1 //===-- AMDGPUCodeGenPrepare.cpp ------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file 10 /// This pass does misc. AMDGPU optimizations on IR before instruction 11 /// selection. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "AMDGPU.h" 16 #include "AMDGPUTargetMachine.h" 17 #include "SIModeRegisterDefaults.h" 18 #include "llvm/Analysis/AssumptionCache.h" 19 #include "llvm/Analysis/ConstantFolding.h" 20 #include "llvm/Analysis/TargetLibraryInfo.h" 21 #include "llvm/Analysis/UniformityAnalysis.h" 22 #include "llvm/Analysis/ValueTracking.h" 23 #include "llvm/CodeGen/TargetPassConfig.h" 24 #include "llvm/IR/Dominators.h" 25 #include "llvm/IR/IRBuilder.h" 26 #include "llvm/IR/InstVisitor.h" 27 #include "llvm/IR/IntrinsicsAMDGPU.h" 28 #include "llvm/IR/PatternMatch.h" 29 #include "llvm/InitializePasses.h" 30 #include "llvm/Pass.h" 31 #include "llvm/Support/KnownBits.h" 32 #include "llvm/Transforms/Utils/IntegerDivision.h" 33 #include "llvm/Transforms/Utils/Local.h" 34 35 #define DEBUG_TYPE "amdgpu-codegenprepare" 36 37 using namespace llvm; 38 using namespace llvm::PatternMatch; 39 40 namespace { 41 42 static cl::opt<bool> WidenLoads( 43 "amdgpu-codegenprepare-widen-constant-loads", 44 cl::desc("Widen sub-dword constant address space loads in AMDGPUCodeGenPrepare"), 45 cl::ReallyHidden, 46 cl::init(false)); 47 48 static cl::opt<bool> Widen16BitOps( 49 "amdgpu-codegenprepare-widen-16-bit-ops", 50 cl::desc("Widen uniform 16-bit instructions to 32-bit in AMDGPUCodeGenPrepare"), 51 cl::ReallyHidden, 52 cl::init(true)); 53 54 static cl::opt<bool> 55 BreakLargePHIs("amdgpu-codegenprepare-break-large-phis", 56 cl::desc("Break large PHI nodes for DAGISel"), 57 cl::ReallyHidden, cl::init(true)); 58 59 static cl::opt<bool> 60 ForceBreakLargePHIs("amdgpu-codegenprepare-force-break-large-phis", 61 cl::desc("For testing purposes, always break large " 62 "PHIs even if it isn't profitable."), 63 cl::ReallyHidden, cl::init(false)); 64 65 static cl::opt<unsigned> BreakLargePHIsThreshold( 66 "amdgpu-codegenprepare-break-large-phis-threshold", 67 cl::desc("Minimum type size in bits for breaking large PHI nodes"), 68 cl::ReallyHidden, cl::init(32)); 69 70 static cl::opt<bool> UseMul24Intrin( 71 "amdgpu-codegenprepare-mul24", 72 cl::desc("Introduce mul24 intrinsics in AMDGPUCodeGenPrepare"), 73 cl::ReallyHidden, 74 cl::init(true)); 75 76 // Legalize 64-bit division by using the generic IR expansion. 77 static cl::opt<bool> ExpandDiv64InIR( 78 "amdgpu-codegenprepare-expand-div64", 79 cl::desc("Expand 64-bit division in AMDGPUCodeGenPrepare"), 80 cl::ReallyHidden, 81 cl::init(false)); 82 83 // Leave all division operations as they are. This supersedes ExpandDiv64InIR 84 // and is used for testing the legalizer. 85 static cl::opt<bool> DisableIDivExpand( 86 "amdgpu-codegenprepare-disable-idiv-expansion", 87 cl::desc("Prevent expanding integer division in AMDGPUCodeGenPrepare"), 88 cl::ReallyHidden, 89 cl::init(false)); 90 91 // Disable processing of fdiv so we can better test the backend implementations. 92 static cl::opt<bool> DisableFDivExpand( 93 "amdgpu-codegenprepare-disable-fdiv-expansion", 94 cl::desc("Prevent expanding floating point division in AMDGPUCodeGenPrepare"), 95 cl::ReallyHidden, 96 cl::init(false)); 97 98 static bool hasUnsafeFPMath(const Function &F) { 99 return F.getFnAttribute("unsafe-fp-math").getValueAsBool(); 100 } 101 102 class AMDGPUCodeGenPrepareImpl 103 : public InstVisitor<AMDGPUCodeGenPrepareImpl, bool> { 104 public: 105 Function &F; 106 const GCNSubtarget &ST; 107 const AMDGPUTargetMachine &TM; 108 const TargetLibraryInfo *TLI; 109 AssumptionCache *AC; 110 const DominatorTree *DT; 111 const UniformityInfo &UA; 112 const DataLayout &DL; 113 const bool HasUnsafeFPMath; 114 const bool HasFP32DenormalFlush; 115 bool FlowChanged = false; 116 mutable Function *SqrtF32 = nullptr; 117 mutable Function *LdexpF32 = nullptr; 118 119 DenseMap<const PHINode *, bool> BreakPhiNodesCache; 120 121 AMDGPUCodeGenPrepareImpl(Function &F, const AMDGPUTargetMachine &TM, 122 const TargetLibraryInfo *TLI, AssumptionCache *AC, 123 const DominatorTree *DT, const UniformityInfo &UA) 124 : F(F), ST(TM.getSubtarget<GCNSubtarget>(F)), TM(TM), TLI(TLI), AC(AC), 125 DT(DT), UA(UA), DL(F.getDataLayout()), 126 HasUnsafeFPMath(hasUnsafeFPMath(F)), 127 HasFP32DenormalFlush(SIModeRegisterDefaults(F, ST).FP32Denormals == 128 DenormalMode::getPreserveSign()) {} 129 130 Function *getSqrtF32() const { 131 if (SqrtF32) 132 return SqrtF32; 133 134 LLVMContext &Ctx = F.getContext(); 135 SqrtF32 = Intrinsic::getOrInsertDeclaration( 136 F.getParent(), Intrinsic::amdgcn_sqrt, {Type::getFloatTy(Ctx)}); 137 return SqrtF32; 138 } 139 140 Function *getLdexpF32() const { 141 if (LdexpF32) 142 return LdexpF32; 143 144 LLVMContext &Ctx = F.getContext(); 145 LdexpF32 = Intrinsic::getOrInsertDeclaration( 146 F.getParent(), Intrinsic::ldexp, 147 {Type::getFloatTy(Ctx), Type::getInt32Ty(Ctx)}); 148 return LdexpF32; 149 } 150 151 bool canBreakPHINode(const PHINode &I); 152 153 /// Copies exact/nsw/nuw flags (if any) from binary operation \p I to 154 /// binary operation \p V. 155 /// 156 /// \returns Binary operation \p V. 157 /// \returns \p T's base element bit width. 158 unsigned getBaseElementBitWidth(const Type *T) const; 159 160 /// \returns Equivalent 32 bit integer type for given type \p T. For example, 161 /// if \p T is i7, then i32 is returned; if \p T is <3 x i12>, then <3 x i32> 162 /// is returned. 163 Type *getI32Ty(IRBuilder<> &B, const Type *T) const; 164 165 /// \returns True if binary operation \p I is a signed binary operation, false 166 /// otherwise. 167 bool isSigned(const BinaryOperator &I) const; 168 169 /// \returns True if the condition of 'select' operation \p I comes from a 170 /// signed 'icmp' operation, false otherwise. 171 bool isSigned(const SelectInst &I) const; 172 173 /// \returns True if type \p T needs to be promoted to 32 bit integer type, 174 /// false otherwise. 175 bool needsPromotionToI32(const Type *T) const; 176 177 /// Return true if \p T is a legal scalar floating point type. 178 bool isLegalFloatingTy(const Type *T) const; 179 180 /// Wrapper to pass all the arguments to computeKnownFPClass 181 KnownFPClass computeKnownFPClass(const Value *V, FPClassTest Interested, 182 const Instruction *CtxI) const { 183 return llvm::computeKnownFPClass(V, DL, Interested, 0, TLI, AC, CtxI, DT); 184 } 185 186 bool canIgnoreDenormalInput(const Value *V, const Instruction *CtxI) const { 187 return HasFP32DenormalFlush || 188 computeKnownFPClass(V, fcSubnormal, CtxI).isKnownNeverSubnormal(); 189 } 190 191 /// Promotes uniform binary operation \p I to equivalent 32 bit binary 192 /// operation. 193 /// 194 /// \details \p I's base element bit width must be greater than 1 and less 195 /// than or equal 16. Promotion is done by sign or zero extending operands to 196 /// 32 bits, replacing \p I with equivalent 32 bit binary operation, and 197 /// truncating the result of 32 bit binary operation back to \p I's original 198 /// type. Division operation is not promoted. 199 /// 200 /// \returns True if \p I is promoted to equivalent 32 bit binary operation, 201 /// false otherwise. 202 bool promoteUniformOpToI32(BinaryOperator &I) const; 203 204 /// Promotes uniform 'icmp' operation \p I to 32 bit 'icmp' operation. 205 /// 206 /// \details \p I's base element bit width must be greater than 1 and less 207 /// than or equal 16. Promotion is done by sign or zero extending operands to 208 /// 32 bits, and replacing \p I with 32 bit 'icmp' operation. 209 /// 210 /// \returns True. 211 bool promoteUniformOpToI32(ICmpInst &I) const; 212 213 /// Promotes uniform 'select' operation \p I to 32 bit 'select' 214 /// operation. 215 /// 216 /// \details \p I's base element bit width must be greater than 1 and less 217 /// than or equal 16. Promotion is done by sign or zero extending operands to 218 /// 32 bits, replacing \p I with 32 bit 'select' operation, and truncating the 219 /// result of 32 bit 'select' operation back to \p I's original type. 220 /// 221 /// \returns True. 222 bool promoteUniformOpToI32(SelectInst &I) const; 223 224 /// Promotes uniform 'bitreverse' intrinsic \p I to 32 bit 'bitreverse' 225 /// intrinsic. 226 /// 227 /// \details \p I's base element bit width must be greater than 1 and less 228 /// than or equal 16. Promotion is done by zero extending the operand to 32 229 /// bits, replacing \p I with 32 bit 'bitreverse' intrinsic, shifting the 230 /// result of 32 bit 'bitreverse' intrinsic to the right with zero fill (the 231 /// shift amount is 32 minus \p I's base element bit width), and truncating 232 /// the result of the shift operation back to \p I's original type. 233 /// 234 /// \returns True. 235 bool promoteUniformBitreverseToI32(IntrinsicInst &I) const; 236 237 /// \returns The minimum number of bits needed to store the value of \Op as an 238 /// unsigned integer. Truncating to this size and then zero-extending to 239 /// the original will not change the value. 240 unsigned numBitsUnsigned(Value *Op) const; 241 242 /// \returns The minimum number of bits needed to store the value of \Op as a 243 /// signed integer. Truncating to this size and then sign-extending to 244 /// the original size will not change the value. 245 unsigned numBitsSigned(Value *Op) const; 246 247 /// Replace mul instructions with llvm.amdgcn.mul.u24 or llvm.amdgcn.mul.s24. 248 /// SelectionDAG has an issue where an and asserting the bits are known 249 bool replaceMulWithMul24(BinaryOperator &I) const; 250 251 /// Perform same function as equivalently named function in DAGCombiner. Since 252 /// we expand some divisions here, we need to perform this before obscuring. 253 bool foldBinOpIntoSelect(BinaryOperator &I) const; 254 255 bool divHasSpecialOptimization(BinaryOperator &I, 256 Value *Num, Value *Den) const; 257 int getDivNumBits(BinaryOperator &I, 258 Value *Num, Value *Den, 259 unsigned AtLeast, bool Signed) const; 260 261 /// Expands 24 bit div or rem. 262 Value* expandDivRem24(IRBuilder<> &Builder, BinaryOperator &I, 263 Value *Num, Value *Den, 264 bool IsDiv, bool IsSigned) const; 265 266 Value *expandDivRem24Impl(IRBuilder<> &Builder, BinaryOperator &I, 267 Value *Num, Value *Den, unsigned NumBits, 268 bool IsDiv, bool IsSigned) const; 269 270 /// Expands 32 bit div or rem. 271 Value* expandDivRem32(IRBuilder<> &Builder, BinaryOperator &I, 272 Value *Num, Value *Den) const; 273 274 Value *shrinkDivRem64(IRBuilder<> &Builder, BinaryOperator &I, 275 Value *Num, Value *Den) const; 276 void expandDivRem64(BinaryOperator &I) const; 277 278 /// Widen a scalar load. 279 /// 280 /// \details \p Widen scalar load for uniform, small type loads from constant 281 // memory / to a full 32-bits and then truncate the input to allow a scalar 282 // load instead of a vector load. 283 // 284 /// \returns True. 285 286 bool canWidenScalarExtLoad(LoadInst &I) const; 287 288 Value *matchFractPat(IntrinsicInst &I); 289 Value *applyFractPat(IRBuilder<> &Builder, Value *FractArg); 290 291 bool canOptimizeWithRsq(const FPMathOperator *SqrtOp, FastMathFlags DivFMF, 292 FastMathFlags SqrtFMF) const; 293 294 Value *optimizeWithRsq(IRBuilder<> &Builder, Value *Num, Value *Den, 295 FastMathFlags DivFMF, FastMathFlags SqrtFMF, 296 const Instruction *CtxI) const; 297 298 Value *optimizeWithRcp(IRBuilder<> &Builder, Value *Num, Value *Den, 299 FastMathFlags FMF, const Instruction *CtxI) const; 300 Value *optimizeWithFDivFast(IRBuilder<> &Builder, Value *Num, Value *Den, 301 float ReqdAccuracy) const; 302 303 Value *visitFDivElement(IRBuilder<> &Builder, Value *Num, Value *Den, 304 FastMathFlags DivFMF, FastMathFlags SqrtFMF, 305 Value *RsqOp, const Instruction *FDiv, 306 float ReqdAccuracy) const; 307 308 std::pair<Value *, Value *> getFrexpResults(IRBuilder<> &Builder, 309 Value *Src) const; 310 311 Value *emitRcpIEEE1ULP(IRBuilder<> &Builder, Value *Src, 312 bool IsNegative) const; 313 Value *emitFrexpDiv(IRBuilder<> &Builder, Value *LHS, Value *RHS, 314 FastMathFlags FMF) const; 315 Value *emitSqrtIEEE2ULP(IRBuilder<> &Builder, Value *Src, 316 FastMathFlags FMF) const; 317 318 public: 319 bool visitFDiv(BinaryOperator &I); 320 321 bool visitInstruction(Instruction &I) { return false; } 322 bool visitBinaryOperator(BinaryOperator &I); 323 bool visitLoadInst(LoadInst &I); 324 bool visitICmpInst(ICmpInst &I); 325 bool visitSelectInst(SelectInst &I); 326 bool visitPHINode(PHINode &I); 327 bool visitAddrSpaceCastInst(AddrSpaceCastInst &I); 328 329 bool visitIntrinsicInst(IntrinsicInst &I); 330 bool visitBitreverseIntrinsicInst(IntrinsicInst &I); 331 bool visitMinNum(IntrinsicInst &I); 332 bool visitSqrt(IntrinsicInst &I); 333 bool run(); 334 }; 335 336 class AMDGPUCodeGenPrepare : public FunctionPass { 337 public: 338 static char ID; 339 AMDGPUCodeGenPrepare() : FunctionPass(ID) { 340 initializeAMDGPUCodeGenPreparePass(*PassRegistry::getPassRegistry()); 341 } 342 void getAnalysisUsage(AnalysisUsage &AU) const override { 343 AU.addRequired<AssumptionCacheTracker>(); 344 AU.addRequired<UniformityInfoWrapperPass>(); 345 AU.addRequired<TargetLibraryInfoWrapperPass>(); 346 347 // FIXME: Division expansion needs to preserve the dominator tree. 348 if (!ExpandDiv64InIR) 349 AU.setPreservesAll(); 350 } 351 bool runOnFunction(Function &F) override; 352 StringRef getPassName() const override { return "AMDGPU IR optimizations"; } 353 }; 354 355 } // end anonymous namespace 356 357 bool AMDGPUCodeGenPrepareImpl::run() { 358 BreakPhiNodesCache.clear(); 359 bool MadeChange = false; 360 361 Function::iterator NextBB; 362 for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE; FI = NextBB) { 363 BasicBlock *BB = &*FI; 364 NextBB = std::next(FI); 365 366 BasicBlock::iterator Next; 367 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; 368 I = Next) { 369 Next = std::next(I); 370 371 MadeChange |= visit(*I); 372 373 if (Next != E) { // Control flow changed 374 BasicBlock *NextInstBB = Next->getParent(); 375 if (NextInstBB != BB) { 376 BB = NextInstBB; 377 E = BB->end(); 378 FE = F.end(); 379 } 380 } 381 } 382 } 383 return MadeChange; 384 } 385 386 unsigned AMDGPUCodeGenPrepareImpl::getBaseElementBitWidth(const Type *T) const { 387 assert(needsPromotionToI32(T) && "T does not need promotion to i32"); 388 389 if (T->isIntegerTy()) 390 return T->getIntegerBitWidth(); 391 return cast<VectorType>(T)->getElementType()->getIntegerBitWidth(); 392 } 393 394 Type *AMDGPUCodeGenPrepareImpl::getI32Ty(IRBuilder<> &B, const Type *T) const { 395 assert(needsPromotionToI32(T) && "T does not need promotion to i32"); 396 397 if (T->isIntegerTy()) 398 return B.getInt32Ty(); 399 return FixedVectorType::get(B.getInt32Ty(), cast<FixedVectorType>(T)); 400 } 401 402 bool AMDGPUCodeGenPrepareImpl::isSigned(const BinaryOperator &I) const { 403 return I.getOpcode() == Instruction::AShr || 404 I.getOpcode() == Instruction::SDiv || I.getOpcode() == Instruction::SRem; 405 } 406 407 bool AMDGPUCodeGenPrepareImpl::isSigned(const SelectInst &I) const { 408 return isa<ICmpInst>(I.getOperand(0)) ? 409 cast<ICmpInst>(I.getOperand(0))->isSigned() : false; 410 } 411 412 bool AMDGPUCodeGenPrepareImpl::needsPromotionToI32(const Type *T) const { 413 if (!Widen16BitOps) 414 return false; 415 416 const IntegerType *IntTy = dyn_cast<IntegerType>(T); 417 if (IntTy && IntTy->getBitWidth() > 1 && IntTy->getBitWidth() <= 16) 418 return true; 419 420 if (const VectorType *VT = dyn_cast<VectorType>(T)) { 421 // TODO: The set of packed operations is more limited, so may want to 422 // promote some anyway. 423 if (ST.hasVOP3PInsts()) 424 return false; 425 426 return needsPromotionToI32(VT->getElementType()); 427 } 428 429 return false; 430 } 431 432 bool AMDGPUCodeGenPrepareImpl::isLegalFloatingTy(const Type *Ty) const { 433 return Ty->isFloatTy() || Ty->isDoubleTy() || 434 (Ty->isHalfTy() && ST.has16BitInsts()); 435 } 436 437 // Return true if the op promoted to i32 should have nsw set. 438 static bool promotedOpIsNSW(const Instruction &I) { 439 switch (I.getOpcode()) { 440 case Instruction::Shl: 441 case Instruction::Add: 442 case Instruction::Sub: 443 return true; 444 case Instruction::Mul: 445 return I.hasNoUnsignedWrap(); 446 default: 447 return false; 448 } 449 } 450 451 // Return true if the op promoted to i32 should have nuw set. 452 static bool promotedOpIsNUW(const Instruction &I) { 453 switch (I.getOpcode()) { 454 case Instruction::Shl: 455 case Instruction::Add: 456 case Instruction::Mul: 457 return true; 458 case Instruction::Sub: 459 return I.hasNoUnsignedWrap(); 460 default: 461 return false; 462 } 463 } 464 465 bool AMDGPUCodeGenPrepareImpl::canWidenScalarExtLoad(LoadInst &I) const { 466 Type *Ty = I.getType(); 467 int TySize = DL.getTypeSizeInBits(Ty); 468 Align Alignment = DL.getValueOrABITypeAlignment(I.getAlign(), Ty); 469 470 return I.isSimple() && TySize < 32 && Alignment >= 4 && UA.isUniform(&I); 471 } 472 473 bool AMDGPUCodeGenPrepareImpl::promoteUniformOpToI32(BinaryOperator &I) const { 474 assert(needsPromotionToI32(I.getType()) && 475 "I does not need promotion to i32"); 476 477 if (I.getOpcode() == Instruction::SDiv || 478 I.getOpcode() == Instruction::UDiv || 479 I.getOpcode() == Instruction::SRem || 480 I.getOpcode() == Instruction::URem) 481 return false; 482 483 IRBuilder<> Builder(&I); 484 Builder.SetCurrentDebugLocation(I.getDebugLoc()); 485 486 Type *I32Ty = getI32Ty(Builder, I.getType()); 487 Value *ExtOp0 = nullptr; 488 Value *ExtOp1 = nullptr; 489 Value *ExtRes = nullptr; 490 Value *TruncRes = nullptr; 491 492 if (isSigned(I)) { 493 ExtOp0 = Builder.CreateSExt(I.getOperand(0), I32Ty); 494 ExtOp1 = Builder.CreateSExt(I.getOperand(1), I32Ty); 495 } else { 496 ExtOp0 = Builder.CreateZExt(I.getOperand(0), I32Ty); 497 ExtOp1 = Builder.CreateZExt(I.getOperand(1), I32Ty); 498 } 499 500 ExtRes = Builder.CreateBinOp(I.getOpcode(), ExtOp0, ExtOp1); 501 if (Instruction *Inst = dyn_cast<Instruction>(ExtRes)) { 502 if (promotedOpIsNSW(cast<Instruction>(I))) 503 Inst->setHasNoSignedWrap(); 504 505 if (promotedOpIsNUW(cast<Instruction>(I))) 506 Inst->setHasNoUnsignedWrap(); 507 508 if (const auto *ExactOp = dyn_cast<PossiblyExactOperator>(&I)) 509 Inst->setIsExact(ExactOp->isExact()); 510 } 511 512 TruncRes = Builder.CreateTrunc(ExtRes, I.getType()); 513 514 I.replaceAllUsesWith(TruncRes); 515 I.eraseFromParent(); 516 517 return true; 518 } 519 520 bool AMDGPUCodeGenPrepareImpl::promoteUniformOpToI32(ICmpInst &I) const { 521 assert(needsPromotionToI32(I.getOperand(0)->getType()) && 522 "I does not need promotion to i32"); 523 524 IRBuilder<> Builder(&I); 525 Builder.SetCurrentDebugLocation(I.getDebugLoc()); 526 527 Type *I32Ty = getI32Ty(Builder, I.getOperand(0)->getType()); 528 Value *ExtOp0 = nullptr; 529 Value *ExtOp1 = nullptr; 530 Value *NewICmp = nullptr; 531 532 if (I.isSigned()) { 533 ExtOp0 = Builder.CreateSExt(I.getOperand(0), I32Ty); 534 ExtOp1 = Builder.CreateSExt(I.getOperand(1), I32Ty); 535 } else { 536 ExtOp0 = Builder.CreateZExt(I.getOperand(0), I32Ty); 537 ExtOp1 = Builder.CreateZExt(I.getOperand(1), I32Ty); 538 } 539 NewICmp = Builder.CreateICmp(I.getPredicate(), ExtOp0, ExtOp1); 540 541 I.replaceAllUsesWith(NewICmp); 542 I.eraseFromParent(); 543 544 return true; 545 } 546 547 bool AMDGPUCodeGenPrepareImpl::promoteUniformOpToI32(SelectInst &I) const { 548 assert(needsPromotionToI32(I.getType()) && 549 "I does not need promotion to i32"); 550 551 IRBuilder<> Builder(&I); 552 Builder.SetCurrentDebugLocation(I.getDebugLoc()); 553 554 Type *I32Ty = getI32Ty(Builder, I.getType()); 555 Value *ExtOp1 = nullptr; 556 Value *ExtOp2 = nullptr; 557 Value *ExtRes = nullptr; 558 Value *TruncRes = nullptr; 559 560 if (isSigned(I)) { 561 ExtOp1 = Builder.CreateSExt(I.getOperand(1), I32Ty); 562 ExtOp2 = Builder.CreateSExt(I.getOperand(2), I32Ty); 563 } else { 564 ExtOp1 = Builder.CreateZExt(I.getOperand(1), I32Ty); 565 ExtOp2 = Builder.CreateZExt(I.getOperand(2), I32Ty); 566 } 567 ExtRes = Builder.CreateSelect(I.getOperand(0), ExtOp1, ExtOp2); 568 TruncRes = Builder.CreateTrunc(ExtRes, I.getType()); 569 570 I.replaceAllUsesWith(TruncRes); 571 I.eraseFromParent(); 572 573 return true; 574 } 575 576 bool AMDGPUCodeGenPrepareImpl::promoteUniformBitreverseToI32( 577 IntrinsicInst &I) const { 578 assert(I.getIntrinsicID() == Intrinsic::bitreverse && 579 "I must be bitreverse intrinsic"); 580 assert(needsPromotionToI32(I.getType()) && 581 "I does not need promotion to i32"); 582 583 IRBuilder<> Builder(&I); 584 Builder.SetCurrentDebugLocation(I.getDebugLoc()); 585 586 Type *I32Ty = getI32Ty(Builder, I.getType()); 587 Value *ExtOp = Builder.CreateZExt(I.getOperand(0), I32Ty); 588 Value *ExtRes = 589 Builder.CreateIntrinsic(Intrinsic::bitreverse, {I32Ty}, {ExtOp}); 590 Value *LShrOp = 591 Builder.CreateLShr(ExtRes, 32 - getBaseElementBitWidth(I.getType())); 592 Value *TruncRes = 593 Builder.CreateTrunc(LShrOp, I.getType()); 594 595 I.replaceAllUsesWith(TruncRes); 596 I.eraseFromParent(); 597 598 return true; 599 } 600 601 unsigned AMDGPUCodeGenPrepareImpl::numBitsUnsigned(Value *Op) const { 602 return computeKnownBits(Op, DL, 0, AC).countMaxActiveBits(); 603 } 604 605 unsigned AMDGPUCodeGenPrepareImpl::numBitsSigned(Value *Op) const { 606 return ComputeMaxSignificantBits(Op, DL, 0, AC); 607 } 608 609 static void extractValues(IRBuilder<> &Builder, 610 SmallVectorImpl<Value *> &Values, Value *V) { 611 auto *VT = dyn_cast<FixedVectorType>(V->getType()); 612 if (!VT) { 613 Values.push_back(V); 614 return; 615 } 616 617 for (int I = 0, E = VT->getNumElements(); I != E; ++I) 618 Values.push_back(Builder.CreateExtractElement(V, I)); 619 } 620 621 static Value *insertValues(IRBuilder<> &Builder, 622 Type *Ty, 623 SmallVectorImpl<Value *> &Values) { 624 if (!Ty->isVectorTy()) { 625 assert(Values.size() == 1); 626 return Values[0]; 627 } 628 629 Value *NewVal = PoisonValue::get(Ty); 630 for (int I = 0, E = Values.size(); I != E; ++I) 631 NewVal = Builder.CreateInsertElement(NewVal, Values[I], I); 632 633 return NewVal; 634 } 635 636 bool AMDGPUCodeGenPrepareImpl::replaceMulWithMul24(BinaryOperator &I) const { 637 if (I.getOpcode() != Instruction::Mul) 638 return false; 639 640 Type *Ty = I.getType(); 641 unsigned Size = Ty->getScalarSizeInBits(); 642 if (Size <= 16 && ST.has16BitInsts()) 643 return false; 644 645 // Prefer scalar if this could be s_mul_i32 646 if (UA.isUniform(&I)) 647 return false; 648 649 Value *LHS = I.getOperand(0); 650 Value *RHS = I.getOperand(1); 651 IRBuilder<> Builder(&I); 652 Builder.SetCurrentDebugLocation(I.getDebugLoc()); 653 654 unsigned LHSBits = 0, RHSBits = 0; 655 bool IsSigned = false; 656 657 if (ST.hasMulU24() && (LHSBits = numBitsUnsigned(LHS)) <= 24 && 658 (RHSBits = numBitsUnsigned(RHS)) <= 24) { 659 IsSigned = false; 660 661 } else if (ST.hasMulI24() && (LHSBits = numBitsSigned(LHS)) <= 24 && 662 (RHSBits = numBitsSigned(RHS)) <= 24) { 663 IsSigned = true; 664 665 } else 666 return false; 667 668 SmallVector<Value *, 4> LHSVals; 669 SmallVector<Value *, 4> RHSVals; 670 SmallVector<Value *, 4> ResultVals; 671 extractValues(Builder, LHSVals, LHS); 672 extractValues(Builder, RHSVals, RHS); 673 674 IntegerType *I32Ty = Builder.getInt32Ty(); 675 IntegerType *IntrinTy = Size > 32 ? Builder.getInt64Ty() : I32Ty; 676 Type *DstTy = LHSVals[0]->getType(); 677 678 for (int I = 0, E = LHSVals.size(); I != E; ++I) { 679 Value *LHS = IsSigned ? Builder.CreateSExtOrTrunc(LHSVals[I], I32Ty) 680 : Builder.CreateZExtOrTrunc(LHSVals[I], I32Ty); 681 Value *RHS = IsSigned ? Builder.CreateSExtOrTrunc(RHSVals[I], I32Ty) 682 : Builder.CreateZExtOrTrunc(RHSVals[I], I32Ty); 683 Intrinsic::ID ID = 684 IsSigned ? Intrinsic::amdgcn_mul_i24 : Intrinsic::amdgcn_mul_u24; 685 Value *Result = Builder.CreateIntrinsic(ID, {IntrinTy}, {LHS, RHS}); 686 Result = IsSigned ? Builder.CreateSExtOrTrunc(Result, DstTy) 687 : Builder.CreateZExtOrTrunc(Result, DstTy); 688 ResultVals.push_back(Result); 689 } 690 691 Value *NewVal = insertValues(Builder, Ty, ResultVals); 692 NewVal->takeName(&I); 693 I.replaceAllUsesWith(NewVal); 694 I.eraseFromParent(); 695 696 return true; 697 } 698 699 // Find a select instruction, which may have been casted. This is mostly to deal 700 // with cases where i16 selects were promoted here to i32. 701 static SelectInst *findSelectThroughCast(Value *V, CastInst *&Cast) { 702 Cast = nullptr; 703 if (SelectInst *Sel = dyn_cast<SelectInst>(V)) 704 return Sel; 705 706 if ((Cast = dyn_cast<CastInst>(V))) { 707 if (SelectInst *Sel = dyn_cast<SelectInst>(Cast->getOperand(0))) 708 return Sel; 709 } 710 711 return nullptr; 712 } 713 714 bool AMDGPUCodeGenPrepareImpl::foldBinOpIntoSelect(BinaryOperator &BO) const { 715 // Don't do this unless the old select is going away. We want to eliminate the 716 // binary operator, not replace a binop with a select. 717 int SelOpNo = 0; 718 719 CastInst *CastOp; 720 721 // TODO: Should probably try to handle some cases with multiple 722 // users. Duplicating the select may be profitable for division. 723 SelectInst *Sel = findSelectThroughCast(BO.getOperand(0), CastOp); 724 if (!Sel || !Sel->hasOneUse()) { 725 SelOpNo = 1; 726 Sel = findSelectThroughCast(BO.getOperand(1), CastOp); 727 } 728 729 if (!Sel || !Sel->hasOneUse()) 730 return false; 731 732 Constant *CT = dyn_cast<Constant>(Sel->getTrueValue()); 733 Constant *CF = dyn_cast<Constant>(Sel->getFalseValue()); 734 Constant *CBO = dyn_cast<Constant>(BO.getOperand(SelOpNo ^ 1)); 735 if (!CBO || !CT || !CF) 736 return false; 737 738 if (CastOp) { 739 if (!CastOp->hasOneUse()) 740 return false; 741 CT = ConstantFoldCastOperand(CastOp->getOpcode(), CT, BO.getType(), DL); 742 CF = ConstantFoldCastOperand(CastOp->getOpcode(), CF, BO.getType(), DL); 743 } 744 745 // TODO: Handle special 0/-1 cases DAG combine does, although we only really 746 // need to handle divisions here. 747 Constant *FoldedT = 748 SelOpNo ? ConstantFoldBinaryOpOperands(BO.getOpcode(), CBO, CT, DL) 749 : ConstantFoldBinaryOpOperands(BO.getOpcode(), CT, CBO, DL); 750 if (!FoldedT || isa<ConstantExpr>(FoldedT)) 751 return false; 752 753 Constant *FoldedF = 754 SelOpNo ? ConstantFoldBinaryOpOperands(BO.getOpcode(), CBO, CF, DL) 755 : ConstantFoldBinaryOpOperands(BO.getOpcode(), CF, CBO, DL); 756 if (!FoldedF || isa<ConstantExpr>(FoldedF)) 757 return false; 758 759 IRBuilder<> Builder(&BO); 760 Builder.SetCurrentDebugLocation(BO.getDebugLoc()); 761 if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(&BO)) 762 Builder.setFastMathFlags(FPOp->getFastMathFlags()); 763 764 Value *NewSelect = Builder.CreateSelect(Sel->getCondition(), 765 FoldedT, FoldedF); 766 NewSelect->takeName(&BO); 767 BO.replaceAllUsesWith(NewSelect); 768 BO.eraseFromParent(); 769 if (CastOp) 770 CastOp->eraseFromParent(); 771 Sel->eraseFromParent(); 772 return true; 773 } 774 775 std::pair<Value *, Value *> 776 AMDGPUCodeGenPrepareImpl::getFrexpResults(IRBuilder<> &Builder, 777 Value *Src) const { 778 Type *Ty = Src->getType(); 779 Value *Frexp = Builder.CreateIntrinsic(Intrinsic::frexp, 780 {Ty, Builder.getInt32Ty()}, Src); 781 Value *FrexpMant = Builder.CreateExtractValue(Frexp, {0}); 782 783 // Bypass the bug workaround for the exponent result since it doesn't matter. 784 // TODO: Does the bug workaround even really need to consider the exponent 785 // result? It's unspecified by the spec. 786 787 Value *FrexpExp = 788 ST.hasFractBug() 789 ? Builder.CreateIntrinsic(Intrinsic::amdgcn_frexp_exp, 790 {Builder.getInt32Ty(), Ty}, Src) 791 : Builder.CreateExtractValue(Frexp, {1}); 792 return {FrexpMant, FrexpExp}; 793 } 794 795 /// Emit an expansion of 1.0 / Src good for 1ulp that supports denormals. 796 Value *AMDGPUCodeGenPrepareImpl::emitRcpIEEE1ULP(IRBuilder<> &Builder, 797 Value *Src, 798 bool IsNegative) const { 799 // Same as for 1.0, but expand the sign out of the constant. 800 // -1.0 / x -> rcp (fneg x) 801 if (IsNegative) 802 Src = Builder.CreateFNeg(Src); 803 804 // The rcp instruction doesn't support denormals, so scale the input 805 // out of the denormal range and convert at the end. 806 // 807 // Expand as 2^-n * (1.0 / (x * 2^n)) 808 809 // TODO: Skip scaling if input is known never denormal and the input 810 // range won't underflow to denormal. The hard part is knowing the 811 // result. We need a range check, the result could be denormal for 812 // 0x1p+126 < den <= 0x1p+127. 813 auto [FrexpMant, FrexpExp] = getFrexpResults(Builder, Src); 814 Value *ScaleFactor = Builder.CreateNeg(FrexpExp); 815 Value *Rcp = Builder.CreateUnaryIntrinsic(Intrinsic::amdgcn_rcp, FrexpMant); 816 return Builder.CreateCall(getLdexpF32(), {Rcp, ScaleFactor}); 817 } 818 819 /// Emit a 2ulp expansion for fdiv by using frexp for input scaling. 820 Value *AMDGPUCodeGenPrepareImpl::emitFrexpDiv(IRBuilder<> &Builder, Value *LHS, 821 Value *RHS, 822 FastMathFlags FMF) const { 823 // If we have have to work around the fract/frexp bug, we're worse off than 824 // using the fdiv.fast expansion. The full safe expansion is faster if we have 825 // fast FMA. 826 if (HasFP32DenormalFlush && ST.hasFractBug() && !ST.hasFastFMAF32() && 827 (!FMF.noNaNs() || !FMF.noInfs())) 828 return nullptr; 829 830 // We're scaling the LHS to avoid a denormal input, and scale the denominator 831 // to avoid large values underflowing the result. 832 auto [FrexpMantRHS, FrexpExpRHS] = getFrexpResults(Builder, RHS); 833 834 Value *Rcp = 835 Builder.CreateUnaryIntrinsic(Intrinsic::amdgcn_rcp, FrexpMantRHS); 836 837 auto [FrexpMantLHS, FrexpExpLHS] = getFrexpResults(Builder, LHS); 838 Value *Mul = Builder.CreateFMul(FrexpMantLHS, Rcp); 839 840 // We multiplied by 2^N/2^M, so we need to multiply by 2^(N-M) to scale the 841 // result. 842 Value *ExpDiff = Builder.CreateSub(FrexpExpLHS, FrexpExpRHS); 843 return Builder.CreateCall(getLdexpF32(), {Mul, ExpDiff}); 844 } 845 846 /// Emit a sqrt that handles denormals and is accurate to 2ulp. 847 Value *AMDGPUCodeGenPrepareImpl::emitSqrtIEEE2ULP(IRBuilder<> &Builder, 848 Value *Src, 849 FastMathFlags FMF) const { 850 Type *Ty = Src->getType(); 851 APFloat SmallestNormal = 852 APFloat::getSmallestNormalized(Ty->getFltSemantics()); 853 Value *NeedScale = 854 Builder.CreateFCmpOLT(Src, ConstantFP::get(Ty, SmallestNormal)); 855 856 ConstantInt *Zero = Builder.getInt32(0); 857 Value *InputScaleFactor = 858 Builder.CreateSelect(NeedScale, Builder.getInt32(32), Zero); 859 860 Value *Scaled = Builder.CreateCall(getLdexpF32(), {Src, InputScaleFactor}); 861 862 Value *Sqrt = Builder.CreateCall(getSqrtF32(), Scaled); 863 864 Value *OutputScaleFactor = 865 Builder.CreateSelect(NeedScale, Builder.getInt32(-16), Zero); 866 return Builder.CreateCall(getLdexpF32(), {Sqrt, OutputScaleFactor}); 867 } 868 869 /// Emit an expansion of 1.0 / sqrt(Src) good for 1ulp that supports denormals. 870 static Value *emitRsqIEEE1ULP(IRBuilder<> &Builder, Value *Src, 871 bool IsNegative) { 872 // bool need_scale = x < 0x1p-126f; 873 // float input_scale = need_scale ? 0x1.0p+24f : 1.0f; 874 // float output_scale = need_scale ? 0x1.0p+12f : 1.0f; 875 // rsq(x * input_scale) * output_scale; 876 877 Type *Ty = Src->getType(); 878 APFloat SmallestNormal = 879 APFloat::getSmallestNormalized(Ty->getFltSemantics()); 880 Value *NeedScale = 881 Builder.CreateFCmpOLT(Src, ConstantFP::get(Ty, SmallestNormal)); 882 Constant *One = ConstantFP::get(Ty, 1.0); 883 Constant *InputScale = ConstantFP::get(Ty, 0x1.0p+24); 884 Constant *OutputScale = 885 ConstantFP::get(Ty, IsNegative ? -0x1.0p+12 : 0x1.0p+12); 886 887 Value *InputScaleFactor = Builder.CreateSelect(NeedScale, InputScale, One); 888 889 Value *ScaledInput = Builder.CreateFMul(Src, InputScaleFactor); 890 Value *Rsq = Builder.CreateUnaryIntrinsic(Intrinsic::amdgcn_rsq, ScaledInput); 891 Value *OutputScaleFactor = Builder.CreateSelect( 892 NeedScale, OutputScale, IsNegative ? ConstantFP::get(Ty, -1.0) : One); 893 894 return Builder.CreateFMul(Rsq, OutputScaleFactor); 895 } 896 897 bool AMDGPUCodeGenPrepareImpl::canOptimizeWithRsq(const FPMathOperator *SqrtOp, 898 FastMathFlags DivFMF, 899 FastMathFlags SqrtFMF) const { 900 // The rsqrt contraction increases accuracy from ~2ulp to ~1ulp. 901 if (!DivFMF.allowContract() || !SqrtFMF.allowContract()) 902 return false; 903 904 // v_rsq_f32 gives 1ulp 905 return SqrtFMF.approxFunc() || HasUnsafeFPMath || 906 SqrtOp->getFPAccuracy() >= 1.0f; 907 } 908 909 Value *AMDGPUCodeGenPrepareImpl::optimizeWithRsq( 910 IRBuilder<> &Builder, Value *Num, Value *Den, const FastMathFlags DivFMF, 911 const FastMathFlags SqrtFMF, const Instruction *CtxI) const { 912 // The rsqrt contraction increases accuracy from ~2ulp to ~1ulp. 913 assert(DivFMF.allowContract() && SqrtFMF.allowContract()); 914 915 // rsq_f16 is accurate to 0.51 ulp. 916 // rsq_f32 is accurate for !fpmath >= 1.0ulp and denormals are flushed. 917 // rsq_f64 is never accurate. 918 const ConstantFP *CLHS = dyn_cast<ConstantFP>(Num); 919 if (!CLHS) 920 return nullptr; 921 922 assert(Den->getType()->isFloatTy()); 923 924 bool IsNegative = false; 925 926 // TODO: Handle other numerator values with arcp. 927 if (CLHS->isExactlyValue(1.0) || (IsNegative = CLHS->isExactlyValue(-1.0))) { 928 // Add in the sqrt flags. 929 IRBuilder<>::FastMathFlagGuard Guard(Builder); 930 Builder.setFastMathFlags(DivFMF | SqrtFMF); 931 932 if ((DivFMF.approxFunc() && SqrtFMF.approxFunc()) || HasUnsafeFPMath || 933 canIgnoreDenormalInput(Den, CtxI)) { 934 Value *Result = Builder.CreateUnaryIntrinsic(Intrinsic::amdgcn_rsq, Den); 935 // -1.0 / sqrt(x) -> fneg(rsq(x)) 936 return IsNegative ? Builder.CreateFNeg(Result) : Result; 937 } 938 939 return emitRsqIEEE1ULP(Builder, Den, IsNegative); 940 } 941 942 return nullptr; 943 } 944 945 // Optimize fdiv with rcp: 946 // 947 // 1/x -> rcp(x) when rcp is sufficiently accurate or inaccurate rcp is 948 // allowed with unsafe-fp-math or afn. 949 // 950 // a/b -> a*rcp(b) when arcp is allowed, and we only need provide ULP 1.0 951 Value * 952 AMDGPUCodeGenPrepareImpl::optimizeWithRcp(IRBuilder<> &Builder, Value *Num, 953 Value *Den, FastMathFlags FMF, 954 const Instruction *CtxI) const { 955 // rcp_f16 is accurate to 0.51 ulp. 956 // rcp_f32 is accurate for !fpmath >= 1.0ulp and denormals are flushed. 957 // rcp_f64 is never accurate. 958 assert(Den->getType()->isFloatTy()); 959 960 if (const ConstantFP *CLHS = dyn_cast<ConstantFP>(Num)) { 961 bool IsNegative = false; 962 if (CLHS->isExactlyValue(1.0) || 963 (IsNegative = CLHS->isExactlyValue(-1.0))) { 964 Value *Src = Den; 965 966 if (HasFP32DenormalFlush || FMF.approxFunc()) { 967 // -1.0 / x -> 1.0 / fneg(x) 968 if (IsNegative) 969 Src = Builder.CreateFNeg(Src); 970 971 // v_rcp_f32 and v_rsq_f32 do not support denormals, and according to 972 // the CI documentation has a worst case error of 1 ulp. 973 // OpenCL requires <= 2.5 ulp for 1.0 / x, so it should always be OK 974 // to use it as long as we aren't trying to use denormals. 975 // 976 // v_rcp_f16 and v_rsq_f16 DO support denormals. 977 978 // NOTE: v_sqrt and v_rcp will be combined to v_rsq later. So we don't 979 // insert rsq intrinsic here. 980 981 // 1.0 / x -> rcp(x) 982 return Builder.CreateUnaryIntrinsic(Intrinsic::amdgcn_rcp, Src); 983 } 984 985 // TODO: If the input isn't denormal, and we know the input exponent isn't 986 // big enough to introduce a denormal we can avoid the scaling. 987 return emitRcpIEEE1ULP(Builder, Src, IsNegative); 988 } 989 } 990 991 if (FMF.allowReciprocal()) { 992 // x / y -> x * (1.0 / y) 993 994 // TODO: Could avoid denormal scaling and use raw rcp if we knew the output 995 // will never underflow. 996 if (HasFP32DenormalFlush || FMF.approxFunc()) { 997 Value *Recip = Builder.CreateUnaryIntrinsic(Intrinsic::amdgcn_rcp, Den); 998 return Builder.CreateFMul(Num, Recip); 999 } 1000 1001 Value *Recip = emitRcpIEEE1ULP(Builder, Den, false); 1002 return Builder.CreateFMul(Num, Recip); 1003 } 1004 1005 return nullptr; 1006 } 1007 1008 // optimize with fdiv.fast: 1009 // 1010 // a/b -> fdiv.fast(a, b) when !fpmath >= 2.5ulp with denormals flushed. 1011 // 1012 // 1/x -> fdiv.fast(1,x) when !fpmath >= 2.5ulp. 1013 // 1014 // NOTE: optimizeWithRcp should be tried first because rcp is the preference. 1015 Value *AMDGPUCodeGenPrepareImpl::optimizeWithFDivFast( 1016 IRBuilder<> &Builder, Value *Num, Value *Den, float ReqdAccuracy) const { 1017 // fdiv.fast can achieve 2.5 ULP accuracy. 1018 if (ReqdAccuracy < 2.5f) 1019 return nullptr; 1020 1021 // Only have fdiv.fast for f32. 1022 assert(Den->getType()->isFloatTy()); 1023 1024 bool NumIsOne = false; 1025 if (const ConstantFP *CNum = dyn_cast<ConstantFP>(Num)) { 1026 if (CNum->isExactlyValue(+1.0) || CNum->isExactlyValue(-1.0)) 1027 NumIsOne = true; 1028 } 1029 1030 // fdiv does not support denormals. But 1.0/x is always fine to use it. 1031 // 1032 // TODO: This works for any value with a specific known exponent range, don't 1033 // just limit to constant 1. 1034 if (!HasFP32DenormalFlush && !NumIsOne) 1035 return nullptr; 1036 1037 return Builder.CreateIntrinsic(Intrinsic::amdgcn_fdiv_fast, {}, {Num, Den}); 1038 } 1039 1040 Value *AMDGPUCodeGenPrepareImpl::visitFDivElement( 1041 IRBuilder<> &Builder, Value *Num, Value *Den, FastMathFlags DivFMF, 1042 FastMathFlags SqrtFMF, Value *RsqOp, const Instruction *FDivInst, 1043 float ReqdDivAccuracy) const { 1044 if (RsqOp) { 1045 Value *Rsq = 1046 optimizeWithRsq(Builder, Num, RsqOp, DivFMF, SqrtFMF, FDivInst); 1047 if (Rsq) 1048 return Rsq; 1049 } 1050 1051 Value *Rcp = optimizeWithRcp(Builder, Num, Den, DivFMF, FDivInst); 1052 if (Rcp) 1053 return Rcp; 1054 1055 // In the basic case fdiv_fast has the same instruction count as the frexp div 1056 // expansion. Slightly prefer fdiv_fast since it ends in an fmul that can 1057 // potentially be fused into a user. Also, materialization of the constants 1058 // can be reused for multiple instances. 1059 Value *FDivFast = optimizeWithFDivFast(Builder, Num, Den, ReqdDivAccuracy); 1060 if (FDivFast) 1061 return FDivFast; 1062 1063 return emitFrexpDiv(Builder, Num, Den, DivFMF); 1064 } 1065 1066 // Optimizations is performed based on fpmath, fast math flags as well as 1067 // denormals to optimize fdiv with either rcp or fdiv.fast. 1068 // 1069 // With rcp: 1070 // 1/x -> rcp(x) when rcp is sufficiently accurate or inaccurate rcp is 1071 // allowed with unsafe-fp-math or afn. 1072 // 1073 // a/b -> a*rcp(b) when inaccurate rcp is allowed with unsafe-fp-math or afn. 1074 // 1075 // With fdiv.fast: 1076 // a/b -> fdiv.fast(a, b) when !fpmath >= 2.5ulp with denormals flushed. 1077 // 1078 // 1/x -> fdiv.fast(1,x) when !fpmath >= 2.5ulp. 1079 // 1080 // NOTE: rcp is the preference in cases that both are legal. 1081 bool AMDGPUCodeGenPrepareImpl::visitFDiv(BinaryOperator &FDiv) { 1082 if (DisableFDivExpand) 1083 return false; 1084 1085 Type *Ty = FDiv.getType()->getScalarType(); 1086 if (!Ty->isFloatTy()) 1087 return false; 1088 1089 // The f64 rcp/rsq approximations are pretty inaccurate. We can do an 1090 // expansion around them in codegen. f16 is good enough to always use. 1091 1092 const FPMathOperator *FPOp = cast<const FPMathOperator>(&FDiv); 1093 const FastMathFlags DivFMF = FPOp->getFastMathFlags(); 1094 const float ReqdAccuracy = FPOp->getFPAccuracy(); 1095 1096 FastMathFlags SqrtFMF; 1097 1098 Value *Num = FDiv.getOperand(0); 1099 Value *Den = FDiv.getOperand(1); 1100 1101 Value *RsqOp = nullptr; 1102 auto *DenII = dyn_cast<IntrinsicInst>(Den); 1103 if (DenII && DenII->getIntrinsicID() == Intrinsic::sqrt && 1104 DenII->hasOneUse()) { 1105 const auto *SqrtOp = cast<FPMathOperator>(DenII); 1106 SqrtFMF = SqrtOp->getFastMathFlags(); 1107 if (canOptimizeWithRsq(SqrtOp, DivFMF, SqrtFMF)) 1108 RsqOp = SqrtOp->getOperand(0); 1109 } 1110 1111 // Inaccurate rcp is allowed with unsafe-fp-math or afn. 1112 // 1113 // Defer to codegen to handle this. 1114 // 1115 // TODO: Decide on an interpretation for interactions between afn + arcp + 1116 // !fpmath, and make it consistent between here and codegen. For now, defer 1117 // expansion of afn to codegen. The current interpretation is so aggressive we 1118 // don't need any pre-consideration here when we have better information. A 1119 // more conservative interpretation could use handling here. 1120 const bool AllowInaccurateRcp = HasUnsafeFPMath || DivFMF.approxFunc(); 1121 if (!RsqOp && AllowInaccurateRcp) 1122 return false; 1123 1124 // Defer the correct implementations to codegen. 1125 if (ReqdAccuracy < 1.0f) 1126 return false; 1127 1128 IRBuilder<> Builder(FDiv.getParent(), std::next(FDiv.getIterator())); 1129 Builder.setFastMathFlags(DivFMF); 1130 Builder.SetCurrentDebugLocation(FDiv.getDebugLoc()); 1131 1132 SmallVector<Value *, 4> NumVals; 1133 SmallVector<Value *, 4> DenVals; 1134 SmallVector<Value *, 4> RsqDenVals; 1135 extractValues(Builder, NumVals, Num); 1136 extractValues(Builder, DenVals, Den); 1137 1138 if (RsqOp) 1139 extractValues(Builder, RsqDenVals, RsqOp); 1140 1141 SmallVector<Value *, 4> ResultVals(NumVals.size()); 1142 for (int I = 0, E = NumVals.size(); I != E; ++I) { 1143 Value *NumElt = NumVals[I]; 1144 Value *DenElt = DenVals[I]; 1145 Value *RsqDenElt = RsqOp ? RsqDenVals[I] : nullptr; 1146 1147 Value *NewElt = 1148 visitFDivElement(Builder, NumElt, DenElt, DivFMF, SqrtFMF, RsqDenElt, 1149 cast<Instruction>(FPOp), ReqdAccuracy); 1150 if (!NewElt) { 1151 // Keep the original, but scalarized. 1152 1153 // This has the unfortunate side effect of sometimes scalarizing when 1154 // we're not going to do anything. 1155 NewElt = Builder.CreateFDiv(NumElt, DenElt); 1156 if (auto *NewEltInst = dyn_cast<Instruction>(NewElt)) 1157 NewEltInst->copyMetadata(FDiv); 1158 } 1159 1160 ResultVals[I] = NewElt; 1161 } 1162 1163 Value *NewVal = insertValues(Builder, FDiv.getType(), ResultVals); 1164 1165 if (NewVal) { 1166 FDiv.replaceAllUsesWith(NewVal); 1167 NewVal->takeName(&FDiv); 1168 RecursivelyDeleteTriviallyDeadInstructions(&FDiv, TLI); 1169 } 1170 1171 return true; 1172 } 1173 1174 static std::pair<Value*, Value*> getMul64(IRBuilder<> &Builder, 1175 Value *LHS, Value *RHS) { 1176 Type *I32Ty = Builder.getInt32Ty(); 1177 Type *I64Ty = Builder.getInt64Ty(); 1178 1179 Value *LHS_EXT64 = Builder.CreateZExt(LHS, I64Ty); 1180 Value *RHS_EXT64 = Builder.CreateZExt(RHS, I64Ty); 1181 Value *MUL64 = Builder.CreateMul(LHS_EXT64, RHS_EXT64); 1182 Value *Lo = Builder.CreateTrunc(MUL64, I32Ty); 1183 Value *Hi = Builder.CreateLShr(MUL64, Builder.getInt64(32)); 1184 Hi = Builder.CreateTrunc(Hi, I32Ty); 1185 return std::pair(Lo, Hi); 1186 } 1187 1188 static Value* getMulHu(IRBuilder<> &Builder, Value *LHS, Value *RHS) { 1189 return getMul64(Builder, LHS, RHS).second; 1190 } 1191 1192 /// Figure out how many bits are really needed for this division. \p AtLeast is 1193 /// an optimization hint to bypass the second ComputeNumSignBits call if we the 1194 /// first one is insufficient. Returns -1 on failure. 1195 int AMDGPUCodeGenPrepareImpl::getDivNumBits(BinaryOperator &I, Value *Num, 1196 Value *Den, unsigned AtLeast, 1197 bool IsSigned) const { 1198 assert(Num->getType()->getScalarSizeInBits() == 1199 Den->getType()->getScalarSizeInBits()); 1200 unsigned SSBits = Num->getType()->getScalarSizeInBits(); 1201 if (IsSigned) { 1202 unsigned RHSSignBits = ComputeNumSignBits(Den, DL, 0, AC, &I); 1203 if (RHSSignBits < AtLeast) 1204 return -1; 1205 1206 unsigned LHSSignBits = ComputeNumSignBits(Num, DL, 0, AC, &I); 1207 if (LHSSignBits < AtLeast) 1208 return -1; 1209 1210 unsigned SignBits = std::min(LHSSignBits, RHSSignBits); 1211 unsigned DivBits = SSBits - SignBits + 1; 1212 return DivBits; // a SignBit needs to be reserved for shrinking 1213 } 1214 1215 // All bits are used for unsigned division for Num or Den in range 1216 // (SignedMax, UnsignedMax]. 1217 KnownBits Known = computeKnownBits(Den, DL, 0, AC, &I); 1218 if (Known.isNegative() || !Known.isNonNegative()) 1219 return SSBits; 1220 unsigned RHSSignBits = Known.countMinLeadingZeros(); 1221 1222 Known = computeKnownBits(Num, DL, 0, AC, &I); 1223 if (Known.isNegative() || !Known.isNonNegative()) 1224 return SSBits; 1225 unsigned LHSSignBits = Known.countMinLeadingZeros(); 1226 1227 unsigned SignBits = std::min(LHSSignBits, RHSSignBits); 1228 unsigned DivBits = SSBits - SignBits; 1229 return DivBits; 1230 } 1231 1232 // The fractional part of a float is enough to accurately represent up to 1233 // a 24-bit signed integer. 1234 Value *AMDGPUCodeGenPrepareImpl::expandDivRem24(IRBuilder<> &Builder, 1235 BinaryOperator &I, Value *Num, 1236 Value *Den, bool IsDiv, 1237 bool IsSigned) const { 1238 unsigned SSBits = Num->getType()->getScalarSizeInBits(); 1239 // If Num bits <= 24, assume 0 signbits. 1240 unsigned AtLeast = (SSBits <= 24) ? 0 : (SSBits - 24 + IsSigned); 1241 int DivBits = getDivNumBits(I, Num, Den, AtLeast, IsSigned); 1242 if (DivBits == -1 || DivBits > 24) 1243 return nullptr; 1244 return expandDivRem24Impl(Builder, I, Num, Den, DivBits, IsDiv, IsSigned); 1245 } 1246 1247 Value *AMDGPUCodeGenPrepareImpl::expandDivRem24Impl( 1248 IRBuilder<> &Builder, BinaryOperator &I, Value *Num, Value *Den, 1249 unsigned DivBits, bool IsDiv, bool IsSigned) const { 1250 Type *I32Ty = Builder.getInt32Ty(); 1251 Num = Builder.CreateTrunc(Num, I32Ty); 1252 Den = Builder.CreateTrunc(Den, I32Ty); 1253 1254 Type *F32Ty = Builder.getFloatTy(); 1255 ConstantInt *One = Builder.getInt32(1); 1256 Value *JQ = One; 1257 1258 if (IsSigned) { 1259 // char|short jq = ia ^ ib; 1260 JQ = Builder.CreateXor(Num, Den); 1261 1262 // jq = jq >> (bitsize - 2) 1263 JQ = Builder.CreateAShr(JQ, Builder.getInt32(30)); 1264 1265 // jq = jq | 0x1 1266 JQ = Builder.CreateOr(JQ, One); 1267 } 1268 1269 // int ia = (int)LHS; 1270 Value *IA = Num; 1271 1272 // int ib, (int)RHS; 1273 Value *IB = Den; 1274 1275 // float fa = (float)ia; 1276 Value *FA = IsSigned ? Builder.CreateSIToFP(IA, F32Ty) 1277 : Builder.CreateUIToFP(IA, F32Ty); 1278 1279 // float fb = (float)ib; 1280 Value *FB = IsSigned ? Builder.CreateSIToFP(IB,F32Ty) 1281 : Builder.CreateUIToFP(IB,F32Ty); 1282 1283 Value *RCP = Builder.CreateIntrinsic(Intrinsic::amdgcn_rcp, 1284 Builder.getFloatTy(), {FB}); 1285 Value *FQM = Builder.CreateFMul(FA, RCP); 1286 1287 // fq = trunc(fqm); 1288 CallInst *FQ = Builder.CreateUnaryIntrinsic(Intrinsic::trunc, FQM); 1289 FQ->copyFastMathFlags(Builder.getFastMathFlags()); 1290 1291 // float fqneg = -fq; 1292 Value *FQNeg = Builder.CreateFNeg(FQ); 1293 1294 // float fr = mad(fqneg, fb, fa); 1295 auto FMAD = !ST.hasMadMacF32Insts() 1296 ? Intrinsic::fma 1297 : (Intrinsic::ID)Intrinsic::amdgcn_fmad_ftz; 1298 Value *FR = Builder.CreateIntrinsic(FMAD, 1299 {FQNeg->getType()}, {FQNeg, FB, FA}, FQ); 1300 1301 // int iq = (int)fq; 1302 Value *IQ = IsSigned ? Builder.CreateFPToSI(FQ, I32Ty) 1303 : Builder.CreateFPToUI(FQ, I32Ty); 1304 1305 // fr = fabs(fr); 1306 FR = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, FR, FQ); 1307 1308 // fb = fabs(fb); 1309 FB = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, FB, FQ); 1310 1311 // int cv = fr >= fb; 1312 Value *CV = Builder.CreateFCmpOGE(FR, FB); 1313 1314 // jq = (cv ? jq : 0); 1315 JQ = Builder.CreateSelect(CV, JQ, Builder.getInt32(0)); 1316 1317 // dst = iq + jq; 1318 Value *Div = Builder.CreateAdd(IQ, JQ); 1319 1320 Value *Res = Div; 1321 if (!IsDiv) { 1322 // Rem needs compensation, it's easier to recompute it 1323 Value *Rem = Builder.CreateMul(Div, Den); 1324 Res = Builder.CreateSub(Num, Rem); 1325 } 1326 1327 if (DivBits != 0 && DivBits < 32) { 1328 // Extend in register from the number of bits this divide really is. 1329 if (IsSigned) { 1330 int InRegBits = 32 - DivBits; 1331 1332 Res = Builder.CreateShl(Res, InRegBits); 1333 Res = Builder.CreateAShr(Res, InRegBits); 1334 } else { 1335 ConstantInt *TruncMask 1336 = Builder.getInt32((UINT64_C(1) << DivBits) - 1); 1337 Res = Builder.CreateAnd(Res, TruncMask); 1338 } 1339 } 1340 1341 return Res; 1342 } 1343 1344 // Try to recognize special cases the DAG will emit special, better expansions 1345 // than the general expansion we do here. 1346 1347 // TODO: It would be better to just directly handle those optimizations here. 1348 bool AMDGPUCodeGenPrepareImpl::divHasSpecialOptimization(BinaryOperator &I, 1349 Value *Num, 1350 Value *Den) const { 1351 if (Constant *C = dyn_cast<Constant>(Den)) { 1352 // Arbitrary constants get a better expansion as long as a wider mulhi is 1353 // legal. 1354 if (C->getType()->getScalarSizeInBits() <= 32) 1355 return true; 1356 1357 // TODO: Sdiv check for not exact for some reason. 1358 1359 // If there's no wider mulhi, there's only a better expansion for powers of 1360 // two. 1361 // TODO: Should really know for each vector element. 1362 if (isKnownToBeAPowerOfTwo(C, DL, true, 0, AC, &I, DT)) 1363 return true; 1364 1365 return false; 1366 } 1367 1368 if (BinaryOperator *BinOpDen = dyn_cast<BinaryOperator>(Den)) { 1369 // fold (udiv x, (shl c, y)) -> x >>u (log2(c)+y) iff c is power of 2 1370 if (BinOpDen->getOpcode() == Instruction::Shl && 1371 isa<Constant>(BinOpDen->getOperand(0)) && 1372 isKnownToBeAPowerOfTwo(BinOpDen->getOperand(0), DL, true, 0, AC, &I, 1373 DT)) { 1374 return true; 1375 } 1376 } 1377 1378 return false; 1379 } 1380 1381 static Value *getSign32(Value *V, IRBuilder<> &Builder, const DataLayout DL) { 1382 // Check whether the sign can be determined statically. 1383 KnownBits Known = computeKnownBits(V, DL); 1384 if (Known.isNegative()) 1385 return Constant::getAllOnesValue(V->getType()); 1386 if (Known.isNonNegative()) 1387 return Constant::getNullValue(V->getType()); 1388 return Builder.CreateAShr(V, Builder.getInt32(31)); 1389 } 1390 1391 Value *AMDGPUCodeGenPrepareImpl::expandDivRem32(IRBuilder<> &Builder, 1392 BinaryOperator &I, Value *X, 1393 Value *Y) const { 1394 Instruction::BinaryOps Opc = I.getOpcode(); 1395 assert(Opc == Instruction::URem || Opc == Instruction::UDiv || 1396 Opc == Instruction::SRem || Opc == Instruction::SDiv); 1397 1398 FastMathFlags FMF; 1399 FMF.setFast(); 1400 Builder.setFastMathFlags(FMF); 1401 1402 if (divHasSpecialOptimization(I, X, Y)) 1403 return nullptr; // Keep it for later optimization. 1404 1405 bool IsDiv = Opc == Instruction::UDiv || Opc == Instruction::SDiv; 1406 bool IsSigned = Opc == Instruction::SRem || Opc == Instruction::SDiv; 1407 1408 Type *Ty = X->getType(); 1409 Type *I32Ty = Builder.getInt32Ty(); 1410 Type *F32Ty = Builder.getFloatTy(); 1411 1412 if (Ty->getScalarSizeInBits() != 32) { 1413 if (IsSigned) { 1414 X = Builder.CreateSExtOrTrunc(X, I32Ty); 1415 Y = Builder.CreateSExtOrTrunc(Y, I32Ty); 1416 } else { 1417 X = Builder.CreateZExtOrTrunc(X, I32Ty); 1418 Y = Builder.CreateZExtOrTrunc(Y, I32Ty); 1419 } 1420 } 1421 1422 if (Value *Res = expandDivRem24(Builder, I, X, Y, IsDiv, IsSigned)) { 1423 return IsSigned ? Builder.CreateSExtOrTrunc(Res, Ty) : 1424 Builder.CreateZExtOrTrunc(Res, Ty); 1425 } 1426 1427 ConstantInt *Zero = Builder.getInt32(0); 1428 ConstantInt *One = Builder.getInt32(1); 1429 1430 Value *Sign = nullptr; 1431 if (IsSigned) { 1432 Value *SignX = getSign32(X, Builder, DL); 1433 Value *SignY = getSign32(Y, Builder, DL); 1434 // Remainder sign is the same as LHS 1435 Sign = IsDiv ? Builder.CreateXor(SignX, SignY) : SignX; 1436 1437 X = Builder.CreateAdd(X, SignX); 1438 Y = Builder.CreateAdd(Y, SignY); 1439 1440 X = Builder.CreateXor(X, SignX); 1441 Y = Builder.CreateXor(Y, SignY); 1442 } 1443 1444 // The algorithm here is based on ideas from "Software Integer Division", Tom 1445 // Rodeheffer, August 2008. 1446 // 1447 // unsigned udiv(unsigned x, unsigned y) { 1448 // // Initial estimate of inv(y). The constant is less than 2^32 to ensure 1449 // // that this is a lower bound on inv(y), even if some of the calculations 1450 // // round up. 1451 // unsigned z = (unsigned)((4294967296.0 - 512.0) * v_rcp_f32((float)y)); 1452 // 1453 // // One round of UNR (Unsigned integer Newton-Raphson) to improve z. 1454 // // Empirically this is guaranteed to give a "two-y" lower bound on 1455 // // inv(y). 1456 // z += umulh(z, -y * z); 1457 // 1458 // // Quotient/remainder estimate. 1459 // unsigned q = umulh(x, z); 1460 // unsigned r = x - q * y; 1461 // 1462 // // Two rounds of quotient/remainder refinement. 1463 // if (r >= y) { 1464 // ++q; 1465 // r -= y; 1466 // } 1467 // if (r >= y) { 1468 // ++q; 1469 // r -= y; 1470 // } 1471 // 1472 // return q; 1473 // } 1474 1475 // Initial estimate of inv(y). 1476 Value *FloatY = Builder.CreateUIToFP(Y, F32Ty); 1477 Value *RcpY = Builder.CreateIntrinsic(Intrinsic::amdgcn_rcp, F32Ty, {FloatY}); 1478 Constant *Scale = ConstantFP::get(F32Ty, llvm::bit_cast<float>(0x4F7FFFFE)); 1479 Value *ScaledY = Builder.CreateFMul(RcpY, Scale); 1480 Value *Z = Builder.CreateFPToUI(ScaledY, I32Ty); 1481 1482 // One round of UNR. 1483 Value *NegY = Builder.CreateSub(Zero, Y); 1484 Value *NegYZ = Builder.CreateMul(NegY, Z); 1485 Z = Builder.CreateAdd(Z, getMulHu(Builder, Z, NegYZ)); 1486 1487 // Quotient/remainder estimate. 1488 Value *Q = getMulHu(Builder, X, Z); 1489 Value *R = Builder.CreateSub(X, Builder.CreateMul(Q, Y)); 1490 1491 // First quotient/remainder refinement. 1492 Value *Cond = Builder.CreateICmpUGE(R, Y); 1493 if (IsDiv) 1494 Q = Builder.CreateSelect(Cond, Builder.CreateAdd(Q, One), Q); 1495 R = Builder.CreateSelect(Cond, Builder.CreateSub(R, Y), R); 1496 1497 // Second quotient/remainder refinement. 1498 Cond = Builder.CreateICmpUGE(R, Y); 1499 Value *Res; 1500 if (IsDiv) 1501 Res = Builder.CreateSelect(Cond, Builder.CreateAdd(Q, One), Q); 1502 else 1503 Res = Builder.CreateSelect(Cond, Builder.CreateSub(R, Y), R); 1504 1505 if (IsSigned) { 1506 Res = Builder.CreateXor(Res, Sign); 1507 Res = Builder.CreateSub(Res, Sign); 1508 Res = Builder.CreateSExtOrTrunc(Res, Ty); 1509 } else { 1510 Res = Builder.CreateZExtOrTrunc(Res, Ty); 1511 } 1512 return Res; 1513 } 1514 1515 Value *AMDGPUCodeGenPrepareImpl::shrinkDivRem64(IRBuilder<> &Builder, 1516 BinaryOperator &I, Value *Num, 1517 Value *Den) const { 1518 if (!ExpandDiv64InIR && divHasSpecialOptimization(I, Num, Den)) 1519 return nullptr; // Keep it for later optimization. 1520 1521 Instruction::BinaryOps Opc = I.getOpcode(); 1522 1523 bool IsDiv = Opc == Instruction::SDiv || Opc == Instruction::UDiv; 1524 bool IsSigned = Opc == Instruction::SDiv || Opc == Instruction::SRem; 1525 1526 int NumDivBits = getDivNumBits(I, Num, Den, 32, IsSigned); 1527 if (NumDivBits == -1) 1528 return nullptr; 1529 1530 Value *Narrowed = nullptr; 1531 if (NumDivBits <= 24) { 1532 Narrowed = expandDivRem24Impl(Builder, I, Num, Den, NumDivBits, 1533 IsDiv, IsSigned); 1534 } else if (NumDivBits <= 32) { 1535 Narrowed = expandDivRem32(Builder, I, Num, Den); 1536 } 1537 1538 if (Narrowed) { 1539 return IsSigned ? Builder.CreateSExt(Narrowed, Num->getType()) : 1540 Builder.CreateZExt(Narrowed, Num->getType()); 1541 } 1542 1543 return nullptr; 1544 } 1545 1546 void AMDGPUCodeGenPrepareImpl::expandDivRem64(BinaryOperator &I) const { 1547 Instruction::BinaryOps Opc = I.getOpcode(); 1548 // Do the general expansion. 1549 if (Opc == Instruction::UDiv || Opc == Instruction::SDiv) { 1550 expandDivisionUpTo64Bits(&I); 1551 return; 1552 } 1553 1554 if (Opc == Instruction::URem || Opc == Instruction::SRem) { 1555 expandRemainderUpTo64Bits(&I); 1556 return; 1557 } 1558 1559 llvm_unreachable("not a division"); 1560 } 1561 1562 bool AMDGPUCodeGenPrepareImpl::visitBinaryOperator(BinaryOperator &I) { 1563 if (foldBinOpIntoSelect(I)) 1564 return true; 1565 1566 if (ST.has16BitInsts() && needsPromotionToI32(I.getType()) && 1567 UA.isUniform(&I) && promoteUniformOpToI32(I)) 1568 return true; 1569 1570 if (UseMul24Intrin && replaceMulWithMul24(I)) 1571 return true; 1572 1573 bool Changed = false; 1574 Instruction::BinaryOps Opc = I.getOpcode(); 1575 Type *Ty = I.getType(); 1576 Value *NewDiv = nullptr; 1577 unsigned ScalarSize = Ty->getScalarSizeInBits(); 1578 1579 SmallVector<BinaryOperator *, 8> Div64ToExpand; 1580 1581 if ((Opc == Instruction::URem || Opc == Instruction::UDiv || 1582 Opc == Instruction::SRem || Opc == Instruction::SDiv) && 1583 ScalarSize <= 64 && 1584 !DisableIDivExpand) { 1585 Value *Num = I.getOperand(0); 1586 Value *Den = I.getOperand(1); 1587 IRBuilder<> Builder(&I); 1588 Builder.SetCurrentDebugLocation(I.getDebugLoc()); 1589 1590 if (auto *VT = dyn_cast<FixedVectorType>(Ty)) { 1591 NewDiv = PoisonValue::get(VT); 1592 1593 for (unsigned N = 0, E = VT->getNumElements(); N != E; ++N) { 1594 Value *NumEltN = Builder.CreateExtractElement(Num, N); 1595 Value *DenEltN = Builder.CreateExtractElement(Den, N); 1596 1597 Value *NewElt; 1598 if (ScalarSize <= 32) { 1599 NewElt = expandDivRem32(Builder, I, NumEltN, DenEltN); 1600 if (!NewElt) 1601 NewElt = Builder.CreateBinOp(Opc, NumEltN, DenEltN); 1602 } else { 1603 // See if this 64-bit division can be shrunk to 32/24-bits before 1604 // producing the general expansion. 1605 NewElt = shrinkDivRem64(Builder, I, NumEltN, DenEltN); 1606 if (!NewElt) { 1607 // The general 64-bit expansion introduces control flow and doesn't 1608 // return the new value. Just insert a scalar copy and defer 1609 // expanding it. 1610 NewElt = Builder.CreateBinOp(Opc, NumEltN, DenEltN); 1611 Div64ToExpand.push_back(cast<BinaryOperator>(NewElt)); 1612 } 1613 } 1614 1615 if (auto *NewEltI = dyn_cast<Instruction>(NewElt)) 1616 NewEltI->copyIRFlags(&I); 1617 1618 NewDiv = Builder.CreateInsertElement(NewDiv, NewElt, N); 1619 } 1620 } else { 1621 if (ScalarSize <= 32) 1622 NewDiv = expandDivRem32(Builder, I, Num, Den); 1623 else { 1624 NewDiv = shrinkDivRem64(Builder, I, Num, Den); 1625 if (!NewDiv) 1626 Div64ToExpand.push_back(&I); 1627 } 1628 } 1629 1630 if (NewDiv) { 1631 I.replaceAllUsesWith(NewDiv); 1632 I.eraseFromParent(); 1633 Changed = true; 1634 } 1635 } 1636 1637 if (ExpandDiv64InIR) { 1638 // TODO: We get much worse code in specially handled constant cases. 1639 for (BinaryOperator *Div : Div64ToExpand) { 1640 expandDivRem64(*Div); 1641 FlowChanged = true; 1642 Changed = true; 1643 } 1644 } 1645 1646 return Changed; 1647 } 1648 1649 bool AMDGPUCodeGenPrepareImpl::visitLoadInst(LoadInst &I) { 1650 if (!WidenLoads) 1651 return false; 1652 1653 if ((I.getPointerAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS || 1654 I.getPointerAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS_32BIT) && 1655 canWidenScalarExtLoad(I)) { 1656 IRBuilder<> Builder(&I); 1657 Builder.SetCurrentDebugLocation(I.getDebugLoc()); 1658 1659 Type *I32Ty = Builder.getInt32Ty(); 1660 LoadInst *WidenLoad = Builder.CreateLoad(I32Ty, I.getPointerOperand()); 1661 WidenLoad->copyMetadata(I); 1662 1663 // If we have range metadata, we need to convert the type, and not make 1664 // assumptions about the high bits. 1665 if (auto *Range = WidenLoad->getMetadata(LLVMContext::MD_range)) { 1666 ConstantInt *Lower = 1667 mdconst::extract<ConstantInt>(Range->getOperand(0)); 1668 1669 if (Lower->isNullValue()) { 1670 WidenLoad->setMetadata(LLVMContext::MD_range, nullptr); 1671 } else { 1672 Metadata *LowAndHigh[] = { 1673 ConstantAsMetadata::get(ConstantInt::get(I32Ty, Lower->getValue().zext(32))), 1674 // Don't make assumptions about the high bits. 1675 ConstantAsMetadata::get(ConstantInt::get(I32Ty, 0)) 1676 }; 1677 1678 WidenLoad->setMetadata(LLVMContext::MD_range, 1679 MDNode::get(F.getContext(), LowAndHigh)); 1680 } 1681 } 1682 1683 int TySize = DL.getTypeSizeInBits(I.getType()); 1684 Type *IntNTy = Builder.getIntNTy(TySize); 1685 Value *ValTrunc = Builder.CreateTrunc(WidenLoad, IntNTy); 1686 Value *ValOrig = Builder.CreateBitCast(ValTrunc, I.getType()); 1687 I.replaceAllUsesWith(ValOrig); 1688 I.eraseFromParent(); 1689 return true; 1690 } 1691 1692 return false; 1693 } 1694 1695 bool AMDGPUCodeGenPrepareImpl::visitICmpInst(ICmpInst &I) { 1696 bool Changed = false; 1697 1698 if (ST.has16BitInsts() && needsPromotionToI32(I.getOperand(0)->getType()) && 1699 UA.isUniform(&I)) 1700 Changed |= promoteUniformOpToI32(I); 1701 1702 return Changed; 1703 } 1704 1705 bool AMDGPUCodeGenPrepareImpl::visitSelectInst(SelectInst &I) { 1706 Value *Cond = I.getCondition(); 1707 Value *TrueVal = I.getTrueValue(); 1708 Value *FalseVal = I.getFalseValue(); 1709 Value *CmpVal; 1710 FCmpInst::Predicate Pred; 1711 1712 if (ST.has16BitInsts() && needsPromotionToI32(I.getType())) { 1713 if (UA.isUniform(&I)) 1714 return promoteUniformOpToI32(I); 1715 return false; 1716 } 1717 1718 // Match fract pattern with nan check. 1719 if (!match(Cond, m_FCmp(Pred, m_Value(CmpVal), m_NonNaN()))) 1720 return false; 1721 1722 FPMathOperator *FPOp = dyn_cast<FPMathOperator>(&I); 1723 if (!FPOp) 1724 return false; 1725 1726 IRBuilder<> Builder(&I); 1727 Builder.setFastMathFlags(FPOp->getFastMathFlags()); 1728 1729 auto *IITrue = dyn_cast<IntrinsicInst>(TrueVal); 1730 auto *IIFalse = dyn_cast<IntrinsicInst>(FalseVal); 1731 1732 Value *Fract = nullptr; 1733 if (Pred == FCmpInst::FCMP_UNO && TrueVal == CmpVal && IIFalse && 1734 CmpVal == matchFractPat(*IIFalse)) { 1735 // isnan(x) ? x : fract(x) 1736 Fract = applyFractPat(Builder, CmpVal); 1737 } else if (Pred == FCmpInst::FCMP_ORD && FalseVal == CmpVal && IITrue && 1738 CmpVal == matchFractPat(*IITrue)) { 1739 // !isnan(x) ? fract(x) : x 1740 Fract = applyFractPat(Builder, CmpVal); 1741 } else 1742 return false; 1743 1744 Fract->takeName(&I); 1745 I.replaceAllUsesWith(Fract); 1746 RecursivelyDeleteTriviallyDeadInstructions(&I, TLI); 1747 return true; 1748 } 1749 1750 static bool areInSameBB(const Value *A, const Value *B) { 1751 const auto *IA = dyn_cast<Instruction>(A); 1752 const auto *IB = dyn_cast<Instruction>(B); 1753 return IA && IB && IA->getParent() == IB->getParent(); 1754 } 1755 1756 // Helper for breaking large PHIs that returns true when an extractelement on V 1757 // is likely to be folded away by the DAG combiner. 1758 static bool isInterestingPHIIncomingValue(const Value *V) { 1759 const auto *FVT = dyn_cast<FixedVectorType>(V->getType()); 1760 if (!FVT) 1761 return false; 1762 1763 const Value *CurVal = V; 1764 1765 // Check for insertelements, keeping track of the elements covered. 1766 BitVector EltsCovered(FVT->getNumElements()); 1767 while (const auto *IE = dyn_cast<InsertElementInst>(CurVal)) { 1768 const auto *Idx = dyn_cast<ConstantInt>(IE->getOperand(2)); 1769 1770 // Non constant index/out of bounds index -> folding is unlikely. 1771 // The latter is more of a sanity check because canonical IR should just 1772 // have replaced those with poison. 1773 if (!Idx || Idx->getZExtValue() >= FVT->getNumElements()) 1774 return false; 1775 1776 const auto *VecSrc = IE->getOperand(0); 1777 1778 // If the vector source is another instruction, it must be in the same basic 1779 // block. Otherwise, the DAGCombiner won't see the whole thing and is 1780 // unlikely to be able to do anything interesting here. 1781 if (isa<Instruction>(VecSrc) && !areInSameBB(VecSrc, IE)) 1782 return false; 1783 1784 CurVal = VecSrc; 1785 EltsCovered.set(Idx->getZExtValue()); 1786 1787 // All elements covered. 1788 if (EltsCovered.all()) 1789 return true; 1790 } 1791 1792 // We either didn't find a single insertelement, or the insertelement chain 1793 // ended before all elements were covered. Check for other interesting values. 1794 1795 // Constants are always interesting because we can just constant fold the 1796 // extractelements. 1797 if (isa<Constant>(CurVal)) 1798 return true; 1799 1800 // shufflevector is likely to be profitable if either operand is a constant, 1801 // or if either source is in the same block. 1802 // This is because shufflevector is most often lowered as a series of 1803 // insert/extract elements anyway. 1804 if (const auto *SV = dyn_cast<ShuffleVectorInst>(CurVal)) { 1805 return isa<Constant>(SV->getOperand(1)) || 1806 areInSameBB(SV, SV->getOperand(0)) || 1807 areInSameBB(SV, SV->getOperand(1)); 1808 } 1809 1810 return false; 1811 } 1812 1813 static void collectPHINodes(const PHINode &I, 1814 SmallPtrSet<const PHINode *, 8> &SeenPHIs) { 1815 const auto [It, Inserted] = SeenPHIs.insert(&I); 1816 if (!Inserted) 1817 return; 1818 1819 for (const Value *Inc : I.incoming_values()) { 1820 if (const auto *PhiInc = dyn_cast<PHINode>(Inc)) 1821 collectPHINodes(*PhiInc, SeenPHIs); 1822 } 1823 1824 for (const User *U : I.users()) { 1825 if (const auto *PhiU = dyn_cast<PHINode>(U)) 1826 collectPHINodes(*PhiU, SeenPHIs); 1827 } 1828 } 1829 1830 bool AMDGPUCodeGenPrepareImpl::canBreakPHINode(const PHINode &I) { 1831 // Check in the cache first. 1832 if (const auto It = BreakPhiNodesCache.find(&I); 1833 It != BreakPhiNodesCache.end()) 1834 return It->second; 1835 1836 // We consider PHI nodes as part of "chains", so given a PHI node I, we 1837 // recursively consider all its users and incoming values that are also PHI 1838 // nodes. We then make a decision about all of those PHIs at once. Either they 1839 // all get broken up, or none of them do. That way, we avoid cases where a 1840 // single PHI is/is not broken and we end up reforming/exploding a vector 1841 // multiple times, or even worse, doing it in a loop. 1842 SmallPtrSet<const PHINode *, 8> WorkList; 1843 collectPHINodes(I, WorkList); 1844 1845 #ifndef NDEBUG 1846 // Check that none of the PHI nodes in the worklist are in the map. If some of 1847 // them are, it means we're not good enough at collecting related PHIs. 1848 for (const PHINode *WLP : WorkList) { 1849 assert(BreakPhiNodesCache.count(WLP) == 0); 1850 } 1851 #endif 1852 1853 // To consider a PHI profitable to break, we need to see some interesting 1854 // incoming values. At least 2/3rd (rounded up) of all PHIs in the worklist 1855 // must have one to consider all PHIs breakable. 1856 // 1857 // This threshold has been determined through performance testing. 1858 // 1859 // Note that the computation below is equivalent to 1860 // 1861 // (unsigned)ceil((K / 3.0) * 2) 1862 // 1863 // It's simply written this way to avoid mixing integral/FP arithmetic. 1864 const auto Threshold = (alignTo(WorkList.size() * 2, 3) / 3); 1865 unsigned NumBreakablePHIs = 0; 1866 bool CanBreak = false; 1867 for (const PHINode *Cur : WorkList) { 1868 // Don't break PHIs that have no interesting incoming values. That is, where 1869 // there is no clear opportunity to fold the "extractelement" instructions 1870 // we would add. 1871 // 1872 // Note: IC does not run after this pass, so we're only interested in the 1873 // foldings that the DAG combiner can do. 1874 if (any_of(Cur->incoming_values(), isInterestingPHIIncomingValue)) { 1875 if (++NumBreakablePHIs >= Threshold) { 1876 CanBreak = true; 1877 break; 1878 } 1879 } 1880 } 1881 1882 for (const PHINode *Cur : WorkList) 1883 BreakPhiNodesCache[Cur] = CanBreak; 1884 1885 return CanBreak; 1886 } 1887 1888 /// Helper class for "break large PHIs" (visitPHINode). 1889 /// 1890 /// This represents a slice of a PHI's incoming value, which is made up of: 1891 /// - The type of the slice (Ty) 1892 /// - The index in the incoming value's vector where the slice starts (Idx) 1893 /// - The number of elements in the slice (NumElts). 1894 /// It also keeps track of the NewPHI node inserted for this particular slice. 1895 /// 1896 /// Slice examples: 1897 /// <4 x i64> -> Split into four i64 slices. 1898 /// -> [i64, 0, 1], [i64, 1, 1], [i64, 2, 1], [i64, 3, 1] 1899 /// <5 x i16> -> Split into 2 <2 x i16> slices + a i16 tail. 1900 /// -> [<2 x i16>, 0, 2], [<2 x i16>, 2, 2], [i16, 4, 1] 1901 class VectorSlice { 1902 public: 1903 VectorSlice(Type *Ty, unsigned Idx, unsigned NumElts) 1904 : Ty(Ty), Idx(Idx), NumElts(NumElts) {} 1905 1906 Type *Ty = nullptr; 1907 unsigned Idx = 0; 1908 unsigned NumElts = 0; 1909 PHINode *NewPHI = nullptr; 1910 1911 /// Slice \p Inc according to the information contained within this slice. 1912 /// This is cached, so if called multiple times for the same \p BB & \p Inc 1913 /// pair, it returns the same Sliced value as well. 1914 /// 1915 /// Note this *intentionally* does not return the same value for, say, 1916 /// [%bb.0, %0] & [%bb.1, %0] as: 1917 /// - It could cause issues with dominance (e.g. if bb.1 is seen first, then 1918 /// the value in bb.1 may not be reachable from bb.0 if it's its 1919 /// predecessor.) 1920 /// - We also want to make our extract instructions as local as possible so 1921 /// the DAG has better chances of folding them out. Duplicating them like 1922 /// that is beneficial in that regard. 1923 /// 1924 /// This is both a minor optimization to avoid creating duplicate 1925 /// instructions, but also a requirement for correctness. It is not forbidden 1926 /// for a PHI node to have the same [BB, Val] pair multiple times. If we 1927 /// returned a new value each time, those previously identical pairs would all 1928 /// have different incoming values (from the same block) and it'd cause a "PHI 1929 /// node has multiple entries for the same basic block with different incoming 1930 /// values!" verifier error. 1931 Value *getSlicedVal(BasicBlock *BB, Value *Inc, StringRef NewValName) { 1932 Value *&Res = SlicedVals[{BB, Inc}]; 1933 if (Res) 1934 return Res; 1935 1936 IRBuilder<> B(BB->getTerminator()); 1937 if (Instruction *IncInst = dyn_cast<Instruction>(Inc)) 1938 B.SetCurrentDebugLocation(IncInst->getDebugLoc()); 1939 1940 if (NumElts > 1) { 1941 SmallVector<int, 4> Mask; 1942 for (unsigned K = Idx; K < (Idx + NumElts); ++K) 1943 Mask.push_back(K); 1944 Res = B.CreateShuffleVector(Inc, Mask, NewValName); 1945 } else 1946 Res = B.CreateExtractElement(Inc, Idx, NewValName); 1947 1948 return Res; 1949 } 1950 1951 private: 1952 SmallDenseMap<std::pair<BasicBlock *, Value *>, Value *> SlicedVals; 1953 }; 1954 1955 bool AMDGPUCodeGenPrepareImpl::visitPHINode(PHINode &I) { 1956 // Break-up fixed-vector PHIs into smaller pieces. 1957 // Default threshold is 32, so it breaks up any vector that's >32 bits into 1958 // its elements, or into 32-bit pieces (for 8/16 bit elts). 1959 // 1960 // This is only helpful for DAGISel because it doesn't handle large PHIs as 1961 // well as GlobalISel. DAGISel lowers PHIs by using CopyToReg/CopyFromReg. 1962 // With large, odd-sized PHIs we may end up needing many `build_vector` 1963 // operations with most elements being "undef". This inhibits a lot of 1964 // optimization opportunities and can result in unreasonably high register 1965 // pressure and the inevitable stack spilling. 1966 if (!BreakLargePHIs || getCGPassBuilderOption().EnableGlobalISelOption) 1967 return false; 1968 1969 FixedVectorType *FVT = dyn_cast<FixedVectorType>(I.getType()); 1970 if (!FVT || FVT->getNumElements() == 1 || 1971 DL.getTypeSizeInBits(FVT) <= BreakLargePHIsThreshold) 1972 return false; 1973 1974 if (!ForceBreakLargePHIs && !canBreakPHINode(I)) 1975 return false; 1976 1977 std::vector<VectorSlice> Slices; 1978 1979 Type *EltTy = FVT->getElementType(); 1980 { 1981 unsigned Idx = 0; 1982 // For 8/16 bits type, don't scalarize fully but break it up into as many 1983 // 32-bit slices as we can, and scalarize the tail. 1984 const unsigned EltSize = DL.getTypeSizeInBits(EltTy); 1985 const unsigned NumElts = FVT->getNumElements(); 1986 if (EltSize == 8 || EltSize == 16) { 1987 const unsigned SubVecSize = (32 / EltSize); 1988 Type *SubVecTy = FixedVectorType::get(EltTy, SubVecSize); 1989 for (unsigned End = alignDown(NumElts, SubVecSize); Idx < End; 1990 Idx += SubVecSize) 1991 Slices.emplace_back(SubVecTy, Idx, SubVecSize); 1992 } 1993 1994 // Scalarize all remaining elements. 1995 for (; Idx < NumElts; ++Idx) 1996 Slices.emplace_back(EltTy, Idx, 1); 1997 } 1998 1999 assert(Slices.size() > 1); 2000 2001 // Create one PHI per vector piece. The "VectorSlice" class takes care of 2002 // creating the necessary instruction to extract the relevant slices of each 2003 // incoming value. 2004 IRBuilder<> B(I.getParent()); 2005 B.SetCurrentDebugLocation(I.getDebugLoc()); 2006 2007 unsigned IncNameSuffix = 0; 2008 for (VectorSlice &S : Slices) { 2009 // We need to reset the build on each iteration, because getSlicedVal may 2010 // have inserted something into I's BB. 2011 B.SetInsertPoint(I.getParent()->getFirstNonPHIIt()); 2012 S.NewPHI = B.CreatePHI(S.Ty, I.getNumIncomingValues()); 2013 2014 for (const auto &[Idx, BB] : enumerate(I.blocks())) { 2015 S.NewPHI->addIncoming(S.getSlicedVal(BB, I.getIncomingValue(Idx), 2016 "largephi.extractslice" + 2017 std::to_string(IncNameSuffix++)), 2018 BB); 2019 } 2020 } 2021 2022 // And replace this PHI with a vector of all the previous PHI values. 2023 Value *Vec = PoisonValue::get(FVT); 2024 unsigned NameSuffix = 0; 2025 for (VectorSlice &S : Slices) { 2026 const auto ValName = "largephi.insertslice" + std::to_string(NameSuffix++); 2027 if (S.NumElts > 1) 2028 Vec = 2029 B.CreateInsertVector(FVT, Vec, S.NewPHI, B.getInt64(S.Idx), ValName); 2030 else 2031 Vec = B.CreateInsertElement(Vec, S.NewPHI, S.Idx, ValName); 2032 } 2033 2034 I.replaceAllUsesWith(Vec); 2035 I.eraseFromParent(); 2036 return true; 2037 } 2038 2039 /// \param V Value to check 2040 /// \param DL DataLayout 2041 /// \param TM TargetMachine (TODO: remove once DL contains nullptr values) 2042 /// \param AS Target Address Space 2043 /// \return true if \p V cannot be the null value of \p AS, false otherwise. 2044 static bool isPtrKnownNeverNull(const Value *V, const DataLayout &DL, 2045 const AMDGPUTargetMachine &TM, unsigned AS) { 2046 // Pointer cannot be null if it's a block address, GV or alloca. 2047 // NOTE: We don't support extern_weak, but if we did, we'd need to check for 2048 // it as the symbol could be null in such cases. 2049 if (isa<BlockAddress>(V) || isa<GlobalValue>(V) || isa<AllocaInst>(V)) 2050 return true; 2051 2052 // Check nonnull arguments. 2053 if (const auto *Arg = dyn_cast<Argument>(V); Arg && Arg->hasNonNullAttr()) 2054 return true; 2055 2056 // getUnderlyingObject may have looked through another addrspacecast, although 2057 // the optimizable situations most likely folded out by now. 2058 if (AS != cast<PointerType>(V->getType())->getAddressSpace()) 2059 return false; 2060 2061 // TODO: Calls that return nonnull? 2062 2063 // For all other things, use KnownBits. 2064 // We either use 0 or all bits set to indicate null, so check whether the 2065 // value can be zero or all ones. 2066 // 2067 // TODO: Use ValueTracking's isKnownNeverNull if it becomes aware that some 2068 // address spaces have non-zero null values. 2069 auto SrcPtrKB = computeKnownBits(V, DL); 2070 const auto NullVal = TM.getNullPointerValue(AS); 2071 2072 assert(SrcPtrKB.getBitWidth() == DL.getPointerSizeInBits(AS)); 2073 assert((NullVal == 0 || NullVal == -1) && 2074 "don't know how to check for this null value!"); 2075 return NullVal ? !SrcPtrKB.getMaxValue().isAllOnes() : SrcPtrKB.isNonZero(); 2076 } 2077 2078 bool AMDGPUCodeGenPrepareImpl::visitAddrSpaceCastInst(AddrSpaceCastInst &I) { 2079 // Intrinsic doesn't support vectors, also it seems that it's often difficult 2080 // to prove that a vector cannot have any nulls in it so it's unclear if it's 2081 // worth supporting. 2082 if (I.getType()->isVectorTy()) 2083 return false; 2084 2085 // Check if this can be lowered to a amdgcn.addrspacecast.nonnull. 2086 // This is only worthwhile for casts from/to priv/local to flat. 2087 const unsigned SrcAS = I.getSrcAddressSpace(); 2088 const unsigned DstAS = I.getDestAddressSpace(); 2089 2090 bool CanLower = false; 2091 if (SrcAS == AMDGPUAS::FLAT_ADDRESS) 2092 CanLower = (DstAS == AMDGPUAS::LOCAL_ADDRESS || 2093 DstAS == AMDGPUAS::PRIVATE_ADDRESS); 2094 else if (DstAS == AMDGPUAS::FLAT_ADDRESS) 2095 CanLower = (SrcAS == AMDGPUAS::LOCAL_ADDRESS || 2096 SrcAS == AMDGPUAS::PRIVATE_ADDRESS); 2097 if (!CanLower) 2098 return false; 2099 2100 SmallVector<const Value *, 4> WorkList; 2101 getUnderlyingObjects(I.getOperand(0), WorkList); 2102 if (!all_of(WorkList, [&](const Value *V) { 2103 return isPtrKnownNeverNull(V, DL, TM, SrcAS); 2104 })) 2105 return false; 2106 2107 IRBuilder<> B(&I); 2108 auto *Intrin = B.CreateIntrinsic( 2109 I.getType(), Intrinsic::amdgcn_addrspacecast_nonnull, {I.getOperand(0)}); 2110 I.replaceAllUsesWith(Intrin); 2111 I.eraseFromParent(); 2112 return true; 2113 } 2114 2115 bool AMDGPUCodeGenPrepareImpl::visitIntrinsicInst(IntrinsicInst &I) { 2116 switch (I.getIntrinsicID()) { 2117 case Intrinsic::bitreverse: 2118 return visitBitreverseIntrinsicInst(I); 2119 case Intrinsic::minnum: 2120 return visitMinNum(I); 2121 case Intrinsic::sqrt: 2122 return visitSqrt(I); 2123 default: 2124 return false; 2125 } 2126 } 2127 2128 bool AMDGPUCodeGenPrepareImpl::visitBitreverseIntrinsicInst(IntrinsicInst &I) { 2129 bool Changed = false; 2130 2131 if (ST.has16BitInsts() && needsPromotionToI32(I.getType()) && 2132 UA.isUniform(&I)) 2133 Changed |= promoteUniformBitreverseToI32(I); 2134 2135 return Changed; 2136 } 2137 2138 /// Match non-nan fract pattern. 2139 /// minnum(fsub(x, floor(x)), nextafter(1.0, -1.0) 2140 /// 2141 /// If fract is a useful instruction for the subtarget. Does not account for the 2142 /// nan handling; the instruction has a nan check on the input value. 2143 Value *AMDGPUCodeGenPrepareImpl::matchFractPat(IntrinsicInst &I) { 2144 if (ST.hasFractBug()) 2145 return nullptr; 2146 2147 if (I.getIntrinsicID() != Intrinsic::minnum) 2148 return nullptr; 2149 2150 Type *Ty = I.getType(); 2151 if (!isLegalFloatingTy(Ty->getScalarType())) 2152 return nullptr; 2153 2154 Value *Arg0 = I.getArgOperand(0); 2155 Value *Arg1 = I.getArgOperand(1); 2156 2157 const APFloat *C; 2158 if (!match(Arg1, m_APFloat(C))) 2159 return nullptr; 2160 2161 APFloat One(1.0); 2162 bool LosesInfo; 2163 One.convert(C->getSemantics(), APFloat::rmNearestTiesToEven, &LosesInfo); 2164 2165 // Match nextafter(1.0, -1) 2166 One.next(true); 2167 if (One != *C) 2168 return nullptr; 2169 2170 Value *FloorSrc; 2171 if (match(Arg0, m_FSub(m_Value(FloorSrc), 2172 m_Intrinsic<Intrinsic::floor>(m_Deferred(FloorSrc))))) 2173 return FloorSrc; 2174 return nullptr; 2175 } 2176 2177 Value *AMDGPUCodeGenPrepareImpl::applyFractPat(IRBuilder<> &Builder, 2178 Value *FractArg) { 2179 SmallVector<Value *, 4> FractVals; 2180 extractValues(Builder, FractVals, FractArg); 2181 2182 SmallVector<Value *, 4> ResultVals(FractVals.size()); 2183 2184 Type *Ty = FractArg->getType()->getScalarType(); 2185 for (unsigned I = 0, E = FractVals.size(); I != E; ++I) { 2186 ResultVals[I] = 2187 Builder.CreateIntrinsic(Intrinsic::amdgcn_fract, {Ty}, {FractVals[I]}); 2188 } 2189 2190 return insertValues(Builder, FractArg->getType(), ResultVals); 2191 } 2192 2193 bool AMDGPUCodeGenPrepareImpl::visitMinNum(IntrinsicInst &I) { 2194 Value *FractArg = matchFractPat(I); 2195 if (!FractArg) 2196 return false; 2197 2198 // Match pattern for fract intrinsic in contexts where the nan check has been 2199 // optimized out (and hope the knowledge the source can't be nan wasn't lost). 2200 if (!I.hasNoNaNs() && 2201 !isKnownNeverNaN(FractArg, /*Depth=*/0, SimplifyQuery(DL, TLI))) 2202 return false; 2203 2204 IRBuilder<> Builder(&I); 2205 FastMathFlags FMF = I.getFastMathFlags(); 2206 FMF.setNoNaNs(); 2207 Builder.setFastMathFlags(FMF); 2208 2209 Value *Fract = applyFractPat(Builder, FractArg); 2210 Fract->takeName(&I); 2211 I.replaceAllUsesWith(Fract); 2212 2213 RecursivelyDeleteTriviallyDeadInstructions(&I, TLI); 2214 return true; 2215 } 2216 2217 static bool isOneOrNegOne(const Value *Val) { 2218 const APFloat *C; 2219 return match(Val, m_APFloat(C)) && C->getExactLog2Abs() == 0; 2220 } 2221 2222 // Expand llvm.sqrt.f32 calls with !fpmath metadata in a semi-fast way. 2223 bool AMDGPUCodeGenPrepareImpl::visitSqrt(IntrinsicInst &Sqrt) { 2224 Type *Ty = Sqrt.getType()->getScalarType(); 2225 if (!Ty->isFloatTy() && (!Ty->isHalfTy() || ST.has16BitInsts())) 2226 return false; 2227 2228 const FPMathOperator *FPOp = cast<const FPMathOperator>(&Sqrt); 2229 FastMathFlags SqrtFMF = FPOp->getFastMathFlags(); 2230 2231 // We're trying to handle the fast-but-not-that-fast case only. The lowering 2232 // of fast llvm.sqrt will give the raw instruction anyway. 2233 if (SqrtFMF.approxFunc() || HasUnsafeFPMath) 2234 return false; 2235 2236 const float ReqdAccuracy = FPOp->getFPAccuracy(); 2237 2238 // Defer correctly rounded expansion to codegen. 2239 if (ReqdAccuracy < 1.0f) 2240 return false; 2241 2242 // FIXME: This is an ugly hack for this pass using forward iteration instead 2243 // of reverse. If it worked like a normal combiner, the rsq would form before 2244 // we saw a sqrt call. 2245 auto *FDiv = 2246 dyn_cast_or_null<FPMathOperator>(Sqrt.getUniqueUndroppableUser()); 2247 if (FDiv && FDiv->getOpcode() == Instruction::FDiv && 2248 FDiv->getFPAccuracy() >= 1.0f && 2249 canOptimizeWithRsq(FPOp, FDiv->getFastMathFlags(), SqrtFMF) && 2250 // TODO: We should also handle the arcp case for the fdiv with non-1 value 2251 isOneOrNegOne(FDiv->getOperand(0))) 2252 return false; 2253 2254 Value *SrcVal = Sqrt.getOperand(0); 2255 bool CanTreatAsDAZ = canIgnoreDenormalInput(SrcVal, &Sqrt); 2256 2257 // The raw instruction is 1 ulp, but the correction for denormal handling 2258 // brings it to 2. 2259 if (!CanTreatAsDAZ && ReqdAccuracy < 2.0f) 2260 return false; 2261 2262 IRBuilder<> Builder(&Sqrt); 2263 SmallVector<Value *, 4> SrcVals; 2264 extractValues(Builder, SrcVals, SrcVal); 2265 2266 SmallVector<Value *, 4> ResultVals(SrcVals.size()); 2267 for (int I = 0, E = SrcVals.size(); I != E; ++I) { 2268 if (CanTreatAsDAZ) 2269 ResultVals[I] = Builder.CreateCall(getSqrtF32(), SrcVals[I]); 2270 else 2271 ResultVals[I] = emitSqrtIEEE2ULP(Builder, SrcVals[I], SqrtFMF); 2272 } 2273 2274 Value *NewSqrt = insertValues(Builder, Sqrt.getType(), ResultVals); 2275 NewSqrt->takeName(&Sqrt); 2276 Sqrt.replaceAllUsesWith(NewSqrt); 2277 Sqrt.eraseFromParent(); 2278 return true; 2279 } 2280 2281 bool AMDGPUCodeGenPrepare::runOnFunction(Function &F) { 2282 if (skipFunction(F)) 2283 return false; 2284 2285 auto *TPC = getAnalysisIfAvailable<TargetPassConfig>(); 2286 if (!TPC) 2287 return false; 2288 2289 const AMDGPUTargetMachine &TM = TPC->getTM<AMDGPUTargetMachine>(); 2290 const TargetLibraryInfo *TLI = 2291 &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F); 2292 AssumptionCache *AC = 2293 &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 2294 auto *DTWP = getAnalysisIfAvailable<DominatorTreeWrapperPass>(); 2295 const DominatorTree *DT = DTWP ? &DTWP->getDomTree() : nullptr; 2296 const UniformityInfo &UA = 2297 getAnalysis<UniformityInfoWrapperPass>().getUniformityInfo(); 2298 return AMDGPUCodeGenPrepareImpl(F, TM, TLI, AC, DT, UA).run(); 2299 } 2300 2301 PreservedAnalyses AMDGPUCodeGenPreparePass::run(Function &F, 2302 FunctionAnalysisManager &FAM) { 2303 const AMDGPUTargetMachine &ATM = static_cast<const AMDGPUTargetMachine &>(TM); 2304 const TargetLibraryInfo *TLI = &FAM.getResult<TargetLibraryAnalysis>(F); 2305 AssumptionCache *AC = &FAM.getResult<AssumptionAnalysis>(F); 2306 const DominatorTree *DT = FAM.getCachedResult<DominatorTreeAnalysis>(F); 2307 const UniformityInfo &UA = FAM.getResult<UniformityInfoAnalysis>(F); 2308 AMDGPUCodeGenPrepareImpl Impl(F, ATM, TLI, AC, DT, UA); 2309 if (!Impl.run()) 2310 return PreservedAnalyses::all(); 2311 PreservedAnalyses PA = PreservedAnalyses::none(); 2312 if (!Impl.FlowChanged) 2313 PA.preserveSet<CFGAnalyses>(); 2314 return PA; 2315 } 2316 2317 INITIALIZE_PASS_BEGIN(AMDGPUCodeGenPrepare, DEBUG_TYPE, 2318 "AMDGPU IR optimizations", false, false) 2319 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 2320 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 2321 INITIALIZE_PASS_DEPENDENCY(UniformityInfoWrapperPass) 2322 INITIALIZE_PASS_END(AMDGPUCodeGenPrepare, DEBUG_TYPE, "AMDGPU IR optimizations", 2323 false, false) 2324 2325 char AMDGPUCodeGenPrepare::ID = 0; 2326 2327 FunctionPass *llvm::createAMDGPUCodeGenPreparePass() { 2328 return new AMDGPUCodeGenPrepare(); 2329 } 2330