1 //===-- AMDGPUCodeGenPrepare.cpp ------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file 10 /// This pass does misc. AMDGPU optimizations on IR before instruction 11 /// selection. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "AMDGPU.h" 16 #include "AMDGPUSubtarget.h" 17 #include "AMDGPUTargetMachine.h" 18 #include "llvm/ADT/FloatingPointMode.h" 19 #include "llvm/ADT/StringRef.h" 20 #include "llvm/Analysis/AssumptionCache.h" 21 #include "llvm/Analysis/ConstantFolding.h" 22 #include "llvm/Analysis/LegacyDivergenceAnalysis.h" 23 #include "llvm/Analysis/Loads.h" 24 #include "llvm/Analysis/ValueTracking.h" 25 #include "llvm/CodeGen/Passes.h" 26 #include "llvm/CodeGen/TargetPassConfig.h" 27 #include "llvm/IR/Attributes.h" 28 #include "llvm/IR/BasicBlock.h" 29 #include "llvm/IR/Constants.h" 30 #include "llvm/IR/DerivedTypes.h" 31 #include "llvm/IR/Function.h" 32 #include "llvm/IR/IRBuilder.h" 33 #include "llvm/IR/InstVisitor.h" 34 #include "llvm/IR/InstrTypes.h" 35 #include "llvm/IR/Instruction.h" 36 #include "llvm/IR/Instructions.h" 37 #include "llvm/IR/IntrinsicInst.h" 38 #include "llvm/IR/Intrinsics.h" 39 #include "llvm/IR/LLVMContext.h" 40 #include "llvm/IR/Operator.h" 41 #include "llvm/IR/Type.h" 42 #include "llvm/IR/Value.h" 43 #include "llvm/Transforms/Utils/IntegerDivision.h" 44 #include "llvm/InitializePasses.h" 45 #include "llvm/Pass.h" 46 #include "llvm/Support/Casting.h" 47 #include <cassert> 48 #include <iterator> 49 50 #define DEBUG_TYPE "amdgpu-codegenprepare" 51 52 using namespace llvm; 53 54 namespace { 55 56 static cl::opt<bool> WidenLoads( 57 "amdgpu-codegenprepare-widen-constant-loads", 58 cl::desc("Widen sub-dword constant address space loads in AMDGPUCodeGenPrepare"), 59 cl::ReallyHidden, 60 cl::init(true)); 61 62 static cl::opt<bool> UseMul24Intrin( 63 "amdgpu-codegenprepare-mul24", 64 cl::desc("Introduce mul24 intrinsics in AMDGPUCodeGenPrepare"), 65 cl::ReallyHidden, 66 cl::init(true)); 67 68 // Legalize 64-bit division by using the generic IR expansion. 69 static cl::opt<bool> ExpandDiv64InIR( 70 "amdgpu-codegenprepare-expand-div64", 71 cl::desc("Expand 64-bit division in AMDGPUCodeGenPrepare"), 72 cl::ReallyHidden, 73 cl::init(false)); 74 75 // Leave all division operations as they are. This supersedes ExpandDiv64InIR 76 // and is used for testing the legalizer. 77 static cl::opt<bool> DisableIDivExpand( 78 "amdgpu-codegenprepare-disable-idiv-expansion", 79 cl::desc("Prevent expanding integer division in AMDGPUCodeGenPrepare"), 80 cl::ReallyHidden, 81 cl::init(false)); 82 83 class AMDGPUCodeGenPrepare : public FunctionPass, 84 public InstVisitor<AMDGPUCodeGenPrepare, bool> { 85 const GCNSubtarget *ST = nullptr; 86 AssumptionCache *AC = nullptr; 87 DominatorTree *DT = nullptr; 88 LegacyDivergenceAnalysis *DA = nullptr; 89 Module *Mod = nullptr; 90 const DataLayout *DL = nullptr; 91 bool HasUnsafeFPMath = false; 92 bool HasFP32Denormals = false; 93 94 /// Copies exact/nsw/nuw flags (if any) from binary operation \p I to 95 /// binary operation \p V. 96 /// 97 /// \returns Binary operation \p V. 98 /// \returns \p T's base element bit width. 99 unsigned getBaseElementBitWidth(const Type *T) const; 100 101 /// \returns Equivalent 32 bit integer type for given type \p T. For example, 102 /// if \p T is i7, then i32 is returned; if \p T is <3 x i12>, then <3 x i32> 103 /// is returned. 104 Type *getI32Ty(IRBuilder<> &B, const Type *T) const; 105 106 /// \returns True if binary operation \p I is a signed binary operation, false 107 /// otherwise. 108 bool isSigned(const BinaryOperator &I) const; 109 110 /// \returns True if the condition of 'select' operation \p I comes from a 111 /// signed 'icmp' operation, false otherwise. 112 bool isSigned(const SelectInst &I) const; 113 114 /// \returns True if type \p T needs to be promoted to 32 bit integer type, 115 /// false otherwise. 116 bool needsPromotionToI32(const Type *T) const; 117 118 /// Promotes uniform binary operation \p I to equivalent 32 bit binary 119 /// operation. 120 /// 121 /// \details \p I's base element bit width must be greater than 1 and less 122 /// than or equal 16. Promotion is done by sign or zero extending operands to 123 /// 32 bits, replacing \p I with equivalent 32 bit binary operation, and 124 /// truncating the result of 32 bit binary operation back to \p I's original 125 /// type. Division operation is not promoted. 126 /// 127 /// \returns True if \p I is promoted to equivalent 32 bit binary operation, 128 /// false otherwise. 129 bool promoteUniformOpToI32(BinaryOperator &I) const; 130 131 /// Promotes uniform 'icmp' operation \p I to 32 bit 'icmp' operation. 132 /// 133 /// \details \p I's base element bit width must be greater than 1 and less 134 /// than or equal 16. Promotion is done by sign or zero extending operands to 135 /// 32 bits, and replacing \p I with 32 bit 'icmp' operation. 136 /// 137 /// \returns True. 138 bool promoteUniformOpToI32(ICmpInst &I) const; 139 140 /// Promotes uniform 'select' operation \p I to 32 bit 'select' 141 /// operation. 142 /// 143 /// \details \p I's base element bit width must be greater than 1 and less 144 /// than or equal 16. Promotion is done by sign or zero extending operands to 145 /// 32 bits, replacing \p I with 32 bit 'select' operation, and truncating the 146 /// result of 32 bit 'select' operation back to \p I's original type. 147 /// 148 /// \returns True. 149 bool promoteUniformOpToI32(SelectInst &I) const; 150 151 /// Promotes uniform 'bitreverse' intrinsic \p I to 32 bit 'bitreverse' 152 /// intrinsic. 153 /// 154 /// \details \p I's base element bit width must be greater than 1 and less 155 /// than or equal 16. Promotion is done by zero extending the operand to 32 156 /// bits, replacing \p I with 32 bit 'bitreverse' intrinsic, shifting the 157 /// result of 32 bit 'bitreverse' intrinsic to the right with zero fill (the 158 /// shift amount is 32 minus \p I's base element bit width), and truncating 159 /// the result of the shift operation back to \p I's original type. 160 /// 161 /// \returns True. 162 bool promoteUniformBitreverseToI32(IntrinsicInst &I) const; 163 164 165 unsigned numBitsUnsigned(Value *Op, unsigned ScalarSize) const; 166 unsigned numBitsSigned(Value *Op, unsigned ScalarSize) const; 167 bool isI24(Value *V, unsigned ScalarSize) const; 168 bool isU24(Value *V, unsigned ScalarSize) const; 169 170 /// Replace mul instructions with llvm.amdgcn.mul.u24 or llvm.amdgcn.mul.s24. 171 /// SelectionDAG has an issue where an and asserting the bits are known 172 bool replaceMulWithMul24(BinaryOperator &I) const; 173 174 /// Perform same function as equivalently named function in DAGCombiner. Since 175 /// we expand some divisions here, we need to perform this before obscuring. 176 bool foldBinOpIntoSelect(BinaryOperator &I) const; 177 178 bool divHasSpecialOptimization(BinaryOperator &I, 179 Value *Num, Value *Den) const; 180 int getDivNumBits(BinaryOperator &I, 181 Value *Num, Value *Den, 182 unsigned AtLeast, bool Signed) const; 183 184 /// Expands 24 bit div or rem. 185 Value* expandDivRem24(IRBuilder<> &Builder, BinaryOperator &I, 186 Value *Num, Value *Den, 187 bool IsDiv, bool IsSigned) const; 188 189 Value *expandDivRem24Impl(IRBuilder<> &Builder, BinaryOperator &I, 190 Value *Num, Value *Den, unsigned NumBits, 191 bool IsDiv, bool IsSigned) const; 192 193 /// Expands 32 bit div or rem. 194 Value* expandDivRem32(IRBuilder<> &Builder, BinaryOperator &I, 195 Value *Num, Value *Den) const; 196 197 Value *shrinkDivRem64(IRBuilder<> &Builder, BinaryOperator &I, 198 Value *Num, Value *Den) const; 199 void expandDivRem64(BinaryOperator &I) const; 200 201 /// Widen a scalar load. 202 /// 203 /// \details \p Widen scalar load for uniform, small type loads from constant 204 // memory / to a full 32-bits and then truncate the input to allow a scalar 205 // load instead of a vector load. 206 // 207 /// \returns True. 208 209 bool canWidenScalarExtLoad(LoadInst &I) const; 210 211 public: 212 static char ID; 213 214 AMDGPUCodeGenPrepare() : FunctionPass(ID) {} 215 216 bool visitFDiv(BinaryOperator &I); 217 218 bool visitInstruction(Instruction &I) { return false; } 219 bool visitBinaryOperator(BinaryOperator &I); 220 bool visitLoadInst(LoadInst &I); 221 bool visitICmpInst(ICmpInst &I); 222 bool visitSelectInst(SelectInst &I); 223 224 bool visitIntrinsicInst(IntrinsicInst &I); 225 bool visitBitreverseIntrinsicInst(IntrinsicInst &I); 226 227 bool doInitialization(Module &M) override; 228 bool runOnFunction(Function &F) override; 229 230 StringRef getPassName() const override { return "AMDGPU IR optimizations"; } 231 232 void getAnalysisUsage(AnalysisUsage &AU) const override { 233 AU.addRequired<AssumptionCacheTracker>(); 234 AU.addRequired<LegacyDivergenceAnalysis>(); 235 236 // FIXME: Division expansion needs to preserve the dominator tree. 237 if (!ExpandDiv64InIR) 238 AU.setPreservesAll(); 239 } 240 }; 241 242 } // end anonymous namespace 243 244 unsigned AMDGPUCodeGenPrepare::getBaseElementBitWidth(const Type *T) const { 245 assert(needsPromotionToI32(T) && "T does not need promotion to i32"); 246 247 if (T->isIntegerTy()) 248 return T->getIntegerBitWidth(); 249 return cast<VectorType>(T)->getElementType()->getIntegerBitWidth(); 250 } 251 252 Type *AMDGPUCodeGenPrepare::getI32Ty(IRBuilder<> &B, const Type *T) const { 253 assert(needsPromotionToI32(T) && "T does not need promotion to i32"); 254 255 if (T->isIntegerTy()) 256 return B.getInt32Ty(); 257 return VectorType::get(B.getInt32Ty(), cast<VectorType>(T)->getNumElements()); 258 } 259 260 bool AMDGPUCodeGenPrepare::isSigned(const BinaryOperator &I) const { 261 return I.getOpcode() == Instruction::AShr || 262 I.getOpcode() == Instruction::SDiv || I.getOpcode() == Instruction::SRem; 263 } 264 265 bool AMDGPUCodeGenPrepare::isSigned(const SelectInst &I) const { 266 return isa<ICmpInst>(I.getOperand(0)) ? 267 cast<ICmpInst>(I.getOperand(0))->isSigned() : false; 268 } 269 270 bool AMDGPUCodeGenPrepare::needsPromotionToI32(const Type *T) const { 271 const IntegerType *IntTy = dyn_cast<IntegerType>(T); 272 if (IntTy && IntTy->getBitWidth() > 1 && IntTy->getBitWidth() <= 16) 273 return true; 274 275 if (const VectorType *VT = dyn_cast<VectorType>(T)) { 276 // TODO: The set of packed operations is more limited, so may want to 277 // promote some anyway. 278 if (ST->hasVOP3PInsts()) 279 return false; 280 281 return needsPromotionToI32(VT->getElementType()); 282 } 283 284 return false; 285 } 286 287 // Return true if the op promoted to i32 should have nsw set. 288 static bool promotedOpIsNSW(const Instruction &I) { 289 switch (I.getOpcode()) { 290 case Instruction::Shl: 291 case Instruction::Add: 292 case Instruction::Sub: 293 return true; 294 case Instruction::Mul: 295 return I.hasNoUnsignedWrap(); 296 default: 297 return false; 298 } 299 } 300 301 // Return true if the op promoted to i32 should have nuw set. 302 static bool promotedOpIsNUW(const Instruction &I) { 303 switch (I.getOpcode()) { 304 case Instruction::Shl: 305 case Instruction::Add: 306 case Instruction::Mul: 307 return true; 308 case Instruction::Sub: 309 return I.hasNoUnsignedWrap(); 310 default: 311 return false; 312 } 313 } 314 315 bool AMDGPUCodeGenPrepare::canWidenScalarExtLoad(LoadInst &I) const { 316 Type *Ty = I.getType(); 317 const DataLayout &DL = Mod->getDataLayout(); 318 int TySize = DL.getTypeSizeInBits(Ty); 319 unsigned Align = I.getAlignment() ? 320 I.getAlignment() : DL.getABITypeAlignment(Ty); 321 322 return I.isSimple() && TySize < 32 && Align >= 4 && DA->isUniform(&I); 323 } 324 325 bool AMDGPUCodeGenPrepare::promoteUniformOpToI32(BinaryOperator &I) const { 326 assert(needsPromotionToI32(I.getType()) && 327 "I does not need promotion to i32"); 328 329 if (I.getOpcode() == Instruction::SDiv || 330 I.getOpcode() == Instruction::UDiv || 331 I.getOpcode() == Instruction::SRem || 332 I.getOpcode() == Instruction::URem) 333 return false; 334 335 IRBuilder<> Builder(&I); 336 Builder.SetCurrentDebugLocation(I.getDebugLoc()); 337 338 Type *I32Ty = getI32Ty(Builder, I.getType()); 339 Value *ExtOp0 = nullptr; 340 Value *ExtOp1 = nullptr; 341 Value *ExtRes = nullptr; 342 Value *TruncRes = nullptr; 343 344 if (isSigned(I)) { 345 ExtOp0 = Builder.CreateSExt(I.getOperand(0), I32Ty); 346 ExtOp1 = Builder.CreateSExt(I.getOperand(1), I32Ty); 347 } else { 348 ExtOp0 = Builder.CreateZExt(I.getOperand(0), I32Ty); 349 ExtOp1 = Builder.CreateZExt(I.getOperand(1), I32Ty); 350 } 351 352 ExtRes = Builder.CreateBinOp(I.getOpcode(), ExtOp0, ExtOp1); 353 if (Instruction *Inst = dyn_cast<Instruction>(ExtRes)) { 354 if (promotedOpIsNSW(cast<Instruction>(I))) 355 Inst->setHasNoSignedWrap(); 356 357 if (promotedOpIsNUW(cast<Instruction>(I))) 358 Inst->setHasNoUnsignedWrap(); 359 360 if (const auto *ExactOp = dyn_cast<PossiblyExactOperator>(&I)) 361 Inst->setIsExact(ExactOp->isExact()); 362 } 363 364 TruncRes = Builder.CreateTrunc(ExtRes, I.getType()); 365 366 I.replaceAllUsesWith(TruncRes); 367 I.eraseFromParent(); 368 369 return true; 370 } 371 372 bool AMDGPUCodeGenPrepare::promoteUniformOpToI32(ICmpInst &I) const { 373 assert(needsPromotionToI32(I.getOperand(0)->getType()) && 374 "I does not need promotion to i32"); 375 376 IRBuilder<> Builder(&I); 377 Builder.SetCurrentDebugLocation(I.getDebugLoc()); 378 379 Type *I32Ty = getI32Ty(Builder, I.getOperand(0)->getType()); 380 Value *ExtOp0 = nullptr; 381 Value *ExtOp1 = nullptr; 382 Value *NewICmp = nullptr; 383 384 if (I.isSigned()) { 385 ExtOp0 = Builder.CreateSExt(I.getOperand(0), I32Ty); 386 ExtOp1 = Builder.CreateSExt(I.getOperand(1), I32Ty); 387 } else { 388 ExtOp0 = Builder.CreateZExt(I.getOperand(0), I32Ty); 389 ExtOp1 = Builder.CreateZExt(I.getOperand(1), I32Ty); 390 } 391 NewICmp = Builder.CreateICmp(I.getPredicate(), ExtOp0, ExtOp1); 392 393 I.replaceAllUsesWith(NewICmp); 394 I.eraseFromParent(); 395 396 return true; 397 } 398 399 bool AMDGPUCodeGenPrepare::promoteUniformOpToI32(SelectInst &I) const { 400 assert(needsPromotionToI32(I.getType()) && 401 "I does not need promotion to i32"); 402 403 IRBuilder<> Builder(&I); 404 Builder.SetCurrentDebugLocation(I.getDebugLoc()); 405 406 Type *I32Ty = getI32Ty(Builder, I.getType()); 407 Value *ExtOp1 = nullptr; 408 Value *ExtOp2 = nullptr; 409 Value *ExtRes = nullptr; 410 Value *TruncRes = nullptr; 411 412 if (isSigned(I)) { 413 ExtOp1 = Builder.CreateSExt(I.getOperand(1), I32Ty); 414 ExtOp2 = Builder.CreateSExt(I.getOperand(2), I32Ty); 415 } else { 416 ExtOp1 = Builder.CreateZExt(I.getOperand(1), I32Ty); 417 ExtOp2 = Builder.CreateZExt(I.getOperand(2), I32Ty); 418 } 419 ExtRes = Builder.CreateSelect(I.getOperand(0), ExtOp1, ExtOp2); 420 TruncRes = Builder.CreateTrunc(ExtRes, I.getType()); 421 422 I.replaceAllUsesWith(TruncRes); 423 I.eraseFromParent(); 424 425 return true; 426 } 427 428 bool AMDGPUCodeGenPrepare::promoteUniformBitreverseToI32( 429 IntrinsicInst &I) const { 430 assert(I.getIntrinsicID() == Intrinsic::bitreverse && 431 "I must be bitreverse intrinsic"); 432 assert(needsPromotionToI32(I.getType()) && 433 "I does not need promotion to i32"); 434 435 IRBuilder<> Builder(&I); 436 Builder.SetCurrentDebugLocation(I.getDebugLoc()); 437 438 Type *I32Ty = getI32Ty(Builder, I.getType()); 439 Function *I32 = 440 Intrinsic::getDeclaration(Mod, Intrinsic::bitreverse, { I32Ty }); 441 Value *ExtOp = Builder.CreateZExt(I.getOperand(0), I32Ty); 442 Value *ExtRes = Builder.CreateCall(I32, { ExtOp }); 443 Value *LShrOp = 444 Builder.CreateLShr(ExtRes, 32 - getBaseElementBitWidth(I.getType())); 445 Value *TruncRes = 446 Builder.CreateTrunc(LShrOp, I.getType()); 447 448 I.replaceAllUsesWith(TruncRes); 449 I.eraseFromParent(); 450 451 return true; 452 } 453 454 unsigned AMDGPUCodeGenPrepare::numBitsUnsigned(Value *Op, 455 unsigned ScalarSize) const { 456 KnownBits Known = computeKnownBits(Op, *DL, 0, AC); 457 return ScalarSize - Known.countMinLeadingZeros(); 458 } 459 460 unsigned AMDGPUCodeGenPrepare::numBitsSigned(Value *Op, 461 unsigned ScalarSize) const { 462 // In order for this to be a signed 24-bit value, bit 23, must 463 // be a sign bit. 464 return ScalarSize - ComputeNumSignBits(Op, *DL, 0, AC); 465 } 466 467 bool AMDGPUCodeGenPrepare::isI24(Value *V, unsigned ScalarSize) const { 468 return ScalarSize >= 24 && // Types less than 24-bit should be treated 469 // as unsigned 24-bit values. 470 numBitsSigned(V, ScalarSize) < 24; 471 } 472 473 bool AMDGPUCodeGenPrepare::isU24(Value *V, unsigned ScalarSize) const { 474 return numBitsUnsigned(V, ScalarSize) <= 24; 475 } 476 477 static void extractValues(IRBuilder<> &Builder, 478 SmallVectorImpl<Value *> &Values, Value *V) { 479 VectorType *VT = dyn_cast<VectorType>(V->getType()); 480 if (!VT) { 481 Values.push_back(V); 482 return; 483 } 484 485 for (int I = 0, E = VT->getNumElements(); I != E; ++I) 486 Values.push_back(Builder.CreateExtractElement(V, I)); 487 } 488 489 static Value *insertValues(IRBuilder<> &Builder, 490 Type *Ty, 491 SmallVectorImpl<Value *> &Values) { 492 if (Values.size() == 1) 493 return Values[0]; 494 495 Value *NewVal = UndefValue::get(Ty); 496 for (int I = 0, E = Values.size(); I != E; ++I) 497 NewVal = Builder.CreateInsertElement(NewVal, Values[I], I); 498 499 return NewVal; 500 } 501 502 bool AMDGPUCodeGenPrepare::replaceMulWithMul24(BinaryOperator &I) const { 503 if (I.getOpcode() != Instruction::Mul) 504 return false; 505 506 Type *Ty = I.getType(); 507 unsigned Size = Ty->getScalarSizeInBits(); 508 if (Size <= 16 && ST->has16BitInsts()) 509 return false; 510 511 // Prefer scalar if this could be s_mul_i32 512 if (DA->isUniform(&I)) 513 return false; 514 515 Value *LHS = I.getOperand(0); 516 Value *RHS = I.getOperand(1); 517 IRBuilder<> Builder(&I); 518 Builder.SetCurrentDebugLocation(I.getDebugLoc()); 519 520 Intrinsic::ID IntrID = Intrinsic::not_intrinsic; 521 522 // TODO: Should this try to match mulhi24? 523 if (ST->hasMulU24() && isU24(LHS, Size) && isU24(RHS, Size)) { 524 IntrID = Intrinsic::amdgcn_mul_u24; 525 } else if (ST->hasMulI24() && isI24(LHS, Size) && isI24(RHS, Size)) { 526 IntrID = Intrinsic::amdgcn_mul_i24; 527 } else 528 return false; 529 530 SmallVector<Value *, 4> LHSVals; 531 SmallVector<Value *, 4> RHSVals; 532 SmallVector<Value *, 4> ResultVals; 533 extractValues(Builder, LHSVals, LHS); 534 extractValues(Builder, RHSVals, RHS); 535 536 537 IntegerType *I32Ty = Builder.getInt32Ty(); 538 FunctionCallee Intrin = Intrinsic::getDeclaration(Mod, IntrID); 539 for (int I = 0, E = LHSVals.size(); I != E; ++I) { 540 Value *LHS, *RHS; 541 if (IntrID == Intrinsic::amdgcn_mul_u24) { 542 LHS = Builder.CreateZExtOrTrunc(LHSVals[I], I32Ty); 543 RHS = Builder.CreateZExtOrTrunc(RHSVals[I], I32Ty); 544 } else { 545 LHS = Builder.CreateSExtOrTrunc(LHSVals[I], I32Ty); 546 RHS = Builder.CreateSExtOrTrunc(RHSVals[I], I32Ty); 547 } 548 549 Value *Result = Builder.CreateCall(Intrin, {LHS, RHS}); 550 551 if (IntrID == Intrinsic::amdgcn_mul_u24) { 552 ResultVals.push_back(Builder.CreateZExtOrTrunc(Result, 553 LHSVals[I]->getType())); 554 } else { 555 ResultVals.push_back(Builder.CreateSExtOrTrunc(Result, 556 LHSVals[I]->getType())); 557 } 558 } 559 560 Value *NewVal = insertValues(Builder, Ty, ResultVals); 561 NewVal->takeName(&I); 562 I.replaceAllUsesWith(NewVal); 563 I.eraseFromParent(); 564 565 return true; 566 } 567 568 // Find a select instruction, which may have been casted. This is mostly to deal 569 // with cases where i16 selects were promoted here to i32. 570 static SelectInst *findSelectThroughCast(Value *V, CastInst *&Cast) { 571 Cast = nullptr; 572 if (SelectInst *Sel = dyn_cast<SelectInst>(V)) 573 return Sel; 574 575 if ((Cast = dyn_cast<CastInst>(V))) { 576 if (SelectInst *Sel = dyn_cast<SelectInst>(Cast->getOperand(0))) 577 return Sel; 578 } 579 580 return nullptr; 581 } 582 583 bool AMDGPUCodeGenPrepare::foldBinOpIntoSelect(BinaryOperator &BO) const { 584 // Don't do this unless the old select is going away. We want to eliminate the 585 // binary operator, not replace a binop with a select. 586 int SelOpNo = 0; 587 588 CastInst *CastOp; 589 590 // TODO: Should probably try to handle some cases with multiple 591 // users. Duplicating the select may be profitable for division. 592 SelectInst *Sel = findSelectThroughCast(BO.getOperand(0), CastOp); 593 if (!Sel || !Sel->hasOneUse()) { 594 SelOpNo = 1; 595 Sel = findSelectThroughCast(BO.getOperand(1), CastOp); 596 } 597 598 if (!Sel || !Sel->hasOneUse()) 599 return false; 600 601 Constant *CT = dyn_cast<Constant>(Sel->getTrueValue()); 602 Constant *CF = dyn_cast<Constant>(Sel->getFalseValue()); 603 Constant *CBO = dyn_cast<Constant>(BO.getOperand(SelOpNo ^ 1)); 604 if (!CBO || !CT || !CF) 605 return false; 606 607 if (CastOp) { 608 if (!CastOp->hasOneUse()) 609 return false; 610 CT = ConstantFoldCastOperand(CastOp->getOpcode(), CT, BO.getType(), *DL); 611 CF = ConstantFoldCastOperand(CastOp->getOpcode(), CF, BO.getType(), *DL); 612 } 613 614 // TODO: Handle special 0/-1 cases DAG combine does, although we only really 615 // need to handle divisions here. 616 Constant *FoldedT = SelOpNo ? 617 ConstantFoldBinaryOpOperands(BO.getOpcode(), CBO, CT, *DL) : 618 ConstantFoldBinaryOpOperands(BO.getOpcode(), CT, CBO, *DL); 619 if (isa<ConstantExpr>(FoldedT)) 620 return false; 621 622 Constant *FoldedF = SelOpNo ? 623 ConstantFoldBinaryOpOperands(BO.getOpcode(), CBO, CF, *DL) : 624 ConstantFoldBinaryOpOperands(BO.getOpcode(), CF, CBO, *DL); 625 if (isa<ConstantExpr>(FoldedF)) 626 return false; 627 628 IRBuilder<> Builder(&BO); 629 Builder.SetCurrentDebugLocation(BO.getDebugLoc()); 630 if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(&BO)) 631 Builder.setFastMathFlags(FPOp->getFastMathFlags()); 632 633 Value *NewSelect = Builder.CreateSelect(Sel->getCondition(), 634 FoldedT, FoldedF); 635 NewSelect->takeName(&BO); 636 BO.replaceAllUsesWith(NewSelect); 637 BO.eraseFromParent(); 638 if (CastOp) 639 CastOp->eraseFromParent(); 640 Sel->eraseFromParent(); 641 return true; 642 } 643 644 // Optimize fdiv with rcp: 645 // 646 // 1/x -> rcp(x) when rcp is sufficiently accurate or inaccurate rcp is 647 // allowed with unsafe-fp-math or afn. 648 // 649 // a/b -> a*rcp(b) when inaccurate rcp is allowed with unsafe-fp-math or afn. 650 static Value *optimizeWithRcp(Value *Num, Value *Den, bool AllowInaccurateRcp, 651 bool RcpIsAccurate, IRBuilder<> &Builder, 652 Module *Mod) { 653 654 if (!AllowInaccurateRcp && !RcpIsAccurate) 655 return nullptr; 656 657 Type *Ty = Den->getType(); 658 if (const ConstantFP *CLHS = dyn_cast<ConstantFP>(Num)) { 659 if (AllowInaccurateRcp || RcpIsAccurate) { 660 if (CLHS->isExactlyValue(1.0)) { 661 Function *Decl = Intrinsic::getDeclaration( 662 Mod, Intrinsic::amdgcn_rcp, Ty); 663 664 // v_rcp_f32 and v_rsq_f32 do not support denormals, and according to 665 // the CI documentation has a worst case error of 1 ulp. 666 // OpenCL requires <= 2.5 ulp for 1.0 / x, so it should always be OK to 667 // use it as long as we aren't trying to use denormals. 668 // 669 // v_rcp_f16 and v_rsq_f16 DO support denormals. 670 671 // NOTE: v_sqrt and v_rcp will be combined to v_rsq later. So we don't 672 // insert rsq intrinsic here. 673 674 // 1.0 / x -> rcp(x) 675 return Builder.CreateCall(Decl, { Den }); 676 } 677 678 // Same as for 1.0, but expand the sign out of the constant. 679 if (CLHS->isExactlyValue(-1.0)) { 680 Function *Decl = Intrinsic::getDeclaration( 681 Mod, Intrinsic::amdgcn_rcp, Ty); 682 683 // -1.0 / x -> rcp (fneg x) 684 Value *FNeg = Builder.CreateFNeg(Den); 685 return Builder.CreateCall(Decl, { FNeg }); 686 } 687 } 688 } 689 690 if (AllowInaccurateRcp) { 691 Function *Decl = Intrinsic::getDeclaration( 692 Mod, Intrinsic::amdgcn_rcp, Ty); 693 694 // Turn into multiply by the reciprocal. 695 // x / y -> x * (1.0 / y) 696 Value *Recip = Builder.CreateCall(Decl, { Den }); 697 return Builder.CreateFMul(Num, Recip); 698 } 699 return nullptr; 700 } 701 702 // optimize with fdiv.fast: 703 // 704 // a/b -> fdiv.fast(a, b) when !fpmath >= 2.5ulp with denormals flushed. 705 // 706 // 1/x -> fdiv.fast(1,x) when !fpmath >= 2.5ulp. 707 // 708 // NOTE: optimizeWithRcp should be tried first because rcp is the preference. 709 static Value *optimizeWithFDivFast(Value *Num, Value *Den, float ReqdAccuracy, 710 bool HasDenormals, IRBuilder<> &Builder, 711 Module *Mod) { 712 // fdiv.fast can achieve 2.5 ULP accuracy. 713 if (ReqdAccuracy < 2.5f) 714 return nullptr; 715 716 // Only have fdiv.fast for f32. 717 Type *Ty = Den->getType(); 718 if (!Ty->isFloatTy()) 719 return nullptr; 720 721 bool NumIsOne = false; 722 if (const ConstantFP *CNum = dyn_cast<ConstantFP>(Num)) { 723 if (CNum->isExactlyValue(+1.0) || CNum->isExactlyValue(-1.0)) 724 NumIsOne = true; 725 } 726 727 // fdiv does not support denormals. But 1.0/x is always fine to use it. 728 if (HasDenormals && !NumIsOne) 729 return nullptr; 730 731 Function *Decl = Intrinsic::getDeclaration(Mod, Intrinsic::amdgcn_fdiv_fast); 732 return Builder.CreateCall(Decl, { Num, Den }); 733 } 734 735 // Optimizations is performed based on fpmath, fast math flags as well as 736 // denormals to optimize fdiv with either rcp or fdiv.fast. 737 // 738 // With rcp: 739 // 1/x -> rcp(x) when rcp is sufficiently accurate or inaccurate rcp is 740 // allowed with unsafe-fp-math or afn. 741 // 742 // a/b -> a*rcp(b) when inaccurate rcp is allowed with unsafe-fp-math or afn. 743 // 744 // With fdiv.fast: 745 // a/b -> fdiv.fast(a, b) when !fpmath >= 2.5ulp with denormals flushed. 746 // 747 // 1/x -> fdiv.fast(1,x) when !fpmath >= 2.5ulp. 748 // 749 // NOTE: rcp is the preference in cases that both are legal. 750 bool AMDGPUCodeGenPrepare::visitFDiv(BinaryOperator &FDiv) { 751 752 Type *Ty = FDiv.getType()->getScalarType(); 753 754 // No intrinsic for fdiv16 if target does not support f16. 755 if (Ty->isHalfTy() && !ST->has16BitInsts()) 756 return false; 757 758 const FPMathOperator *FPOp = cast<const FPMathOperator>(&FDiv); 759 const float ReqdAccuracy = FPOp->getFPAccuracy(); 760 761 // Inaccurate rcp is allowed with unsafe-fp-math or afn. 762 FastMathFlags FMF = FPOp->getFastMathFlags(); 763 const bool AllowInaccurateRcp = HasUnsafeFPMath || FMF.approxFunc(); 764 765 // rcp_f16 is accurate for !fpmath >= 1.0ulp. 766 // rcp_f32 is accurate for !fpmath >= 1.0ulp and denormals are flushed. 767 // rcp_f64 is never accurate. 768 const bool RcpIsAccurate = (Ty->isHalfTy() && ReqdAccuracy >= 1.0f) || 769 (Ty->isFloatTy() && !HasFP32Denormals && ReqdAccuracy >= 1.0f); 770 771 IRBuilder<> Builder(FDiv.getParent(), std::next(FDiv.getIterator())); 772 Builder.setFastMathFlags(FMF); 773 Builder.SetCurrentDebugLocation(FDiv.getDebugLoc()); 774 775 Value *Num = FDiv.getOperand(0); 776 Value *Den = FDiv.getOperand(1); 777 778 Value *NewFDiv = nullptr; 779 if (VectorType *VT = dyn_cast<VectorType>(FDiv.getType())) { 780 NewFDiv = UndefValue::get(VT); 781 782 // FIXME: Doesn't do the right thing for cases where the vector is partially 783 // constant. This works when the scalarizer pass is run first. 784 for (unsigned I = 0, E = VT->getNumElements(); I != E; ++I) { 785 Value *NumEltI = Builder.CreateExtractElement(Num, I); 786 Value *DenEltI = Builder.CreateExtractElement(Den, I); 787 // Try rcp first. 788 Value *NewElt = optimizeWithRcp(NumEltI, DenEltI, AllowInaccurateRcp, 789 RcpIsAccurate, Builder, Mod); 790 if (!NewElt) // Try fdiv.fast. 791 NewElt = optimizeWithFDivFast(NumEltI, DenEltI, ReqdAccuracy, 792 HasFP32Denormals, Builder, Mod); 793 if (!NewElt) // Keep the original. 794 NewElt = Builder.CreateFDiv(NumEltI, DenEltI); 795 796 NewFDiv = Builder.CreateInsertElement(NewFDiv, NewElt, I); 797 } 798 } else { // Scalar FDiv. 799 // Try rcp first. 800 NewFDiv = optimizeWithRcp(Num, Den, AllowInaccurateRcp, RcpIsAccurate, 801 Builder, Mod); 802 if (!NewFDiv) { // Try fdiv.fast. 803 NewFDiv = optimizeWithFDivFast(Num, Den, ReqdAccuracy, HasFP32Denormals, 804 Builder, Mod); 805 } 806 } 807 808 if (NewFDiv) { 809 FDiv.replaceAllUsesWith(NewFDiv); 810 NewFDiv->takeName(&FDiv); 811 FDiv.eraseFromParent(); 812 } 813 814 return !!NewFDiv; 815 } 816 817 static bool hasUnsafeFPMath(const Function &F) { 818 Attribute Attr = F.getFnAttribute("unsafe-fp-math"); 819 return Attr.getValueAsString() == "true"; 820 } 821 822 static std::pair<Value*, Value*> getMul64(IRBuilder<> &Builder, 823 Value *LHS, Value *RHS) { 824 Type *I32Ty = Builder.getInt32Ty(); 825 Type *I64Ty = Builder.getInt64Ty(); 826 827 Value *LHS_EXT64 = Builder.CreateZExt(LHS, I64Ty); 828 Value *RHS_EXT64 = Builder.CreateZExt(RHS, I64Ty); 829 Value *MUL64 = Builder.CreateMul(LHS_EXT64, RHS_EXT64); 830 Value *Lo = Builder.CreateTrunc(MUL64, I32Ty); 831 Value *Hi = Builder.CreateLShr(MUL64, Builder.getInt64(32)); 832 Hi = Builder.CreateTrunc(Hi, I32Ty); 833 return std::make_pair(Lo, Hi); 834 } 835 836 static Value* getMulHu(IRBuilder<> &Builder, Value *LHS, Value *RHS) { 837 return getMul64(Builder, LHS, RHS).second; 838 } 839 840 /// Figure out how many bits are really needed for this ddivision. \p AtLeast is 841 /// an optimization hint to bypass the second ComputeNumSignBits call if we the 842 /// first one is insufficient. Returns -1 on failure. 843 int AMDGPUCodeGenPrepare::getDivNumBits(BinaryOperator &I, 844 Value *Num, Value *Den, 845 unsigned AtLeast, bool IsSigned) const { 846 const DataLayout &DL = Mod->getDataLayout(); 847 unsigned LHSSignBits = ComputeNumSignBits(Num, DL, 0, AC, &I); 848 if (LHSSignBits < AtLeast) 849 return -1; 850 851 unsigned RHSSignBits = ComputeNumSignBits(Den, DL, 0, AC, &I); 852 if (RHSSignBits < AtLeast) 853 return -1; 854 855 unsigned SignBits = std::min(LHSSignBits, RHSSignBits); 856 unsigned DivBits = Num->getType()->getScalarSizeInBits() - SignBits; 857 if (IsSigned) 858 ++DivBits; 859 return DivBits; 860 } 861 862 // The fractional part of a float is enough to accurately represent up to 863 // a 24-bit signed integer. 864 Value *AMDGPUCodeGenPrepare::expandDivRem24(IRBuilder<> &Builder, 865 BinaryOperator &I, 866 Value *Num, Value *Den, 867 bool IsDiv, bool IsSigned) const { 868 int DivBits = getDivNumBits(I, Num, Den, 9, IsSigned); 869 if (DivBits == -1) 870 return nullptr; 871 return expandDivRem24Impl(Builder, I, Num, Den, DivBits, IsDiv, IsSigned); 872 } 873 874 Value *AMDGPUCodeGenPrepare::expandDivRem24Impl(IRBuilder<> &Builder, 875 BinaryOperator &I, 876 Value *Num, Value *Den, 877 unsigned DivBits, 878 bool IsDiv, bool IsSigned) const { 879 Type *I32Ty = Builder.getInt32Ty(); 880 Num = Builder.CreateTrunc(Num, I32Ty); 881 Den = Builder.CreateTrunc(Den, I32Ty); 882 883 Type *F32Ty = Builder.getFloatTy(); 884 ConstantInt *One = Builder.getInt32(1); 885 Value *JQ = One; 886 887 if (IsSigned) { 888 // char|short jq = ia ^ ib; 889 JQ = Builder.CreateXor(Num, Den); 890 891 // jq = jq >> (bitsize - 2) 892 JQ = Builder.CreateAShr(JQ, Builder.getInt32(30)); 893 894 // jq = jq | 0x1 895 JQ = Builder.CreateOr(JQ, One); 896 } 897 898 // int ia = (int)LHS; 899 Value *IA = Num; 900 901 // int ib, (int)RHS; 902 Value *IB = Den; 903 904 // float fa = (float)ia; 905 Value *FA = IsSigned ? Builder.CreateSIToFP(IA, F32Ty) 906 : Builder.CreateUIToFP(IA, F32Ty); 907 908 // float fb = (float)ib; 909 Value *FB = IsSigned ? Builder.CreateSIToFP(IB,F32Ty) 910 : Builder.CreateUIToFP(IB,F32Ty); 911 912 Function *RcpDecl = Intrinsic::getDeclaration(Mod, Intrinsic::amdgcn_rcp, 913 Builder.getFloatTy()); 914 Value *RCP = Builder.CreateCall(RcpDecl, { FB }); 915 Value *FQM = Builder.CreateFMul(FA, RCP); 916 917 // fq = trunc(fqm); 918 CallInst *FQ = Builder.CreateUnaryIntrinsic(Intrinsic::trunc, FQM); 919 FQ->copyFastMathFlags(Builder.getFastMathFlags()); 920 921 // float fqneg = -fq; 922 Value *FQNeg = Builder.CreateFNeg(FQ); 923 924 // float fr = mad(fqneg, fb, fa); 925 Value *FR = Builder.CreateIntrinsic(Intrinsic::amdgcn_fmad_ftz, 926 {FQNeg->getType()}, {FQNeg, FB, FA}, FQ); 927 928 // int iq = (int)fq; 929 Value *IQ = IsSigned ? Builder.CreateFPToSI(FQ, I32Ty) 930 : Builder.CreateFPToUI(FQ, I32Ty); 931 932 // fr = fabs(fr); 933 FR = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, FR, FQ); 934 935 // fb = fabs(fb); 936 FB = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, FB, FQ); 937 938 // int cv = fr >= fb; 939 Value *CV = Builder.CreateFCmpOGE(FR, FB); 940 941 // jq = (cv ? jq : 0); 942 JQ = Builder.CreateSelect(CV, JQ, Builder.getInt32(0)); 943 944 // dst = iq + jq; 945 Value *Div = Builder.CreateAdd(IQ, JQ); 946 947 Value *Res = Div; 948 if (!IsDiv) { 949 // Rem needs compensation, it's easier to recompute it 950 Value *Rem = Builder.CreateMul(Div, Den); 951 Res = Builder.CreateSub(Num, Rem); 952 } 953 954 if (DivBits != 0 && DivBits < 32) { 955 // Extend in register from the number of bits this divide really is. 956 if (IsSigned) { 957 int InRegBits = 32 - DivBits; 958 959 Res = Builder.CreateShl(Res, InRegBits); 960 Res = Builder.CreateAShr(Res, InRegBits); 961 } else { 962 ConstantInt *TruncMask 963 = Builder.getInt32((UINT64_C(1) << DivBits) - 1); 964 Res = Builder.CreateAnd(Res, TruncMask); 965 } 966 } 967 968 return Res; 969 } 970 971 // Try to recognize special cases the DAG will emit special, better expansions 972 // than the general expansion we do here. 973 974 // TODO: It would be better to just directly handle those optimizations here. 975 bool AMDGPUCodeGenPrepare::divHasSpecialOptimization( 976 BinaryOperator &I, Value *Num, Value *Den) const { 977 if (Constant *C = dyn_cast<Constant>(Den)) { 978 // Arbitrary constants get a better expansion as long as a wider mulhi is 979 // legal. 980 if (C->getType()->getScalarSizeInBits() <= 32) 981 return true; 982 983 // TODO: Sdiv check for not exact for some reason. 984 985 // If there's no wider mulhi, there's only a better expansion for powers of 986 // two. 987 // TODO: Should really know for each vector element. 988 if (isKnownToBeAPowerOfTwo(C, *DL, true, 0, AC, &I, DT)) 989 return true; 990 991 return false; 992 } 993 994 if (BinaryOperator *BinOpDen = dyn_cast<BinaryOperator>(Den)) { 995 // fold (udiv x, (shl c, y)) -> x >>u (log2(c)+y) iff c is power of 2 996 if (BinOpDen->getOpcode() == Instruction::Shl && 997 isa<Constant>(BinOpDen->getOperand(0)) && 998 isKnownToBeAPowerOfTwo(BinOpDen->getOperand(0), *DL, true, 999 0, AC, &I, DT)) { 1000 return true; 1001 } 1002 } 1003 1004 return false; 1005 } 1006 1007 Value* AMDGPUCodeGenPrepare::expandDivRem32(IRBuilder<> &Builder, 1008 BinaryOperator &I, 1009 Value *Num, Value *Den) const { 1010 Instruction::BinaryOps Opc = I.getOpcode(); 1011 assert(Opc == Instruction::URem || Opc == Instruction::UDiv || 1012 Opc == Instruction::SRem || Opc == Instruction::SDiv); 1013 1014 FastMathFlags FMF; 1015 FMF.setFast(); 1016 Builder.setFastMathFlags(FMF); 1017 1018 if (divHasSpecialOptimization(I, Num, Den)) 1019 return nullptr; // Keep it for later optimization. 1020 1021 bool IsDiv = Opc == Instruction::UDiv || Opc == Instruction::SDiv; 1022 bool IsSigned = Opc == Instruction::SRem || Opc == Instruction::SDiv; 1023 1024 Type *Ty = Num->getType(); 1025 Type *I32Ty = Builder.getInt32Ty(); 1026 Type *F32Ty = Builder.getFloatTy(); 1027 1028 if (Ty->getScalarSizeInBits() < 32) { 1029 if (IsSigned) { 1030 Num = Builder.CreateSExt(Num, I32Ty); 1031 Den = Builder.CreateSExt(Den, I32Ty); 1032 } else { 1033 Num = Builder.CreateZExt(Num, I32Ty); 1034 Den = Builder.CreateZExt(Den, I32Ty); 1035 } 1036 } 1037 1038 if (Value *Res = expandDivRem24(Builder, I, Num, Den, IsDiv, IsSigned)) { 1039 return IsSigned ? Builder.CreateSExtOrTrunc(Res, Ty) : 1040 Builder.CreateZExtOrTrunc(Res, Ty); 1041 } 1042 1043 ConstantInt *Zero = Builder.getInt32(0); 1044 ConstantInt *One = Builder.getInt32(1); 1045 1046 Value *Sign = nullptr; 1047 if (IsSigned) { 1048 ConstantInt *K31 = Builder.getInt32(31); 1049 Value *LHSign = Builder.CreateAShr(Num, K31); 1050 Value *RHSign = Builder.CreateAShr(Den, K31); 1051 // Remainder sign is the same as LHS 1052 Sign = IsDiv ? Builder.CreateXor(LHSign, RHSign) : LHSign; 1053 1054 Num = Builder.CreateAdd(Num, LHSign); 1055 Den = Builder.CreateAdd(Den, RHSign); 1056 1057 Num = Builder.CreateXor(Num, LHSign); 1058 Den = Builder.CreateXor(Den, RHSign); 1059 } 1060 1061 // RCP = URECIP(Den) = 2^32 / Den + e 1062 // e is rounding error. 1063 Value *DEN_F32 = Builder.CreateUIToFP(Den, F32Ty); 1064 1065 Function *RcpDecl = Intrinsic::getDeclaration(Mod, Intrinsic::amdgcn_rcp, 1066 Builder.getFloatTy()); 1067 Value *RCP_F32 = Builder.CreateCall(RcpDecl, { DEN_F32 }); 1068 Constant *UINT_MAX_PLUS_1 = ConstantFP::get(F32Ty, BitsToFloat(0x4f800000)); 1069 Value *RCP_SCALE = Builder.CreateFMul(RCP_F32, UINT_MAX_PLUS_1); 1070 Value *RCP = Builder.CreateFPToUI(RCP_SCALE, I32Ty); 1071 1072 // RCP_LO, RCP_HI = mul(RCP, Den) */ 1073 Value *RCP_LO, *RCP_HI; 1074 std::tie(RCP_LO, RCP_HI) = getMul64(Builder, RCP, Den); 1075 1076 // NEG_RCP_LO = -RCP_LO 1077 Value *NEG_RCP_LO = Builder.CreateNeg(RCP_LO); 1078 1079 // ABS_RCP_LO = (RCP_HI == 0 ? NEG_RCP_LO : RCP_LO) 1080 Value *RCP_HI_0_CC = Builder.CreateICmpEQ(RCP_HI, Zero); 1081 Value *ABS_RCP_LO = Builder.CreateSelect(RCP_HI_0_CC, NEG_RCP_LO, RCP_LO); 1082 1083 // Calculate the rounding error from the URECIP instruction 1084 // E = mulhu(ABS_RCP_LO, RCP) 1085 Value *E = getMulHu(Builder, ABS_RCP_LO, RCP); 1086 1087 // RCP_A_E = RCP + E 1088 Value *RCP_A_E = Builder.CreateAdd(RCP, E); 1089 1090 // RCP_S_E = RCP - E 1091 Value *RCP_S_E = Builder.CreateSub(RCP, E); 1092 1093 // Tmp0 = (RCP_HI == 0 ? RCP_A_E : RCP_SUB_E) 1094 Value *Tmp0 = Builder.CreateSelect(RCP_HI_0_CC, RCP_A_E, RCP_S_E); 1095 1096 // Quotient = mulhu(Tmp0, Num) 1097 Value *Quotient = getMulHu(Builder, Tmp0, Num); 1098 1099 // Num_S_Remainder = Quotient * Den 1100 Value *Num_S_Remainder = Builder.CreateMul(Quotient, Den); 1101 1102 // Remainder = Num - Num_S_Remainder 1103 Value *Remainder = Builder.CreateSub(Num, Num_S_Remainder); 1104 1105 // Remainder_GE_Den = Remainder >= Den; 1106 Value *Remainder_GE_Den = Builder.CreateICmpUGE(Remainder, Den); 1107 1108 // Remainder_GE_Zero = Num >= Num_S_Remainder 1109 Value *Remainder_GE_Zero = Builder.CreateICmpUGE(Num, Num_S_Remainder); 1110 1111 // Tmp1 = Remainder_GE_Den & Remainder_GE_Zero 1112 Value *Tmp1 = Builder.CreateAnd(Remainder_GE_Den, Remainder_GE_Zero); 1113 1114 Value *Res; 1115 if (IsDiv) { 1116 // Quotient_A_One = Quotient + 1 1117 Value *Quotient_A_One = Builder.CreateAdd(Quotient, One); 1118 1119 // Quotient_S_One = Quotient - 1 1120 Value *Quotient_S_One = Builder.CreateSub(Quotient, One); 1121 1122 // Div = (Tmp1 ? Quotient_A_One : Quotient) 1123 Value *Div = Builder.CreateSelect(Tmp1, Quotient_A_One, Quotient); 1124 1125 // Div = (Remainder_GE_Zero ? Div : Quotient_S_One) 1126 Res = Builder.CreateSelect(Remainder_GE_Zero, Div, Quotient_S_One); 1127 } else { 1128 // Remainder_S_Den = Remainder - Den 1129 Value *Remainder_S_Den = Builder.CreateSub(Remainder, Den); 1130 1131 // Remainder_A_Den = Remainder + Den 1132 Value *Remainder_A_Den = Builder.CreateAdd(Remainder, Den); 1133 1134 // Rem = (Tmp1 ? Remainder_S_Den : Remainder) 1135 Value *Rem = Builder.CreateSelect(Tmp1, Remainder_S_Den, Remainder); 1136 1137 // Rem = (Remainder_GE_Zero ? Rem : Remainder_A_Den) 1138 Res = Builder.CreateSelect(Remainder_GE_Zero, Rem, Remainder_A_Den); 1139 } 1140 1141 if (IsSigned) { 1142 Res = Builder.CreateXor(Res, Sign); 1143 Res = Builder.CreateSub(Res, Sign); 1144 } 1145 1146 Res = Builder.CreateTrunc(Res, Ty); 1147 1148 return Res; 1149 } 1150 1151 Value *AMDGPUCodeGenPrepare::shrinkDivRem64(IRBuilder<> &Builder, 1152 BinaryOperator &I, 1153 Value *Num, Value *Den) const { 1154 if (!ExpandDiv64InIR && divHasSpecialOptimization(I, Num, Den)) 1155 return nullptr; // Keep it for later optimization. 1156 1157 Instruction::BinaryOps Opc = I.getOpcode(); 1158 1159 bool IsDiv = Opc == Instruction::SDiv || Opc == Instruction::UDiv; 1160 bool IsSigned = Opc == Instruction::SDiv || Opc == Instruction::SRem; 1161 1162 int NumDivBits = getDivNumBits(I, Num, Den, 32, IsSigned); 1163 if (NumDivBits == -1) 1164 return nullptr; 1165 1166 Value *Narrowed = nullptr; 1167 if (NumDivBits <= 24) { 1168 Narrowed = expandDivRem24Impl(Builder, I, Num, Den, NumDivBits, 1169 IsDiv, IsSigned); 1170 } else if (NumDivBits <= 32) { 1171 Narrowed = expandDivRem32(Builder, I, Num, Den); 1172 } 1173 1174 if (Narrowed) { 1175 return IsSigned ? Builder.CreateSExt(Narrowed, Num->getType()) : 1176 Builder.CreateZExt(Narrowed, Num->getType()); 1177 } 1178 1179 return nullptr; 1180 } 1181 1182 void AMDGPUCodeGenPrepare::expandDivRem64(BinaryOperator &I) const { 1183 Instruction::BinaryOps Opc = I.getOpcode(); 1184 // Do the general expansion. 1185 if (Opc == Instruction::UDiv || Opc == Instruction::SDiv) { 1186 expandDivisionUpTo64Bits(&I); 1187 return; 1188 } 1189 1190 if (Opc == Instruction::URem || Opc == Instruction::SRem) { 1191 expandRemainderUpTo64Bits(&I); 1192 return; 1193 } 1194 1195 llvm_unreachable("not a division"); 1196 } 1197 1198 bool AMDGPUCodeGenPrepare::visitBinaryOperator(BinaryOperator &I) { 1199 if (foldBinOpIntoSelect(I)) 1200 return true; 1201 1202 if (ST->has16BitInsts() && needsPromotionToI32(I.getType()) && 1203 DA->isUniform(&I) && promoteUniformOpToI32(I)) 1204 return true; 1205 1206 if (UseMul24Intrin && replaceMulWithMul24(I)) 1207 return true; 1208 1209 bool Changed = false; 1210 Instruction::BinaryOps Opc = I.getOpcode(); 1211 Type *Ty = I.getType(); 1212 Value *NewDiv = nullptr; 1213 unsigned ScalarSize = Ty->getScalarSizeInBits(); 1214 1215 SmallVector<BinaryOperator *, 8> Div64ToExpand; 1216 1217 if ((Opc == Instruction::URem || Opc == Instruction::UDiv || 1218 Opc == Instruction::SRem || Opc == Instruction::SDiv) && 1219 ScalarSize <= 64 && 1220 !DisableIDivExpand) { 1221 Value *Num = I.getOperand(0); 1222 Value *Den = I.getOperand(1); 1223 IRBuilder<> Builder(&I); 1224 Builder.SetCurrentDebugLocation(I.getDebugLoc()); 1225 1226 if (VectorType *VT = dyn_cast<VectorType>(Ty)) { 1227 NewDiv = UndefValue::get(VT); 1228 1229 for (unsigned N = 0, E = VT->getNumElements(); N != E; ++N) { 1230 Value *NumEltN = Builder.CreateExtractElement(Num, N); 1231 Value *DenEltN = Builder.CreateExtractElement(Den, N); 1232 1233 Value *NewElt; 1234 if (ScalarSize <= 32) { 1235 NewElt = expandDivRem32(Builder, I, NumEltN, DenEltN); 1236 if (!NewElt) 1237 NewElt = Builder.CreateBinOp(Opc, NumEltN, DenEltN); 1238 } else { 1239 // See if this 64-bit division can be shrunk to 32/24-bits before 1240 // producing the general expansion. 1241 NewElt = shrinkDivRem64(Builder, I, NumEltN, DenEltN); 1242 if (!NewElt) { 1243 // The general 64-bit expansion introduces control flow and doesn't 1244 // return the new value. Just insert a scalar copy and defer 1245 // expanding it. 1246 NewElt = Builder.CreateBinOp(Opc, NumEltN, DenEltN); 1247 Div64ToExpand.push_back(cast<BinaryOperator>(NewElt)); 1248 } 1249 } 1250 1251 NewDiv = Builder.CreateInsertElement(NewDiv, NewElt, N); 1252 } 1253 } else { 1254 if (ScalarSize <= 32) 1255 NewDiv = expandDivRem32(Builder, I, Num, Den); 1256 else { 1257 NewDiv = shrinkDivRem64(Builder, I, Num, Den); 1258 if (!NewDiv) 1259 Div64ToExpand.push_back(&I); 1260 } 1261 } 1262 1263 if (NewDiv) { 1264 I.replaceAllUsesWith(NewDiv); 1265 I.eraseFromParent(); 1266 Changed = true; 1267 } 1268 } 1269 1270 if (ExpandDiv64InIR) { 1271 // TODO: We get much worse code in specially handled constant cases. 1272 for (BinaryOperator *Div : Div64ToExpand) { 1273 expandDivRem64(*Div); 1274 Changed = true; 1275 } 1276 } 1277 1278 return Changed; 1279 } 1280 1281 bool AMDGPUCodeGenPrepare::visitLoadInst(LoadInst &I) { 1282 if (!WidenLoads) 1283 return false; 1284 1285 if ((I.getPointerAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS || 1286 I.getPointerAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS_32BIT) && 1287 canWidenScalarExtLoad(I)) { 1288 IRBuilder<> Builder(&I); 1289 Builder.SetCurrentDebugLocation(I.getDebugLoc()); 1290 1291 Type *I32Ty = Builder.getInt32Ty(); 1292 Type *PT = PointerType::get(I32Ty, I.getPointerAddressSpace()); 1293 Value *BitCast= Builder.CreateBitCast(I.getPointerOperand(), PT); 1294 LoadInst *WidenLoad = Builder.CreateLoad(I32Ty, BitCast); 1295 WidenLoad->copyMetadata(I); 1296 1297 // If we have range metadata, we need to convert the type, and not make 1298 // assumptions about the high bits. 1299 if (auto *Range = WidenLoad->getMetadata(LLVMContext::MD_range)) { 1300 ConstantInt *Lower = 1301 mdconst::extract<ConstantInt>(Range->getOperand(0)); 1302 1303 if (Lower->getValue().isNullValue()) { 1304 WidenLoad->setMetadata(LLVMContext::MD_range, nullptr); 1305 } else { 1306 Metadata *LowAndHigh[] = { 1307 ConstantAsMetadata::get(ConstantInt::get(I32Ty, Lower->getValue().zext(32))), 1308 // Don't make assumptions about the high bits. 1309 ConstantAsMetadata::get(ConstantInt::get(I32Ty, 0)) 1310 }; 1311 1312 WidenLoad->setMetadata(LLVMContext::MD_range, 1313 MDNode::get(Mod->getContext(), LowAndHigh)); 1314 } 1315 } 1316 1317 int TySize = Mod->getDataLayout().getTypeSizeInBits(I.getType()); 1318 Type *IntNTy = Builder.getIntNTy(TySize); 1319 Value *ValTrunc = Builder.CreateTrunc(WidenLoad, IntNTy); 1320 Value *ValOrig = Builder.CreateBitCast(ValTrunc, I.getType()); 1321 I.replaceAllUsesWith(ValOrig); 1322 I.eraseFromParent(); 1323 return true; 1324 } 1325 1326 return false; 1327 } 1328 1329 bool AMDGPUCodeGenPrepare::visitICmpInst(ICmpInst &I) { 1330 bool Changed = false; 1331 1332 if (ST->has16BitInsts() && needsPromotionToI32(I.getOperand(0)->getType()) && 1333 DA->isUniform(&I)) 1334 Changed |= promoteUniformOpToI32(I); 1335 1336 return Changed; 1337 } 1338 1339 bool AMDGPUCodeGenPrepare::visitSelectInst(SelectInst &I) { 1340 bool Changed = false; 1341 1342 if (ST->has16BitInsts() && needsPromotionToI32(I.getType()) && 1343 DA->isUniform(&I)) 1344 Changed |= promoteUniformOpToI32(I); 1345 1346 return Changed; 1347 } 1348 1349 bool AMDGPUCodeGenPrepare::visitIntrinsicInst(IntrinsicInst &I) { 1350 switch (I.getIntrinsicID()) { 1351 case Intrinsic::bitreverse: 1352 return visitBitreverseIntrinsicInst(I); 1353 default: 1354 return false; 1355 } 1356 } 1357 1358 bool AMDGPUCodeGenPrepare::visitBitreverseIntrinsicInst(IntrinsicInst &I) { 1359 bool Changed = false; 1360 1361 if (ST->has16BitInsts() && needsPromotionToI32(I.getType()) && 1362 DA->isUniform(&I)) 1363 Changed |= promoteUniformBitreverseToI32(I); 1364 1365 return Changed; 1366 } 1367 1368 bool AMDGPUCodeGenPrepare::doInitialization(Module &M) { 1369 Mod = &M; 1370 DL = &Mod->getDataLayout(); 1371 return false; 1372 } 1373 1374 bool AMDGPUCodeGenPrepare::runOnFunction(Function &F) { 1375 if (skipFunction(F)) 1376 return false; 1377 1378 auto *TPC = getAnalysisIfAvailable<TargetPassConfig>(); 1379 if (!TPC) 1380 return false; 1381 1382 const AMDGPUTargetMachine &TM = TPC->getTM<AMDGPUTargetMachine>(); 1383 ST = &TM.getSubtarget<GCNSubtarget>(F); 1384 AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 1385 DA = &getAnalysis<LegacyDivergenceAnalysis>(); 1386 1387 auto *DTWP = getAnalysisIfAvailable<DominatorTreeWrapperPass>(); 1388 DT = DTWP ? &DTWP->getDomTree() : nullptr; 1389 1390 HasUnsafeFPMath = hasUnsafeFPMath(F); 1391 1392 AMDGPU::SIModeRegisterDefaults Mode(F); 1393 HasFP32Denormals = Mode.allFP32Denormals(); 1394 1395 bool MadeChange = false; 1396 1397 Function::iterator NextBB; 1398 for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE; FI = NextBB) { 1399 BasicBlock *BB = &*FI; 1400 NextBB = std::next(FI); 1401 1402 BasicBlock::iterator Next; 1403 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; I = Next) { 1404 Next = std::next(I); 1405 1406 MadeChange |= visit(*I); 1407 1408 if (Next != E) { // Control flow changed 1409 BasicBlock *NextInstBB = Next->getParent(); 1410 if (NextInstBB != BB) { 1411 BB = NextInstBB; 1412 E = BB->end(); 1413 FE = F.end(); 1414 } 1415 } 1416 } 1417 } 1418 1419 return MadeChange; 1420 } 1421 1422 INITIALIZE_PASS_BEGIN(AMDGPUCodeGenPrepare, DEBUG_TYPE, 1423 "AMDGPU IR optimizations", false, false) 1424 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 1425 INITIALIZE_PASS_DEPENDENCY(LegacyDivergenceAnalysis) 1426 INITIALIZE_PASS_END(AMDGPUCodeGenPrepare, DEBUG_TYPE, "AMDGPU IR optimizations", 1427 false, false) 1428 1429 char AMDGPUCodeGenPrepare::ID = 0; 1430 1431 FunctionPass *llvm::createAMDGPUCodeGenPreparePass() { 1432 return new AMDGPUCodeGenPrepare(); 1433 } 1434