1 //===-- AMDGPUCodeGenPrepare.cpp ------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file 10 /// This pass does misc. AMDGPU optimizations on IR before instruction 11 /// selection. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "AMDGPU.h" 16 #include "AMDGPUTargetMachine.h" 17 #include "SIModeRegisterDefaults.h" 18 #include "llvm/Analysis/AssumptionCache.h" 19 #include "llvm/Analysis/ConstantFolding.h" 20 #include "llvm/Analysis/TargetLibraryInfo.h" 21 #include "llvm/Analysis/UniformityAnalysis.h" 22 #include "llvm/Analysis/ValueTracking.h" 23 #include "llvm/CodeGen/TargetPassConfig.h" 24 #include "llvm/IR/Dominators.h" 25 #include "llvm/IR/IRBuilder.h" 26 #include "llvm/IR/InstVisitor.h" 27 #include "llvm/IR/IntrinsicsAMDGPU.h" 28 #include "llvm/IR/PatternMatch.h" 29 #include "llvm/InitializePasses.h" 30 #include "llvm/Pass.h" 31 #include "llvm/Support/KnownBits.h" 32 #include "llvm/Transforms/Utils/IntegerDivision.h" 33 #include "llvm/Transforms/Utils/Local.h" 34 35 #define DEBUG_TYPE "amdgpu-codegenprepare" 36 37 using namespace llvm; 38 using namespace llvm::PatternMatch; 39 40 namespace { 41 42 static cl::opt<bool> WidenLoads( 43 "amdgpu-codegenprepare-widen-constant-loads", 44 cl::desc("Widen sub-dword constant address space loads in AMDGPUCodeGenPrepare"), 45 cl::ReallyHidden, 46 cl::init(false)); 47 48 static cl::opt<bool> Widen16BitOps( 49 "amdgpu-codegenprepare-widen-16-bit-ops", 50 cl::desc("Widen uniform 16-bit instructions to 32-bit in AMDGPUCodeGenPrepare"), 51 cl::ReallyHidden, 52 cl::init(true)); 53 54 static cl::opt<bool> 55 BreakLargePHIs("amdgpu-codegenprepare-break-large-phis", 56 cl::desc("Break large PHI nodes for DAGISel"), 57 cl::ReallyHidden, cl::init(true)); 58 59 static cl::opt<bool> 60 ForceBreakLargePHIs("amdgpu-codegenprepare-force-break-large-phis", 61 cl::desc("For testing purposes, always break large " 62 "PHIs even if it isn't profitable."), 63 cl::ReallyHidden, cl::init(false)); 64 65 static cl::opt<unsigned> BreakLargePHIsThreshold( 66 "amdgpu-codegenprepare-break-large-phis-threshold", 67 cl::desc("Minimum type size in bits for breaking large PHI nodes"), 68 cl::ReallyHidden, cl::init(32)); 69 70 static cl::opt<bool> UseMul24Intrin( 71 "amdgpu-codegenprepare-mul24", 72 cl::desc("Introduce mul24 intrinsics in AMDGPUCodeGenPrepare"), 73 cl::ReallyHidden, 74 cl::init(true)); 75 76 // Legalize 64-bit division by using the generic IR expansion. 77 static cl::opt<bool> ExpandDiv64InIR( 78 "amdgpu-codegenprepare-expand-div64", 79 cl::desc("Expand 64-bit division in AMDGPUCodeGenPrepare"), 80 cl::ReallyHidden, 81 cl::init(false)); 82 83 // Leave all division operations as they are. This supersedes ExpandDiv64InIR 84 // and is used for testing the legalizer. 85 static cl::opt<bool> DisableIDivExpand( 86 "amdgpu-codegenprepare-disable-idiv-expansion", 87 cl::desc("Prevent expanding integer division in AMDGPUCodeGenPrepare"), 88 cl::ReallyHidden, 89 cl::init(false)); 90 91 // Disable processing of fdiv so we can better test the backend implementations. 92 static cl::opt<bool> DisableFDivExpand( 93 "amdgpu-codegenprepare-disable-fdiv-expansion", 94 cl::desc("Prevent expanding floating point division in AMDGPUCodeGenPrepare"), 95 cl::ReallyHidden, 96 cl::init(false)); 97 98 static bool hasUnsafeFPMath(const Function &F) { 99 return F.getFnAttribute("unsafe-fp-math").getValueAsBool(); 100 } 101 102 class AMDGPUCodeGenPrepareImpl 103 : public InstVisitor<AMDGPUCodeGenPrepareImpl, bool> { 104 public: 105 Function &F; 106 const GCNSubtarget &ST; 107 const AMDGPUTargetMachine &TM; 108 const TargetLibraryInfo *TLI; 109 AssumptionCache *AC; 110 const DominatorTree *DT; 111 const UniformityInfo &UA; 112 const DataLayout &DL; 113 const bool HasUnsafeFPMath; 114 const bool HasFP32DenormalFlush; 115 bool FlowChanged = false; 116 mutable Function *SqrtF32 = nullptr; 117 mutable Function *LdexpF32 = nullptr; 118 119 DenseMap<const PHINode *, bool> BreakPhiNodesCache; 120 121 AMDGPUCodeGenPrepareImpl(Function &F, const AMDGPUTargetMachine &TM, 122 const TargetLibraryInfo *TLI, AssumptionCache *AC, 123 const DominatorTree *DT, const UniformityInfo &UA) 124 : F(F), ST(TM.getSubtarget<GCNSubtarget>(F)), TM(TM), TLI(TLI), AC(AC), 125 DT(DT), UA(UA), DL(F.getDataLayout()), 126 HasUnsafeFPMath(hasUnsafeFPMath(F)), 127 HasFP32DenormalFlush(SIModeRegisterDefaults(F, ST).FP32Denormals == 128 DenormalMode::getPreserveSign()) {} 129 130 Function *getSqrtF32() const { 131 if (SqrtF32) 132 return SqrtF32; 133 134 LLVMContext &Ctx = F.getContext(); 135 SqrtF32 = Intrinsic::getOrInsertDeclaration( 136 F.getParent(), Intrinsic::amdgcn_sqrt, {Type::getFloatTy(Ctx)}); 137 return SqrtF32; 138 } 139 140 Function *getLdexpF32() const { 141 if (LdexpF32) 142 return LdexpF32; 143 144 LLVMContext &Ctx = F.getContext(); 145 LdexpF32 = Intrinsic::getOrInsertDeclaration( 146 F.getParent(), Intrinsic::ldexp, 147 {Type::getFloatTy(Ctx), Type::getInt32Ty(Ctx)}); 148 return LdexpF32; 149 } 150 151 bool canBreakPHINode(const PHINode &I); 152 153 /// Copies exact/nsw/nuw flags (if any) from binary operation \p I to 154 /// binary operation \p V. 155 /// 156 /// \returns Binary operation \p V. 157 /// \returns \p T's base element bit width. 158 unsigned getBaseElementBitWidth(const Type *T) const; 159 160 /// \returns Equivalent 32 bit integer type for given type \p T. For example, 161 /// if \p T is i7, then i32 is returned; if \p T is <3 x i12>, then <3 x i32> 162 /// is returned. 163 Type *getI32Ty(IRBuilder<> &B, const Type *T) const; 164 165 /// \returns True if binary operation \p I is a signed binary operation, false 166 /// otherwise. 167 bool isSigned(const BinaryOperator &I) const; 168 169 /// \returns True if the condition of 'select' operation \p I comes from a 170 /// signed 'icmp' operation, false otherwise. 171 bool isSigned(const SelectInst &I) const; 172 173 /// \returns True if type \p T needs to be promoted to 32 bit integer type, 174 /// false otherwise. 175 bool needsPromotionToI32(const Type *T) const; 176 177 /// Return true if \p T is a legal scalar floating point type. 178 bool isLegalFloatingTy(const Type *T) const; 179 180 /// Wrapper to pass all the arguments to computeKnownFPClass 181 KnownFPClass computeKnownFPClass(const Value *V, FPClassTest Interested, 182 const Instruction *CtxI) const { 183 return llvm::computeKnownFPClass(V, DL, Interested, 0, TLI, AC, CtxI, DT); 184 } 185 186 bool canIgnoreDenormalInput(const Value *V, const Instruction *CtxI) const { 187 return HasFP32DenormalFlush || 188 computeKnownFPClass(V, fcSubnormal, CtxI).isKnownNeverSubnormal(); 189 } 190 191 /// Promotes uniform binary operation \p I to equivalent 32 bit binary 192 /// operation. 193 /// 194 /// \details \p I's base element bit width must be greater than 1 and less 195 /// than or equal 16. Promotion is done by sign or zero extending operands to 196 /// 32 bits, replacing \p I with equivalent 32 bit binary operation, and 197 /// truncating the result of 32 bit binary operation back to \p I's original 198 /// type. Division operation is not promoted. 199 /// 200 /// \returns True if \p I is promoted to equivalent 32 bit binary operation, 201 /// false otherwise. 202 bool promoteUniformOpToI32(BinaryOperator &I) const; 203 204 /// Promotes uniform 'icmp' operation \p I to 32 bit 'icmp' operation. 205 /// 206 /// \details \p I's base element bit width must be greater than 1 and less 207 /// than or equal 16. Promotion is done by sign or zero extending operands to 208 /// 32 bits, and replacing \p I with 32 bit 'icmp' operation. 209 /// 210 /// \returns True. 211 bool promoteUniformOpToI32(ICmpInst &I) const; 212 213 /// Promotes uniform 'select' operation \p I to 32 bit 'select' 214 /// operation. 215 /// 216 /// \details \p I's base element bit width must be greater than 1 and less 217 /// than or equal 16. Promotion is done by sign or zero extending operands to 218 /// 32 bits, replacing \p I with 32 bit 'select' operation, and truncating the 219 /// result of 32 bit 'select' operation back to \p I's original type. 220 /// 221 /// \returns True. 222 bool promoteUniformOpToI32(SelectInst &I) const; 223 224 /// Promotes uniform 'bitreverse' intrinsic \p I to 32 bit 'bitreverse' 225 /// intrinsic. 226 /// 227 /// \details \p I's base element bit width must be greater than 1 and less 228 /// than or equal 16. Promotion is done by zero extending the operand to 32 229 /// bits, replacing \p I with 32 bit 'bitreverse' intrinsic, shifting the 230 /// result of 32 bit 'bitreverse' intrinsic to the right with zero fill (the 231 /// shift amount is 32 minus \p I's base element bit width), and truncating 232 /// the result of the shift operation back to \p I's original type. 233 /// 234 /// \returns True. 235 bool promoteUniformBitreverseToI32(IntrinsicInst &I) const; 236 237 /// \returns The minimum number of bits needed to store the value of \Op as an 238 /// unsigned integer. Truncating to this size and then zero-extending to 239 /// the original will not change the value. 240 unsigned numBitsUnsigned(Value *Op) const; 241 242 /// \returns The minimum number of bits needed to store the value of \Op as a 243 /// signed integer. Truncating to this size and then sign-extending to 244 /// the original size will not change the value. 245 unsigned numBitsSigned(Value *Op) const; 246 247 /// Replace mul instructions with llvm.amdgcn.mul.u24 or llvm.amdgcn.mul.s24. 248 /// SelectionDAG has an issue where an and asserting the bits are known 249 bool replaceMulWithMul24(BinaryOperator &I) const; 250 251 /// Perform same function as equivalently named function in DAGCombiner. Since 252 /// we expand some divisions here, we need to perform this before obscuring. 253 bool foldBinOpIntoSelect(BinaryOperator &I) const; 254 255 bool divHasSpecialOptimization(BinaryOperator &I, 256 Value *Num, Value *Den) const; 257 int getDivNumBits(BinaryOperator &I, 258 Value *Num, Value *Den, 259 unsigned AtLeast, bool Signed) const; 260 261 /// Expands 24 bit div or rem. 262 Value* expandDivRem24(IRBuilder<> &Builder, BinaryOperator &I, 263 Value *Num, Value *Den, 264 bool IsDiv, bool IsSigned) const; 265 266 Value *expandDivRem24Impl(IRBuilder<> &Builder, BinaryOperator &I, 267 Value *Num, Value *Den, unsigned NumBits, 268 bool IsDiv, bool IsSigned) const; 269 270 /// Expands 32 bit div or rem. 271 Value* expandDivRem32(IRBuilder<> &Builder, BinaryOperator &I, 272 Value *Num, Value *Den) const; 273 274 Value *shrinkDivRem64(IRBuilder<> &Builder, BinaryOperator &I, 275 Value *Num, Value *Den) const; 276 void expandDivRem64(BinaryOperator &I) const; 277 278 /// Widen a scalar load. 279 /// 280 /// \details \p Widen scalar load for uniform, small type loads from constant 281 // memory / to a full 32-bits and then truncate the input to allow a scalar 282 // load instead of a vector load. 283 // 284 /// \returns True. 285 286 bool canWidenScalarExtLoad(LoadInst &I) const; 287 288 Value *matchFractPat(IntrinsicInst &I); 289 Value *applyFractPat(IRBuilder<> &Builder, Value *FractArg); 290 291 bool canOptimizeWithRsq(const FPMathOperator *SqrtOp, FastMathFlags DivFMF, 292 FastMathFlags SqrtFMF) const; 293 294 Value *optimizeWithRsq(IRBuilder<> &Builder, Value *Num, Value *Den, 295 FastMathFlags DivFMF, FastMathFlags SqrtFMF, 296 const Instruction *CtxI) const; 297 298 Value *optimizeWithRcp(IRBuilder<> &Builder, Value *Num, Value *Den, 299 FastMathFlags FMF, const Instruction *CtxI) const; 300 Value *optimizeWithFDivFast(IRBuilder<> &Builder, Value *Num, Value *Den, 301 float ReqdAccuracy) const; 302 303 Value *visitFDivElement(IRBuilder<> &Builder, Value *Num, Value *Den, 304 FastMathFlags DivFMF, FastMathFlags SqrtFMF, 305 Value *RsqOp, const Instruction *FDiv, 306 float ReqdAccuracy) const; 307 308 std::pair<Value *, Value *> getFrexpResults(IRBuilder<> &Builder, 309 Value *Src) const; 310 311 Value *emitRcpIEEE1ULP(IRBuilder<> &Builder, Value *Src, 312 bool IsNegative) const; 313 Value *emitFrexpDiv(IRBuilder<> &Builder, Value *LHS, Value *RHS, 314 FastMathFlags FMF) const; 315 Value *emitSqrtIEEE2ULP(IRBuilder<> &Builder, Value *Src, 316 FastMathFlags FMF) const; 317 318 public: 319 bool visitFDiv(BinaryOperator &I); 320 321 bool visitInstruction(Instruction &I) { return false; } 322 bool visitBinaryOperator(BinaryOperator &I); 323 bool visitLoadInst(LoadInst &I); 324 bool visitICmpInst(ICmpInst &I); 325 bool visitSelectInst(SelectInst &I); 326 bool visitPHINode(PHINode &I); 327 bool visitAddrSpaceCastInst(AddrSpaceCastInst &I); 328 329 bool visitIntrinsicInst(IntrinsicInst &I); 330 bool visitBitreverseIntrinsicInst(IntrinsicInst &I); 331 bool visitMinNum(IntrinsicInst &I); 332 bool visitSqrt(IntrinsicInst &I); 333 bool run(); 334 }; 335 336 class AMDGPUCodeGenPrepare : public FunctionPass { 337 public: 338 static char ID; 339 AMDGPUCodeGenPrepare() : FunctionPass(ID) { 340 initializeAMDGPUCodeGenPreparePass(*PassRegistry::getPassRegistry()); 341 } 342 void getAnalysisUsage(AnalysisUsage &AU) const override { 343 AU.addRequired<AssumptionCacheTracker>(); 344 AU.addRequired<UniformityInfoWrapperPass>(); 345 AU.addRequired<TargetLibraryInfoWrapperPass>(); 346 347 // FIXME: Division expansion needs to preserve the dominator tree. 348 if (!ExpandDiv64InIR) 349 AU.setPreservesAll(); 350 } 351 bool runOnFunction(Function &F) override; 352 StringRef getPassName() const override { return "AMDGPU IR optimizations"; } 353 }; 354 355 } // end anonymous namespace 356 357 bool AMDGPUCodeGenPrepareImpl::run() { 358 BreakPhiNodesCache.clear(); 359 bool MadeChange = false; 360 361 Function::iterator NextBB; 362 for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE; FI = NextBB) { 363 BasicBlock *BB = &*FI; 364 NextBB = std::next(FI); 365 366 BasicBlock::iterator Next; 367 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; 368 I = Next) { 369 Next = std::next(I); 370 371 MadeChange |= visit(*I); 372 373 if (Next != E) { // Control flow changed 374 BasicBlock *NextInstBB = Next->getParent(); 375 if (NextInstBB != BB) { 376 BB = NextInstBB; 377 E = BB->end(); 378 FE = F.end(); 379 } 380 } 381 } 382 } 383 return MadeChange; 384 } 385 386 unsigned AMDGPUCodeGenPrepareImpl::getBaseElementBitWidth(const Type *T) const { 387 assert(needsPromotionToI32(T) && "T does not need promotion to i32"); 388 389 if (T->isIntegerTy()) 390 return T->getIntegerBitWidth(); 391 return cast<VectorType>(T)->getElementType()->getIntegerBitWidth(); 392 } 393 394 Type *AMDGPUCodeGenPrepareImpl::getI32Ty(IRBuilder<> &B, const Type *T) const { 395 assert(needsPromotionToI32(T) && "T does not need promotion to i32"); 396 397 if (T->isIntegerTy()) 398 return B.getInt32Ty(); 399 return FixedVectorType::get(B.getInt32Ty(), cast<FixedVectorType>(T)); 400 } 401 402 bool AMDGPUCodeGenPrepareImpl::isSigned(const BinaryOperator &I) const { 403 return I.getOpcode() == Instruction::AShr || 404 I.getOpcode() == Instruction::SDiv || I.getOpcode() == Instruction::SRem; 405 } 406 407 bool AMDGPUCodeGenPrepareImpl::isSigned(const SelectInst &I) const { 408 return isa<ICmpInst>(I.getOperand(0)) ? 409 cast<ICmpInst>(I.getOperand(0))->isSigned() : false; 410 } 411 412 bool AMDGPUCodeGenPrepareImpl::needsPromotionToI32(const Type *T) const { 413 if (!Widen16BitOps) 414 return false; 415 416 const IntegerType *IntTy = dyn_cast<IntegerType>(T); 417 if (IntTy && IntTy->getBitWidth() > 1 && IntTy->getBitWidth() <= 16) 418 return true; 419 420 if (const VectorType *VT = dyn_cast<VectorType>(T)) { 421 // TODO: The set of packed operations is more limited, so may want to 422 // promote some anyway. 423 if (ST.hasVOP3PInsts()) 424 return false; 425 426 return needsPromotionToI32(VT->getElementType()); 427 } 428 429 return false; 430 } 431 432 bool AMDGPUCodeGenPrepareImpl::isLegalFloatingTy(const Type *Ty) const { 433 return Ty->isFloatTy() || Ty->isDoubleTy() || 434 (Ty->isHalfTy() && ST.has16BitInsts()); 435 } 436 437 // Return true if the op promoted to i32 should have nsw set. 438 static bool promotedOpIsNSW(const Instruction &I) { 439 switch (I.getOpcode()) { 440 case Instruction::Shl: 441 case Instruction::Add: 442 case Instruction::Sub: 443 return true; 444 case Instruction::Mul: 445 return I.hasNoUnsignedWrap(); 446 default: 447 return false; 448 } 449 } 450 451 // Return true if the op promoted to i32 should have nuw set. 452 static bool promotedOpIsNUW(const Instruction &I) { 453 switch (I.getOpcode()) { 454 case Instruction::Shl: 455 case Instruction::Add: 456 case Instruction::Mul: 457 return true; 458 case Instruction::Sub: 459 return I.hasNoUnsignedWrap(); 460 default: 461 return false; 462 } 463 } 464 465 bool AMDGPUCodeGenPrepareImpl::canWidenScalarExtLoad(LoadInst &I) const { 466 Type *Ty = I.getType(); 467 int TySize = DL.getTypeSizeInBits(Ty); 468 Align Alignment = DL.getValueOrABITypeAlignment(I.getAlign(), Ty); 469 470 return I.isSimple() && TySize < 32 && Alignment >= 4 && UA.isUniform(&I); 471 } 472 473 bool AMDGPUCodeGenPrepareImpl::promoteUniformOpToI32(BinaryOperator &I) const { 474 assert(needsPromotionToI32(I.getType()) && 475 "I does not need promotion to i32"); 476 477 if (I.getOpcode() == Instruction::SDiv || 478 I.getOpcode() == Instruction::UDiv || 479 I.getOpcode() == Instruction::SRem || 480 I.getOpcode() == Instruction::URem) 481 return false; 482 483 IRBuilder<> Builder(&I); 484 Builder.SetCurrentDebugLocation(I.getDebugLoc()); 485 486 Type *I32Ty = getI32Ty(Builder, I.getType()); 487 Value *ExtOp0 = nullptr; 488 Value *ExtOp1 = nullptr; 489 Value *ExtRes = nullptr; 490 Value *TruncRes = nullptr; 491 492 if (isSigned(I)) { 493 ExtOp0 = Builder.CreateSExt(I.getOperand(0), I32Ty); 494 ExtOp1 = Builder.CreateSExt(I.getOperand(1), I32Ty); 495 } else { 496 ExtOp0 = Builder.CreateZExt(I.getOperand(0), I32Ty); 497 ExtOp1 = Builder.CreateZExt(I.getOperand(1), I32Ty); 498 } 499 500 ExtRes = Builder.CreateBinOp(I.getOpcode(), ExtOp0, ExtOp1); 501 if (Instruction *Inst = dyn_cast<Instruction>(ExtRes)) { 502 if (promotedOpIsNSW(cast<Instruction>(I))) 503 Inst->setHasNoSignedWrap(); 504 505 if (promotedOpIsNUW(cast<Instruction>(I))) 506 Inst->setHasNoUnsignedWrap(); 507 508 if (const auto *ExactOp = dyn_cast<PossiblyExactOperator>(&I)) 509 Inst->setIsExact(ExactOp->isExact()); 510 } 511 512 TruncRes = Builder.CreateTrunc(ExtRes, I.getType()); 513 514 I.replaceAllUsesWith(TruncRes); 515 I.eraseFromParent(); 516 517 return true; 518 } 519 520 bool AMDGPUCodeGenPrepareImpl::promoteUniformOpToI32(ICmpInst &I) const { 521 assert(needsPromotionToI32(I.getOperand(0)->getType()) && 522 "I does not need promotion to i32"); 523 524 IRBuilder<> Builder(&I); 525 Builder.SetCurrentDebugLocation(I.getDebugLoc()); 526 527 Type *I32Ty = getI32Ty(Builder, I.getOperand(0)->getType()); 528 Value *ExtOp0 = nullptr; 529 Value *ExtOp1 = nullptr; 530 Value *NewICmp = nullptr; 531 532 if (I.isSigned()) { 533 ExtOp0 = Builder.CreateSExt(I.getOperand(0), I32Ty); 534 ExtOp1 = Builder.CreateSExt(I.getOperand(1), I32Ty); 535 } else { 536 ExtOp0 = Builder.CreateZExt(I.getOperand(0), I32Ty); 537 ExtOp1 = Builder.CreateZExt(I.getOperand(1), I32Ty); 538 } 539 NewICmp = Builder.CreateICmp(I.getPredicate(), ExtOp0, ExtOp1); 540 541 I.replaceAllUsesWith(NewICmp); 542 I.eraseFromParent(); 543 544 return true; 545 } 546 547 bool AMDGPUCodeGenPrepareImpl::promoteUniformOpToI32(SelectInst &I) const { 548 assert(needsPromotionToI32(I.getType()) && 549 "I does not need promotion to i32"); 550 551 IRBuilder<> Builder(&I); 552 Builder.SetCurrentDebugLocation(I.getDebugLoc()); 553 554 Type *I32Ty = getI32Ty(Builder, I.getType()); 555 Value *ExtOp1 = nullptr; 556 Value *ExtOp2 = nullptr; 557 Value *ExtRes = nullptr; 558 Value *TruncRes = nullptr; 559 560 if (isSigned(I)) { 561 ExtOp1 = Builder.CreateSExt(I.getOperand(1), I32Ty); 562 ExtOp2 = Builder.CreateSExt(I.getOperand(2), I32Ty); 563 } else { 564 ExtOp1 = Builder.CreateZExt(I.getOperand(1), I32Ty); 565 ExtOp2 = Builder.CreateZExt(I.getOperand(2), I32Ty); 566 } 567 ExtRes = Builder.CreateSelect(I.getOperand(0), ExtOp1, ExtOp2); 568 TruncRes = Builder.CreateTrunc(ExtRes, I.getType()); 569 570 I.replaceAllUsesWith(TruncRes); 571 I.eraseFromParent(); 572 573 return true; 574 } 575 576 bool AMDGPUCodeGenPrepareImpl::promoteUniformBitreverseToI32( 577 IntrinsicInst &I) const { 578 assert(I.getIntrinsicID() == Intrinsic::bitreverse && 579 "I must be bitreverse intrinsic"); 580 assert(needsPromotionToI32(I.getType()) && 581 "I does not need promotion to i32"); 582 583 IRBuilder<> Builder(&I); 584 Builder.SetCurrentDebugLocation(I.getDebugLoc()); 585 586 Type *I32Ty = getI32Ty(Builder, I.getType()); 587 Value *ExtOp = Builder.CreateZExt(I.getOperand(0), I32Ty); 588 Value *ExtRes = 589 Builder.CreateIntrinsic(Intrinsic::bitreverse, {I32Ty}, {ExtOp}); 590 Value *LShrOp = 591 Builder.CreateLShr(ExtRes, 32 - getBaseElementBitWidth(I.getType())); 592 Value *TruncRes = 593 Builder.CreateTrunc(LShrOp, I.getType()); 594 595 I.replaceAllUsesWith(TruncRes); 596 I.eraseFromParent(); 597 598 return true; 599 } 600 601 unsigned AMDGPUCodeGenPrepareImpl::numBitsUnsigned(Value *Op) const { 602 return computeKnownBits(Op, DL, 0, AC).countMaxActiveBits(); 603 } 604 605 unsigned AMDGPUCodeGenPrepareImpl::numBitsSigned(Value *Op) const { 606 return ComputeMaxSignificantBits(Op, DL, 0, AC); 607 } 608 609 static void extractValues(IRBuilder<> &Builder, 610 SmallVectorImpl<Value *> &Values, Value *V) { 611 auto *VT = dyn_cast<FixedVectorType>(V->getType()); 612 if (!VT) { 613 Values.push_back(V); 614 return; 615 } 616 617 for (int I = 0, E = VT->getNumElements(); I != E; ++I) 618 Values.push_back(Builder.CreateExtractElement(V, I)); 619 } 620 621 static Value *insertValues(IRBuilder<> &Builder, 622 Type *Ty, 623 SmallVectorImpl<Value *> &Values) { 624 if (!Ty->isVectorTy()) { 625 assert(Values.size() == 1); 626 return Values[0]; 627 } 628 629 Value *NewVal = PoisonValue::get(Ty); 630 for (int I = 0, E = Values.size(); I != E; ++I) 631 NewVal = Builder.CreateInsertElement(NewVal, Values[I], I); 632 633 return NewVal; 634 } 635 636 bool AMDGPUCodeGenPrepareImpl::replaceMulWithMul24(BinaryOperator &I) const { 637 if (I.getOpcode() != Instruction::Mul) 638 return false; 639 640 Type *Ty = I.getType(); 641 unsigned Size = Ty->getScalarSizeInBits(); 642 if (Size <= 16 && ST.has16BitInsts()) 643 return false; 644 645 // Prefer scalar if this could be s_mul_i32 646 if (UA.isUniform(&I)) 647 return false; 648 649 Value *LHS = I.getOperand(0); 650 Value *RHS = I.getOperand(1); 651 IRBuilder<> Builder(&I); 652 Builder.SetCurrentDebugLocation(I.getDebugLoc()); 653 654 unsigned LHSBits = 0, RHSBits = 0; 655 bool IsSigned = false; 656 657 if (ST.hasMulU24() && (LHSBits = numBitsUnsigned(LHS)) <= 24 && 658 (RHSBits = numBitsUnsigned(RHS)) <= 24) { 659 IsSigned = false; 660 661 } else if (ST.hasMulI24() && (LHSBits = numBitsSigned(LHS)) <= 24 && 662 (RHSBits = numBitsSigned(RHS)) <= 24) { 663 IsSigned = true; 664 665 } else 666 return false; 667 668 SmallVector<Value *, 4> LHSVals; 669 SmallVector<Value *, 4> RHSVals; 670 SmallVector<Value *, 4> ResultVals; 671 extractValues(Builder, LHSVals, LHS); 672 extractValues(Builder, RHSVals, RHS); 673 674 IntegerType *I32Ty = Builder.getInt32Ty(); 675 IntegerType *IntrinTy = Size > 32 ? Builder.getInt64Ty() : I32Ty; 676 Type *DstTy = LHSVals[0]->getType(); 677 678 for (int I = 0, E = LHSVals.size(); I != E; ++I) { 679 Value *LHS = IsSigned ? Builder.CreateSExtOrTrunc(LHSVals[I], I32Ty) 680 : Builder.CreateZExtOrTrunc(LHSVals[I], I32Ty); 681 Value *RHS = IsSigned ? Builder.CreateSExtOrTrunc(RHSVals[I], I32Ty) 682 : Builder.CreateZExtOrTrunc(RHSVals[I], I32Ty); 683 Intrinsic::ID ID = 684 IsSigned ? Intrinsic::amdgcn_mul_i24 : Intrinsic::amdgcn_mul_u24; 685 Value *Result = Builder.CreateIntrinsic(ID, {IntrinTy}, {LHS, RHS}); 686 Result = IsSigned ? Builder.CreateSExtOrTrunc(Result, DstTy) 687 : Builder.CreateZExtOrTrunc(Result, DstTy); 688 ResultVals.push_back(Result); 689 } 690 691 Value *NewVal = insertValues(Builder, Ty, ResultVals); 692 NewVal->takeName(&I); 693 I.replaceAllUsesWith(NewVal); 694 I.eraseFromParent(); 695 696 return true; 697 } 698 699 // Find a select instruction, which may have been casted. This is mostly to deal 700 // with cases where i16 selects were promoted here to i32. 701 static SelectInst *findSelectThroughCast(Value *V, CastInst *&Cast) { 702 Cast = nullptr; 703 if (SelectInst *Sel = dyn_cast<SelectInst>(V)) 704 return Sel; 705 706 if ((Cast = dyn_cast<CastInst>(V))) { 707 if (SelectInst *Sel = dyn_cast<SelectInst>(Cast->getOperand(0))) 708 return Sel; 709 } 710 711 return nullptr; 712 } 713 714 bool AMDGPUCodeGenPrepareImpl::foldBinOpIntoSelect(BinaryOperator &BO) const { 715 // Don't do this unless the old select is going away. We want to eliminate the 716 // binary operator, not replace a binop with a select. 717 int SelOpNo = 0; 718 719 CastInst *CastOp; 720 721 // TODO: Should probably try to handle some cases with multiple 722 // users. Duplicating the select may be profitable for division. 723 SelectInst *Sel = findSelectThroughCast(BO.getOperand(0), CastOp); 724 if (!Sel || !Sel->hasOneUse()) { 725 SelOpNo = 1; 726 Sel = findSelectThroughCast(BO.getOperand(1), CastOp); 727 } 728 729 if (!Sel || !Sel->hasOneUse()) 730 return false; 731 732 Constant *CT = dyn_cast<Constant>(Sel->getTrueValue()); 733 Constant *CF = dyn_cast<Constant>(Sel->getFalseValue()); 734 Constant *CBO = dyn_cast<Constant>(BO.getOperand(SelOpNo ^ 1)); 735 if (!CBO || !CT || !CF) 736 return false; 737 738 if (CastOp) { 739 if (!CastOp->hasOneUse()) 740 return false; 741 CT = ConstantFoldCastOperand(CastOp->getOpcode(), CT, BO.getType(), DL); 742 CF = ConstantFoldCastOperand(CastOp->getOpcode(), CF, BO.getType(), DL); 743 } 744 745 // TODO: Handle special 0/-1 cases DAG combine does, although we only really 746 // need to handle divisions here. 747 Constant *FoldedT = 748 SelOpNo ? ConstantFoldBinaryOpOperands(BO.getOpcode(), CBO, CT, DL) 749 : ConstantFoldBinaryOpOperands(BO.getOpcode(), CT, CBO, DL); 750 if (!FoldedT || isa<ConstantExpr>(FoldedT)) 751 return false; 752 753 Constant *FoldedF = 754 SelOpNo ? ConstantFoldBinaryOpOperands(BO.getOpcode(), CBO, CF, DL) 755 : ConstantFoldBinaryOpOperands(BO.getOpcode(), CF, CBO, DL); 756 if (!FoldedF || isa<ConstantExpr>(FoldedF)) 757 return false; 758 759 IRBuilder<> Builder(&BO); 760 Builder.SetCurrentDebugLocation(BO.getDebugLoc()); 761 if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(&BO)) 762 Builder.setFastMathFlags(FPOp->getFastMathFlags()); 763 764 Value *NewSelect = Builder.CreateSelect(Sel->getCondition(), 765 FoldedT, FoldedF); 766 NewSelect->takeName(&BO); 767 BO.replaceAllUsesWith(NewSelect); 768 BO.eraseFromParent(); 769 if (CastOp) 770 CastOp->eraseFromParent(); 771 Sel->eraseFromParent(); 772 return true; 773 } 774 775 std::pair<Value *, Value *> 776 AMDGPUCodeGenPrepareImpl::getFrexpResults(IRBuilder<> &Builder, 777 Value *Src) const { 778 Type *Ty = Src->getType(); 779 Value *Frexp = Builder.CreateIntrinsic(Intrinsic::frexp, 780 {Ty, Builder.getInt32Ty()}, Src); 781 Value *FrexpMant = Builder.CreateExtractValue(Frexp, {0}); 782 783 // Bypass the bug workaround for the exponent result since it doesn't matter. 784 // TODO: Does the bug workaround even really need to consider the exponent 785 // result? It's unspecified by the spec. 786 787 Value *FrexpExp = 788 ST.hasFractBug() 789 ? Builder.CreateIntrinsic(Intrinsic::amdgcn_frexp_exp, 790 {Builder.getInt32Ty(), Ty}, Src) 791 : Builder.CreateExtractValue(Frexp, {1}); 792 return {FrexpMant, FrexpExp}; 793 } 794 795 /// Emit an expansion of 1.0 / Src good for 1ulp that supports denormals. 796 Value *AMDGPUCodeGenPrepareImpl::emitRcpIEEE1ULP(IRBuilder<> &Builder, 797 Value *Src, 798 bool IsNegative) const { 799 // Same as for 1.0, but expand the sign out of the constant. 800 // -1.0 / x -> rcp (fneg x) 801 if (IsNegative) 802 Src = Builder.CreateFNeg(Src); 803 804 // The rcp instruction doesn't support denormals, so scale the input 805 // out of the denormal range and convert at the end. 806 // 807 // Expand as 2^-n * (1.0 / (x * 2^n)) 808 809 // TODO: Skip scaling if input is known never denormal and the input 810 // range won't underflow to denormal. The hard part is knowing the 811 // result. We need a range check, the result could be denormal for 812 // 0x1p+126 < den <= 0x1p+127. 813 auto [FrexpMant, FrexpExp] = getFrexpResults(Builder, Src); 814 Value *ScaleFactor = Builder.CreateNeg(FrexpExp); 815 Value *Rcp = Builder.CreateUnaryIntrinsic(Intrinsic::amdgcn_rcp, FrexpMant); 816 return Builder.CreateCall(getLdexpF32(), {Rcp, ScaleFactor}); 817 } 818 819 /// Emit a 2ulp expansion for fdiv by using frexp for input scaling. 820 Value *AMDGPUCodeGenPrepareImpl::emitFrexpDiv(IRBuilder<> &Builder, Value *LHS, 821 Value *RHS, 822 FastMathFlags FMF) const { 823 // If we have have to work around the fract/frexp bug, we're worse off than 824 // using the fdiv.fast expansion. The full safe expansion is faster if we have 825 // fast FMA. 826 if (HasFP32DenormalFlush && ST.hasFractBug() && !ST.hasFastFMAF32() && 827 (!FMF.noNaNs() || !FMF.noInfs())) 828 return nullptr; 829 830 // We're scaling the LHS to avoid a denormal input, and scale the denominator 831 // to avoid large values underflowing the result. 832 auto [FrexpMantRHS, FrexpExpRHS] = getFrexpResults(Builder, RHS); 833 834 Value *Rcp = 835 Builder.CreateUnaryIntrinsic(Intrinsic::amdgcn_rcp, FrexpMantRHS); 836 837 auto [FrexpMantLHS, FrexpExpLHS] = getFrexpResults(Builder, LHS); 838 Value *Mul = Builder.CreateFMul(FrexpMantLHS, Rcp); 839 840 // We multiplied by 2^N/2^M, so we need to multiply by 2^(N-M) to scale the 841 // result. 842 Value *ExpDiff = Builder.CreateSub(FrexpExpLHS, FrexpExpRHS); 843 return Builder.CreateCall(getLdexpF32(), {Mul, ExpDiff}); 844 } 845 846 /// Emit a sqrt that handles denormals and is accurate to 2ulp. 847 Value *AMDGPUCodeGenPrepareImpl::emitSqrtIEEE2ULP(IRBuilder<> &Builder, 848 Value *Src, 849 FastMathFlags FMF) const { 850 Type *Ty = Src->getType(); 851 APFloat SmallestNormal = 852 APFloat::getSmallestNormalized(Ty->getFltSemantics()); 853 Value *NeedScale = 854 Builder.CreateFCmpOLT(Src, ConstantFP::get(Ty, SmallestNormal)); 855 856 ConstantInt *Zero = Builder.getInt32(0); 857 Value *InputScaleFactor = 858 Builder.CreateSelect(NeedScale, Builder.getInt32(32), Zero); 859 860 Value *Scaled = Builder.CreateCall(getLdexpF32(), {Src, InputScaleFactor}); 861 862 Value *Sqrt = Builder.CreateCall(getSqrtF32(), Scaled); 863 864 Value *OutputScaleFactor = 865 Builder.CreateSelect(NeedScale, Builder.getInt32(-16), Zero); 866 return Builder.CreateCall(getLdexpF32(), {Sqrt, OutputScaleFactor}); 867 } 868 869 /// Emit an expansion of 1.0 / sqrt(Src) good for 1ulp that supports denormals. 870 static Value *emitRsqIEEE1ULP(IRBuilder<> &Builder, Value *Src, 871 bool IsNegative) { 872 // bool need_scale = x < 0x1p-126f; 873 // float input_scale = need_scale ? 0x1.0p+24f : 1.0f; 874 // float output_scale = need_scale ? 0x1.0p+12f : 1.0f; 875 // rsq(x * input_scale) * output_scale; 876 877 Type *Ty = Src->getType(); 878 APFloat SmallestNormal = 879 APFloat::getSmallestNormalized(Ty->getFltSemantics()); 880 Value *NeedScale = 881 Builder.CreateFCmpOLT(Src, ConstantFP::get(Ty, SmallestNormal)); 882 Constant *One = ConstantFP::get(Ty, 1.0); 883 Constant *InputScale = ConstantFP::get(Ty, 0x1.0p+24); 884 Constant *OutputScale = 885 ConstantFP::get(Ty, IsNegative ? -0x1.0p+12 : 0x1.0p+12); 886 887 Value *InputScaleFactor = Builder.CreateSelect(NeedScale, InputScale, One); 888 889 Value *ScaledInput = Builder.CreateFMul(Src, InputScaleFactor); 890 Value *Rsq = Builder.CreateUnaryIntrinsic(Intrinsic::amdgcn_rsq, ScaledInput); 891 Value *OutputScaleFactor = Builder.CreateSelect( 892 NeedScale, OutputScale, IsNegative ? ConstantFP::get(Ty, -1.0) : One); 893 894 return Builder.CreateFMul(Rsq, OutputScaleFactor); 895 } 896 897 bool AMDGPUCodeGenPrepareImpl::canOptimizeWithRsq(const FPMathOperator *SqrtOp, 898 FastMathFlags DivFMF, 899 FastMathFlags SqrtFMF) const { 900 // The rsqrt contraction increases accuracy from ~2ulp to ~1ulp. 901 if (!DivFMF.allowContract() || !SqrtFMF.allowContract()) 902 return false; 903 904 // v_rsq_f32 gives 1ulp 905 return SqrtFMF.approxFunc() || HasUnsafeFPMath || 906 SqrtOp->getFPAccuracy() >= 1.0f; 907 } 908 909 Value *AMDGPUCodeGenPrepareImpl::optimizeWithRsq( 910 IRBuilder<> &Builder, Value *Num, Value *Den, const FastMathFlags DivFMF, 911 const FastMathFlags SqrtFMF, const Instruction *CtxI) const { 912 // The rsqrt contraction increases accuracy from ~2ulp to ~1ulp. 913 assert(DivFMF.allowContract() && SqrtFMF.allowContract()); 914 915 // rsq_f16 is accurate to 0.51 ulp. 916 // rsq_f32 is accurate for !fpmath >= 1.0ulp and denormals are flushed. 917 // rsq_f64 is never accurate. 918 const ConstantFP *CLHS = dyn_cast<ConstantFP>(Num); 919 if (!CLHS) 920 return nullptr; 921 922 assert(Den->getType()->isFloatTy()); 923 924 bool IsNegative = false; 925 926 // TODO: Handle other numerator values with arcp. 927 if (CLHS->isExactlyValue(1.0) || (IsNegative = CLHS->isExactlyValue(-1.0))) { 928 // Add in the sqrt flags. 929 IRBuilder<>::FastMathFlagGuard Guard(Builder); 930 Builder.setFastMathFlags(DivFMF | SqrtFMF); 931 932 if ((DivFMF.approxFunc() && SqrtFMF.approxFunc()) || HasUnsafeFPMath || 933 canIgnoreDenormalInput(Den, CtxI)) { 934 Value *Result = Builder.CreateUnaryIntrinsic(Intrinsic::amdgcn_rsq, Den); 935 // -1.0 / sqrt(x) -> fneg(rsq(x)) 936 return IsNegative ? Builder.CreateFNeg(Result) : Result; 937 } 938 939 return emitRsqIEEE1ULP(Builder, Den, IsNegative); 940 } 941 942 return nullptr; 943 } 944 945 // Optimize fdiv with rcp: 946 // 947 // 1/x -> rcp(x) when rcp is sufficiently accurate or inaccurate rcp is 948 // allowed with unsafe-fp-math or afn. 949 // 950 // a/b -> a*rcp(b) when arcp is allowed, and we only need provide ULP 1.0 951 Value * 952 AMDGPUCodeGenPrepareImpl::optimizeWithRcp(IRBuilder<> &Builder, Value *Num, 953 Value *Den, FastMathFlags FMF, 954 const Instruction *CtxI) const { 955 // rcp_f16 is accurate to 0.51 ulp. 956 // rcp_f32 is accurate for !fpmath >= 1.0ulp and denormals are flushed. 957 // rcp_f64 is never accurate. 958 assert(Den->getType()->isFloatTy()); 959 960 if (const ConstantFP *CLHS = dyn_cast<ConstantFP>(Num)) { 961 bool IsNegative = false; 962 if (CLHS->isExactlyValue(1.0) || 963 (IsNegative = CLHS->isExactlyValue(-1.0))) { 964 Value *Src = Den; 965 966 if (HasFP32DenormalFlush || FMF.approxFunc()) { 967 // -1.0 / x -> 1.0 / fneg(x) 968 if (IsNegative) 969 Src = Builder.CreateFNeg(Src); 970 971 // v_rcp_f32 and v_rsq_f32 do not support denormals, and according to 972 // the CI documentation has a worst case error of 1 ulp. 973 // OpenCL requires <= 2.5 ulp for 1.0 / x, so it should always be OK 974 // to use it as long as we aren't trying to use denormals. 975 // 976 // v_rcp_f16 and v_rsq_f16 DO support denormals. 977 978 // NOTE: v_sqrt and v_rcp will be combined to v_rsq later. So we don't 979 // insert rsq intrinsic here. 980 981 // 1.0 / x -> rcp(x) 982 return Builder.CreateUnaryIntrinsic(Intrinsic::amdgcn_rcp, Src); 983 } 984 985 // TODO: If the input isn't denormal, and we know the input exponent isn't 986 // big enough to introduce a denormal we can avoid the scaling. 987 return emitRcpIEEE1ULP(Builder, Src, IsNegative); 988 } 989 } 990 991 if (FMF.allowReciprocal()) { 992 // x / y -> x * (1.0 / y) 993 994 // TODO: Could avoid denormal scaling and use raw rcp if we knew the output 995 // will never underflow. 996 if (HasFP32DenormalFlush || FMF.approxFunc()) { 997 Value *Recip = Builder.CreateUnaryIntrinsic(Intrinsic::amdgcn_rcp, Den); 998 return Builder.CreateFMul(Num, Recip); 999 } 1000 1001 Value *Recip = emitRcpIEEE1ULP(Builder, Den, false); 1002 return Builder.CreateFMul(Num, Recip); 1003 } 1004 1005 return nullptr; 1006 } 1007 1008 // optimize with fdiv.fast: 1009 // 1010 // a/b -> fdiv.fast(a, b) when !fpmath >= 2.5ulp with denormals flushed. 1011 // 1012 // 1/x -> fdiv.fast(1,x) when !fpmath >= 2.5ulp. 1013 // 1014 // NOTE: optimizeWithRcp should be tried first because rcp is the preference. 1015 Value *AMDGPUCodeGenPrepareImpl::optimizeWithFDivFast( 1016 IRBuilder<> &Builder, Value *Num, Value *Den, float ReqdAccuracy) const { 1017 // fdiv.fast can achieve 2.5 ULP accuracy. 1018 if (ReqdAccuracy < 2.5f) 1019 return nullptr; 1020 1021 // Only have fdiv.fast for f32. 1022 assert(Den->getType()->isFloatTy()); 1023 1024 bool NumIsOne = false; 1025 if (const ConstantFP *CNum = dyn_cast<ConstantFP>(Num)) { 1026 if (CNum->isExactlyValue(+1.0) || CNum->isExactlyValue(-1.0)) 1027 NumIsOne = true; 1028 } 1029 1030 // fdiv does not support denormals. But 1.0/x is always fine to use it. 1031 // 1032 // TODO: This works for any value with a specific known exponent range, don't 1033 // just limit to constant 1. 1034 if (!HasFP32DenormalFlush && !NumIsOne) 1035 return nullptr; 1036 1037 return Builder.CreateIntrinsic(Intrinsic::amdgcn_fdiv_fast, {}, {Num, Den}); 1038 } 1039 1040 Value *AMDGPUCodeGenPrepareImpl::visitFDivElement( 1041 IRBuilder<> &Builder, Value *Num, Value *Den, FastMathFlags DivFMF, 1042 FastMathFlags SqrtFMF, Value *RsqOp, const Instruction *FDivInst, 1043 float ReqdDivAccuracy) const { 1044 if (RsqOp) { 1045 Value *Rsq = 1046 optimizeWithRsq(Builder, Num, RsqOp, DivFMF, SqrtFMF, FDivInst); 1047 if (Rsq) 1048 return Rsq; 1049 } 1050 1051 Value *Rcp = optimizeWithRcp(Builder, Num, Den, DivFMF, FDivInst); 1052 if (Rcp) 1053 return Rcp; 1054 1055 // In the basic case fdiv_fast has the same instruction count as the frexp div 1056 // expansion. Slightly prefer fdiv_fast since it ends in an fmul that can 1057 // potentially be fused into a user. Also, materialization of the constants 1058 // can be reused for multiple instances. 1059 Value *FDivFast = optimizeWithFDivFast(Builder, Num, Den, ReqdDivAccuracy); 1060 if (FDivFast) 1061 return FDivFast; 1062 1063 return emitFrexpDiv(Builder, Num, Den, DivFMF); 1064 } 1065 1066 // Optimizations is performed based on fpmath, fast math flags as well as 1067 // denormals to optimize fdiv with either rcp or fdiv.fast. 1068 // 1069 // With rcp: 1070 // 1/x -> rcp(x) when rcp is sufficiently accurate or inaccurate rcp is 1071 // allowed with unsafe-fp-math or afn. 1072 // 1073 // a/b -> a*rcp(b) when inaccurate rcp is allowed with unsafe-fp-math or afn. 1074 // 1075 // With fdiv.fast: 1076 // a/b -> fdiv.fast(a, b) when !fpmath >= 2.5ulp with denormals flushed. 1077 // 1078 // 1/x -> fdiv.fast(1,x) when !fpmath >= 2.5ulp. 1079 // 1080 // NOTE: rcp is the preference in cases that both are legal. 1081 bool AMDGPUCodeGenPrepareImpl::visitFDiv(BinaryOperator &FDiv) { 1082 if (DisableFDivExpand) 1083 return false; 1084 1085 Type *Ty = FDiv.getType()->getScalarType(); 1086 if (!Ty->isFloatTy()) 1087 return false; 1088 1089 // The f64 rcp/rsq approximations are pretty inaccurate. We can do an 1090 // expansion around them in codegen. f16 is good enough to always use. 1091 1092 const FPMathOperator *FPOp = cast<const FPMathOperator>(&FDiv); 1093 const FastMathFlags DivFMF = FPOp->getFastMathFlags(); 1094 const float ReqdAccuracy = FPOp->getFPAccuracy(); 1095 1096 FastMathFlags SqrtFMF; 1097 1098 Value *Num = FDiv.getOperand(0); 1099 Value *Den = FDiv.getOperand(1); 1100 1101 Value *RsqOp = nullptr; 1102 auto *DenII = dyn_cast<IntrinsicInst>(Den); 1103 if (DenII && DenII->getIntrinsicID() == Intrinsic::sqrt && 1104 DenII->hasOneUse()) { 1105 const auto *SqrtOp = cast<FPMathOperator>(DenII); 1106 SqrtFMF = SqrtOp->getFastMathFlags(); 1107 if (canOptimizeWithRsq(SqrtOp, DivFMF, SqrtFMF)) 1108 RsqOp = SqrtOp->getOperand(0); 1109 } 1110 1111 // Inaccurate rcp is allowed with unsafe-fp-math or afn. 1112 // 1113 // Defer to codegen to handle this. 1114 // 1115 // TODO: Decide on an interpretation for interactions between afn + arcp + 1116 // !fpmath, and make it consistent between here and codegen. For now, defer 1117 // expansion of afn to codegen. The current interpretation is so aggressive we 1118 // don't need any pre-consideration here when we have better information. A 1119 // more conservative interpretation could use handling here. 1120 const bool AllowInaccurateRcp = HasUnsafeFPMath || DivFMF.approxFunc(); 1121 if (!RsqOp && AllowInaccurateRcp) 1122 return false; 1123 1124 // Defer the correct implementations to codegen. 1125 if (ReqdAccuracy < 1.0f) 1126 return false; 1127 1128 IRBuilder<> Builder(FDiv.getParent(), std::next(FDiv.getIterator())); 1129 Builder.setFastMathFlags(DivFMF); 1130 Builder.SetCurrentDebugLocation(FDiv.getDebugLoc()); 1131 1132 SmallVector<Value *, 4> NumVals; 1133 SmallVector<Value *, 4> DenVals; 1134 SmallVector<Value *, 4> RsqDenVals; 1135 extractValues(Builder, NumVals, Num); 1136 extractValues(Builder, DenVals, Den); 1137 1138 if (RsqOp) 1139 extractValues(Builder, RsqDenVals, RsqOp); 1140 1141 SmallVector<Value *, 4> ResultVals(NumVals.size()); 1142 for (int I = 0, E = NumVals.size(); I != E; ++I) { 1143 Value *NumElt = NumVals[I]; 1144 Value *DenElt = DenVals[I]; 1145 Value *RsqDenElt = RsqOp ? RsqDenVals[I] : nullptr; 1146 1147 Value *NewElt = 1148 visitFDivElement(Builder, NumElt, DenElt, DivFMF, SqrtFMF, RsqDenElt, 1149 cast<Instruction>(FPOp), ReqdAccuracy); 1150 if (!NewElt) { 1151 // Keep the original, but scalarized. 1152 1153 // This has the unfortunate side effect of sometimes scalarizing when 1154 // we're not going to do anything. 1155 NewElt = Builder.CreateFDiv(NumElt, DenElt); 1156 if (auto *NewEltInst = dyn_cast<Instruction>(NewElt)) 1157 NewEltInst->copyMetadata(FDiv); 1158 } 1159 1160 ResultVals[I] = NewElt; 1161 } 1162 1163 Value *NewVal = insertValues(Builder, FDiv.getType(), ResultVals); 1164 1165 if (NewVal) { 1166 FDiv.replaceAllUsesWith(NewVal); 1167 NewVal->takeName(&FDiv); 1168 RecursivelyDeleteTriviallyDeadInstructions(&FDiv, TLI); 1169 } 1170 1171 return true; 1172 } 1173 1174 static std::pair<Value*, Value*> getMul64(IRBuilder<> &Builder, 1175 Value *LHS, Value *RHS) { 1176 Type *I32Ty = Builder.getInt32Ty(); 1177 Type *I64Ty = Builder.getInt64Ty(); 1178 1179 Value *LHS_EXT64 = Builder.CreateZExt(LHS, I64Ty); 1180 Value *RHS_EXT64 = Builder.CreateZExt(RHS, I64Ty); 1181 Value *MUL64 = Builder.CreateMul(LHS_EXT64, RHS_EXT64); 1182 Value *Lo = Builder.CreateTrunc(MUL64, I32Ty); 1183 Value *Hi = Builder.CreateLShr(MUL64, Builder.getInt64(32)); 1184 Hi = Builder.CreateTrunc(Hi, I32Ty); 1185 return std::pair(Lo, Hi); 1186 } 1187 1188 static Value* getMulHu(IRBuilder<> &Builder, Value *LHS, Value *RHS) { 1189 return getMul64(Builder, LHS, RHS).second; 1190 } 1191 1192 /// Figure out how many bits are really needed for this division. \p AtLeast is 1193 /// an optimization hint to bypass the second ComputeNumSignBits call if we the 1194 /// first one is insufficient. Returns -1 on failure. 1195 int AMDGPUCodeGenPrepareImpl::getDivNumBits(BinaryOperator &I, Value *Num, 1196 Value *Den, unsigned AtLeast, 1197 bool IsSigned) const { 1198 if (IsSigned) { 1199 unsigned RHSSignBits = ComputeNumSignBits(Den, DL, 0, AC, &I); 1200 if (RHSSignBits < AtLeast) 1201 return -1; 1202 1203 unsigned LHSSignBits = ComputeNumSignBits(Num, DL, 0, AC, &I); 1204 if (LHSSignBits < AtLeast) 1205 return -1; 1206 1207 unsigned SignBits = std::min(LHSSignBits, RHSSignBits); 1208 unsigned DivBits = Num->getType()->getScalarSizeInBits() - SignBits; 1209 return DivBits + 1; // a SignBit need to be reserved for shrinking 1210 } 1211 1212 // All bits are used for unsigned division for Num or Den in range 1213 // (SignedMax, UnsignedMax]. 1214 KnownBits Known = computeKnownBits(Den, DL, 0, AC, &I); 1215 if (Known.isNegative() || !Known.isNonNegative()) 1216 return -1; 1217 unsigned RHSSignBits = Known.countMinLeadingZeros(); 1218 1219 Known = computeKnownBits(Num, DL, 0, AC, &I); 1220 if (Known.isNegative() || !Known.isNonNegative()) 1221 return -1; 1222 unsigned LHSSignBits = Known.countMinLeadingZeros(); 1223 1224 unsigned SignBits = std::min(LHSSignBits, RHSSignBits); 1225 unsigned DivBits = Num->getType()->getScalarSizeInBits() - SignBits; 1226 return DivBits; 1227 } 1228 1229 // The fractional part of a float is enough to accurately represent up to 1230 // a 24-bit signed integer. 1231 Value *AMDGPUCodeGenPrepareImpl::expandDivRem24(IRBuilder<> &Builder, 1232 BinaryOperator &I, Value *Num, 1233 Value *Den, bool IsDiv, 1234 bool IsSigned) const { 1235 unsigned SSBits = Num->getType()->getScalarSizeInBits(); 1236 // If Num bits <= 24, assume 0 signbits. 1237 unsigned AtLeast = (SSBits <= 24) ? 0 : (SSBits - 24 + IsSigned); 1238 int DivBits = getDivNumBits(I, Num, Den, AtLeast, IsSigned); 1239 if (DivBits == -1) 1240 return nullptr; 1241 return expandDivRem24Impl(Builder, I, Num, Den, DivBits, IsDiv, IsSigned); 1242 } 1243 1244 Value *AMDGPUCodeGenPrepareImpl::expandDivRem24Impl( 1245 IRBuilder<> &Builder, BinaryOperator &I, Value *Num, Value *Den, 1246 unsigned DivBits, bool IsDiv, bool IsSigned) const { 1247 Type *I32Ty = Builder.getInt32Ty(); 1248 Num = Builder.CreateTrunc(Num, I32Ty); 1249 Den = Builder.CreateTrunc(Den, I32Ty); 1250 1251 Type *F32Ty = Builder.getFloatTy(); 1252 ConstantInt *One = Builder.getInt32(1); 1253 Value *JQ = One; 1254 1255 if (IsSigned) { 1256 // char|short jq = ia ^ ib; 1257 JQ = Builder.CreateXor(Num, Den); 1258 1259 // jq = jq >> (bitsize - 2) 1260 JQ = Builder.CreateAShr(JQ, Builder.getInt32(30)); 1261 1262 // jq = jq | 0x1 1263 JQ = Builder.CreateOr(JQ, One); 1264 } 1265 1266 // int ia = (int)LHS; 1267 Value *IA = Num; 1268 1269 // int ib, (int)RHS; 1270 Value *IB = Den; 1271 1272 // float fa = (float)ia; 1273 Value *FA = IsSigned ? Builder.CreateSIToFP(IA, F32Ty) 1274 : Builder.CreateUIToFP(IA, F32Ty); 1275 1276 // float fb = (float)ib; 1277 Value *FB = IsSigned ? Builder.CreateSIToFP(IB,F32Ty) 1278 : Builder.CreateUIToFP(IB,F32Ty); 1279 1280 Value *RCP = Builder.CreateIntrinsic(Intrinsic::amdgcn_rcp, 1281 Builder.getFloatTy(), {FB}); 1282 Value *FQM = Builder.CreateFMul(FA, RCP); 1283 1284 // fq = trunc(fqm); 1285 CallInst *FQ = Builder.CreateUnaryIntrinsic(Intrinsic::trunc, FQM); 1286 FQ->copyFastMathFlags(Builder.getFastMathFlags()); 1287 1288 // float fqneg = -fq; 1289 Value *FQNeg = Builder.CreateFNeg(FQ); 1290 1291 // float fr = mad(fqneg, fb, fa); 1292 auto FMAD = !ST.hasMadMacF32Insts() 1293 ? Intrinsic::fma 1294 : (Intrinsic::ID)Intrinsic::amdgcn_fmad_ftz; 1295 Value *FR = Builder.CreateIntrinsic(FMAD, 1296 {FQNeg->getType()}, {FQNeg, FB, FA}, FQ); 1297 1298 // int iq = (int)fq; 1299 Value *IQ = IsSigned ? Builder.CreateFPToSI(FQ, I32Ty) 1300 : Builder.CreateFPToUI(FQ, I32Ty); 1301 1302 // fr = fabs(fr); 1303 FR = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, FR, FQ); 1304 1305 // fb = fabs(fb); 1306 FB = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, FB, FQ); 1307 1308 // int cv = fr >= fb; 1309 Value *CV = Builder.CreateFCmpOGE(FR, FB); 1310 1311 // jq = (cv ? jq : 0); 1312 JQ = Builder.CreateSelect(CV, JQ, Builder.getInt32(0)); 1313 1314 // dst = iq + jq; 1315 Value *Div = Builder.CreateAdd(IQ, JQ); 1316 1317 Value *Res = Div; 1318 if (!IsDiv) { 1319 // Rem needs compensation, it's easier to recompute it 1320 Value *Rem = Builder.CreateMul(Div, Den); 1321 Res = Builder.CreateSub(Num, Rem); 1322 } 1323 1324 if (DivBits != 0 && DivBits < 32) { 1325 // Extend in register from the number of bits this divide really is. 1326 if (IsSigned) { 1327 int InRegBits = 32 - DivBits; 1328 1329 Res = Builder.CreateShl(Res, InRegBits); 1330 Res = Builder.CreateAShr(Res, InRegBits); 1331 } else { 1332 ConstantInt *TruncMask 1333 = Builder.getInt32((UINT64_C(1) << DivBits) - 1); 1334 Res = Builder.CreateAnd(Res, TruncMask); 1335 } 1336 } 1337 1338 return Res; 1339 } 1340 1341 // Try to recognize special cases the DAG will emit special, better expansions 1342 // than the general expansion we do here. 1343 1344 // TODO: It would be better to just directly handle those optimizations here. 1345 bool AMDGPUCodeGenPrepareImpl::divHasSpecialOptimization(BinaryOperator &I, 1346 Value *Num, 1347 Value *Den) const { 1348 if (Constant *C = dyn_cast<Constant>(Den)) { 1349 // Arbitrary constants get a better expansion as long as a wider mulhi is 1350 // legal. 1351 if (C->getType()->getScalarSizeInBits() <= 32) 1352 return true; 1353 1354 // TODO: Sdiv check for not exact for some reason. 1355 1356 // If there's no wider mulhi, there's only a better expansion for powers of 1357 // two. 1358 // TODO: Should really know for each vector element. 1359 if (isKnownToBeAPowerOfTwo(C, DL, true, 0, AC, &I, DT)) 1360 return true; 1361 1362 return false; 1363 } 1364 1365 if (BinaryOperator *BinOpDen = dyn_cast<BinaryOperator>(Den)) { 1366 // fold (udiv x, (shl c, y)) -> x >>u (log2(c)+y) iff c is power of 2 1367 if (BinOpDen->getOpcode() == Instruction::Shl && 1368 isa<Constant>(BinOpDen->getOperand(0)) && 1369 isKnownToBeAPowerOfTwo(BinOpDen->getOperand(0), DL, true, 0, AC, &I, 1370 DT)) { 1371 return true; 1372 } 1373 } 1374 1375 return false; 1376 } 1377 1378 static Value *getSign32(Value *V, IRBuilder<> &Builder, const DataLayout DL) { 1379 // Check whether the sign can be determined statically. 1380 KnownBits Known = computeKnownBits(V, DL); 1381 if (Known.isNegative()) 1382 return Constant::getAllOnesValue(V->getType()); 1383 if (Known.isNonNegative()) 1384 return Constant::getNullValue(V->getType()); 1385 return Builder.CreateAShr(V, Builder.getInt32(31)); 1386 } 1387 1388 Value *AMDGPUCodeGenPrepareImpl::expandDivRem32(IRBuilder<> &Builder, 1389 BinaryOperator &I, Value *X, 1390 Value *Y) const { 1391 Instruction::BinaryOps Opc = I.getOpcode(); 1392 assert(Opc == Instruction::URem || Opc == Instruction::UDiv || 1393 Opc == Instruction::SRem || Opc == Instruction::SDiv); 1394 1395 FastMathFlags FMF; 1396 FMF.setFast(); 1397 Builder.setFastMathFlags(FMF); 1398 1399 if (divHasSpecialOptimization(I, X, Y)) 1400 return nullptr; // Keep it for later optimization. 1401 1402 bool IsDiv = Opc == Instruction::UDiv || Opc == Instruction::SDiv; 1403 bool IsSigned = Opc == Instruction::SRem || Opc == Instruction::SDiv; 1404 1405 Type *Ty = X->getType(); 1406 Type *I32Ty = Builder.getInt32Ty(); 1407 Type *F32Ty = Builder.getFloatTy(); 1408 1409 if (Ty->getScalarSizeInBits() != 32) { 1410 if (IsSigned) { 1411 X = Builder.CreateSExtOrTrunc(X, I32Ty); 1412 Y = Builder.CreateSExtOrTrunc(Y, I32Ty); 1413 } else { 1414 X = Builder.CreateZExtOrTrunc(X, I32Ty); 1415 Y = Builder.CreateZExtOrTrunc(Y, I32Ty); 1416 } 1417 } 1418 1419 if (Value *Res = expandDivRem24(Builder, I, X, Y, IsDiv, IsSigned)) { 1420 return IsSigned ? Builder.CreateSExtOrTrunc(Res, Ty) : 1421 Builder.CreateZExtOrTrunc(Res, Ty); 1422 } 1423 1424 ConstantInt *Zero = Builder.getInt32(0); 1425 ConstantInt *One = Builder.getInt32(1); 1426 1427 Value *Sign = nullptr; 1428 if (IsSigned) { 1429 Value *SignX = getSign32(X, Builder, DL); 1430 Value *SignY = getSign32(Y, Builder, DL); 1431 // Remainder sign is the same as LHS 1432 Sign = IsDiv ? Builder.CreateXor(SignX, SignY) : SignX; 1433 1434 X = Builder.CreateAdd(X, SignX); 1435 Y = Builder.CreateAdd(Y, SignY); 1436 1437 X = Builder.CreateXor(X, SignX); 1438 Y = Builder.CreateXor(Y, SignY); 1439 } 1440 1441 // The algorithm here is based on ideas from "Software Integer Division", Tom 1442 // Rodeheffer, August 2008. 1443 // 1444 // unsigned udiv(unsigned x, unsigned y) { 1445 // // Initial estimate of inv(y). The constant is less than 2^32 to ensure 1446 // // that this is a lower bound on inv(y), even if some of the calculations 1447 // // round up. 1448 // unsigned z = (unsigned)((4294967296.0 - 512.0) * v_rcp_f32((float)y)); 1449 // 1450 // // One round of UNR (Unsigned integer Newton-Raphson) to improve z. 1451 // // Empirically this is guaranteed to give a "two-y" lower bound on 1452 // // inv(y). 1453 // z += umulh(z, -y * z); 1454 // 1455 // // Quotient/remainder estimate. 1456 // unsigned q = umulh(x, z); 1457 // unsigned r = x - q * y; 1458 // 1459 // // Two rounds of quotient/remainder refinement. 1460 // if (r >= y) { 1461 // ++q; 1462 // r -= y; 1463 // } 1464 // if (r >= y) { 1465 // ++q; 1466 // r -= y; 1467 // } 1468 // 1469 // return q; 1470 // } 1471 1472 // Initial estimate of inv(y). 1473 Value *FloatY = Builder.CreateUIToFP(Y, F32Ty); 1474 Value *RcpY = Builder.CreateIntrinsic(Intrinsic::amdgcn_rcp, F32Ty, {FloatY}); 1475 Constant *Scale = ConstantFP::get(F32Ty, llvm::bit_cast<float>(0x4F7FFFFE)); 1476 Value *ScaledY = Builder.CreateFMul(RcpY, Scale); 1477 Value *Z = Builder.CreateFPToUI(ScaledY, I32Ty); 1478 1479 // One round of UNR. 1480 Value *NegY = Builder.CreateSub(Zero, Y); 1481 Value *NegYZ = Builder.CreateMul(NegY, Z); 1482 Z = Builder.CreateAdd(Z, getMulHu(Builder, Z, NegYZ)); 1483 1484 // Quotient/remainder estimate. 1485 Value *Q = getMulHu(Builder, X, Z); 1486 Value *R = Builder.CreateSub(X, Builder.CreateMul(Q, Y)); 1487 1488 // First quotient/remainder refinement. 1489 Value *Cond = Builder.CreateICmpUGE(R, Y); 1490 if (IsDiv) 1491 Q = Builder.CreateSelect(Cond, Builder.CreateAdd(Q, One), Q); 1492 R = Builder.CreateSelect(Cond, Builder.CreateSub(R, Y), R); 1493 1494 // Second quotient/remainder refinement. 1495 Cond = Builder.CreateICmpUGE(R, Y); 1496 Value *Res; 1497 if (IsDiv) 1498 Res = Builder.CreateSelect(Cond, Builder.CreateAdd(Q, One), Q); 1499 else 1500 Res = Builder.CreateSelect(Cond, Builder.CreateSub(R, Y), R); 1501 1502 if (IsSigned) { 1503 Res = Builder.CreateXor(Res, Sign); 1504 Res = Builder.CreateSub(Res, Sign); 1505 Res = Builder.CreateSExtOrTrunc(Res, Ty); 1506 } else { 1507 Res = Builder.CreateZExtOrTrunc(Res, Ty); 1508 } 1509 return Res; 1510 } 1511 1512 Value *AMDGPUCodeGenPrepareImpl::shrinkDivRem64(IRBuilder<> &Builder, 1513 BinaryOperator &I, Value *Num, 1514 Value *Den) const { 1515 if (!ExpandDiv64InIR && divHasSpecialOptimization(I, Num, Den)) 1516 return nullptr; // Keep it for later optimization. 1517 1518 Instruction::BinaryOps Opc = I.getOpcode(); 1519 1520 bool IsDiv = Opc == Instruction::SDiv || Opc == Instruction::UDiv; 1521 bool IsSigned = Opc == Instruction::SDiv || Opc == Instruction::SRem; 1522 1523 int NumDivBits = getDivNumBits(I, Num, Den, 32, IsSigned); 1524 if (NumDivBits == -1) 1525 return nullptr; 1526 1527 Value *Narrowed = nullptr; 1528 if (NumDivBits <= 24) { 1529 Narrowed = expandDivRem24Impl(Builder, I, Num, Den, NumDivBits, 1530 IsDiv, IsSigned); 1531 } else if (NumDivBits <= 32) { 1532 Narrowed = expandDivRem32(Builder, I, Num, Den); 1533 } 1534 1535 if (Narrowed) { 1536 return IsSigned ? Builder.CreateSExt(Narrowed, Num->getType()) : 1537 Builder.CreateZExt(Narrowed, Num->getType()); 1538 } 1539 1540 return nullptr; 1541 } 1542 1543 void AMDGPUCodeGenPrepareImpl::expandDivRem64(BinaryOperator &I) const { 1544 Instruction::BinaryOps Opc = I.getOpcode(); 1545 // Do the general expansion. 1546 if (Opc == Instruction::UDiv || Opc == Instruction::SDiv) { 1547 expandDivisionUpTo64Bits(&I); 1548 return; 1549 } 1550 1551 if (Opc == Instruction::URem || Opc == Instruction::SRem) { 1552 expandRemainderUpTo64Bits(&I); 1553 return; 1554 } 1555 1556 llvm_unreachable("not a division"); 1557 } 1558 1559 bool AMDGPUCodeGenPrepareImpl::visitBinaryOperator(BinaryOperator &I) { 1560 if (foldBinOpIntoSelect(I)) 1561 return true; 1562 1563 if (ST.has16BitInsts() && needsPromotionToI32(I.getType()) && 1564 UA.isUniform(&I) && promoteUniformOpToI32(I)) 1565 return true; 1566 1567 if (UseMul24Intrin && replaceMulWithMul24(I)) 1568 return true; 1569 1570 bool Changed = false; 1571 Instruction::BinaryOps Opc = I.getOpcode(); 1572 Type *Ty = I.getType(); 1573 Value *NewDiv = nullptr; 1574 unsigned ScalarSize = Ty->getScalarSizeInBits(); 1575 1576 SmallVector<BinaryOperator *, 8> Div64ToExpand; 1577 1578 if ((Opc == Instruction::URem || Opc == Instruction::UDiv || 1579 Opc == Instruction::SRem || Opc == Instruction::SDiv) && 1580 ScalarSize <= 64 && 1581 !DisableIDivExpand) { 1582 Value *Num = I.getOperand(0); 1583 Value *Den = I.getOperand(1); 1584 IRBuilder<> Builder(&I); 1585 Builder.SetCurrentDebugLocation(I.getDebugLoc()); 1586 1587 if (auto *VT = dyn_cast<FixedVectorType>(Ty)) { 1588 NewDiv = PoisonValue::get(VT); 1589 1590 for (unsigned N = 0, E = VT->getNumElements(); N != E; ++N) { 1591 Value *NumEltN = Builder.CreateExtractElement(Num, N); 1592 Value *DenEltN = Builder.CreateExtractElement(Den, N); 1593 1594 Value *NewElt; 1595 if (ScalarSize <= 32) { 1596 NewElt = expandDivRem32(Builder, I, NumEltN, DenEltN); 1597 if (!NewElt) 1598 NewElt = Builder.CreateBinOp(Opc, NumEltN, DenEltN); 1599 } else { 1600 // See if this 64-bit division can be shrunk to 32/24-bits before 1601 // producing the general expansion. 1602 NewElt = shrinkDivRem64(Builder, I, NumEltN, DenEltN); 1603 if (!NewElt) { 1604 // The general 64-bit expansion introduces control flow and doesn't 1605 // return the new value. Just insert a scalar copy and defer 1606 // expanding it. 1607 NewElt = Builder.CreateBinOp(Opc, NumEltN, DenEltN); 1608 Div64ToExpand.push_back(cast<BinaryOperator>(NewElt)); 1609 } 1610 } 1611 1612 if (auto *NewEltI = dyn_cast<Instruction>(NewElt)) 1613 NewEltI->copyIRFlags(&I); 1614 1615 NewDiv = Builder.CreateInsertElement(NewDiv, NewElt, N); 1616 } 1617 } else { 1618 if (ScalarSize <= 32) 1619 NewDiv = expandDivRem32(Builder, I, Num, Den); 1620 else { 1621 NewDiv = shrinkDivRem64(Builder, I, Num, Den); 1622 if (!NewDiv) 1623 Div64ToExpand.push_back(&I); 1624 } 1625 } 1626 1627 if (NewDiv) { 1628 I.replaceAllUsesWith(NewDiv); 1629 I.eraseFromParent(); 1630 Changed = true; 1631 } 1632 } 1633 1634 if (ExpandDiv64InIR) { 1635 // TODO: We get much worse code in specially handled constant cases. 1636 for (BinaryOperator *Div : Div64ToExpand) { 1637 expandDivRem64(*Div); 1638 FlowChanged = true; 1639 Changed = true; 1640 } 1641 } 1642 1643 return Changed; 1644 } 1645 1646 bool AMDGPUCodeGenPrepareImpl::visitLoadInst(LoadInst &I) { 1647 if (!WidenLoads) 1648 return false; 1649 1650 if ((I.getPointerAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS || 1651 I.getPointerAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS_32BIT) && 1652 canWidenScalarExtLoad(I)) { 1653 IRBuilder<> Builder(&I); 1654 Builder.SetCurrentDebugLocation(I.getDebugLoc()); 1655 1656 Type *I32Ty = Builder.getInt32Ty(); 1657 LoadInst *WidenLoad = Builder.CreateLoad(I32Ty, I.getPointerOperand()); 1658 WidenLoad->copyMetadata(I); 1659 1660 // If we have range metadata, we need to convert the type, and not make 1661 // assumptions about the high bits. 1662 if (auto *Range = WidenLoad->getMetadata(LLVMContext::MD_range)) { 1663 ConstantInt *Lower = 1664 mdconst::extract<ConstantInt>(Range->getOperand(0)); 1665 1666 if (Lower->isNullValue()) { 1667 WidenLoad->setMetadata(LLVMContext::MD_range, nullptr); 1668 } else { 1669 Metadata *LowAndHigh[] = { 1670 ConstantAsMetadata::get(ConstantInt::get(I32Ty, Lower->getValue().zext(32))), 1671 // Don't make assumptions about the high bits. 1672 ConstantAsMetadata::get(ConstantInt::get(I32Ty, 0)) 1673 }; 1674 1675 WidenLoad->setMetadata(LLVMContext::MD_range, 1676 MDNode::get(F.getContext(), LowAndHigh)); 1677 } 1678 } 1679 1680 int TySize = DL.getTypeSizeInBits(I.getType()); 1681 Type *IntNTy = Builder.getIntNTy(TySize); 1682 Value *ValTrunc = Builder.CreateTrunc(WidenLoad, IntNTy); 1683 Value *ValOrig = Builder.CreateBitCast(ValTrunc, I.getType()); 1684 I.replaceAllUsesWith(ValOrig); 1685 I.eraseFromParent(); 1686 return true; 1687 } 1688 1689 return false; 1690 } 1691 1692 bool AMDGPUCodeGenPrepareImpl::visitICmpInst(ICmpInst &I) { 1693 bool Changed = false; 1694 1695 if (ST.has16BitInsts() && needsPromotionToI32(I.getOperand(0)->getType()) && 1696 UA.isUniform(&I)) 1697 Changed |= promoteUniformOpToI32(I); 1698 1699 return Changed; 1700 } 1701 1702 bool AMDGPUCodeGenPrepareImpl::visitSelectInst(SelectInst &I) { 1703 Value *Cond = I.getCondition(); 1704 Value *TrueVal = I.getTrueValue(); 1705 Value *FalseVal = I.getFalseValue(); 1706 Value *CmpVal; 1707 FCmpInst::Predicate Pred; 1708 1709 if (ST.has16BitInsts() && needsPromotionToI32(I.getType())) { 1710 if (UA.isUniform(&I)) 1711 return promoteUniformOpToI32(I); 1712 return false; 1713 } 1714 1715 // Match fract pattern with nan check. 1716 if (!match(Cond, m_FCmp(Pred, m_Value(CmpVal), m_NonNaN()))) 1717 return false; 1718 1719 FPMathOperator *FPOp = dyn_cast<FPMathOperator>(&I); 1720 if (!FPOp) 1721 return false; 1722 1723 IRBuilder<> Builder(&I); 1724 Builder.setFastMathFlags(FPOp->getFastMathFlags()); 1725 1726 auto *IITrue = dyn_cast<IntrinsicInst>(TrueVal); 1727 auto *IIFalse = dyn_cast<IntrinsicInst>(FalseVal); 1728 1729 Value *Fract = nullptr; 1730 if (Pred == FCmpInst::FCMP_UNO && TrueVal == CmpVal && IIFalse && 1731 CmpVal == matchFractPat(*IIFalse)) { 1732 // isnan(x) ? x : fract(x) 1733 Fract = applyFractPat(Builder, CmpVal); 1734 } else if (Pred == FCmpInst::FCMP_ORD && FalseVal == CmpVal && IITrue && 1735 CmpVal == matchFractPat(*IITrue)) { 1736 // !isnan(x) ? fract(x) : x 1737 Fract = applyFractPat(Builder, CmpVal); 1738 } else 1739 return false; 1740 1741 Fract->takeName(&I); 1742 I.replaceAllUsesWith(Fract); 1743 RecursivelyDeleteTriviallyDeadInstructions(&I, TLI); 1744 return true; 1745 } 1746 1747 static bool areInSameBB(const Value *A, const Value *B) { 1748 const auto *IA = dyn_cast<Instruction>(A); 1749 const auto *IB = dyn_cast<Instruction>(B); 1750 return IA && IB && IA->getParent() == IB->getParent(); 1751 } 1752 1753 // Helper for breaking large PHIs that returns true when an extractelement on V 1754 // is likely to be folded away by the DAG combiner. 1755 static bool isInterestingPHIIncomingValue(const Value *V) { 1756 const auto *FVT = dyn_cast<FixedVectorType>(V->getType()); 1757 if (!FVT) 1758 return false; 1759 1760 const Value *CurVal = V; 1761 1762 // Check for insertelements, keeping track of the elements covered. 1763 BitVector EltsCovered(FVT->getNumElements()); 1764 while (const auto *IE = dyn_cast<InsertElementInst>(CurVal)) { 1765 const auto *Idx = dyn_cast<ConstantInt>(IE->getOperand(2)); 1766 1767 // Non constant index/out of bounds index -> folding is unlikely. 1768 // The latter is more of a sanity check because canonical IR should just 1769 // have replaced those with poison. 1770 if (!Idx || Idx->getZExtValue() >= FVT->getNumElements()) 1771 return false; 1772 1773 const auto *VecSrc = IE->getOperand(0); 1774 1775 // If the vector source is another instruction, it must be in the same basic 1776 // block. Otherwise, the DAGCombiner won't see the whole thing and is 1777 // unlikely to be able to do anything interesting here. 1778 if (isa<Instruction>(VecSrc) && !areInSameBB(VecSrc, IE)) 1779 return false; 1780 1781 CurVal = VecSrc; 1782 EltsCovered.set(Idx->getZExtValue()); 1783 1784 // All elements covered. 1785 if (EltsCovered.all()) 1786 return true; 1787 } 1788 1789 // We either didn't find a single insertelement, or the insertelement chain 1790 // ended before all elements were covered. Check for other interesting values. 1791 1792 // Constants are always interesting because we can just constant fold the 1793 // extractelements. 1794 if (isa<Constant>(CurVal)) 1795 return true; 1796 1797 // shufflevector is likely to be profitable if either operand is a constant, 1798 // or if either source is in the same block. 1799 // This is because shufflevector is most often lowered as a series of 1800 // insert/extract elements anyway. 1801 if (const auto *SV = dyn_cast<ShuffleVectorInst>(CurVal)) { 1802 return isa<Constant>(SV->getOperand(1)) || 1803 areInSameBB(SV, SV->getOperand(0)) || 1804 areInSameBB(SV, SV->getOperand(1)); 1805 } 1806 1807 return false; 1808 } 1809 1810 static void collectPHINodes(const PHINode &I, 1811 SmallPtrSet<const PHINode *, 8> &SeenPHIs) { 1812 const auto [It, Inserted] = SeenPHIs.insert(&I); 1813 if (!Inserted) 1814 return; 1815 1816 for (const Value *Inc : I.incoming_values()) { 1817 if (const auto *PhiInc = dyn_cast<PHINode>(Inc)) 1818 collectPHINodes(*PhiInc, SeenPHIs); 1819 } 1820 1821 for (const User *U : I.users()) { 1822 if (const auto *PhiU = dyn_cast<PHINode>(U)) 1823 collectPHINodes(*PhiU, SeenPHIs); 1824 } 1825 } 1826 1827 bool AMDGPUCodeGenPrepareImpl::canBreakPHINode(const PHINode &I) { 1828 // Check in the cache first. 1829 if (const auto It = BreakPhiNodesCache.find(&I); 1830 It != BreakPhiNodesCache.end()) 1831 return It->second; 1832 1833 // We consider PHI nodes as part of "chains", so given a PHI node I, we 1834 // recursively consider all its users and incoming values that are also PHI 1835 // nodes. We then make a decision about all of those PHIs at once. Either they 1836 // all get broken up, or none of them do. That way, we avoid cases where a 1837 // single PHI is/is not broken and we end up reforming/exploding a vector 1838 // multiple times, or even worse, doing it in a loop. 1839 SmallPtrSet<const PHINode *, 8> WorkList; 1840 collectPHINodes(I, WorkList); 1841 1842 #ifndef NDEBUG 1843 // Check that none of the PHI nodes in the worklist are in the map. If some of 1844 // them are, it means we're not good enough at collecting related PHIs. 1845 for (const PHINode *WLP : WorkList) { 1846 assert(BreakPhiNodesCache.count(WLP) == 0); 1847 } 1848 #endif 1849 1850 // To consider a PHI profitable to break, we need to see some interesting 1851 // incoming values. At least 2/3rd (rounded up) of all PHIs in the worklist 1852 // must have one to consider all PHIs breakable. 1853 // 1854 // This threshold has been determined through performance testing. 1855 // 1856 // Note that the computation below is equivalent to 1857 // 1858 // (unsigned)ceil((K / 3.0) * 2) 1859 // 1860 // It's simply written this way to avoid mixing integral/FP arithmetic. 1861 const auto Threshold = (alignTo(WorkList.size() * 2, 3) / 3); 1862 unsigned NumBreakablePHIs = 0; 1863 bool CanBreak = false; 1864 for (const PHINode *Cur : WorkList) { 1865 // Don't break PHIs that have no interesting incoming values. That is, where 1866 // there is no clear opportunity to fold the "extractelement" instructions 1867 // we would add. 1868 // 1869 // Note: IC does not run after this pass, so we're only interested in the 1870 // foldings that the DAG combiner can do. 1871 if (any_of(Cur->incoming_values(), isInterestingPHIIncomingValue)) { 1872 if (++NumBreakablePHIs >= Threshold) { 1873 CanBreak = true; 1874 break; 1875 } 1876 } 1877 } 1878 1879 for (const PHINode *Cur : WorkList) 1880 BreakPhiNodesCache[Cur] = CanBreak; 1881 1882 return CanBreak; 1883 } 1884 1885 /// Helper class for "break large PHIs" (visitPHINode). 1886 /// 1887 /// This represents a slice of a PHI's incoming value, which is made up of: 1888 /// - The type of the slice (Ty) 1889 /// - The index in the incoming value's vector where the slice starts (Idx) 1890 /// - The number of elements in the slice (NumElts). 1891 /// It also keeps track of the NewPHI node inserted for this particular slice. 1892 /// 1893 /// Slice examples: 1894 /// <4 x i64> -> Split into four i64 slices. 1895 /// -> [i64, 0, 1], [i64, 1, 1], [i64, 2, 1], [i64, 3, 1] 1896 /// <5 x i16> -> Split into 2 <2 x i16> slices + a i16 tail. 1897 /// -> [<2 x i16>, 0, 2], [<2 x i16>, 2, 2], [i16, 4, 1] 1898 class VectorSlice { 1899 public: 1900 VectorSlice(Type *Ty, unsigned Idx, unsigned NumElts) 1901 : Ty(Ty), Idx(Idx), NumElts(NumElts) {} 1902 1903 Type *Ty = nullptr; 1904 unsigned Idx = 0; 1905 unsigned NumElts = 0; 1906 PHINode *NewPHI = nullptr; 1907 1908 /// Slice \p Inc according to the information contained within this slice. 1909 /// This is cached, so if called multiple times for the same \p BB & \p Inc 1910 /// pair, it returns the same Sliced value as well. 1911 /// 1912 /// Note this *intentionally* does not return the same value for, say, 1913 /// [%bb.0, %0] & [%bb.1, %0] as: 1914 /// - It could cause issues with dominance (e.g. if bb.1 is seen first, then 1915 /// the value in bb.1 may not be reachable from bb.0 if it's its 1916 /// predecessor.) 1917 /// - We also want to make our extract instructions as local as possible so 1918 /// the DAG has better chances of folding them out. Duplicating them like 1919 /// that is beneficial in that regard. 1920 /// 1921 /// This is both a minor optimization to avoid creating duplicate 1922 /// instructions, but also a requirement for correctness. It is not forbidden 1923 /// for a PHI node to have the same [BB, Val] pair multiple times. If we 1924 /// returned a new value each time, those previously identical pairs would all 1925 /// have different incoming values (from the same block) and it'd cause a "PHI 1926 /// node has multiple entries for the same basic block with different incoming 1927 /// values!" verifier error. 1928 Value *getSlicedVal(BasicBlock *BB, Value *Inc, StringRef NewValName) { 1929 Value *&Res = SlicedVals[{BB, Inc}]; 1930 if (Res) 1931 return Res; 1932 1933 IRBuilder<> B(BB->getTerminator()); 1934 if (Instruction *IncInst = dyn_cast<Instruction>(Inc)) 1935 B.SetCurrentDebugLocation(IncInst->getDebugLoc()); 1936 1937 if (NumElts > 1) { 1938 SmallVector<int, 4> Mask; 1939 for (unsigned K = Idx; K < (Idx + NumElts); ++K) 1940 Mask.push_back(K); 1941 Res = B.CreateShuffleVector(Inc, Mask, NewValName); 1942 } else 1943 Res = B.CreateExtractElement(Inc, Idx, NewValName); 1944 1945 return Res; 1946 } 1947 1948 private: 1949 SmallDenseMap<std::pair<BasicBlock *, Value *>, Value *> SlicedVals; 1950 }; 1951 1952 bool AMDGPUCodeGenPrepareImpl::visitPHINode(PHINode &I) { 1953 // Break-up fixed-vector PHIs into smaller pieces. 1954 // Default threshold is 32, so it breaks up any vector that's >32 bits into 1955 // its elements, or into 32-bit pieces (for 8/16 bit elts). 1956 // 1957 // This is only helpful for DAGISel because it doesn't handle large PHIs as 1958 // well as GlobalISel. DAGISel lowers PHIs by using CopyToReg/CopyFromReg. 1959 // With large, odd-sized PHIs we may end up needing many `build_vector` 1960 // operations with most elements being "undef". This inhibits a lot of 1961 // optimization opportunities and can result in unreasonably high register 1962 // pressure and the inevitable stack spilling. 1963 if (!BreakLargePHIs || getCGPassBuilderOption().EnableGlobalISelOption) 1964 return false; 1965 1966 FixedVectorType *FVT = dyn_cast<FixedVectorType>(I.getType()); 1967 if (!FVT || FVT->getNumElements() == 1 || 1968 DL.getTypeSizeInBits(FVT) <= BreakLargePHIsThreshold) 1969 return false; 1970 1971 if (!ForceBreakLargePHIs && !canBreakPHINode(I)) 1972 return false; 1973 1974 std::vector<VectorSlice> Slices; 1975 1976 Type *EltTy = FVT->getElementType(); 1977 { 1978 unsigned Idx = 0; 1979 // For 8/16 bits type, don't scalarize fully but break it up into as many 1980 // 32-bit slices as we can, and scalarize the tail. 1981 const unsigned EltSize = DL.getTypeSizeInBits(EltTy); 1982 const unsigned NumElts = FVT->getNumElements(); 1983 if (EltSize == 8 || EltSize == 16) { 1984 const unsigned SubVecSize = (32 / EltSize); 1985 Type *SubVecTy = FixedVectorType::get(EltTy, SubVecSize); 1986 for (unsigned End = alignDown(NumElts, SubVecSize); Idx < End; 1987 Idx += SubVecSize) 1988 Slices.emplace_back(SubVecTy, Idx, SubVecSize); 1989 } 1990 1991 // Scalarize all remaining elements. 1992 for (; Idx < NumElts; ++Idx) 1993 Slices.emplace_back(EltTy, Idx, 1); 1994 } 1995 1996 assert(Slices.size() > 1); 1997 1998 // Create one PHI per vector piece. The "VectorSlice" class takes care of 1999 // creating the necessary instruction to extract the relevant slices of each 2000 // incoming value. 2001 IRBuilder<> B(I.getParent()); 2002 B.SetCurrentDebugLocation(I.getDebugLoc()); 2003 2004 unsigned IncNameSuffix = 0; 2005 for (VectorSlice &S : Slices) { 2006 // We need to reset the build on each iteration, because getSlicedVal may 2007 // have inserted something into I's BB. 2008 B.SetInsertPoint(I.getParent()->getFirstNonPHIIt()); 2009 S.NewPHI = B.CreatePHI(S.Ty, I.getNumIncomingValues()); 2010 2011 for (const auto &[Idx, BB] : enumerate(I.blocks())) { 2012 S.NewPHI->addIncoming(S.getSlicedVal(BB, I.getIncomingValue(Idx), 2013 "largephi.extractslice" + 2014 std::to_string(IncNameSuffix++)), 2015 BB); 2016 } 2017 } 2018 2019 // And replace this PHI with a vector of all the previous PHI values. 2020 Value *Vec = PoisonValue::get(FVT); 2021 unsigned NameSuffix = 0; 2022 for (VectorSlice &S : Slices) { 2023 const auto ValName = "largephi.insertslice" + std::to_string(NameSuffix++); 2024 if (S.NumElts > 1) 2025 Vec = 2026 B.CreateInsertVector(FVT, Vec, S.NewPHI, B.getInt64(S.Idx), ValName); 2027 else 2028 Vec = B.CreateInsertElement(Vec, S.NewPHI, S.Idx, ValName); 2029 } 2030 2031 I.replaceAllUsesWith(Vec); 2032 I.eraseFromParent(); 2033 return true; 2034 } 2035 2036 /// \param V Value to check 2037 /// \param DL DataLayout 2038 /// \param TM TargetMachine (TODO: remove once DL contains nullptr values) 2039 /// \param AS Target Address Space 2040 /// \return true if \p V cannot be the null value of \p AS, false otherwise. 2041 static bool isPtrKnownNeverNull(const Value *V, const DataLayout &DL, 2042 const AMDGPUTargetMachine &TM, unsigned AS) { 2043 // Pointer cannot be null if it's a block address, GV or alloca. 2044 // NOTE: We don't support extern_weak, but if we did, we'd need to check for 2045 // it as the symbol could be null in such cases. 2046 if (isa<BlockAddress>(V) || isa<GlobalValue>(V) || isa<AllocaInst>(V)) 2047 return true; 2048 2049 // Check nonnull arguments. 2050 if (const auto *Arg = dyn_cast<Argument>(V); Arg && Arg->hasNonNullAttr()) 2051 return true; 2052 2053 // getUnderlyingObject may have looked through another addrspacecast, although 2054 // the optimizable situations most likely folded out by now. 2055 if (AS != cast<PointerType>(V->getType())->getAddressSpace()) 2056 return false; 2057 2058 // TODO: Calls that return nonnull? 2059 2060 // For all other things, use KnownBits. 2061 // We either use 0 or all bits set to indicate null, so check whether the 2062 // value can be zero or all ones. 2063 // 2064 // TODO: Use ValueTracking's isKnownNeverNull if it becomes aware that some 2065 // address spaces have non-zero null values. 2066 auto SrcPtrKB = computeKnownBits(V, DL); 2067 const auto NullVal = TM.getNullPointerValue(AS); 2068 2069 assert(SrcPtrKB.getBitWidth() == DL.getPointerSizeInBits(AS)); 2070 assert((NullVal == 0 || NullVal == -1) && 2071 "don't know how to check for this null value!"); 2072 return NullVal ? !SrcPtrKB.getMaxValue().isAllOnes() : SrcPtrKB.isNonZero(); 2073 } 2074 2075 bool AMDGPUCodeGenPrepareImpl::visitAddrSpaceCastInst(AddrSpaceCastInst &I) { 2076 // Intrinsic doesn't support vectors, also it seems that it's often difficult 2077 // to prove that a vector cannot have any nulls in it so it's unclear if it's 2078 // worth supporting. 2079 if (I.getType()->isVectorTy()) 2080 return false; 2081 2082 // Check if this can be lowered to a amdgcn.addrspacecast.nonnull. 2083 // This is only worthwhile for casts from/to priv/local to flat. 2084 const unsigned SrcAS = I.getSrcAddressSpace(); 2085 const unsigned DstAS = I.getDestAddressSpace(); 2086 2087 bool CanLower = false; 2088 if (SrcAS == AMDGPUAS::FLAT_ADDRESS) 2089 CanLower = (DstAS == AMDGPUAS::LOCAL_ADDRESS || 2090 DstAS == AMDGPUAS::PRIVATE_ADDRESS); 2091 else if (DstAS == AMDGPUAS::FLAT_ADDRESS) 2092 CanLower = (SrcAS == AMDGPUAS::LOCAL_ADDRESS || 2093 SrcAS == AMDGPUAS::PRIVATE_ADDRESS); 2094 if (!CanLower) 2095 return false; 2096 2097 SmallVector<const Value *, 4> WorkList; 2098 getUnderlyingObjects(I.getOperand(0), WorkList); 2099 if (!all_of(WorkList, [&](const Value *V) { 2100 return isPtrKnownNeverNull(V, DL, TM, SrcAS); 2101 })) 2102 return false; 2103 2104 IRBuilder<> B(&I); 2105 auto *Intrin = B.CreateIntrinsic( 2106 I.getType(), Intrinsic::amdgcn_addrspacecast_nonnull, {I.getOperand(0)}); 2107 I.replaceAllUsesWith(Intrin); 2108 I.eraseFromParent(); 2109 return true; 2110 } 2111 2112 bool AMDGPUCodeGenPrepareImpl::visitIntrinsicInst(IntrinsicInst &I) { 2113 switch (I.getIntrinsicID()) { 2114 case Intrinsic::bitreverse: 2115 return visitBitreverseIntrinsicInst(I); 2116 case Intrinsic::minnum: 2117 return visitMinNum(I); 2118 case Intrinsic::sqrt: 2119 return visitSqrt(I); 2120 default: 2121 return false; 2122 } 2123 } 2124 2125 bool AMDGPUCodeGenPrepareImpl::visitBitreverseIntrinsicInst(IntrinsicInst &I) { 2126 bool Changed = false; 2127 2128 if (ST.has16BitInsts() && needsPromotionToI32(I.getType()) && 2129 UA.isUniform(&I)) 2130 Changed |= promoteUniformBitreverseToI32(I); 2131 2132 return Changed; 2133 } 2134 2135 /// Match non-nan fract pattern. 2136 /// minnum(fsub(x, floor(x)), nextafter(1.0, -1.0) 2137 /// 2138 /// If fract is a useful instruction for the subtarget. Does not account for the 2139 /// nan handling; the instruction has a nan check on the input value. 2140 Value *AMDGPUCodeGenPrepareImpl::matchFractPat(IntrinsicInst &I) { 2141 if (ST.hasFractBug()) 2142 return nullptr; 2143 2144 if (I.getIntrinsicID() != Intrinsic::minnum) 2145 return nullptr; 2146 2147 Type *Ty = I.getType(); 2148 if (!isLegalFloatingTy(Ty->getScalarType())) 2149 return nullptr; 2150 2151 Value *Arg0 = I.getArgOperand(0); 2152 Value *Arg1 = I.getArgOperand(1); 2153 2154 const APFloat *C; 2155 if (!match(Arg1, m_APFloat(C))) 2156 return nullptr; 2157 2158 APFloat One(1.0); 2159 bool LosesInfo; 2160 One.convert(C->getSemantics(), APFloat::rmNearestTiesToEven, &LosesInfo); 2161 2162 // Match nextafter(1.0, -1) 2163 One.next(true); 2164 if (One != *C) 2165 return nullptr; 2166 2167 Value *FloorSrc; 2168 if (match(Arg0, m_FSub(m_Value(FloorSrc), 2169 m_Intrinsic<Intrinsic::floor>(m_Deferred(FloorSrc))))) 2170 return FloorSrc; 2171 return nullptr; 2172 } 2173 2174 Value *AMDGPUCodeGenPrepareImpl::applyFractPat(IRBuilder<> &Builder, 2175 Value *FractArg) { 2176 SmallVector<Value *, 4> FractVals; 2177 extractValues(Builder, FractVals, FractArg); 2178 2179 SmallVector<Value *, 4> ResultVals(FractVals.size()); 2180 2181 Type *Ty = FractArg->getType()->getScalarType(); 2182 for (unsigned I = 0, E = FractVals.size(); I != E; ++I) { 2183 ResultVals[I] = 2184 Builder.CreateIntrinsic(Intrinsic::amdgcn_fract, {Ty}, {FractVals[I]}); 2185 } 2186 2187 return insertValues(Builder, FractArg->getType(), ResultVals); 2188 } 2189 2190 bool AMDGPUCodeGenPrepareImpl::visitMinNum(IntrinsicInst &I) { 2191 Value *FractArg = matchFractPat(I); 2192 if (!FractArg) 2193 return false; 2194 2195 // Match pattern for fract intrinsic in contexts where the nan check has been 2196 // optimized out (and hope the knowledge the source can't be nan wasn't lost). 2197 if (!I.hasNoNaNs() && 2198 !isKnownNeverNaN(FractArg, /*Depth=*/0, SimplifyQuery(DL, TLI))) 2199 return false; 2200 2201 IRBuilder<> Builder(&I); 2202 FastMathFlags FMF = I.getFastMathFlags(); 2203 FMF.setNoNaNs(); 2204 Builder.setFastMathFlags(FMF); 2205 2206 Value *Fract = applyFractPat(Builder, FractArg); 2207 Fract->takeName(&I); 2208 I.replaceAllUsesWith(Fract); 2209 2210 RecursivelyDeleteTriviallyDeadInstructions(&I, TLI); 2211 return true; 2212 } 2213 2214 static bool isOneOrNegOne(const Value *Val) { 2215 const APFloat *C; 2216 return match(Val, m_APFloat(C)) && C->getExactLog2Abs() == 0; 2217 } 2218 2219 // Expand llvm.sqrt.f32 calls with !fpmath metadata in a semi-fast way. 2220 bool AMDGPUCodeGenPrepareImpl::visitSqrt(IntrinsicInst &Sqrt) { 2221 Type *Ty = Sqrt.getType()->getScalarType(); 2222 if (!Ty->isFloatTy() && (!Ty->isHalfTy() || ST.has16BitInsts())) 2223 return false; 2224 2225 const FPMathOperator *FPOp = cast<const FPMathOperator>(&Sqrt); 2226 FastMathFlags SqrtFMF = FPOp->getFastMathFlags(); 2227 2228 // We're trying to handle the fast-but-not-that-fast case only. The lowering 2229 // of fast llvm.sqrt will give the raw instruction anyway. 2230 if (SqrtFMF.approxFunc() || HasUnsafeFPMath) 2231 return false; 2232 2233 const float ReqdAccuracy = FPOp->getFPAccuracy(); 2234 2235 // Defer correctly rounded expansion to codegen. 2236 if (ReqdAccuracy < 1.0f) 2237 return false; 2238 2239 // FIXME: This is an ugly hack for this pass using forward iteration instead 2240 // of reverse. If it worked like a normal combiner, the rsq would form before 2241 // we saw a sqrt call. 2242 auto *FDiv = 2243 dyn_cast_or_null<FPMathOperator>(Sqrt.getUniqueUndroppableUser()); 2244 if (FDiv && FDiv->getOpcode() == Instruction::FDiv && 2245 FDiv->getFPAccuracy() >= 1.0f && 2246 canOptimizeWithRsq(FPOp, FDiv->getFastMathFlags(), SqrtFMF) && 2247 // TODO: We should also handle the arcp case for the fdiv with non-1 value 2248 isOneOrNegOne(FDiv->getOperand(0))) 2249 return false; 2250 2251 Value *SrcVal = Sqrt.getOperand(0); 2252 bool CanTreatAsDAZ = canIgnoreDenormalInput(SrcVal, &Sqrt); 2253 2254 // The raw instruction is 1 ulp, but the correction for denormal handling 2255 // brings it to 2. 2256 if (!CanTreatAsDAZ && ReqdAccuracy < 2.0f) 2257 return false; 2258 2259 IRBuilder<> Builder(&Sqrt); 2260 SmallVector<Value *, 4> SrcVals; 2261 extractValues(Builder, SrcVals, SrcVal); 2262 2263 SmallVector<Value *, 4> ResultVals(SrcVals.size()); 2264 for (int I = 0, E = SrcVals.size(); I != E; ++I) { 2265 if (CanTreatAsDAZ) 2266 ResultVals[I] = Builder.CreateCall(getSqrtF32(), SrcVals[I]); 2267 else 2268 ResultVals[I] = emitSqrtIEEE2ULP(Builder, SrcVals[I], SqrtFMF); 2269 } 2270 2271 Value *NewSqrt = insertValues(Builder, Sqrt.getType(), ResultVals); 2272 NewSqrt->takeName(&Sqrt); 2273 Sqrt.replaceAllUsesWith(NewSqrt); 2274 Sqrt.eraseFromParent(); 2275 return true; 2276 } 2277 2278 bool AMDGPUCodeGenPrepare::runOnFunction(Function &F) { 2279 if (skipFunction(F)) 2280 return false; 2281 2282 auto *TPC = getAnalysisIfAvailable<TargetPassConfig>(); 2283 if (!TPC) 2284 return false; 2285 2286 const AMDGPUTargetMachine &TM = TPC->getTM<AMDGPUTargetMachine>(); 2287 const TargetLibraryInfo *TLI = 2288 &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F); 2289 AssumptionCache *AC = 2290 &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 2291 auto *DTWP = getAnalysisIfAvailable<DominatorTreeWrapperPass>(); 2292 const DominatorTree *DT = DTWP ? &DTWP->getDomTree() : nullptr; 2293 const UniformityInfo &UA = 2294 getAnalysis<UniformityInfoWrapperPass>().getUniformityInfo(); 2295 return AMDGPUCodeGenPrepareImpl(F, TM, TLI, AC, DT, UA).run(); 2296 } 2297 2298 PreservedAnalyses AMDGPUCodeGenPreparePass::run(Function &F, 2299 FunctionAnalysisManager &FAM) { 2300 const AMDGPUTargetMachine &ATM = static_cast<const AMDGPUTargetMachine &>(TM); 2301 const TargetLibraryInfo *TLI = &FAM.getResult<TargetLibraryAnalysis>(F); 2302 AssumptionCache *AC = &FAM.getResult<AssumptionAnalysis>(F); 2303 const DominatorTree *DT = FAM.getCachedResult<DominatorTreeAnalysis>(F); 2304 const UniformityInfo &UA = FAM.getResult<UniformityInfoAnalysis>(F); 2305 AMDGPUCodeGenPrepareImpl Impl(F, ATM, TLI, AC, DT, UA); 2306 if (!Impl.run()) 2307 return PreservedAnalyses::all(); 2308 PreservedAnalyses PA = PreservedAnalyses::none(); 2309 if (!Impl.FlowChanged) 2310 PA.preserveSet<CFGAnalyses>(); 2311 return PA; 2312 } 2313 2314 INITIALIZE_PASS_BEGIN(AMDGPUCodeGenPrepare, DEBUG_TYPE, 2315 "AMDGPU IR optimizations", false, false) 2316 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 2317 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 2318 INITIALIZE_PASS_DEPENDENCY(UniformityInfoWrapperPass) 2319 INITIALIZE_PASS_END(AMDGPUCodeGenPrepare, DEBUG_TYPE, "AMDGPU IR optimizations", 2320 false, false) 2321 2322 char AMDGPUCodeGenPrepare::ID = 0; 2323 2324 FunctionPass *llvm::createAMDGPUCodeGenPreparePass() { 2325 return new AMDGPUCodeGenPrepare(); 2326 } 2327