xref: /llvm-project/llvm/lib/Target/AMDGPU/AMDGPUCodeGenPrepare.cpp (revision 2fe500ab5bb4d50a5ac6ed9600f9900b46e55802)
1 //===-- AMDGPUCodeGenPrepare.cpp ------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file
10 /// This pass does misc. AMDGPU optimizations on IR before instruction
11 /// selection.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "AMDGPU.h"
16 #include "AMDGPUSubtarget.h"
17 #include "AMDGPUTargetMachine.h"
18 #include "llvm/ADT/StringRef.h"
19 #include "llvm/Analysis/AssumptionCache.h"
20 #include "llvm/Analysis/ConstantFolding.h"
21 #include "llvm/Analysis/LegacyDivergenceAnalysis.h"
22 #include "llvm/Analysis/Loads.h"
23 #include "llvm/Analysis/ValueTracking.h"
24 #include "llvm/CodeGen/Passes.h"
25 #include "llvm/CodeGen/TargetPassConfig.h"
26 #include "llvm/IR/Attributes.h"
27 #include "llvm/IR/BasicBlock.h"
28 #include "llvm/IR/Constants.h"
29 #include "llvm/IR/DerivedTypes.h"
30 #include "llvm/IR/Function.h"
31 #include "llvm/IR/IRBuilder.h"
32 #include "llvm/IR/InstVisitor.h"
33 #include "llvm/IR/InstrTypes.h"
34 #include "llvm/IR/Instruction.h"
35 #include "llvm/IR/Instructions.h"
36 #include "llvm/IR/IntrinsicInst.h"
37 #include "llvm/IR/Intrinsics.h"
38 #include "llvm/IR/LLVMContext.h"
39 #include "llvm/IR/Operator.h"
40 #include "llvm/IR/Type.h"
41 #include "llvm/IR/Value.h"
42 #include "llvm/InitializePasses.h"
43 #include "llvm/Pass.h"
44 #include "llvm/Support/Casting.h"
45 #include <cassert>
46 #include <iterator>
47 
48 #define DEBUG_TYPE "amdgpu-codegenprepare"
49 
50 using namespace llvm;
51 
52 namespace {
53 
54 static cl::opt<bool> WidenLoads(
55   "amdgpu-codegenprepare-widen-constant-loads",
56   cl::desc("Widen sub-dword constant address space loads in AMDGPUCodeGenPrepare"),
57   cl::ReallyHidden,
58   cl::init(true));
59 
60 static cl::opt<bool> UseMul24Intrin(
61   "amdgpu-codegenprepare-mul24",
62   cl::desc("Introduce mul24 intrinsics in AMDGPUCodeGenPrepare"),
63   cl::ReallyHidden,
64   cl::init(true));
65 
66 class AMDGPUCodeGenPrepare : public FunctionPass,
67                              public InstVisitor<AMDGPUCodeGenPrepare, bool> {
68   const GCNSubtarget *ST = nullptr;
69   AssumptionCache *AC = nullptr;
70   LegacyDivergenceAnalysis *DA = nullptr;
71   Module *Mod = nullptr;
72   const DataLayout *DL = nullptr;
73   bool HasUnsafeFPMath = false;
74   bool HasFP32Denormals = false;
75 
76   /// Copies exact/nsw/nuw flags (if any) from binary operation \p I to
77   /// binary operation \p V.
78   ///
79   /// \returns Binary operation \p V.
80   /// \returns \p T's base element bit width.
81   unsigned getBaseElementBitWidth(const Type *T) const;
82 
83   /// \returns Equivalent 32 bit integer type for given type \p T. For example,
84   /// if \p T is i7, then i32 is returned; if \p T is <3 x i12>, then <3 x i32>
85   /// is returned.
86   Type *getI32Ty(IRBuilder<> &B, const Type *T) const;
87 
88   /// \returns True if binary operation \p I is a signed binary operation, false
89   /// otherwise.
90   bool isSigned(const BinaryOperator &I) const;
91 
92   /// \returns True if the condition of 'select' operation \p I comes from a
93   /// signed 'icmp' operation, false otherwise.
94   bool isSigned(const SelectInst &I) const;
95 
96   /// \returns True if type \p T needs to be promoted to 32 bit integer type,
97   /// false otherwise.
98   bool needsPromotionToI32(const Type *T) const;
99 
100   /// Promotes uniform binary operation \p I to equivalent 32 bit binary
101   /// operation.
102   ///
103   /// \details \p I's base element bit width must be greater than 1 and less
104   /// than or equal 16. Promotion is done by sign or zero extending operands to
105   /// 32 bits, replacing \p I with equivalent 32 bit binary operation, and
106   /// truncating the result of 32 bit binary operation back to \p I's original
107   /// type. Division operation is not promoted.
108   ///
109   /// \returns True if \p I is promoted to equivalent 32 bit binary operation,
110   /// false otherwise.
111   bool promoteUniformOpToI32(BinaryOperator &I) const;
112 
113   /// Promotes uniform 'icmp' operation \p I to 32 bit 'icmp' operation.
114   ///
115   /// \details \p I's base element bit width must be greater than 1 and less
116   /// than or equal 16. Promotion is done by sign or zero extending operands to
117   /// 32 bits, and replacing \p I with 32 bit 'icmp' operation.
118   ///
119   /// \returns True.
120   bool promoteUniformOpToI32(ICmpInst &I) const;
121 
122   /// Promotes uniform 'select' operation \p I to 32 bit 'select'
123   /// operation.
124   ///
125   /// \details \p I's base element bit width must be greater than 1 and less
126   /// than or equal 16. Promotion is done by sign or zero extending operands to
127   /// 32 bits, replacing \p I with 32 bit 'select' operation, and truncating the
128   /// result of 32 bit 'select' operation back to \p I's original type.
129   ///
130   /// \returns True.
131   bool promoteUniformOpToI32(SelectInst &I) const;
132 
133   /// Promotes uniform 'bitreverse' intrinsic \p I to 32 bit 'bitreverse'
134   /// intrinsic.
135   ///
136   /// \details \p I's base element bit width must be greater than 1 and less
137   /// than or equal 16. Promotion is done by zero extending the operand to 32
138   /// bits, replacing \p I with 32 bit 'bitreverse' intrinsic, shifting the
139   /// result of 32 bit 'bitreverse' intrinsic to the right with zero fill (the
140   /// shift amount is 32 minus \p I's base element bit width), and truncating
141   /// the result of the shift operation back to \p I's original type.
142   ///
143   /// \returns True.
144   bool promoteUniformBitreverseToI32(IntrinsicInst &I) const;
145 
146 
147   unsigned numBitsUnsigned(Value *Op, unsigned ScalarSize) const;
148   unsigned numBitsSigned(Value *Op, unsigned ScalarSize) const;
149   bool isI24(Value *V, unsigned ScalarSize) const;
150   bool isU24(Value *V, unsigned ScalarSize) const;
151 
152   /// Replace mul instructions with llvm.amdgcn.mul.u24 or llvm.amdgcn.mul.s24.
153   /// SelectionDAG has an issue where an and asserting the bits are known
154   bool replaceMulWithMul24(BinaryOperator &I) const;
155 
156   /// Perform same function as equivalently named function in DAGCombiner. Since
157   /// we expand some divisions here, we need to perform this before obscuring.
158   bool foldBinOpIntoSelect(BinaryOperator &I) const;
159 
160   /// Expands 24 bit div or rem.
161   Value* expandDivRem24(IRBuilder<> &Builder, BinaryOperator &I,
162                         Value *Num, Value *Den,
163                         bool IsDiv, bool IsSigned) const;
164 
165   /// Expands 32 bit div or rem.
166   Value* expandDivRem32(IRBuilder<> &Builder, BinaryOperator &I,
167                         Value *Num, Value *Den) const;
168 
169   /// Widen a scalar load.
170   ///
171   /// \details \p Widen scalar load for uniform, small type loads from constant
172   //  memory / to a full 32-bits and then truncate the input to allow a scalar
173   //  load instead of a vector load.
174   //
175   /// \returns True.
176 
177   bool canWidenScalarExtLoad(LoadInst &I) const;
178 
179 public:
180   static char ID;
181 
182   AMDGPUCodeGenPrepare() : FunctionPass(ID) {}
183 
184   bool visitFDiv(BinaryOperator &I);
185 
186   bool visitInstruction(Instruction &I) { return false; }
187   bool visitBinaryOperator(BinaryOperator &I);
188   bool visitLoadInst(LoadInst &I);
189   bool visitICmpInst(ICmpInst &I);
190   bool visitSelectInst(SelectInst &I);
191 
192   bool visitIntrinsicInst(IntrinsicInst &I);
193   bool visitBitreverseIntrinsicInst(IntrinsicInst &I);
194 
195   bool doInitialization(Module &M) override;
196   bool runOnFunction(Function &F) override;
197 
198   StringRef getPassName() const override { return "AMDGPU IR optimizations"; }
199 
200   void getAnalysisUsage(AnalysisUsage &AU) const override {
201     AU.addRequired<AssumptionCacheTracker>();
202     AU.addRequired<LegacyDivergenceAnalysis>();
203     AU.setPreservesAll();
204  }
205 };
206 
207 } // end anonymous namespace
208 
209 unsigned AMDGPUCodeGenPrepare::getBaseElementBitWidth(const Type *T) const {
210   assert(needsPromotionToI32(T) && "T does not need promotion to i32");
211 
212   if (T->isIntegerTy())
213     return T->getIntegerBitWidth();
214   return cast<VectorType>(T)->getElementType()->getIntegerBitWidth();
215 }
216 
217 Type *AMDGPUCodeGenPrepare::getI32Ty(IRBuilder<> &B, const Type *T) const {
218   assert(needsPromotionToI32(T) && "T does not need promotion to i32");
219 
220   if (T->isIntegerTy())
221     return B.getInt32Ty();
222   return VectorType::get(B.getInt32Ty(), cast<VectorType>(T)->getNumElements());
223 }
224 
225 bool AMDGPUCodeGenPrepare::isSigned(const BinaryOperator &I) const {
226   return I.getOpcode() == Instruction::AShr ||
227       I.getOpcode() == Instruction::SDiv || I.getOpcode() == Instruction::SRem;
228 }
229 
230 bool AMDGPUCodeGenPrepare::isSigned(const SelectInst &I) const {
231   return isa<ICmpInst>(I.getOperand(0)) ?
232       cast<ICmpInst>(I.getOperand(0))->isSigned() : false;
233 }
234 
235 bool AMDGPUCodeGenPrepare::needsPromotionToI32(const Type *T) const {
236   const IntegerType *IntTy = dyn_cast<IntegerType>(T);
237   if (IntTy && IntTy->getBitWidth() > 1 && IntTy->getBitWidth() <= 16)
238     return true;
239 
240   if (const VectorType *VT = dyn_cast<VectorType>(T)) {
241     // TODO: The set of packed operations is more limited, so may want to
242     // promote some anyway.
243     if (ST->hasVOP3PInsts())
244       return false;
245 
246     return needsPromotionToI32(VT->getElementType());
247   }
248 
249   return false;
250 }
251 
252 // Return true if the op promoted to i32 should have nsw set.
253 static bool promotedOpIsNSW(const Instruction &I) {
254   switch (I.getOpcode()) {
255   case Instruction::Shl:
256   case Instruction::Add:
257   case Instruction::Sub:
258     return true;
259   case Instruction::Mul:
260     return I.hasNoUnsignedWrap();
261   default:
262     return false;
263   }
264 }
265 
266 // Return true if the op promoted to i32 should have nuw set.
267 static bool promotedOpIsNUW(const Instruction &I) {
268   switch (I.getOpcode()) {
269   case Instruction::Shl:
270   case Instruction::Add:
271   case Instruction::Mul:
272     return true;
273   case Instruction::Sub:
274     return I.hasNoUnsignedWrap();
275   default:
276     return false;
277   }
278 }
279 
280 bool AMDGPUCodeGenPrepare::canWidenScalarExtLoad(LoadInst &I) const {
281   Type *Ty = I.getType();
282   const DataLayout &DL = Mod->getDataLayout();
283   int TySize = DL.getTypeSizeInBits(Ty);
284   unsigned Align = I.getAlignment() ?
285                    I.getAlignment() : DL.getABITypeAlignment(Ty);
286 
287   return I.isSimple() && TySize < 32 && Align >= 4 && DA->isUniform(&I);
288 }
289 
290 bool AMDGPUCodeGenPrepare::promoteUniformOpToI32(BinaryOperator &I) const {
291   assert(needsPromotionToI32(I.getType()) &&
292          "I does not need promotion to i32");
293 
294   if (I.getOpcode() == Instruction::SDiv ||
295       I.getOpcode() == Instruction::UDiv ||
296       I.getOpcode() == Instruction::SRem ||
297       I.getOpcode() == Instruction::URem)
298     return false;
299 
300   IRBuilder<> Builder(&I);
301   Builder.SetCurrentDebugLocation(I.getDebugLoc());
302 
303   Type *I32Ty = getI32Ty(Builder, I.getType());
304   Value *ExtOp0 = nullptr;
305   Value *ExtOp1 = nullptr;
306   Value *ExtRes = nullptr;
307   Value *TruncRes = nullptr;
308 
309   if (isSigned(I)) {
310     ExtOp0 = Builder.CreateSExt(I.getOperand(0), I32Ty);
311     ExtOp1 = Builder.CreateSExt(I.getOperand(1), I32Ty);
312   } else {
313     ExtOp0 = Builder.CreateZExt(I.getOperand(0), I32Ty);
314     ExtOp1 = Builder.CreateZExt(I.getOperand(1), I32Ty);
315   }
316 
317   ExtRes = Builder.CreateBinOp(I.getOpcode(), ExtOp0, ExtOp1);
318   if (Instruction *Inst = dyn_cast<Instruction>(ExtRes)) {
319     if (promotedOpIsNSW(cast<Instruction>(I)))
320       Inst->setHasNoSignedWrap();
321 
322     if (promotedOpIsNUW(cast<Instruction>(I)))
323       Inst->setHasNoUnsignedWrap();
324 
325     if (const auto *ExactOp = dyn_cast<PossiblyExactOperator>(&I))
326       Inst->setIsExact(ExactOp->isExact());
327   }
328 
329   TruncRes = Builder.CreateTrunc(ExtRes, I.getType());
330 
331   I.replaceAllUsesWith(TruncRes);
332   I.eraseFromParent();
333 
334   return true;
335 }
336 
337 bool AMDGPUCodeGenPrepare::promoteUniformOpToI32(ICmpInst &I) const {
338   assert(needsPromotionToI32(I.getOperand(0)->getType()) &&
339          "I does not need promotion to i32");
340 
341   IRBuilder<> Builder(&I);
342   Builder.SetCurrentDebugLocation(I.getDebugLoc());
343 
344   Type *I32Ty = getI32Ty(Builder, I.getOperand(0)->getType());
345   Value *ExtOp0 = nullptr;
346   Value *ExtOp1 = nullptr;
347   Value *NewICmp  = nullptr;
348 
349   if (I.isSigned()) {
350     ExtOp0 = Builder.CreateSExt(I.getOperand(0), I32Ty);
351     ExtOp1 = Builder.CreateSExt(I.getOperand(1), I32Ty);
352   } else {
353     ExtOp0 = Builder.CreateZExt(I.getOperand(0), I32Ty);
354     ExtOp1 = Builder.CreateZExt(I.getOperand(1), I32Ty);
355   }
356   NewICmp = Builder.CreateICmp(I.getPredicate(), ExtOp0, ExtOp1);
357 
358   I.replaceAllUsesWith(NewICmp);
359   I.eraseFromParent();
360 
361   return true;
362 }
363 
364 bool AMDGPUCodeGenPrepare::promoteUniformOpToI32(SelectInst &I) const {
365   assert(needsPromotionToI32(I.getType()) &&
366          "I does not need promotion to i32");
367 
368   IRBuilder<> Builder(&I);
369   Builder.SetCurrentDebugLocation(I.getDebugLoc());
370 
371   Type *I32Ty = getI32Ty(Builder, I.getType());
372   Value *ExtOp1 = nullptr;
373   Value *ExtOp2 = nullptr;
374   Value *ExtRes = nullptr;
375   Value *TruncRes = nullptr;
376 
377   if (isSigned(I)) {
378     ExtOp1 = Builder.CreateSExt(I.getOperand(1), I32Ty);
379     ExtOp2 = Builder.CreateSExt(I.getOperand(2), I32Ty);
380   } else {
381     ExtOp1 = Builder.CreateZExt(I.getOperand(1), I32Ty);
382     ExtOp2 = Builder.CreateZExt(I.getOperand(2), I32Ty);
383   }
384   ExtRes = Builder.CreateSelect(I.getOperand(0), ExtOp1, ExtOp2);
385   TruncRes = Builder.CreateTrunc(ExtRes, I.getType());
386 
387   I.replaceAllUsesWith(TruncRes);
388   I.eraseFromParent();
389 
390   return true;
391 }
392 
393 bool AMDGPUCodeGenPrepare::promoteUniformBitreverseToI32(
394     IntrinsicInst &I) const {
395   assert(I.getIntrinsicID() == Intrinsic::bitreverse &&
396          "I must be bitreverse intrinsic");
397   assert(needsPromotionToI32(I.getType()) &&
398          "I does not need promotion to i32");
399 
400   IRBuilder<> Builder(&I);
401   Builder.SetCurrentDebugLocation(I.getDebugLoc());
402 
403   Type *I32Ty = getI32Ty(Builder, I.getType());
404   Function *I32 =
405       Intrinsic::getDeclaration(Mod, Intrinsic::bitreverse, { I32Ty });
406   Value *ExtOp = Builder.CreateZExt(I.getOperand(0), I32Ty);
407   Value *ExtRes = Builder.CreateCall(I32, { ExtOp });
408   Value *LShrOp =
409       Builder.CreateLShr(ExtRes, 32 - getBaseElementBitWidth(I.getType()));
410   Value *TruncRes =
411       Builder.CreateTrunc(LShrOp, I.getType());
412 
413   I.replaceAllUsesWith(TruncRes);
414   I.eraseFromParent();
415 
416   return true;
417 }
418 
419 unsigned AMDGPUCodeGenPrepare::numBitsUnsigned(Value *Op,
420                                                unsigned ScalarSize) const {
421   KnownBits Known = computeKnownBits(Op, *DL, 0, AC);
422   return ScalarSize - Known.countMinLeadingZeros();
423 }
424 
425 unsigned AMDGPUCodeGenPrepare::numBitsSigned(Value *Op,
426                                              unsigned ScalarSize) const {
427   // In order for this to be a signed 24-bit value, bit 23, must
428   // be a sign bit.
429   return ScalarSize - ComputeNumSignBits(Op, *DL, 0, AC);
430 }
431 
432 bool AMDGPUCodeGenPrepare::isI24(Value *V, unsigned ScalarSize) const {
433   return ScalarSize >= 24 && // Types less than 24-bit should be treated
434                                      // as unsigned 24-bit values.
435     numBitsSigned(V, ScalarSize) < 24;
436 }
437 
438 bool AMDGPUCodeGenPrepare::isU24(Value *V, unsigned ScalarSize) const {
439   return numBitsUnsigned(V, ScalarSize) <= 24;
440 }
441 
442 static void extractValues(IRBuilder<> &Builder,
443                           SmallVectorImpl<Value *> &Values, Value *V) {
444   VectorType *VT = dyn_cast<VectorType>(V->getType());
445   if (!VT) {
446     Values.push_back(V);
447     return;
448   }
449 
450   for (int I = 0, E = VT->getNumElements(); I != E; ++I)
451     Values.push_back(Builder.CreateExtractElement(V, I));
452 }
453 
454 static Value *insertValues(IRBuilder<> &Builder,
455                            Type *Ty,
456                            SmallVectorImpl<Value *> &Values) {
457   if (Values.size() == 1)
458     return Values[0];
459 
460   Value *NewVal = UndefValue::get(Ty);
461   for (int I = 0, E = Values.size(); I != E; ++I)
462     NewVal = Builder.CreateInsertElement(NewVal, Values[I], I);
463 
464   return NewVal;
465 }
466 
467 bool AMDGPUCodeGenPrepare::replaceMulWithMul24(BinaryOperator &I) const {
468   if (I.getOpcode() != Instruction::Mul)
469     return false;
470 
471   Type *Ty = I.getType();
472   unsigned Size = Ty->getScalarSizeInBits();
473   if (Size <= 16 && ST->has16BitInsts())
474     return false;
475 
476   // Prefer scalar if this could be s_mul_i32
477   if (DA->isUniform(&I))
478     return false;
479 
480   Value *LHS = I.getOperand(0);
481   Value *RHS = I.getOperand(1);
482   IRBuilder<> Builder(&I);
483   Builder.SetCurrentDebugLocation(I.getDebugLoc());
484 
485   Intrinsic::ID IntrID = Intrinsic::not_intrinsic;
486 
487   // TODO: Should this try to match mulhi24?
488   if (ST->hasMulU24() && isU24(LHS, Size) && isU24(RHS, Size)) {
489     IntrID = Intrinsic::amdgcn_mul_u24;
490   } else if (ST->hasMulI24() && isI24(LHS, Size) && isI24(RHS, Size)) {
491     IntrID = Intrinsic::amdgcn_mul_i24;
492   } else
493     return false;
494 
495   SmallVector<Value *, 4> LHSVals;
496   SmallVector<Value *, 4> RHSVals;
497   SmallVector<Value *, 4> ResultVals;
498   extractValues(Builder, LHSVals, LHS);
499   extractValues(Builder, RHSVals, RHS);
500 
501 
502   IntegerType *I32Ty = Builder.getInt32Ty();
503   FunctionCallee Intrin = Intrinsic::getDeclaration(Mod, IntrID);
504   for (int I = 0, E = LHSVals.size(); I != E; ++I) {
505     Value *LHS, *RHS;
506     if (IntrID == Intrinsic::amdgcn_mul_u24) {
507       LHS = Builder.CreateZExtOrTrunc(LHSVals[I], I32Ty);
508       RHS = Builder.CreateZExtOrTrunc(RHSVals[I], I32Ty);
509     } else {
510       LHS = Builder.CreateSExtOrTrunc(LHSVals[I], I32Ty);
511       RHS = Builder.CreateSExtOrTrunc(RHSVals[I], I32Ty);
512     }
513 
514     Value *Result = Builder.CreateCall(Intrin, {LHS, RHS});
515 
516     if (IntrID == Intrinsic::amdgcn_mul_u24) {
517       ResultVals.push_back(Builder.CreateZExtOrTrunc(Result,
518                                                      LHSVals[I]->getType()));
519     } else {
520       ResultVals.push_back(Builder.CreateSExtOrTrunc(Result,
521                                                      LHSVals[I]->getType()));
522     }
523   }
524 
525   Value *NewVal = insertValues(Builder, Ty, ResultVals);
526   NewVal->takeName(&I);
527   I.replaceAllUsesWith(NewVal);
528   I.eraseFromParent();
529 
530   return true;
531 }
532 
533 // Find a select instruction, which may have been casted. This is mostly to deal
534 // with cases where i16 selects weer promoted here to i32.
535 static SelectInst *findSelectThroughCast(Value *V, CastInst *&Cast) {
536   Cast = nullptr;
537   if (SelectInst *Sel = dyn_cast<SelectInst>(V))
538     return Sel;
539 
540   if ((Cast = dyn_cast<CastInst>(V))) {
541     if (SelectInst *Sel = dyn_cast<SelectInst>(Cast->getOperand(0)))
542       return Sel;
543   }
544 
545   return nullptr;
546 }
547 
548 bool AMDGPUCodeGenPrepare::foldBinOpIntoSelect(BinaryOperator &BO) const {
549   // Don't do this unless the old select is going away. We want to eliminate the
550   // binary operator, not replace a binop with a select.
551   int SelOpNo = 0;
552 
553   CastInst *CastOp;
554 
555   SelectInst *Sel = findSelectThroughCast(BO.getOperand(0), CastOp);
556   if (!Sel || !Sel->hasOneUse()) {
557     SelOpNo = 1;
558     Sel = findSelectThroughCast(BO.getOperand(1), CastOp);
559   }
560 
561   if (!Sel || !Sel->hasOneUse())
562     return false;
563 
564   Constant *CT = dyn_cast<Constant>(Sel->getTrueValue());
565   Constant *CF = dyn_cast<Constant>(Sel->getFalseValue());
566   Constant *CBO = dyn_cast<Constant>(BO.getOperand(SelOpNo ^ 1));
567   if (!CBO || !CT || !CF)
568     return false;
569 
570   if (CastOp) {
571     CT = ConstantFoldCastOperand(CastOp->getOpcode(), CT, BO.getType(), *DL);
572     CF = ConstantFoldCastOperand(CastOp->getOpcode(), CF, BO.getType(), *DL);
573   }
574 
575   // TODO: Handle special 0/-1 cases DAG combine does, although we only really
576   // need to handle divisions here.
577   Constant *FoldedT = SelOpNo ?
578     ConstantFoldBinaryOpOperands(BO.getOpcode(), CBO, CT, *DL) :
579     ConstantFoldBinaryOpOperands(BO.getOpcode(), CT, CBO, *DL);
580   if (isa<ConstantExpr>(FoldedT))
581     return false;
582 
583   Constant *FoldedF = SelOpNo ?
584     ConstantFoldBinaryOpOperands(BO.getOpcode(), CBO, CF, *DL) :
585     ConstantFoldBinaryOpOperands(BO.getOpcode(), CF, CBO, *DL);
586   if (isa<ConstantExpr>(FoldedF))
587     return false;
588 
589   IRBuilder<> Builder(&BO);
590   Builder.SetCurrentDebugLocation(BO.getDebugLoc());
591   if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(&BO))
592     Builder.setFastMathFlags(FPOp->getFastMathFlags());
593 
594   Value *NewSelect = Builder.CreateSelect(Sel->getCondition(),
595                                           FoldedT, FoldedF);
596   NewSelect->takeName(&BO);
597   BO.replaceAllUsesWith(NewSelect);
598   BO.eraseFromParent();
599   if (CastOp)
600     CastOp->eraseFromParent();
601   Sel->eraseFromParent();
602   return true;
603 }
604 
605 static bool shouldKeepFDivF32(Value *Num, bool UnsafeDiv, bool HasDenormals) {
606   const ConstantFP *CNum = dyn_cast<ConstantFP>(Num);
607   if (!CNum)
608     return HasDenormals;
609 
610   if (UnsafeDiv)
611     return true;
612 
613   bool IsOne = CNum->isExactlyValue(+1.0) || CNum->isExactlyValue(-1.0);
614 
615   // Reciprocal f32 is handled separately without denormals.
616   return HasDenormals ^ IsOne;
617 }
618 
619 // Insert an intrinsic for fast fdiv for safe math situations where we can
620 // reduce precision. Leave fdiv for situations where the generic node is
621 // expected to be optimized.
622 bool AMDGPUCodeGenPrepare::visitFDiv(BinaryOperator &FDiv) {
623   Type *Ty = FDiv.getType();
624 
625   if (!Ty->getScalarType()->isFloatTy())
626     return false;
627 
628   MDNode *FPMath = FDiv.getMetadata(LLVMContext::MD_fpmath);
629   if (!FPMath)
630     return false;
631 
632   const FPMathOperator *FPOp = cast<const FPMathOperator>(&FDiv);
633   float ULP = FPOp->getFPAccuracy();
634   if (ULP < 2.5f)
635     return false;
636 
637   FastMathFlags FMF = FPOp->getFastMathFlags();
638   bool UnsafeDiv = HasUnsafeFPMath || FMF.isFast() ||
639                                       FMF.allowReciprocal();
640 
641   // With UnsafeDiv node will be optimized to just rcp and mul.
642   if (UnsafeDiv)
643     return false;
644 
645   IRBuilder<> Builder(FDiv.getParent(), std::next(FDiv.getIterator()), FPMath);
646   Builder.setFastMathFlags(FMF);
647   Builder.SetCurrentDebugLocation(FDiv.getDebugLoc());
648 
649   Function *Decl = Intrinsic::getDeclaration(Mod, Intrinsic::amdgcn_fdiv_fast);
650 
651   Value *Num = FDiv.getOperand(0);
652   Value *Den = FDiv.getOperand(1);
653 
654   Value *NewFDiv = nullptr;
655 
656   if (VectorType *VT = dyn_cast<VectorType>(Ty)) {
657     NewFDiv = UndefValue::get(VT);
658 
659     // FIXME: Doesn't do the right thing for cases where the vector is partially
660     // constant. This works when the scalarizer pass is run first.
661     for (unsigned I = 0, E = VT->getNumElements(); I != E; ++I) {
662       Value *NumEltI = Builder.CreateExtractElement(Num, I);
663       Value *DenEltI = Builder.CreateExtractElement(Den, I);
664       Value *NewElt;
665 
666       if (shouldKeepFDivF32(NumEltI, UnsafeDiv, HasFP32Denormals)) {
667         NewElt = Builder.CreateFDiv(NumEltI, DenEltI);
668       } else {
669         NewElt = Builder.CreateCall(Decl, { NumEltI, DenEltI });
670       }
671 
672       NewFDiv = Builder.CreateInsertElement(NewFDiv, NewElt, I);
673     }
674   } else {
675     if (!shouldKeepFDivF32(Num, UnsafeDiv, HasFP32Denormals))
676       NewFDiv = Builder.CreateCall(Decl, { Num, Den });
677   }
678 
679   if (NewFDiv) {
680     FDiv.replaceAllUsesWith(NewFDiv);
681     NewFDiv->takeName(&FDiv);
682     FDiv.eraseFromParent();
683   }
684 
685   return !!NewFDiv;
686 }
687 
688 static bool hasUnsafeFPMath(const Function &F) {
689   Attribute Attr = F.getFnAttribute("unsafe-fp-math");
690   return Attr.getValueAsString() == "true";
691 }
692 
693 static std::pair<Value*, Value*> getMul64(IRBuilder<> &Builder,
694                                           Value *LHS, Value *RHS) {
695   Type *I32Ty = Builder.getInt32Ty();
696   Type *I64Ty = Builder.getInt64Ty();
697 
698   Value *LHS_EXT64 = Builder.CreateZExt(LHS, I64Ty);
699   Value *RHS_EXT64 = Builder.CreateZExt(RHS, I64Ty);
700   Value *MUL64 = Builder.CreateMul(LHS_EXT64, RHS_EXT64);
701   Value *Lo = Builder.CreateTrunc(MUL64, I32Ty);
702   Value *Hi = Builder.CreateLShr(MUL64, Builder.getInt64(32));
703   Hi = Builder.CreateTrunc(Hi, I32Ty);
704   return std::make_pair(Lo, Hi);
705 }
706 
707 static Value* getMulHu(IRBuilder<> &Builder, Value *LHS, Value *RHS) {
708   return getMul64(Builder, LHS, RHS).second;
709 }
710 
711 // The fractional part of a float is enough to accurately represent up to
712 // a 24-bit signed integer.
713 Value* AMDGPUCodeGenPrepare::expandDivRem24(IRBuilder<> &Builder,
714                                             BinaryOperator &I,
715                                             Value *Num, Value *Den,
716                                             bool IsDiv, bool IsSigned) const {
717   assert(Num->getType()->isIntegerTy(32));
718 
719   const DataLayout &DL = Mod->getDataLayout();
720   unsigned LHSSignBits = ComputeNumSignBits(Num, DL, 0, AC, &I);
721   if (LHSSignBits < 9)
722     return nullptr;
723 
724   unsigned RHSSignBits = ComputeNumSignBits(Den, DL, 0, AC, &I);
725   if (RHSSignBits < 9)
726     return nullptr;
727 
728 
729   unsigned SignBits = std::min(LHSSignBits, RHSSignBits);
730   unsigned DivBits = 32 - SignBits;
731   if (IsSigned)
732     ++DivBits;
733 
734   Type *I32Ty = Builder.getInt32Ty();
735   Type *F32Ty = Builder.getFloatTy();
736   ConstantInt *One = Builder.getInt32(1);
737   Value *JQ = One;
738 
739   if (IsSigned) {
740     // char|short jq = ia ^ ib;
741     JQ = Builder.CreateXor(Num, Den);
742 
743     // jq = jq >> (bitsize - 2)
744     JQ = Builder.CreateAShr(JQ, Builder.getInt32(30));
745 
746     // jq = jq | 0x1
747     JQ = Builder.CreateOr(JQ, One);
748   }
749 
750   // int ia = (int)LHS;
751   Value *IA = Num;
752 
753   // int ib, (int)RHS;
754   Value *IB = Den;
755 
756   // float fa = (float)ia;
757   Value *FA = IsSigned ? Builder.CreateSIToFP(IA, F32Ty)
758                        : Builder.CreateUIToFP(IA, F32Ty);
759 
760   // float fb = (float)ib;
761   Value *FB = IsSigned ? Builder.CreateSIToFP(IB,F32Ty)
762                        : Builder.CreateUIToFP(IB,F32Ty);
763 
764   Value *RCP = Builder.CreateFDiv(ConstantFP::get(F32Ty, 1.0), FB);
765   Value *FQM = Builder.CreateFMul(FA, RCP);
766 
767   // fq = trunc(fqm);
768   CallInst *FQ = Builder.CreateUnaryIntrinsic(Intrinsic::trunc, FQM);
769   FQ->copyFastMathFlags(Builder.getFastMathFlags());
770 
771   // float fqneg = -fq;
772   Value *FQNeg = Builder.CreateFNeg(FQ);
773 
774   // float fr = mad(fqneg, fb, fa);
775   Value *FR = Builder.CreateIntrinsic(Intrinsic::amdgcn_fmad_ftz,
776                                       {FQNeg->getType()}, {FQNeg, FB, FA}, FQ);
777 
778   // int iq = (int)fq;
779   Value *IQ = IsSigned ? Builder.CreateFPToSI(FQ, I32Ty)
780                        : Builder.CreateFPToUI(FQ, I32Ty);
781 
782   // fr = fabs(fr);
783   FR = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, FR, FQ);
784 
785   // fb = fabs(fb);
786   FB = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, FB, FQ);
787 
788   // int cv = fr >= fb;
789   Value *CV = Builder.CreateFCmpOGE(FR, FB);
790 
791   // jq = (cv ? jq : 0);
792   JQ = Builder.CreateSelect(CV, JQ, Builder.getInt32(0));
793 
794   // dst = iq + jq;
795   Value *Div = Builder.CreateAdd(IQ, JQ);
796 
797   Value *Res = Div;
798   if (!IsDiv) {
799     // Rem needs compensation, it's easier to recompute it
800     Value *Rem = Builder.CreateMul(Div, Den);
801     Res = Builder.CreateSub(Num, Rem);
802   }
803 
804   // Extend in register from the number of bits this divide really is.
805   if (IsSigned) {
806     Res = Builder.CreateShl(Res, 32 - DivBits);
807     Res = Builder.CreateAShr(Res, 32 - DivBits);
808   } else {
809     ConstantInt *TruncMask = Builder.getInt32((UINT64_C(1) << DivBits) - 1);
810     Res = Builder.CreateAnd(Res, TruncMask);
811   }
812 
813   return Res;
814 }
815 
816 Value* AMDGPUCodeGenPrepare::expandDivRem32(IRBuilder<> &Builder,
817                                             BinaryOperator &I,
818                                             Value *Num, Value *Den) const {
819   Instruction::BinaryOps Opc = I.getOpcode();
820   assert(Opc == Instruction::URem || Opc == Instruction::UDiv ||
821          Opc == Instruction::SRem || Opc == Instruction::SDiv);
822 
823   FastMathFlags FMF;
824   FMF.setFast();
825   Builder.setFastMathFlags(FMF);
826 
827   if (isa<Constant>(Den))
828     return nullptr; // Keep it for optimization
829 
830   bool IsDiv = Opc == Instruction::UDiv || Opc == Instruction::SDiv;
831   bool IsSigned = Opc == Instruction::SRem || Opc == Instruction::SDiv;
832 
833   Type *Ty = Num->getType();
834   Type *I32Ty = Builder.getInt32Ty();
835   Type *F32Ty = Builder.getFloatTy();
836 
837   if (Ty->getScalarSizeInBits() < 32) {
838     if (IsSigned) {
839       Num = Builder.CreateSExt(Num, I32Ty);
840       Den = Builder.CreateSExt(Den, I32Ty);
841     } else {
842       Num = Builder.CreateZExt(Num, I32Ty);
843       Den = Builder.CreateZExt(Den, I32Ty);
844     }
845   }
846 
847   if (Value *Res = expandDivRem24(Builder, I, Num, Den, IsDiv, IsSigned)) {
848     Res = Builder.CreateTrunc(Res, Ty);
849     return Res;
850   }
851 
852   ConstantInt *Zero = Builder.getInt32(0);
853   ConstantInt *One = Builder.getInt32(1);
854   ConstantInt *MinusOne = Builder.getInt32(~0);
855 
856   Value *Sign = nullptr;
857   if (IsSigned) {
858     ConstantInt *K31 = Builder.getInt32(31);
859     Value *LHSign = Builder.CreateAShr(Num, K31);
860     Value *RHSign = Builder.CreateAShr(Den, K31);
861     // Remainder sign is the same as LHS
862     Sign = IsDiv ? Builder.CreateXor(LHSign, RHSign) : LHSign;
863 
864     Num = Builder.CreateAdd(Num, LHSign);
865     Den = Builder.CreateAdd(Den, RHSign);
866 
867     Num = Builder.CreateXor(Num, LHSign);
868     Den = Builder.CreateXor(Den, RHSign);
869   }
870 
871   // RCP =  URECIP(Den) = 2^32 / Den + e
872   // e is rounding error.
873   Value *DEN_F32 = Builder.CreateUIToFP(Den, F32Ty);
874   Value *RCP_F32 = Builder.CreateFDiv(ConstantFP::get(F32Ty, 1.0), DEN_F32);
875   Constant *UINT_MAX_PLUS_1 = ConstantFP::get(F32Ty, BitsToFloat(0x4f800000));
876   Value *RCP_SCALE = Builder.CreateFMul(RCP_F32, UINT_MAX_PLUS_1);
877   Value *RCP = Builder.CreateFPToUI(RCP_SCALE, I32Ty);
878 
879   // RCP_LO, RCP_HI = mul(RCP, Den) */
880   Value *RCP_LO, *RCP_HI;
881   std::tie(RCP_LO, RCP_HI) = getMul64(Builder, RCP, Den);
882 
883   // NEG_RCP_LO = -RCP_LO
884   Value *NEG_RCP_LO = Builder.CreateNeg(RCP_LO);
885 
886   // ABS_RCP_LO = (RCP_HI == 0 ? NEG_RCP_LO : RCP_LO)
887   Value *RCP_HI_0_CC = Builder.CreateICmpEQ(RCP_HI, Zero);
888   Value *ABS_RCP_LO = Builder.CreateSelect(RCP_HI_0_CC, NEG_RCP_LO, RCP_LO);
889 
890   // Calculate the rounding error from the URECIP instruction
891   // E = mulhu(ABS_RCP_LO, RCP)
892   Value *E = getMulHu(Builder, ABS_RCP_LO, RCP);
893 
894   // RCP_A_E = RCP + E
895   Value *RCP_A_E = Builder.CreateAdd(RCP, E);
896 
897   // RCP_S_E = RCP - E
898   Value *RCP_S_E = Builder.CreateSub(RCP, E);
899 
900   // Tmp0 = (RCP_HI == 0 ? RCP_A_E : RCP_SUB_E)
901   Value *Tmp0 = Builder.CreateSelect(RCP_HI_0_CC, RCP_A_E, RCP_S_E);
902 
903   // Quotient = mulhu(Tmp0, Num)
904   Value *Quotient = getMulHu(Builder, Tmp0, Num);
905 
906   // Num_S_Remainder = Quotient * Den
907   Value *Num_S_Remainder = Builder.CreateMul(Quotient, Den);
908 
909   // Remainder = Num - Num_S_Remainder
910   Value *Remainder = Builder.CreateSub(Num, Num_S_Remainder);
911 
912   // Remainder_GE_Den = (Remainder >= Den ? -1 : 0)
913   Value *Rem_GE_Den_CC = Builder.CreateICmpUGE(Remainder, Den);
914   Value *Remainder_GE_Den = Builder.CreateSelect(Rem_GE_Den_CC, MinusOne, Zero);
915 
916   // Remainder_GE_Zero = (Num >= Num_S_Remainder ? -1 : 0)
917   Value *Num_GE_Num_S_Rem_CC = Builder.CreateICmpUGE(Num, Num_S_Remainder);
918   Value *Remainder_GE_Zero = Builder.CreateSelect(Num_GE_Num_S_Rem_CC,
919                                                   MinusOne, Zero);
920 
921   // Tmp1 = Remainder_GE_Den & Remainder_GE_Zero
922   Value *Tmp1 = Builder.CreateAnd(Remainder_GE_Den, Remainder_GE_Zero);
923   Value *Tmp1_0_CC = Builder.CreateICmpEQ(Tmp1, Zero);
924 
925   Value *Res;
926   if (IsDiv) {
927     // Quotient_A_One = Quotient + 1
928     Value *Quotient_A_One = Builder.CreateAdd(Quotient, One);
929 
930     // Quotient_S_One = Quotient - 1
931     Value *Quotient_S_One = Builder.CreateSub(Quotient, One);
932 
933     // Div = (Tmp1 == 0 ? Quotient : Quotient_A_One)
934     Value *Div = Builder.CreateSelect(Tmp1_0_CC, Quotient, Quotient_A_One);
935 
936     // Div = (Remainder_GE_Zero == 0 ? Quotient_S_One : Div)
937     Res = Builder.CreateSelect(Num_GE_Num_S_Rem_CC, Div, Quotient_S_One);
938   } else {
939     // Remainder_S_Den = Remainder - Den
940     Value *Remainder_S_Den = Builder.CreateSub(Remainder, Den);
941 
942     // Remainder_A_Den = Remainder + Den
943     Value *Remainder_A_Den = Builder.CreateAdd(Remainder, Den);
944 
945     // Rem = (Tmp1 == 0 ? Remainder : Remainder_S_Den)
946     Value *Rem = Builder.CreateSelect(Tmp1_0_CC, Remainder, Remainder_S_Den);
947 
948     // Rem = (Remainder_GE_Zero == 0 ? Remainder_A_Den : Rem)
949     Res = Builder.CreateSelect(Num_GE_Num_S_Rem_CC, Rem, Remainder_A_Den);
950   }
951 
952   if (IsSigned) {
953     Res = Builder.CreateXor(Res, Sign);
954     Res = Builder.CreateSub(Res, Sign);
955   }
956 
957   Res = Builder.CreateTrunc(Res, Ty);
958 
959   return Res;
960 }
961 
962 bool AMDGPUCodeGenPrepare::visitBinaryOperator(BinaryOperator &I) {
963   if (foldBinOpIntoSelect(I))
964     return true;
965 
966   if (ST->has16BitInsts() && needsPromotionToI32(I.getType()) &&
967       DA->isUniform(&I) && promoteUniformOpToI32(I))
968     return true;
969 
970   if (UseMul24Intrin && replaceMulWithMul24(I))
971     return true;
972 
973   bool Changed = false;
974   Instruction::BinaryOps Opc = I.getOpcode();
975   Type *Ty = I.getType();
976   Value *NewDiv = nullptr;
977   if ((Opc == Instruction::URem || Opc == Instruction::UDiv ||
978        Opc == Instruction::SRem || Opc == Instruction::SDiv) &&
979       Ty->getScalarSizeInBits() <= 32) {
980     Value *Num = I.getOperand(0);
981     Value *Den = I.getOperand(1);
982     IRBuilder<> Builder(&I);
983     Builder.SetCurrentDebugLocation(I.getDebugLoc());
984 
985     if (VectorType *VT = dyn_cast<VectorType>(Ty)) {
986       NewDiv = UndefValue::get(VT);
987 
988       for (unsigned N = 0, E = VT->getNumElements(); N != E; ++N) {
989         Value *NumEltN = Builder.CreateExtractElement(Num, N);
990         Value *DenEltN = Builder.CreateExtractElement(Den, N);
991         Value *NewElt = expandDivRem32(Builder, I, NumEltN, DenEltN);
992         if (!NewElt)
993           NewElt = Builder.CreateBinOp(Opc, NumEltN, DenEltN);
994         NewDiv = Builder.CreateInsertElement(NewDiv, NewElt, N);
995       }
996     } else {
997       NewDiv = expandDivRem32(Builder, I, Num, Den);
998     }
999 
1000     if (NewDiv) {
1001       I.replaceAllUsesWith(NewDiv);
1002       I.eraseFromParent();
1003       Changed = true;
1004     }
1005   }
1006 
1007   return Changed;
1008 }
1009 
1010 bool AMDGPUCodeGenPrepare::visitLoadInst(LoadInst &I) {
1011   if (!WidenLoads)
1012     return false;
1013 
1014   if ((I.getPointerAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS ||
1015        I.getPointerAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS_32BIT) &&
1016       canWidenScalarExtLoad(I)) {
1017     IRBuilder<> Builder(&I);
1018     Builder.SetCurrentDebugLocation(I.getDebugLoc());
1019 
1020     Type *I32Ty = Builder.getInt32Ty();
1021     Type *PT = PointerType::get(I32Ty, I.getPointerAddressSpace());
1022     Value *BitCast= Builder.CreateBitCast(I.getPointerOperand(), PT);
1023     LoadInst *WidenLoad = Builder.CreateLoad(I32Ty, BitCast);
1024     WidenLoad->copyMetadata(I);
1025 
1026     // If we have range metadata, we need to convert the type, and not make
1027     // assumptions about the high bits.
1028     if (auto *Range = WidenLoad->getMetadata(LLVMContext::MD_range)) {
1029       ConstantInt *Lower =
1030         mdconst::extract<ConstantInt>(Range->getOperand(0));
1031 
1032       if (Lower->getValue().isNullValue()) {
1033         WidenLoad->setMetadata(LLVMContext::MD_range, nullptr);
1034       } else {
1035         Metadata *LowAndHigh[] = {
1036           ConstantAsMetadata::get(ConstantInt::get(I32Ty, Lower->getValue().zext(32))),
1037           // Don't make assumptions about the high bits.
1038           ConstantAsMetadata::get(ConstantInt::get(I32Ty, 0))
1039         };
1040 
1041         WidenLoad->setMetadata(LLVMContext::MD_range,
1042                                MDNode::get(Mod->getContext(), LowAndHigh));
1043       }
1044     }
1045 
1046     int TySize = Mod->getDataLayout().getTypeSizeInBits(I.getType());
1047     Type *IntNTy = Builder.getIntNTy(TySize);
1048     Value *ValTrunc = Builder.CreateTrunc(WidenLoad, IntNTy);
1049     Value *ValOrig = Builder.CreateBitCast(ValTrunc, I.getType());
1050     I.replaceAllUsesWith(ValOrig);
1051     I.eraseFromParent();
1052     return true;
1053   }
1054 
1055   return false;
1056 }
1057 
1058 bool AMDGPUCodeGenPrepare::visitICmpInst(ICmpInst &I) {
1059   bool Changed = false;
1060 
1061   if (ST->has16BitInsts() && needsPromotionToI32(I.getOperand(0)->getType()) &&
1062       DA->isUniform(&I))
1063     Changed |= promoteUniformOpToI32(I);
1064 
1065   return Changed;
1066 }
1067 
1068 bool AMDGPUCodeGenPrepare::visitSelectInst(SelectInst &I) {
1069   bool Changed = false;
1070 
1071   if (ST->has16BitInsts() && needsPromotionToI32(I.getType()) &&
1072       DA->isUniform(&I))
1073     Changed |= promoteUniformOpToI32(I);
1074 
1075   return Changed;
1076 }
1077 
1078 bool AMDGPUCodeGenPrepare::visitIntrinsicInst(IntrinsicInst &I) {
1079   switch (I.getIntrinsicID()) {
1080   case Intrinsic::bitreverse:
1081     return visitBitreverseIntrinsicInst(I);
1082   default:
1083     return false;
1084   }
1085 }
1086 
1087 bool AMDGPUCodeGenPrepare::visitBitreverseIntrinsicInst(IntrinsicInst &I) {
1088   bool Changed = false;
1089 
1090   if (ST->has16BitInsts() && needsPromotionToI32(I.getType()) &&
1091       DA->isUniform(&I))
1092     Changed |= promoteUniformBitreverseToI32(I);
1093 
1094   return Changed;
1095 }
1096 
1097 bool AMDGPUCodeGenPrepare::doInitialization(Module &M) {
1098   Mod = &M;
1099   DL = &Mod->getDataLayout();
1100   return false;
1101 }
1102 
1103 bool AMDGPUCodeGenPrepare::runOnFunction(Function &F) {
1104   if (skipFunction(F))
1105     return false;
1106 
1107   auto *TPC = getAnalysisIfAvailable<TargetPassConfig>();
1108   if (!TPC)
1109     return false;
1110 
1111   const AMDGPUTargetMachine &TM = TPC->getTM<AMDGPUTargetMachine>();
1112   ST = &TM.getSubtarget<GCNSubtarget>(F);
1113   AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
1114   DA = &getAnalysis<LegacyDivergenceAnalysis>();
1115   HasUnsafeFPMath = hasUnsafeFPMath(F);
1116   HasFP32Denormals = ST->hasFP32Denormals(F);
1117 
1118   bool MadeChange = false;
1119 
1120   for (BasicBlock &BB : F) {
1121     BasicBlock::iterator Next;
1122     for (BasicBlock::iterator I = BB.begin(), E = BB.end(); I != E; I = Next) {
1123       Next = std::next(I);
1124       MadeChange |= visit(*I);
1125     }
1126   }
1127 
1128   return MadeChange;
1129 }
1130 
1131 INITIALIZE_PASS_BEGIN(AMDGPUCodeGenPrepare, DEBUG_TYPE,
1132                       "AMDGPU IR optimizations", false, false)
1133 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
1134 INITIALIZE_PASS_DEPENDENCY(LegacyDivergenceAnalysis)
1135 INITIALIZE_PASS_END(AMDGPUCodeGenPrepare, DEBUG_TYPE, "AMDGPU IR optimizations",
1136                     false, false)
1137 
1138 char AMDGPUCodeGenPrepare::ID = 0;
1139 
1140 FunctionPass *llvm::createAMDGPUCodeGenPreparePass() {
1141   return new AMDGPUCodeGenPrepare();
1142 }
1143