llvm/IR/Constants.h" 29 #include "llvm/IR/DerivedTypes.h" 30 #include "llvm/IR/Function.h" 31 #include "llvm/IR/IRBuilder.h" 32 #include "llvm/IR/InstVisitor.h" 33 #include "llvm/IR/InstrTypes.h" 34 #include "llvm/IR/Instruction.h" 35 #include "llvm/IR/Instructions.h" 36 #include "llvm/IR/IntrinsicInst.h" 37 #include "llvm/IR/Intrinsics.h" 38 #include "llvm/IR/LLVMContext.h" 39 #include "llvm/IR/Operator.h" 40 #include "llvm/IR/Type.h" 41 #include "llvm/IR/Value.h" 42 #include "llvm/InitializePasses.h" 43 #include "llvm/Pass.h" 44 #include "llvm/Support/Casting.h" 45 #include <cassert> 46 #include <iterator> 47 48 #define DEBUG_TYPE "amdgpu-codegenprepare" 49 50 using namespace llvm; 51 52 namespace { 53 54 static cl::opt<bool> WidenLoads( 55 "amdgpu-codegenprepare-widen-constant-loads", 56 cl::desc("Widen sub-dword constant address space loads in AMDGPUCodeGenPrepare"), 57 cl::ReallyHidden, 58 cl::init(true)); 59 60 static cl::opt<bool> UseMul24Intrin( 61 "amdgpu-codegenprepare-mul24", 62 cl::desc("Introduce mul24 intrinsics in AMDGPUCodeGenPrepare"), 63 cl::ReallyHidden, 64 cl::init(true)); 65 66 class AMDGPUCodeGenPrepare : public FunctionPass, 67 public InstVisitor<AMDGPUCodeGenPrepare, bool> { 68 const GCNSubtarget *ST = nullptr; 69 AssumptionCache *AC = nullptr; 70 LegacyDivergenceAnalysis *DA = nullptr; 71 Module *Mod = nullptr; 72 const DataLayout *DL = nullptr; 73 bool HasUnsafeFPMath = false; 74 bool HasFP32Denormals = false; 75 76 /// Copies exact/nsw/nuw flags (if any) from binary operation \p I to 77 /// binary operation \p V. 78 /// 79 /// \returns Binary operation \p V. 80 /// \returns \p T's base element bit width. 81 unsigned getBaseElementBitWidth(const Type *T) const; 82 83 /// \returns Equivalent 32 bit integer type for given type \p T. For example, 84 /// if \p T is i7, then i32 is returned; if \p T is <3 x i12>, then <3 x i32> 85 /// is returned. 86 Type *getI32Ty(IRBuilder<> &B, const Type *T) const; 87 88 /// \returns True if binary operation \p I is a signed binary operation, false 89 /// otherwise. 90 bool isSigned(const BinaryOperator &I) const; 91 92 /// \returns True if the condition of 'select' operation \p I comes from a 93 /// signed 'icmp' operation, false otherwise. 94 bool isSigned(const SelectInst &I) const; 95 96 /// \returns True if type \p T needs to be promoted to 32 bit integer type, 97 /// false otherwise. 98 bool needsPromotionToI32(const Type *T) const; 99 100 /// Promotes uniform binary operation \p I to equivalent 32 bit binary 101 /// operation. 102 /// 103 /// \details \p I's base element bit width must be greater than 1 and less 104 /// than or equal 16. Promotion is done by sign or zero extending operands to 105 /// 32 bits, replacing \p I with equivalent 32 bit binary operation, and 106 /// truncating the result of 32 bit binary operation back to \p I's original 107 /// type. Division operation is not promoted. 108 /// 109 /// \returns True if \p I is promoted to equivalent 32 bit binary operation, 110 /// false otherwise. 111 bool promoteUniformOpToI32(BinaryOperator &I) const; 112 113 /// Promotes uniform 'icmp' operation \p I to 32 bit 'icmp' operation. 114 /// 115 /// \details \p I's base element bit width must be greater than 1 and less 116 /// than or equal 16. Promotion is done by sign or zero extending operands to 117 /// 32 bits, and replacing \p I with 32 bit 'icmp' operation. 118 /// 119 /// \returns True. 120 bool promoteUniformOpToI32(ICmpInst &I) const; 121 122 /// Promotes uniform 'select' operation \p I to 32 bit 'select' 123 /// operation. 124 /// 125 /// \details \p I's base element bit width must be greater than 1 and less 126 /// than or equal 16. Promotion is done by sign or zero extending operands to 127 /// 32 bits, replacing \p I with 32 bit 'select' operation, and truncating the 128 /// result of 32 bit 'select' operation back to \p I's original type. 129 /// 130 /// \returns True. 131 bool promoteUniformOpToI32(SelectInst &I) const; 132 133 /// Promotes uniform 'bitreverse' intrinsic \p I to 32 bit 'bitreverse' 134 /// intrinsic. 135 /// 136 /// \details \p I's base element bit width must be greater than 1 and less 137 /// than or equal 16. Promotion is done by zero extending the operand to 32 138 /// bits, replacing \p I with 32 bit 'bitreverse' intrinsic, shifting the 139 /// result of 32 bit 'bitreverse' intrinsic to the right with zero fill (the 140 /// shift amount is 32 minus \p I's base element bit width), and truncating 141 /// the result of the shift operation back to \p I's original type. 142 /// 143 /// \returns True. 144 bool promoteUniformBitreverseToI32(IntrinsicInst &I) const; 145 146 147 unsigned numBitsUnsigned(Value *Op, unsigned ScalarSize) const; 148 unsigned numBitsSigned(Value *Op, unsigned ScalarSize) const; 149 bool isI24(Value *V, unsigned ScalarSize) const; 150 bool isU24(Value *V, unsigned ScalarSize) const; 151 152 /// Replace mul instructions with llvm.amdgcn.mul.u24 or llvm.amdgcn.mul.s24. 153 /// SelectionDAG has an issue where an and asserting the bits are known 154 bool replaceMulWithMul24(BinaryOperator &I) const; 155 156 /// Perform same function as equivalently named function in DAGCombiner. Since 157 /// we expand some divisions here, we need to perform this before obscuring. 158 bool foldBinOpIntoSelect(BinaryOperator &I) const; 159 160 /// Expands 24 bit div or rem. 161 Value* expandDivRem24(IRBuilder<> &Builder, BinaryOperator &I, 162 Value *Num, Value *Den, 163 bool IsDiv, bool IsSigned) const; 164 165 /// Expands 32 bit div or rem. 166 Value* expandDivRem32(IRBuilder<> &Builder, BinaryOperator &I, 167 Value *Num, Value *Den) const; 168 169 /// Widen a scalar load. 170 /// 171 /// \details \p Widen scalar load for uniform, small type loads from constant 172 // memory / to a full 32-bits and then truncate the input to allow a scalar 173 // load instead of a vector load. 174 // 175 /// \returns True. 176 177 bool canWidenScalarExtLoad(LoadInst &I) const; 178 179 public: 180 static char ID; 181 182 AMDGPUCodeGenPrepare() : FunctionPass(ID) {} 183 184 bool visitFDiv(BinaryOperator &I); 185 186 bool visitInstruction(Instruction &I) { return false; } 187 bool visitBinaryOperator(BinaryOperator &I); 188 bool visitLoadInst(LoadInst &I); 189 bool visitICmpInst(ICmpInst &I); 190 bool visitSelectInst(SelectInst &I); 191 192 bool visitIntrinsicInst(IntrinsicInst &I); 193 bool visitBitreverseIntrinsicInst(IntrinsicInst &I); 194 195 bool doInitialization(Module &M) override; 196 bool runOnFunction(Function &F) override; 197 198 StringRef getPassName() const override { return "AMDGPU IR optimizations"; } 199 200 void getAnalysisUsage(AnalysisUsage &AU) const override { 201 AU.addRequired<AssumptionCacheTracker>(); 202 AU.addRequired<LegacyDivergenceAnalysis>(); 203 AU.setPreservesAll(); 204 } 205 }; 206 207 } // end anonymous namespace 208 209 unsigned AMDGPUCodeGenPrepare::getBaseElementBitWidth(const Type *T) const { 210 assert(needsPromotionToI32(T) && "T does not need promotion to i32"); 211 212 if (T->isIntegerTy()) 213 return T->getIntegerBitWidth(); 214 return cast<VectorType>(T)->getElementType()->getIntegerBitWidth(); 215 } 216 217 Type *AMDGPUCodeGenPrepare::getI32Ty(IRBuilder<> &B, const Type *T) const { 218 assert(needsPromotionToI32(T) && "T does not need promotion to i32"); 219 220 if (T->isIntegerTy()) 221 return B.getInt32Ty(); 222 return VectorType::get(B.getInt32Ty(), cast<VectorType>(T)->getNumElements()); 223 } 224 225 bool AMDGPUCodeGenPrepare::isSigned(const BinaryOperator &I) const { 226 return I.getOpcode() == Instruction::AShr || 227 I.getOpcode() == Instruction::SDiv || I.getOpcode() == Instruction::SRem; 228 } 229 230 bool AMDGPUCodeGenPrepare::isSigned(const SelectInst &I) const { 231 return isa<ICmpInst>(I.getOperand(0)) ? 232 cast<ICmpInst>(I.getOperand(0))->isSigned() : false; 233 } 234 235 bool AMDGPUCodeGenPrepare::needsPromotionToI32(const Type *T) const { 236 const IntegerType *IntTy = dyn_cast<IntegerType>(T); 237 if (IntTy && IntTy->getBitWidth() > 1 && IntTy->getBitWidth() <= 16) 238 return true; 239 240 if (const VectorType *VT = dyn_cast<VectorType>(T)) { 241 // TODO: The set of packed operations is more limited, so may want to 242 // promote some anyway. 243 if (ST->hasVOP3PInsts()) 244 return false; 245 246 return needsPromotionToI32(VT->getElementType()); 247 } 248 249 return false; 250 } 251 252 // Return true if the op promoted to i32 should have nsw set. 253 static bool promotedOpIsNSW(const Instruction &I) { 254 switch (I.getOpcode()) { 255 case Instruction::Shl: 256 case Instruction::Add: 257 case Instruction::Sub: 258 return true; 259 case Instruction::Mul: 260 return I.hasNoUnsignedWrap(); 261 default: 262 return false; 263 } 264 } 265 266 // Return true if the op promoted to i32 should have nuw set. 267 static bool promotedOpIsNUW(const Instruction &I) { 268 switch (I.getOpcode()) { 269 case Instruction::Shl: 270 case Instruction::Add: 271 case Instruction::Mul: 272 return true; 273 case Instruction::Sub: 274 return I.hasNoUnsignedWrap(); 275 default: 276 return false; 277 } 278 } 279 280 bool AMDGPUCodeGenPrepare::canWidenScalarExtLoad(LoadInst &I) const { 281 Type *Ty = I.getType(); 282 const DataLayout &DL = Mod->getDataLayout(); 283 int TySize = DL.getTypeSizeInBits(Ty); 284 unsigned Align = I.getAlignment() ? 285 I.getAlignment() : DL.getABITypeAlignment(Ty); 286 287 return I.isSimple() && TySize < 32 && Align >= 4 && DA->isUniform(&I); 288 } 289 290 bool AMDGPUCodeGenPrepare::promoteUniformOpToI32(BinaryOperator &I) const { 291 assert(needsPromotionToI32(I.getType()) && 292 "I does not need promotion to i32"); 293 294 if (I.getOpcode() == Instruction::SDiv || 295 I.getOpcode() == Instruction::UDiv || 296 I.getOpcode() == Instruction::SRem || 297 I.getOpcode() == Instruction::URem) 298 return false; 299 300 IRBuilder<> Builder(&I); 301 Builder.SetCurrentDebugLocation(I.getDebugLoc()); 302 303 Type *I32Ty = getI32Ty(Builder, I.getType()); 304 Value *ExtOp0 = nullptr; 305 Value *ExtOp1 = nullptr; 306 Value *ExtRes = nullptr; 307 Value *TruncRes = nullptr; 308 309 if (isSigned(I)) { 310 ExtOp0 = Builder.CreateSExt(I.getOperand(0), I32Ty); 311 ExtOp1 = Builder.CreateSExt(I.getOperand(1), I32Ty); 312 } else { 313 ExtOp0 = Builder.CreateZExt(I.getOperand(0), I32Ty); 314 ExtOp1 = Builder.CreateZExt(I.getOperand(1), I32Ty); 315 } 316 317 ExtRes = Builder.CreateBinOp(I.getOpcode(), ExtOp0, ExtOp1); 318 if (Instruction *Inst = dyn_cast<Instruction>(ExtRes)) { 319 if (promotedOpIsNSW(cast<Instruction>(I))) 320 Inst->setHasNoSignedWrap(); 321 322 if (promotedOpIsNUW(cast<Instruction>(I))) 323 Inst->setHasNoUnsignedWrap(); 324 325 if (const auto *ExactOp = dyn_cast<PossiblyExactOperator>(&I)) 326 Inst->setIsExact(ExactOp->isExact()); 327 } 328 329 TruncRes = Builder.CreateTrunc(ExtRes, I.getType()); 330 331 I.replaceAllUsesWith(TruncRes); 332 I.eraseFromParent(); 333 334 return true; 335 } 336 337 bool AMDGPUCodeGenPrepare::promoteUniformOpToI32(ICmpInst &I) const { 338 assert(needsPromotionToI32(I.getOperand(0)->getType()) && 339 "I does not need promotion to i32"); 340 341 IRBuilder<> Builder(&I); 342 Builder.SetCurrentDebugLocation(I.getDebugLoc()); 343 344 Type *I32Ty = getI32Ty(Builder, I.getOperand(0)->getType()); 345 Value *ExtOp0 = nullptr; 346 Value *ExtOp1 = nullptr; 347 Value *NewICmp = nullptr; 348 349 if (I.isSigned()) { 350 ExtOp0 = Builder.CreateSExt(I.getOperand(0), I32Ty); 351 ExtOp1 = Builder.CreateSExt(I.getOperand(1), I32Ty); 352 } else { 353 ExtOp0 = Builder.CreateZExt(I.getOperand(0), I32Ty); 354 ExtOp1 = Builder.CreateZExt(I.getOperand(1), I32Ty); 355 } 356 NewICmp = Builder.CreateICmp(I.getPredicate(), ExtOp0, ExtOp1); 357 358 I.replaceAllUsesWith(NewICmp); 359 I.eraseFromParent(); 360 361 return true; 362 } 363 364 bool AMDGPUCodeGenPrepare::promoteUniformOpToI32(SelectInst &I) const { 365 assert(needsPromotionToI32(I.getType()) && 366 "I does not need promotion to i32"); 367 368 IRBuilder<> Builder(&I); 369 Builder.SetCurrentDebugLocation(I.getDebugLoc()); 370 371 Type *I32Ty = getI32Ty(Builder, I.getType()); 372 Value *ExtOp1 = nullptr; 373 Value *ExtOp2 = nullptr; 374 Value *ExtRes = nullptr; 375 Value *TruncRes = nullptr; 376 377 if (isSigned(I)) { 378 ExtOp1 = Builder.CreateSExt(I.getOperand(1), I32Ty); 379 ExtOp2 = Builder.CreateSExt(I.getOperand(2), I32Ty); 380 } else { 381 ExtOp1 = Builder.CreateZExt(I.getOperand(1), I32Ty); 382 ExtOp2 = Builder.CreateZExt(I.getOperand(2), I32Ty); 383 } 384 ExtRes = Builder.CreateSelect(I.getOperand(0), ExtOp1, ExtOp2); 385 TruncRes = Builder.CreateTrunc(ExtRes, I.getType()); 386 387 I.replaceAllUsesWith(TruncRes); 388 I.eraseFromParent(); 389 390 return true; 391 } 392 393 bool AMDGPUCodeGenPrepare::promoteUniformBitreverseToI32( 394 IntrinsicInst &I) const { 395 assert(I.getIntrinsicID() == Intrinsic::bitreverse && 396 "I must be bitreverse intrinsic"); 397 assert(needsPromotionToI32(I.getType()) && 398 "I does not need promotion to i32"); 399 400 IRBuilder<> Builder(&I); 401 Builder.SetCurrentDebugLocation(I.getDebugLoc()); 402 403 Type *I32Ty = getI32Ty(Builder, I.getType()); 404 Function *I32 = 405 Intrinsic::getDeclaration(Mod, Intrinsic::bitreverse, { I32Ty }); 406 Value *ExtOp = Builder.CreateZExt(I.getOperand(0), I32Ty); 407 Value *ExtRes = Builder.CreateCall(I32, { ExtOp }); 408 Value *LShrOp = 409 Builder.CreateLShr(ExtRes, 32 - getBaseElementBitWidth(I.getType())); 410 Value *TruncRes = 411 Builder.CreateTrunc(LShrOp, I.getType()); 412 413 I.replaceAllUsesWith(TruncRes); 414 I.eraseFromParent(); 415 416 return true; 417 } 418 419 unsigned AMDGPUCodeGenPrepare::numBitsUnsigned(Value *Op, 420 unsigned ScalarSize) const { 421 KnownBits Known = computeKnownBits(Op, *DL, 0, AC); 422 return ScalarSize - Known.countMinLeadingZeros(); 423 } 424 425 unsigned AMDGPUCodeGenPrepare::numBitsSigned(Value *Op, 426 unsigned ScalarSize) const { 427 // In order for this to be a signed 24-bit value, bit 23, must 428 // be a sign bit. 429 return ScalarSize - ComputeNumSignBits(Op, *DL, 0, AC); 430 } 431 432 bool AMDGPUCodeGenPrepare::isI24(Value *V, unsigned ScalarSize) const { 433 return ScalarSize >= 24 && // Types less than 24-bit should be treated 434 // as unsigned 24-bit values. 435 numBitsSigned(V, ScalarSize) < 24; 436 } 437 438 bool AMDGPUCodeGenPrepare::isU24(Value *V, unsigned ScalarSize) const { 439 return numBitsUnsigned(V, ScalarSize) <= 24; 440 } 441 442 static void extractValues(IRBuilder<> &Builder, 443 SmallVectorImpl<Value *> &Values, Value *V) { 444 VectorType *VT = dyn_cast<VectorType>(V->getType()); 445 if (!VT) { 446 Values.push_back(V); 447 return; 448 } 449 450 for (int I = 0, E = VT->getNumElements(); I != E; ++I) 451 Values.push_back(Builder.CreateExtractElement(V, I)); 452 } 453 454 static Value *insertValues(IRBuilder<> &Builder, 455 Type *Ty, 456 SmallVectorImpl<Value *> &Values) { 457 if (Values.size() == 1) 458 return Values[0]; 459 460 Value *NewVal = UndefValue::get(Ty); 461 for (int I = 0, E = Values.size(); I != E; ++I) 462 NewVal = Builder.CreateInsertElement(NewVal, Values[I], I); 463 464 return NewVal; 465 } 466 467 bool AMDGPUCodeGenPrepare::replaceMulWithMul24(BinaryOperator &I) const { 468 if (I.getOpcode() != Instruction::Mul) 469 return false; 470 471 Type *Ty = I.getType(); 472 unsigned Size = Ty->getScalarSizeInBits(); 473 if (Size <= 16 && ST->has16BitInsts()) 474 return false; 475 476 // Prefer scalar if this could be s_mul_i32 477 if (DA->isUniform(&I)) 478 return false; 479 480 Value *LHS = I.getOperand(0); 481 Value *RHS = I.getOperand(1); 482 IRBuilder<> Builder(&I); 483 Builder.SetCurrentDebugLocation(I.getDebugLoc()); 484 485 Intrinsic::ID IntrID = Intrinsic::not_intrinsic; 486 487 // TODO: Should this try to match mulhi24? 488 if (ST->hasMulU24() && isU24(LHS, Size) && isU24(RHS, Size)) { 489 IntrID = Intrinsic::amdgcn_mul_u24; 490 } else if (ST->hasMulI24() && isI24(LHS, Size) && isI24(RHS, Size)) { 491 IntrID = Intrinsic::amdgcn_mul_i24; 492 } else 493 return false; 494 495 SmallVector<Value *, 4> LHSVals; 496 SmallVector<Value *, 4> RHSVals; 497 SmallVector<Value *, 4> ResultVals; 498 extractValues(Builder, LHSVals, LHS); 499 extractValues(Builder, RHSVals, RHS); 500 501 502 IntegerType *I32Ty = Builder.getInt32Ty(); 503 FunctionCallee Intrin = Intrinsic::getDeclaration(Mod, IntrID); 504 for (int I = 0, E = LHSVals.size(); I != E; ++I) { 505 Value *LHS, *RHS; 506 if (IntrID == Intrinsic::amdgcn_mul_u24) { 507 LHS = Builder.CreateZExtOrTrunc(LHSVals[I], I32Ty); 508 RHS = Builder.CreateZExtOrTrunc(RHSVals[I], I32Ty); 509 } else { 510 LHS = Builder.CreateSExtOrTrunc(LHSVals[I], I32Ty); 511 RHS = Builder.CreateSExtOrTrunc(RHSVals[I], I32Ty); 512 } 513 514 Value *Result = Builder.CreateCall(Intrin, {LHS, RHS}); 515 516 if (IntrID == Intrinsic::amdgcn_mul_u24) { 517 ResultVals.push_back(Builder.CreateZExtOrTrunc(Result, 518 LHSVals[I]->getType())); 519 } else { 520 ResultVals.push_back(Builder.CreateSExtOrTrunc(Result, 521 LHSVals[I]->getType())); 522 } 523 } 524 525 Value *NewVal = insertValues(Builder, Ty, ResultVals); 526 NewVal->takeName(&I); 527 I.replaceAllUsesWith(NewVal); 528 I.eraseFromParent(); 529 530 return true; 531 } 532 533 // Find a select instruction, which may have been casted. This is mostly to deal 534 // with cases where i16 selects were promoted here to i32. 535 static SelectInst *findSelectThroughCast(Value *V, CastInst *&Cast) { 536 Cast = nullptr; 537 if (SelectInst *Sel = dyn_cast<SelectInst>(V)) 538 return Sel; 539 540 if ((Cast = dyn_cast<CastInst>(V))) { 541 if (SelectInst *Sel = dyn_cast<SelectInst>(Cast->getOperand(0))) 542 return Sel; 543 } 544 545 return nullptr; 546 } 547 548 bool AMDGPUCodeGenPrepare::foldBinOpIntoSelect(BinaryOperator &BO) const { 549 // Don't do this unless the old select is going away. We want to eliminate the 550 // binary operator, not replace a binop with a select. 551 int SelOpNo = 0; 552 553 CastInst *CastOp; 554 555 // TODO: Should probably try to handle some cases with multiple 556 // users. Duplicating the select may be profitable for division. 557 SelectInst *Sel = findSelectThroughCast(BO.getOperand(0), CastOp); 558 if (!Sel || !Sel->hasOneUse()) { 559 SelOpNo = 1; 560 Sel = findSelectThroughCast(BO.getOperand(1), CastOp); 561 } 562 563 if (!Sel || !Sel->hasOneUse()) 564 return false; 565 566 Constant *CT = dyn_cast<Constant>(Sel->getTrueValue()); 567 Constant *CF = dyn_cast<Constant>(Sel->getFalseValue()); 568 Constant *CBO = dyn_cast<Constant>(BO.getOperand(SelOpNo ^ 1)); 569 if (!CBO || !CT || !CF) 570 return false; 571 572 if (CastOp) { 573 if (!CastOp->hasOneUse()) 574 return false; 575 CT = ConstantFoldCastOperand(CastOp->getOpcode(), CT, BO.getType(), *DL); 576 CF = ConstantFoldCastOperand(CastOp->getOpcode(), CF, BO.getType(), *DL); 577 } 578 579 // TODO: Handle special 0/-1 cases DAG combine does, although we only really 580 // need to handle divisions here. 581 Constant *FoldedT = SelOpNo ? 582 ConstantFoldBinaryOpOperands(BO.getOpcode(), CBO, CT, *DL) : 583 ConstantFoldBinaryOpOperands(BO.getOpcode(), CT, CBO, *DL); 584 if (isa<ConstantExpr>(FoldedT)) 585 return false; 586 587 Constant *FoldedF = SelOpNo ? 588 ConstantFoldBinaryOpOperands(BO.getOpcode(), CBO, CF, *DL) : 589 ConstantFoldBinaryOpOperands(BO.getOpcode(), CF, CBO, *DL); 590 if (isa<ConstantExpr>(FoldedF)) 591 return false; 592 593 IRBuilder<> Builder(&BO); 594 Builder.SetCurrentDebugLocation(BO.getDebugLoc()); 595 if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(&BO)) 596 Builder.setFastMathFlags(FPOp->getFastMathFlags()); 597 598 Value *NewSelect = Builder.CreateSelect(Sel->getCondition(), 599 FoldedT, FoldedF); 600 NewSelect->takeName(&BO); 601 BO.replaceAllUsesWith(NewSelect); 602 BO.eraseFromParent(); 603 if (CastOp) 604 CastOp->eraseFromParent(); 605 Sel->eraseFromParent(); 606 return true; 607 } 608 609 // Optimize fdiv with rcp: 610 // 611 // 1/x -> rcp(x) when rcp is sufficiently accurate or inaccurate rcp is 612 // allowed with unsafe-fp-math or afn. 613 // 614 // a/b -> a*rcp(b) when inaccurate rcp is allowed with unsafe-fp-math or afn. 615 static Value *optimizeWithRcp(Value *Num, Value *Den, bool AllowInaccurateRcp, 616 bool RcpIsAccurate, IRBuilder<> Builder, 617 Module *Mod) { 618 619 if (!AllowInaccurateRcp && !RcpIsAccurate) 620 return nullptr; 621 622 Type *Ty = Den->getType(); 623 if (const ConstantFP *CLHS = dyn_cast<ConstantFP>(Num)) { 624 if (AllowInaccurateRcp || RcpIsAccurate) { 625 if (CLHS->isExactlyValue(1.0)) { 626 Function *Decl = Intrinsic::getDeclaration( 627 Mod, Intrinsic::amdgcn_rcp, Ty); 628 629 // v_rcp_f32 and v_rsq_f32 do not support denormals, and according to 630 // the CI documentation has a worst case error of 1 ulp. 631 // OpenCL requires <= 2.5 ulp for 1.0 / x, so it should always be OK to 632 // use it as long as we aren't trying to use denormals. 633 // 634 // v_rcp_f16 and v_rsq_f16 DO support denormals. 635 636 // NOTE: v_sqrt and v_rcp will be combined to v_rsq later. So we don't 637 // insert rsq intrinsic here. 638 639 // 1.0 / x -> rcp(x) 640 return Builder.CreateCall(Decl, { Den }); 641 } 642 643 // Same as for 1.0, but expand the sign out of the constant. 644 if (CLHS->isExactlyValue(-1.0)) { 645 Function *Decl = Intrinsic::getDeclaration( 646 Mod, Intrinsic::amdgcn_rcp, Ty); 647 648 // -1.0 / x -> rcp (fneg x) 649 Value *FNeg = Builder.CreateFNeg(Den); 650 return Builder.CreateCall(Decl, { FNeg }); 651 } 652 } 653 } 654 655 if (AllowInaccurateRcp) { 656 Function *Decl = Intrinsic::getDeclaration( 657 Mod, Intrinsic::amdgcn_rcp, Ty); 658 659 // Turn into multiply by the reciprocal. 660 // x / y -> x * (1.0 / y) 661 Value *Recip = Builder.CreateCall(Decl, { Den }); 662 return Builder.CreateFMul(Num, Recip); 663 } 664 return nullptr; 665 } 666 667 // optimize with fdiv.fast: 668 // 669 // a/b -> fdiv.fast(a, b) when !fpmath >= 2.5ulp with denormals flushed. 670 // 671 // 1/x -> fdiv.fast(1,x) when !fpmath >= 2.5ulp. 672 // 673 // NOTE: optimizeWithRcp should be tried first because rcp is the preference. 674 static Value *optimizeWithFDivFast(Value *Num, Value *Den, float ReqdAccuracy, 675 bool HasDenormals, IRBuilder<> Builder, 676 Module *Mod) { 677 // fdiv.fast can achieve 2.5 ULP accuracy. 678 if (ReqdAccuracy < 2.5f) 679 return nullptr; 680 681 // Only have fdiv.fast for f32. 682 Type *Ty = Den->getType(); 683 if (!Ty->isFloatTy()) 684 return nullptr; 685 686 bool NumIsOne = false; 687 if (const ConstantFP *CNum = dyn_cast<ConstantFP>(Num)) { 688 if (CNum->isExactlyValue(+1.0) || CNum->isExactlyValue(-1.0)) 689 NumIsOne = true; 690 } 691 692 // fdiv does not support denormals. But 1.0/x is always fine to use it. 693 if (HasDenormals && !NumIsOne) 694 return nullptr; 695 696 Function *Decl = Intrinsic::getDeclaration(Mod, Intrinsic::amdgcn_fdiv_fast); 697 return Builder.CreateCall(Decl, { Num, Den }); 698 } 699 700 // Optimizations is performed based on fpmath, fast math flags as well as 701 // denormals to optimize fdiv with either rcp or fdiv.fast. 702 // 703 // With rcp: 704 // 1/x -> rcp(x) when rcp is sufficiently accurate or inaccurate rcp is 705 // allowed with unsafe-fp-math or afn. 706 // 707 // a/b -> a*rcp(b) when inaccurate rcp is allowed with unsafe-fp-math or afn. 708 // 709 // With fdiv.fast: 710 // a/b -> fdiv.fast(a, b) when !fpmath >= 2.5ulp with denormals flushed. 711 // 712 // 1/x -> fdiv.fast(1,x) when !fpmath >= 2.5ulp. 713 // 714 // NOTE: rcp is the preference in cases that both are legal. 715 bool AMDGPUCodeGenPrepare::visitFDiv(BinaryOperator &FDiv) { 716 717 Type *Ty = FDiv.getType()->getScalarType(); 718 719 // No intrinsic for fdiv16 if target does not support f16. 720 if (Ty->isHalfTy() && !ST->has16BitInsts()) 721 return false; 722 723 const FPMathOperator *FPOp = cast<const FPMathOperator>(&FDiv); 724 const float ReqdAccuracy = FPOp->getFPAccuracy(); 725 726 // Inaccurate rcp is allowed with unsafe-fp-math or afn. 727 FastMathFlags FMF = FPOp->getFastMathFlags(); 728 const bool AllowInaccurateRcp = HasUnsafeFPMath || FMF.approxFunc(); 729 730 // rcp_f16 is accurate for !fpmath >= 1.0ulp. 731 // rcp_f32 is accurate for !fpmath >= 1.0ulp and denormals are flushed. 732 // rcp_f64 is never accurate. 733 const bool RcpIsAccurate = (Ty->isHalfTy() && ReqdAccuracy >= 1.0f) || 734 (Ty->isFloatTy() && !HasFP32Denormals && ReqdAccuracy >= 1.0f); 735 736 IRBuilder<> Builder(FDiv.getParent(), std::next(FDiv.getIterator())); 737 Builder.setFastMathFlags(FMF); 738 Builder.SetCurrentDebugLocation(FDiv.getDebugLoc()); 739 740 Value *Num = FDiv.getOperand(0); 741 Value *Den = FDiv.getOperand(1); 742 743 Value *NewFDiv = nullptr; 744 if (VectorType *VT = dyn_cast<VectorType>(FDiv.getType())) { 745 NewFDiv = UndefValue::get(VT); 746 747 // FIXME: Doesn't do the right thing for cases where the vector is partially 748 // constant. This works when the scalarizer pass is run first. 749 for (unsigned I = 0, E = VT->getNumElements(); I != E; ++I) { 750 Value *NumEltI = Builder.CreateExtractElement(Num, I); 751 Value *DenEltI = Builder.CreateExtractElement(Den, I); 752 // Try rcp first. 753 Value *NewElt = optimizeWithRcp(NumEltI, DenEltI, AllowInaccurateRcp, 754 RcpIsAccurate, Builder, Mod); 755 if (!NewElt) // Try fdiv.fast. 756 NewElt = optimizeWithFDivFast(NumEltI, DenEltI, ReqdAccuracy, 757 HasFP32Denormals, Builder, Mod); 758 if (!NewElt) // Keep the original. 759 NewElt = Builder.CreateFDiv(NumEltI, DenEltI); 760 761 NewFDiv = Builder.CreateInsertElement(NewFDiv, NewElt, I); 762 } 763 } else { // Scalar FDiv. 764 // Try rcp first. 765 NewFDiv = optimizeWithRcp(Num, Den, AllowInaccurateRcp, RcpIsAccurate, 766 Builder, Mod); 767 if (!NewFDiv) { // Try fdiv.fast. 768 NewFDiv = optimizeWithFDivFast(Num, Den, ReqdAccuracy, HasFP32Denormals, 769 Builder, Mod); 770 } 771 } 772 773 if (NewFDiv) { 774 FDiv.replaceAllUsesWith(NewFDiv); 775 NewFDiv->takeName(&FDiv); 776 FDiv.eraseFromParent(); 777 } 778 779 return !!NewFDiv; 780 } 781 782 static bool hasUnsafeFPMath(const Function &F) { 783 Attribute Attr = F.getFnAttribute("unsafe-fp-math"); 784 return Attr.getValueAsString() == "true"; 785 } 786 787 static std::pair<Value*, Value*> getMul64(IRBuilder<> &Builder, 788 Value *LHS, Value *RHS) { 789 Type *I32Ty = Builder.getInt32Ty(); 790 Type *I64Ty = Builder.getInt64Ty(); 791 792 Value *LHS_EXT64 = Builder.CreateZExt(LHS, I64Ty); 793 Value *RHS_EXT64 = Builder.CreateZExt(RHS, I64Ty); 794 Value *MUL64 = Builder.CreateMul(LHS_EXT64, RHS_EXT64); 795 Value *Lo = Builder.CreateTrunc(MUL64, I32Ty); 796 Value *Hi = Builder.CreateLShr(MUL64, Builder.getInt64(32)); 797 Hi = Builder.CreateTrunc(Hi, I32Ty); 798 return std::make_pair(Lo, Hi); 799 } 800 801 static Value* getMulHu(IRBuilder<> &Builder, Value *LHS, Value *RHS) { 802 return getMul64(Builder, LHS, RHS).second; 803 } 804 805 // The fractional part of a float is enough to accurately represent up to 806 // a 24-bit signed integer. 807 Value* AMDGPUCodeGenPrepare::expandDivRem24(IRBuilder<> &Builder, 808 BinaryOperator &I, 809 Value *Num, Value *Den, 810 bool IsDiv, bool IsSigned) const { 811 assert(Num->getType()->isIntegerTy(32)); 812 813 const DataLayout &DL = Mod->getDataLayout(); 814 unsigned LHSSignBits = ComputeNumSignBits(Num, DL, 0, AC, &I); 815 if (LHSSignBits < 9) 816 return nullptr; 817 818 unsigned RHSSignBits = ComputeNumSignBits(Den, DL, 0, AC, &I); 819 if (RHSSignBits < 9) 820 return nullptr; 821 822 823 unsigned SignBits = std::min(LHSSignBits, RHSSignBits); 824 unsigned DivBits = 32 - SignBits; 825 if (IsSigned) 826 ++DivBits; 827 828 Type *I32Ty = Builder.getInt32Ty(); 829 Type *F32Ty = Builder.getFloatTy(); 830 ConstantInt *One = Builder.getInt32(1); 831 Value *JQ = One; 832 833 if (IsSigned) { 834 // char|short jq = ia ^ ib; 835 JQ = Builder.CreateXor(Num, Den); 836 837 // jq = jq >> (bitsize - 2) 838 JQ = Builder.CreateAShr(JQ, Builder.getInt32(30)); 839 840 // jq = jq | 0x1 841 JQ = Builder.CreateOr(JQ, One); 842 } 843 844 // int ia = (int)LHS; 845 Value *IA = Num; 846 847 // int ib, (int)RHS; 848 Value *IB = Den; 849 850 // float fa = (float)ia; 851 Value *FA = IsSigned ? Builder.CreateSIToFP(IA, F32Ty) 852 : Builder.CreateUIToFP(IA, F32Ty); 853 854 // float fb = (float)ib; 855 Value *FB = IsSigned ? Builder.CreateSIToFP(IB,F32Ty) 856 : Builder.CreateUIToFP(IB,F32Ty); 857 858 Function *RcpDecl = Intrinsic::getDeclaration(Mod, Intrinsic::amdgcn_rcp, 859 Builder.getFloatTy()); 860 Value *RCP = Builder.CreateCall(RcpDecl, { FB }); 861 Value *FQM = Builder.CreateFMul(FA, RCP); 862 863 // fq = trunc(fqm); 864 CallInst *FQ = Builder.CreateUnaryIntrinsic(Intrinsic::trunc, FQM); 865 FQ->copyFastMathFlags(Builder.getFastMathFlags()); 866 867 // float fqneg = -fq; 868 Value *FQNeg = Builder.CreateFNeg(FQ); 869 870 // float fr = mad(fqneg, fb, fa); 871 Value *FR = Builder.CreateIntrinsic(Intrinsic::amdgcn_fmad_ftz, 872 {FQNeg->getType()}, {FQNeg, FB, FA}, FQ); 873 874 // int iq = (int)fq; 875 Value *IQ = IsSigned ? Builder.CreateFPToSI(FQ, I32Ty) 876 : Builder.CreateFPToUI(FQ, I32Ty); 877 878 // fr = fabs(fr); 879 FR = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, FR, FQ); 880 881 // fb = fabs(fb); 882 FB = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, FB, FQ); 883 884 // int cv = fr >= fb; 885 Value *CV = Builder.CreateFCmpOGE(FR, FB); 886 887 // jq = (cv ? jq : 0); 888 JQ = Builder.CreateSelect(CV, JQ, Builder.getInt32(0)); 889 890 // dst = iq + jq; 891 Value *Div = Builder.CreateAdd(IQ, JQ); 892 893 Value *Res = Div; 894 if (!IsDiv) { 895 // Rem needs compensation, it's easier to recompute it 896 Value *Rem = Builder.CreateMul(Div, Den); 897 Res = Builder.CreateSub(Num, Rem); 898 } 899 900 // Extend in register from the number of bits this divide really is. 901 if (IsSigned) { 902 Res = Builder.CreateShl(Res, 32 - DivBits); 903 Res = Builder.CreateAShr(Res, 32 - DivBits); 904 } else { 905 ConstantInt *TruncMask = Builder.getInt32((UINT64_C(1) << DivBits) - 1); 906 Res = Builder.CreateAnd(Res, TruncMask); 907 } 908 909 return Res; 910 } 911 912 Value* AMDGPUCodeGenPrepare::expandDivRem32(IRBuilder<> &Builder, 913 BinaryOperator &I, 914 Value *Num, Value *Den) const { 915 Instruction::BinaryOps Opc = I.getOpcode(); 916 assert(Opc == Instruction::URem || Opc == Instruction::UDiv || 917 Opc == Instruction::SRem || Opc == Instruction::SDiv); 918 919 FastMathFlags FMF; 920 FMF.setFast(); 921 Builder.setFastMathFlags(FMF); 922 923 if (isa<Constant>(Den)) 924 return nullptr; // Keep it for optimization 925 926 bool IsDiv = Opc == Instruction::UDiv || Opc == Instruction::SDiv; 927 bool IsSigned = Opc == Instruction::SRem || Opc == Instruction::SDiv; 928 929 Type *Ty = Num->getType(); 930 Type *I32Ty = Builder.getInt32Ty(); 931 Type *F32Ty = Builder.getFloatTy(); 932 933 if (Ty->getScalarSizeInBits() < 32) { 934 if (IsSigned) { 935 Num = Builder.CreateSExt(Num, I32Ty); 936 Den = Builder.CreateSExt(Den, I32Ty); 937 } else { 938 Num = Builder.CreateZExt(Num, I32Ty); 939 Den = Builder.CreateZExt(Den, I32Ty); 940 } 941 } 942 943 if (Value *Res = expandDivRem24(Builder, I, Num, Den, IsDiv, IsSigned)) { 944 Res = Builder.CreateTrunc(Res, Ty); 945 return Res; 946 } 947 948 ConstantInt *Zero = Builder.getInt32(0); 949 ConstantInt *One = Builder.getInt32(1); 950 ConstantInt *MinusOne = Builder.getInt32(~0); 951 952 Value *Sign = nullptr; 953 if (IsSigned) { 954 ConstantInt *K31 = Builder.getInt32(31); 955 Value *LHSign = Builder.CreateAShr(Num, K31); 956 Value *RHSign = Builder.CreateAShr(Den, K31); 957 // Remainder sign is the same as LHS 958 Sign = IsDiv ? Builder.CreateXor(LHSign, RHSign) : LHSign; 959 960 Num = Builder.CreateAdd(Num, LHSign); 961 Den = Builder.CreateAdd(Den, RHSign); 962 963 Num = Builder.CreateXor(Num, LHSign); 964 Den = Builder.CreateXor(Den, RHSign); 965 } 966 967 // RCP = URECIP(Den) = 2^32 / Den + e 968 // e is rounding error. 969 Value *DEN_F32 = Builder.CreateUIToFP(Den, F32Ty); 970 971 Function *RcpDecl = Intrinsic::getDeclaration(Mod, Intrinsic::amdgcn_rcp, 972 Builder.getFloatTy()); 973 Value *RCP_F32 = Builder.CreateCall(RcpDecl, { DEN_F32 }); 974 Constant *UINT_MAX_PLUS_1 = ConstantFP::get(F32Ty, BitsToFloat(0x4f800000)); 975 Value *RCP_SCALE = Builder.CreateFMul(RCP_F32, UINT_MAX_PLUS_1); 976 Value *RCP = Builder.CreateFPToUI(RCP_SCALE, I32Ty); 977 978 // RCP_LO, RCP_HI = mul(RCP, Den) */ 979 Value *RCP_LO, *RCP_HI; 980 std::tie(RCP_LO, RCP_HI) = getMul64(Builder, RCP, Den); 981 982 // NEG_RCP_LO = -RCP_LO 983 Value *NEG_RCP_LO = Builder.CreateNeg(RCP_LO); 984 985 // ABS_RCP_LO = (RCP_HI == 0 ? NEG_RCP_LO : RCP_LO) 986 Value *RCP_HI_0_CC = Builder.CreateICmpEQ(RCP_HI, Zero); 987 Value *ABS_RCP_LO = Builder.CreateSelect(RCP_HI_0_CC, NEG_RCP_LO, RCP_LO); 988 989 // Calculate the rounding error from the URECIP instruction 990 // E = mulhu(ABS_RCP_LO, RCP) 991 Value *E = getMulHu(Builder, ABS_RCP_LO, RCP); 992 993 // RCP_A_E = RCP + E 994 Value *RCP_A_E = Builder.CreateAdd(RCP, E); 995 996 // RCP_S_E = RCP - E 997 Value *RCP_S_E = Builder.CreateSub(RCP, E); 998 999 // Tmp0 = (RCP_HI == 0 ? RCP_A_E : RCP_SUB_E) 1000 Value *Tmp0 = Builder.CreateSelect(RCP_HI_0_CC, RCP_A_E, RCP_S_E); 1001 1002 // Quotient = mulhu(Tmp0, Num) 1003 Value *Quotient = getMulHu(Builder, Tmp0, Num); 1004 1005 // Num_S_Remainder = Quotient * Den 1006 Value *Num_S_Remainder = Builder.CreateMul(Quotient, Den); 1007 1008 // Remainder = Num - Num_S_Remainder 1009 Value *Remainder = Builder.CreateSub(Num, Num_S_Remainder); 1010 1011 // Remainder_GE_Den = (Remainder >= Den ? -1 : 0) 1012 Value *Rem_GE_Den_CC = Builder.CreateICmpUGE(Remainder, Den); 1013 Value *Remainder_GE_Den = Builder.CreateSelect(Rem_GE_Den_CC, MinusOne, Zero); 1014 1015 // Remainder_GE_Zero = (Num >= Num_S_Remainder ? -1 : 0) 1016 Value *Num_GE_Num_S_Rem_CC = Builder.CreateICmpUGE(Num, Num_S_Remainder); 1017 Value *Remainder_GE_Zero = Builder.CreateSelect(Num_GE_Num_S_Rem_CC, 1018 MinusOne, Zero); 1019 1020 // Tmp1 = Remainder_GE_Den & Remainder_GE_Zero 1021 Value *Tmp1 = Builder.CreateAnd(Remainder_GE_Den, Remainder_GE_Zero); 1022 Value *Tmp1_0_CC = Builder.CreateICmpEQ(Tmp1, Zero); 1023 1024 Value *Res; 1025 if (IsDiv) { 1026 // Quotient_A_One = Quotient + 1 1027 Value *Quotient_A_One = Builder.CreateAdd(Quotient, One); 1028 1029 // Quotient_S_One = Quotient - 1 1030 Value *Quotient_S_One = Builder.CreateSub(Quotient, One); 1031 1032 // Div = (Tmp1 == 0 ? Quotient : Quotient_A_One) 1033 Value *Div = Builder.CreateSelect(Tmp1_0_CC, Quotient, Quotient_A_One); 1034 1035 // Div = (Remainder_GE_Zero == 0 ? Quotient_S_One : Div) 1036 Res = Builder.CreateSelect(Num_GE_Num_S_Rem_CC, Div, Quotient_S_One); 1037 } else { 1038 // Remainder_S_Den = Remainder - Den 1039 Value *Remainder_S_Den = Builder.CreateSub(Remainder, Den); 1040 1041 // Remainder_A_Den = Remainder + Den 1042 Value *Remainder_A_Den = Builder.CreateAdd(Remainder, Den); 1043 1044 // Rem = (Tmp1 == 0 ? Remainder : Remainder_S_Den) 1045 Value *Rem = Builder.CreateSelect(Tmp1_0_CC, Remainder, Remainder_S_Den); 1046 1047 // Rem = (Remainder_GE_Zero == 0 ? Remainder_A_Den : Rem) 1048 Res = Builder.CreateSelect(Num_GE_Num_S_Rem_CC, Rem, Remainder_A_Den); 1049 } 1050 1051 if (IsSigned) { 1052 Res = Builder.CreateXor(Res, Sign); 1053 Res = Builder.CreateSub(Res, Sign); 1054 } 1055 1056 Res = Builder.CreateTrunc(Res, Ty); 1057 1058 return Res; 1059 } 1060 1061 bool AMDGPUCodeGenPrepare::visitBinaryOperator(BinaryOperator &I) { 1062 if (foldBinOpIntoSelect(I)) 1063 return true; 1064 1065 if (ST->has16BitInsts() && needsPromotionToI32(I.getType()) && 1066 DA->isUniform(&I) && promoteUniformOpToI32(I)) 1067 return true; 1068 1069 if (UseMul24Intrin && replaceMulWithMul24(I)) 1070 return true; 1071 1072 bool Changed = false; 1073 Instruction::BinaryOps Opc = I.getOpcode(); 1074 Type *Ty = I.getType(); 1075 Value *NewDiv = nullptr; 1076 if ((Opc == Instruction::URem || Opc == Instruction::UDiv || 1077 Opc == Instruction::SRem || Opc == Instruction::SDiv) && 1078 Ty->getScalarSizeInBits() <= 32) { 1079 Value *Num = I.getOperand(0); 1080 Value *Den = I.getOperand(1); 1081 IRBuilder<> Builder(&I); 1082 Builder.SetCurrentDebugLocation(I.getDebugLoc()); 1083 1084 if (VectorType *VT = dyn_cast<VectorType>(Ty)) { 1085 NewDiv = UndefValue::get(VT); 1086 1087 for (unsigned N = 0, E = VT->getNumElements(); N != E; ++N) { 1088 Value *NumEltN = Builder.CreateExtractElement(Num, N); 1089 Value *DenEltN = Builder.CreateExtractElement(Den, N); 1090 Value *NewElt = expandDivRem32(Builder, I, NumEltN, DenEltN); 1091 if (!NewElt) 1092 NewElt = Builder.CreateBinOp(Opc, NumEltN, DenEltN); 1093 NewDiv = Builder.CreateInsertElement(NewDiv, NewElt, N); 1094 } 1095 } else { 1096 NewDiv = expandDivRem32(Builder, I, Num, Den); 1097 } 1098 1099 if (NewDiv) { 1100 I.replaceAllUsesWith(NewDiv); 1101 I.eraseFromParent(); 1102 Changed = true; 1103 } 1104 } 1105 1106 return Changed; 1107 } 1108 1109 bool AMDGPUCodeGenPrepare::visitLoadInst(LoadInst &I) { 1110 if (!WidenLoads) 1111 return false; 1112 1113 if ((I.getPointerAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS || 1114 I.getPointerAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS_32BIT) && 1115 canWidenScalarExtLoad(I)) { 1116 IRBuilder<> Builder(&I); 1117 Builder.SetCurrentDebugLocation(I.getDebugLoc()); 1118 1119 Type *I32Ty = Builder.getInt32Ty(); 1120 Type *PT = PointerType::get(I32Ty, I.getPointerAddressSpace()); 1121 Value *BitCast= Builder.CreateBitCast(I.getPointerOperand(), PT); 1122 LoadInst *WidenLoad = Builder.CreateLoad(I32Ty, BitCast); 1123 WidenLoad->copyMetadata(I); 1124 1125 // If we have range metadata, we need to convert the type, and not make 1126 // assumptions about the high bits. 1127 if (auto *Range = WidenLoad->getMetadata(LLVMContext::MD_range)) { 1128 ConstantInt *Lower = 1129 mdconst::extract<ConstantInt>(Range->getOperand(0)); 1130 1131 if (Lower->getValue().isNullValue()) { 1132 WidenLoad->setMetadata(LLVMContext::MD_range, nullptr); 1133 } else { 1134 Metadata *LowAndHigh[] = { 1135 ConstantAsMetadata::get(ConstantInt::get(I32Ty, Lower->getValue().zext(32))), 1136 // Don't make assumptions about the high bits. 1137 ConstantAsMetadata::get(ConstantInt::get(I32Ty, 0)) 1138 }; 1139 1140 WidenLoad->setMetadata(LLVMContext::MD_range, 1141 MDNode::get(Mod->getContext(), LowAndHigh)); 1142 } 1143 } 1144 1145 int TySize = Mod->getDataLayout().getTypeSizeInBits(I.getType()); 1146 Type *IntNTy = Builder.getIntNTy(TySize); 1147 Value *ValTrunc = Builder.CreateTrunc(WidenLoad, IntNTy); 1148 Value *ValOrig = Builder.CreateBitCast(ValTrunc, I.getType()); 1149 I.replaceAllUsesWith(ValOrig); 1150 I.eraseFromParent(); 1151 return true; 1152 } 1153 1154 return false; 1155 } 1156 1157 bool AMDGPUCodeGenPrepare::visitICmpInst(ICmpInst &I) { 1158 bool Changed = false; 1159 1160 if (ST->has16BitInsts() && needsPromotionToI32(I.getOperand(0)->getType()) && 1161 DA->isUniform(&I)) 1162 Changed |= promoteUniformOpToI32(I); 1163 1164 return Changed; 1165 } 1166 1167 bool AMDGPUCodeGenPrepare::visitSelectInst(SelectInst &I) { 1168 bool Changed = false; 1169 1170 if (ST->has16BitInsts() && needsPromotionToI32(I.getType()) && 1171 DA->isUniform(&I)) 1172 Changed |= promoteUniformOpToI32(I); 1173 1174 return Changed; 1175 } 1176 1177 bool AMDGPUCodeGenPrepare::visitIntrinsicInst(IntrinsicInst &I) { 1178 switch (I.getIntrinsicID()) { 1179 case Intrinsic::bitreverse: 1180 return visitBitreverseIntrinsicInst(I); 1181 default: 1182 return false; 1183 } 1184 } 1185 1186 bool AMDGPUCodeGenPrepare::visitBitreverseIntrinsicInst(IntrinsicInst &I) { 1187 bool Changed = false; 1188 1189 if (ST->has16BitInsts() && needsPromotionToI32(I.getType()) && 1190 DA->isUniform(&I)) 1191 Changed |= promoteUniformBitreverseToI32(I); 1192 1193 return Changed; 1194 } 1195 1196 bool AMDGPUCodeGenPrepare::doInitialization(Module &M) { 1197 Mod = &M; 1198 DL = &Mod->getDataLayout(); 1199 return false; 1200 } 1201 1202 bool AMDGPUCodeGenPrepare::runOnFunction(Function &F) { 1203 if (skipFunction(F)) 1204 return false; 1205 1206 auto *TPC = getAnalysisIfAvailable<TargetPassConfig>(); 1207 if (!TPC) 1208 return false; 1209 1210 const AMDGPUTargetMachine &TM = TPC->getTM<AMDGPUTargetMachine>(); 1211 ST = &TM.getSubtarget<GCNSubtarget>(F); 1212 AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 1213 DA = &getAnalysis<LegacyDivergenceAnalysis>(); 1214 HasUnsafeFPMath = hasUnsafeFPMath(F); 1215 HasFP32Denormals = ST->hasFP32Denormals(F); 1216 1217 bool MadeChange = false; 1218 1219 for (BasicBlock &BB : F) { 1220 BasicBlock::iterator Next; 1221 for (BasicBlock::iterator I = BB.begin(), E = BB.end(); I != E; I = Next) { 1222 Next = std::next(I); 1223 MadeChange |= visit(*I); 1224 } 1225 } 1226 1227 return MadeChange; 1228 } 1229 1230 INITIALIZE_PASS_BEGIN(AMDGPUCodeGenPrepare, DEBUG_TYPE, 1231 "AMDGPU IR optimizations", false, false) 1232 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 1233 INITIALIZE_PASS_DEPENDENCY(LegacyDivergenceAnalysis) 1234 INITIALIZE_PASS_END(AMDGPUCodeGenPrepare, DEBUG_TYPE, "AMDGPU IR optimizations", 1235 false, false) 1236 1237 char AMDGPUCodeGenPrepare::ID = 0; 1238 1239 FunctionPass *llvm::createAMDGPUCodeGenPreparePass() { 1240 return new AMDGPUCodeGenPrepare(); 1241 } 1242