1 //===-- AMDGPUCodeGenPrepare.cpp ------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file 10 /// This pass does misc. AMDGPU optimizations on IR before instruction 11 /// selection. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "AMDGPU.h" 16 #include "AMDGPUSubtarget.h" 17 #include "AMDGPUTargetMachine.h" 18 #include "llvm/ADT/StringRef.h" 19 #include "llvm/Analysis/AssumptionCache.h" 20 #include "llvm/Analysis/ConstantFolding.h" 21 #include "llvm/Analysis/LegacyDivergenceAnalysis.h" 22 #include "llvm/Analysis/Loads.h" 23 #include "llvm/Analysis/ValueTracking.h" 24 #include "llvm/CodeGen/Passes.h" 25 #include "llvm/CodeGen/TargetPassConfig.h" 26 #include "llvm/IR/Attributes.h" 27 #include "llvm/IR/BasicBlock.h" 28 #include "llvm/IR/Constants.h" 29 #include "llvm/IR/DerivedTypes.h" 30 #include "llvm/IR/Function.h" 31 #include "llvm/IR/IRBuilder.h" 32 #include "llvm/IR/InstVisitor.h" 33 #include "llvm/IR/InstrTypes.h" 34 #include "llvm/IR/Instruction.h" 35 #include "llvm/IR/Instructions.h" 36 #include "llvm/IR/IntrinsicInst.h" 37 #include "llvm/IR/Intrinsics.h" 38 #include "llvm/IR/LLVMContext.h" 39 #include "llvm/IR/Operator.h" 40 #include "llvm/IR/Type.h" 41 #include "llvm/IR/Value.h" 42 #include "llvm/InitializePasses.h" 43 #include "llvm/Pass.h" 44 #include "llvm/Support/Casting.h" 45 #include <cassert> 46 #include <iterator> 47 48 #define DEBUG_TYPE "amdgpu-codegenprepare" 49 50 using namespace llvm; 51 52 namespace { 53 54 static cl::opt<bool> WidenLoads( 55 "amdgpu-codegenprepare-widen-constant-loads", 56 cl::desc("Widen sub-dword constant address space loads in AMDGPUCodeGenPrepare"), 57 cl::ReallyHidden, 58 cl::init(true)); 59 60 static cl::opt<bool> UseMul24Intrin( 61 "amdgpu-codegenprepare-mul24", 62 cl::desc("Introduce mul24 intrinsics in AMDGPUCodeGenPrepare"), 63 cl::ReallyHidden, 64 cl::init(true)); 65 66 class AMDGPUCodeGenPrepare : public FunctionPass, 67 public InstVisitor<AMDGPUCodeGenPrepare, bool> { 68 const GCNSubtarget *ST = nullptr; 69 AssumptionCache *AC = nullptr; 70 LegacyDivergenceAnalysis *DA = nullptr; 71 Module *Mod = nullptr; 72 const DataLayout *DL = nullptr; 73 bool HasUnsafeFPMath = false; 74 bool HasFP32Denormals = false; 75 76 /// Copies exact/nsw/nuw flags (if any) from binary operation \p I to 77 /// binary operation \p V. 78 /// 79 /// \returns Binary operation \p V. 80 /// \returns \p T's base element bit width. 81 unsigned getBaseElementBitWidth(const Type *T) const; 82 83 /// \returns Equivalent 32 bit integer type for given type \p T. For example, 84 /// if \p T is i7, then i32 is returned; if \p T is <3 x i12>, then <3 x i32> 85 /// is returned. 86 Type *getI32Ty(IRBuilder<> &B, const Type *T) const; 87 88 /// \returns True if binary operation \p I is a signed binary operation, false 89 /// otherwise. 90 bool isSigned(const BinaryOperator &I) const; 91 92 /// \returns True if the condition of 'select' operation \p I comes from a 93 /// signed 'icmp' operation, false otherwise. 94 bool isSigned(const SelectInst &I) const; 95 96 /// \returns True if type \p T needs to be promoted to 32 bit integer type, 97 /// false otherwise. 98 bool needsPromotionToI32(const Type *T) const; 99 100 /// Promotes uniform binary operation \p I to equivalent 32 bit binary 101 /// operation. 102 /// 103 /// \details \p I's base element bit width must be greater than 1 and less 104 /// than or equal 16. Promotion is done by sign or zero extending operands to 105 /// 32 bits, replacing \p I with equivalent 32 bit binary operation, and 106 /// truncating the result of 32 bit binary operation back to \p I's original 107 /// type. Division operation is not promoted. 108 /// 109 /// \returns True if \p I is promoted to equivalent 32 bit binary operation, 110 /// false otherwise. 111 bool promoteUniformOpToI32(BinaryOperator &I) const; 112 113 /// Promotes uniform 'icmp' operation \p I to 32 bit 'icmp' operation. 114 /// 115 /// \details \p I's base element bit width must be greater than 1 and less 116 /// than or equal 16. Promotion is done by sign or zero extending operands to 117 /// 32 bits, and replacing \p I with 32 bit 'icmp' operation. 118 /// 119 /// \returns True. 120 bool promoteUniformOpToI32(ICmpInst &I) const; 121 122 /// Promotes uniform 'select' operation \p I to 32 bit 'select' 123 /// operation. 124 /// 125 /// \details \p I's base element bit width must be greater than 1 and less 126 /// than or equal 16. Promotion is done by sign or zero extending operands to 127 /// 32 bits, replacing \p I with 32 bit 'select' operation, and truncating the 128 /// result of 32 bit 'select' operation back to \p I's original type. 129 /// 130 /// \returns True. 131 bool promoteUniformOpToI32(SelectInst &I) const; 132 133 /// Promotes uniform 'bitreverse' intrinsic \p I to 32 bit 'bitreverse' 134 /// intrinsic. 135 /// 136 /// \details \p I's base element bit width must be greater than 1 and less 137 /// than or equal 16. Promotion is done by zero extending the operand to 32 138 /// bits, replacing \p I with 32 bit 'bitreverse' intrinsic, shifting the 139 /// result of 32 bit 'bitreverse' intrinsic to the right with zero fill (the 140 /// shift amount is 32 minus \p I's base element bit width), and truncating 141 /// the result of the shift operation back to \p I's original type. 142 /// 143 /// \returns True. 144 bool promoteUniformBitreverseToI32(IntrinsicInst &I) const; 145 146 147 unsigned numBitsUnsigned(Value *Op, unsigned ScalarSize) const; 148 unsigned numBitsSigned(Value *Op, unsigned ScalarSize) const; 149 bool isI24(Value *V, unsigned ScalarSize) const; 150 bool isU24(Value *V, unsigned ScalarSize) const; 151 152 /// Replace mul instructions with llvm.amdgcn.mul.u24 or llvm.amdgcn.mul.s24. 153 /// SelectionDAG has an issue where an and asserting the bits are known 154 bool replaceMulWithMul24(BinaryOperator &I) const; 155 156 /// Perform same function as equivalently named function in DAGCombiner. Since 157 /// we expand some divisions here, we need to perform this before obscuring. 158 bool foldBinOpIntoSelect(BinaryOperator &I) const; 159 160 /// Expands 24 bit div or rem. 161 Value* expandDivRem24(IRBuilder<> &Builder, BinaryOperator &I, 162 Value *Num, Value *Den, 163 bool IsDiv, bool IsSigned) const; 164 165 /// Expands 32 bit div or rem. 166 Value* expandDivRem32(IRBuilder<> &Builder, BinaryOperator &I, 167 Value *Num, Value *Den) const; 168 169 /// Widen a scalar load. 170 /// 171 /// \details \p Widen scalar load for uniform, small type loads from constant 172 // memory / to a full 32-bits and then truncate the input to allow a scalar 173 // load instead of a vector load. 174 // 175 /// \returns True. 176 177 bool canWidenScalarExtLoad(LoadInst &I) const; 178 179 public: 180 static char ID; 181 182 AMDGPUCodeGenPrepare() : FunctionPass(ID) {} 183 184 bool visitFDiv(BinaryOperator &I); 185 186 bool visitInstruction(Instruction &I) { return false; } 187 bool visitBinaryOperator(BinaryOperator &I); 188 bool visitLoadInst(LoadInst &I); 189 bool visitICmpInst(ICmpInst &I); 190 bool visitSelectInst(SelectInst &I); 191 192 bool visitIntrinsicInst(IntrinsicInst &I); 193 bool visitBitreverseIntrinsicInst(IntrinsicInst &I); 194 195 bool doInitialization(Module &M) override; 196 bool runOnFunction(Function &F) override; 197 198 StringRef getPassName() const override { return "AMDGPU IR optimizations"; } 199 200 void getAnalysisUsage(AnalysisUsage &AU) const override { 201 AU.addRequired<AssumptionCacheTracker>(); 202 AU.addRequired<LegacyDivergenceAnalysis>(); 203 AU.setPreservesAll(); 204 } 205 }; 206 207 } // end anonymous namespace 208 209 unsigned AMDGPUCodeGenPrepare::getBaseElementBitWidth(const Type *T) const { 210 assert(needsPromotionToI32(T) && "T does not need promotion to i32"); 211 212 if (T->isIntegerTy()) 213 return T->getIntegerBitWidth(); 214 return cast<VectorType>(T)->getElementType()->getIntegerBitWidth(); 215 } 216 217 Type *AMDGPUCodeGenPrepare::getI32Ty(IRBuilder<> &B, const Type *T) const { 218 assert(needsPromotionToI32(T) && "T does not need promotion to i32"); 219 220 if (T->isIntegerTy()) 221 return B.getInt32Ty(); 222 return VectorType::get(B.getInt32Ty(), cast<VectorType>(T)->getNumElements()); 223 } 224 225 bool AMDGPUCodeGenPrepare::isSigned(const BinaryOperator &I) const { 226 return I.getOpcode() == Instruction::AShr || 227 I.getOpcode() == Instruction::SDiv || I.getOpcode() == Instruction::SRem; 228 } 229 230 bool AMDGPUCodeGenPrepare::isSigned(const SelectInst &I) const { 231 return isa<ICmpInst>(I.getOperand(0)) ? 232 cast<ICmpInst>(I.getOperand(0))->isSigned() : false; 233 } 234 235 bool AMDGPUCodeGenPrepare::needsPromotionToI32(const Type *T) const { 236 const IntegerType *IntTy = dyn_cast<IntegerType>(T); 237 if (IntTy && IntTy->getBitWidth() > 1 && IntTy->getBitWidth() <= 16) 238 return true; 239 240 if (const VectorType *VT = dyn_cast<VectorType>(T)) { 241 // TODO: The set of packed operations is more limited, so may want to 242 // promote some anyway. 243 if (ST->hasVOP3PInsts()) 244 return false; 245 246 return needsPromotionToI32(VT->getElementType()); 247 } 248 249 return false; 250 } 251 252 // Return true if the op promoted to i32 should have nsw set. 253 static bool promotedOpIsNSW(const Instruction &I) { 254 switch (I.getOpcode()) { 255 case Instruction::Shl: 256 case Instruction::Add: 257 case Instruction::Sub: 258 return true; 259 case Instruction::Mul: 260 return I.hasNoUnsignedWrap(); 261 default: 262 return false; 263 } 264 } 265 266 // Return true if the op promoted to i32 should have nuw set. 267 static bool promotedOpIsNUW(const Instruction &I) { 268 switch (I.getOpcode()) { 269 case Instruction::Shl: 270 case Instruction::Add: 271 case Instruction::Mul: 272 return true; 273 case Instruction::Sub: 274 return I.hasNoUnsignedWrap(); 275 default: 276 return false; 277 } 278 } 279 280 bool AMDGPUCodeGenPrepare::canWidenScalarExtLoad(LoadInst &I) const { 281 Type *Ty = I.getType(); 282 const DataLayout &DL = Mod->getDataLayout(); 283 int TySize = DL.getTypeSizeInBits(Ty); 284 unsigned Align = I.getAlignment() ? 285 I.getAlignment() : DL.getABITypeAlignment(Ty); 286 287 return I.isSimple() && TySize < 32 && Align >= 4 && DA->isUniform(&I); 288 } 289 290 bool AMDGPUCodeGenPrepare::promoteUniformOpToI32(BinaryOperator &I) const { 291 assert(needsPromotionToI32(I.getType()) && 292 "I does not need promotion to i32"); 293 294 if (I.getOpcode() == Instruction::SDiv || 295 I.getOpcode() == Instruction::UDiv || 296 I.getOpcode() == Instruction::SRem || 297 I.getOpcode() == Instruction::URem) 298 return false; 299 300 IRBuilder<> Builder(&I); 301 Builder.SetCurrentDebugLocation(I.getDebugLoc()); 302 303 Type *I32Ty = getI32Ty(Builder, I.getType()); 304 Value *ExtOp0 = nullptr; 305 Value *ExtOp1 = nullptr; 306 Value *ExtRes = nullptr; 307 Value *TruncRes = nullptr; 308 309 if (isSigned(I)) { 310 ExtOp0 = Builder.CreateSExt(I.getOperand(0), I32Ty); 311 ExtOp1 = Builder.CreateSExt(I.getOperand(1), I32Ty); 312 } else { 313 ExtOp0 = Builder.CreateZExt(I.getOperand(0), I32Ty); 314 ExtOp1 = Builder.CreateZExt(I.getOperand(1), I32Ty); 315 } 316 317 ExtRes = Builder.CreateBinOp(I.getOpcode(), ExtOp0, ExtOp1); 318 if (Instruction *Inst = dyn_cast<Instruction>(ExtRes)) { 319 if (promotedOpIsNSW(cast<Instruction>(I))) 320 Inst->setHasNoSignedWrap(); 321 322 if (promotedOpIsNUW(cast<Instruction>(I))) 323 Inst->setHasNoUnsignedWrap(); 324 325 if (const auto *ExactOp = dyn_cast<PossiblyExactOperator>(&I)) 326 Inst->setIsExact(ExactOp->isExact()); 327 } 328 329 TruncRes = Builder.CreateTrunc(ExtRes, I.getType()); 330 331 I.replaceAllUsesWith(TruncRes); 332 I.eraseFromParent(); 333 334 return true; 335 } 336 337 bool AMDGPUCodeGenPrepare::promoteUniformOpToI32(ICmpInst &I) const { 338 assert(needsPromotionToI32(I.getOperand(0)->getType()) && 339 "I does not need promotion to i32"); 340 341 IRBuilder<> Builder(&I); 342 Builder.SetCurrentDebugLocation(I.getDebugLoc()); 343 344 Type *I32Ty = getI32Ty(Builder, I.getOperand(0)->getType()); 345 Value *ExtOp0 = nullptr; 346 Value *ExtOp1 = nullptr; 347 Value *NewICmp = nullptr; 348 349 if (I.isSigned()) { 350 ExtOp0 = Builder.CreateSExt(I.getOperand(0), I32Ty); 351 ExtOp1 = Builder.CreateSExt(I.getOperand(1), I32Ty); 352 } else { 353 ExtOp0 = Builder.CreateZExt(I.getOperand(0), I32Ty); 354 ExtOp1 = Builder.CreateZExt(I.getOperand(1), I32Ty); 355 } 356 NewICmp = Builder.CreateICmp(I.getPredicate(), ExtOp0, ExtOp1); 357 358 I.replaceAllUsesWith(NewICmp); 359 I.eraseFromParent(); 360 361 return true; 362 } 363 364 bool AMDGPUCodeGenPrepare::promoteUniformOpToI32(SelectInst &I) const { 365 assert(needsPromotionToI32(I.getType()) && 366 "I does not need promotion to i32"); 367 368 IRBuilder<> Builder(&I); 369 Builder.SetCurrentDebugLocation(I.getDebugLoc()); 370 371 Type *I32Ty = getI32Ty(Builder, I.getType()); 372 Value *ExtOp1 = nullptr; 373 Value *ExtOp2 = nullptr; 374 Value *ExtRes = nullptr; 375 Value *TruncRes = nullptr; 376 377 if (isSigned(I)) { 378 ExtOp1 = Builder.CreateSExt(I.getOperand(1), I32Ty); 379 ExtOp2 = Builder.CreateSExt(I.getOperand(2), I32Ty); 380 } else { 381 ExtOp1 = Builder.CreateZExt(I.getOperand(1), I32Ty); 382 ExtOp2 = Builder.CreateZExt(I.getOperand(2), I32Ty); 383 } 384 ExtRes = Builder.CreateSelect(I.getOperand(0), ExtOp1, ExtOp2); 385 TruncRes = Builder.CreateTrunc(ExtRes, I.getType()); 386 387 I.replaceAllUsesWith(TruncRes); 388 I.eraseFromParent(); 389 390 return true; 391 } 392 393 bool AMDGPUCodeGenPrepare::promoteUniformBitreverseToI32( 394 IntrinsicInst &I) const { 395 assert(I.getIntrinsicID() == Intrinsic::bitreverse && 396 "I must be bitreverse intrinsic"); 397 assert(needsPromotionToI32(I.getType()) && 398 "I does not need promotion to i32"); 399 400 IRBuilder<> Builder(&I); 401 Builder.SetCurrentDebugLocation(I.getDebugLoc()); 402 403 Type *I32Ty = getI32Ty(Builder, I.getType()); 404 Function *I32 = 405 Intrinsic::getDeclaration(Mod, Intrinsic::bitreverse, { I32Ty }); 406 Value *ExtOp = Builder.CreateZExt(I.getOperand(0), I32Ty); 407 Value *ExtRes = Builder.CreateCall(I32, { ExtOp }); 408 Value *LShrOp = 409 Builder.CreateLShr(ExtRes, 32 - getBaseElementBitWidth(I.getType())); 410 Value *TruncRes = 411 Builder.CreateTrunc(LShrOp, I.getType()); 412 413 I.replaceAllUsesWith(TruncRes); 414 I.eraseFromParent(); 415 416 return true; 417 } 418 419 unsigned AMDGPUCodeGenPrepare::numBitsUnsigned(Value *Op, 420 unsigned ScalarSize) const { 421 KnownBits Known = computeKnownBits(Op, *DL, 0, AC); 422 return ScalarSize - Known.countMinLeadingZeros(); 423 } 424 425 unsigned AMDGPUCodeGenPrepare::numBitsSigned(Value *Op, 426 unsigned ScalarSize) const { 427 // In order for this to be a signed 24-bit value, bit 23, must 428 // be a sign bit. 429 return ScalarSize - ComputeNumSignBits(Op, *DL, 0, AC); 430 } 431 432 bool AMDGPUCodeGenPrepare::isI24(Value *V, unsigned ScalarSize) const { 433 return ScalarSize >= 24 && // Types less than 24-bit should be treated 434 // as unsigned 24-bit values. 435 numBitsSigned(V, ScalarSize) < 24; 436 } 437 438 bool AMDGPUCodeGenPrepare::isU24(Value *V, unsigned ScalarSize) const { 439 return numBitsUnsigned(V, ScalarSize) <= 24; 440 } 441 442 static void extractValues(IRBuilder<> &Builder, 443 SmallVectorImpl<Value *> &Values, Value *V) { 444 VectorType *VT = dyn_cast<VectorType>(V->getType()); 445 if (!VT) { 446 Values.push_back(V); 447 return; 448 } 449 450 for (int I = 0, E = VT->getNumElements(); I != E; ++I) 451 Values.push_back(Builder.CreateExtractElement(V, I)); 452 } 453 454 static Value *insertValues(IRBuilder<> &Builder, 455 Type *Ty, 456 SmallVectorImpl<Value *> &Values) { 457 if (Values.size() == 1) 458 return Values[0]; 459 460 Value *NewVal = UndefValue::get(Ty); 461 for (int I = 0, E = Values.size(); I != E; ++I) 462 NewVal = Builder.CreateInsertElement(NewVal, Values[I], I); 463 464 return NewVal; 465 } 466 467 bool AMDGPUCodeGenPrepare::replaceMulWithMul24(BinaryOperator &I) const { 468 if (I.getOpcode() != Instruction::Mul) 469 return false; 470 471 Type *Ty = I.getType(); 472 unsigned Size = Ty->getScalarSizeInBits(); 473 if (Size <= 16 && ST->has16BitInsts()) 474 return false; 475 476 // Prefer scalar if this could be s_mul_i32 477 if (DA->isUniform(&I)) 478 return false; 479 480 Value *LHS = I.getOperand(0); 481 Value *RHS = I.getOperand(1); 482 IRBuilder<> Builder(&I); 483 Builder.SetCurrentDebugLocation(I.getDebugLoc()); 484 485 Intrinsic::ID IntrID = Intrinsic::not_intrinsic; 486 487 // TODO: Should this try to match mulhi24? 488 if (ST->hasMulU24() && isU24(LHS, Size) && isU24(RHS, Size)) { 489 IntrID = Intrinsic::amdgcn_mul_u24; 490 } else if (ST->hasMulI24() && isI24(LHS, Size) && isI24(RHS, Size)) { 491 IntrID = Intrinsic::amdgcn_mul_i24; 492 } else 493 return false; 494 495 SmallVector<Value *, 4> LHSVals; 496 SmallVector<Value *, 4> RHSVals; 497 SmallVector<Value *, 4> ResultVals; 498 extractValues(Builder, LHSVals, LHS); 499 extractValues(Builder, RHSVals, RHS); 500 501 502 IntegerType *I32Ty = Builder.getInt32Ty(); 503 FunctionCallee Intrin = Intrinsic::getDeclaration(Mod, IntrID); 504 for (int I = 0, E = LHSVals.size(); I != E; ++I) { 505 Value *LHS, *RHS; 506 if (IntrID == Intrinsic::amdgcn_mul_u24) { 507 LHS = Builder.CreateZExtOrTrunc(LHSVals[I], I32Ty); 508 RHS = Builder.CreateZExtOrTrunc(RHSVals[I], I32Ty); 509 } else { 510 LHS = Builder.CreateSExtOrTrunc(LHSVals[I], I32Ty); 511 RHS = Builder.CreateSExtOrTrunc(RHSVals[I], I32Ty); 512 } 513 514 Value *Result = Builder.CreateCall(Intrin, {LHS, RHS}); 515 516 if (IntrID == Intrinsic::amdgcn_mul_u24) { 517 ResultVals.push_back(Builder.CreateZExtOrTrunc(Result, 518 LHSVals[I]->getType())); 519 } else { 520 ResultVals.push_back(Builder.CreateSExtOrTrunc(Result, 521 LHSVals[I]->getType())); 522 } 523 } 524 525 Value *NewVal = insertValues(Builder, Ty, ResultVals); 526 NewVal->takeName(&I); 527 I.replaceAllUsesWith(NewVal); 528 I.eraseFromParent(); 529 530 return true; 531 } 532 533 // Find a select instruction, which may have been casted. This is mostly to deal 534 // with cases where i16 selects weer promoted here to i32. 535 static SelectInst *findSelectThroughCast(Value *V, CastInst *&Cast) { 536 Cast = nullptr; 537 if (SelectInst *Sel = dyn_cast<SelectInst>(V)) 538 return Sel; 539 540 if ((Cast = dyn_cast<CastInst>(V))) { 541 if (SelectInst *Sel = dyn_cast<SelectInst>(Cast->getOperand(0))) 542 return Sel; 543 } 544 545 return nullptr; 546 } 547 548 bool AMDGPUCodeGenPrepare::foldBinOpIntoSelect(BinaryOperator &BO) const { 549 // Don't do this unless the old select is going away. We want to eliminate the 550 // binary operator, not replace a binop with a select. 551 int SelOpNo = 0; 552 553 CastInst *CastOp; 554 555 SelectInst *Sel = findSelectThroughCast(BO.getOperand(0), CastOp); 556 if (!Sel || !Sel->hasOneUse()) { 557 SelOpNo = 1; 558 Sel = findSelectThroughCast(BO.getOperand(1), CastOp); 559 } 560 561 if (!Sel || !Sel->hasOneUse()) 562 return false; 563 564 Constant *CT = dyn_cast<Constant>(Sel->getTrueValue()); 565 Constant *CF = dyn_cast<Constant>(Sel->getFalseValue()); 566 Constant *CBO = dyn_cast<Constant>(BO.getOperand(SelOpNo ^ 1)); 567 if (!CBO || !CT || !CF) 568 return false; 569 570 if (CastOp) { 571 CT = ConstantFoldCastOperand(CastOp->getOpcode(), CT, BO.getType(), *DL); 572 CF = ConstantFoldCastOperand(CastOp->getOpcode(), CF, BO.getType(), *DL); 573 } 574 575 // TODO: Handle special 0/-1 cases DAG combine does, although we only really 576 // need to handle divisions here. 577 Constant *FoldedT = SelOpNo ? 578 ConstantFoldBinaryOpOperands(BO.getOpcode(), CBO, CT, *DL) : 579 ConstantFoldBinaryOpOperands(BO.getOpcode(), CT, CBO, *DL); 580 if (isa<ConstantExpr>(FoldedT)) 581 return false; 582 583 Constant *FoldedF = SelOpNo ? 584 ConstantFoldBinaryOpOperands(BO.getOpcode(), CBO, CF, *DL) : 585 ConstantFoldBinaryOpOperands(BO.getOpcode(), CF, CBO, *DL); 586 if (isa<ConstantExpr>(FoldedF)) 587 return false; 588 589 IRBuilder<> Builder(&BO); 590 Builder.SetCurrentDebugLocation(BO.getDebugLoc()); 591 if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(&BO)) 592 Builder.setFastMathFlags(FPOp->getFastMathFlags()); 593 594 Value *NewSelect = Builder.CreateSelect(Sel->getCondition(), 595 FoldedT, FoldedF); 596 NewSelect->takeName(&BO); 597 BO.replaceAllUsesWith(NewSelect); 598 BO.eraseFromParent(); 599 if (CastOp) 600 CastOp->eraseFromParent(); 601 Sel->eraseFromParent(); 602 return true; 603 } 604 605 static bool shouldKeepFDivF32(Value *Num, bool UnsafeDiv, bool HasDenormals) { 606 const ConstantFP *CNum = dyn_cast<ConstantFP>(Num); 607 if (!CNum) 608 return HasDenormals; 609 610 if (UnsafeDiv) 611 return true; 612 613 bool IsOne = CNum->isExactlyValue(+1.0) || CNum->isExactlyValue(-1.0); 614 615 // Reciprocal f32 is handled separately without denormals. 616 return HasDenormals ^ IsOne; 617 } 618 619 // Insert an intrinsic for fast fdiv for safe math situations where we can 620 // reduce precision. Leave fdiv for situations where the generic node is 621 // expected to be optimized. 622 bool AMDGPUCodeGenPrepare::visitFDiv(BinaryOperator &FDiv) { 623 Type *Ty = FDiv.getType(); 624 625 if (!Ty->getScalarType()->isFloatTy()) 626 return false; 627 628 MDNode *FPMath = FDiv.getMetadata(LLVMContext::MD_fpmath); 629 if (!FPMath) 630 return false; 631 632 const FPMathOperator *FPOp = cast<const FPMathOperator>(&FDiv); 633 float ULP = FPOp->getFPAccuracy(); 634 if (ULP < 2.5f) 635 return false; 636 637 FastMathFlags FMF = FPOp->getFastMathFlags(); 638 bool UnsafeDiv = HasUnsafeFPMath || FMF.isFast() || 639 FMF.allowReciprocal(); 640 641 // With UnsafeDiv node will be optimized to just rcp and mul. 642 if (UnsafeDiv) 643 return false; 644 645 IRBuilder<> Builder(FDiv.getParent(), std::next(FDiv.getIterator()), FPMath); 646 Builder.setFastMathFlags(FMF); 647 Builder.SetCurrentDebugLocation(FDiv.getDebugLoc()); 648 649 Function *Decl = Intrinsic::getDeclaration(Mod, Intrinsic::amdgcn_fdiv_fast); 650 651 Value *Num = FDiv.getOperand(0); 652 Value *Den = FDiv.getOperand(1); 653 654 Value *NewFDiv = nullptr; 655 656 if (VectorType *VT = dyn_cast<VectorType>(Ty)) { 657 NewFDiv = UndefValue::get(VT); 658 659 // FIXME: Doesn't do the right thing for cases where the vector is partially 660 // constant. This works when the scalarizer pass is run first. 661 for (unsigned I = 0, E = VT->getNumElements(); I != E; ++I) { 662 Value *NumEltI = Builder.CreateExtractElement(Num, I); 663 Value *DenEltI = Builder.CreateExtractElement(Den, I); 664 Value *NewElt; 665 666 if (shouldKeepFDivF32(NumEltI, UnsafeDiv, HasFP32Denormals)) { 667 NewElt = Builder.CreateFDiv(NumEltI, DenEltI); 668 } else { 669 NewElt = Builder.CreateCall(Decl, { NumEltI, DenEltI }); 670 } 671 672 NewFDiv = Builder.CreateInsertElement(NewFDiv, NewElt, I); 673 } 674 } else { 675 if (!shouldKeepFDivF32(Num, UnsafeDiv, HasFP32Denormals)) 676 NewFDiv = Builder.CreateCall(Decl, { Num, Den }); 677 } 678 679 if (NewFDiv) { 680 FDiv.replaceAllUsesWith(NewFDiv); 681 NewFDiv->takeName(&FDiv); 682 FDiv.eraseFromParent(); 683 } 684 685 return !!NewFDiv; 686 } 687 688 static bool hasUnsafeFPMath(const Function &F) { 689 Attribute Attr = F.getFnAttribute("unsafe-fp-math"); 690 return Attr.getValueAsString() == "true"; 691 } 692 693 static std::pair<Value*, Value*> getMul64(IRBuilder<> &Builder, 694 Value *LHS, Value *RHS) { 695 Type *I32Ty = Builder.getInt32Ty(); 696 Type *I64Ty = Builder.getInt64Ty(); 697 698 Value *LHS_EXT64 = Builder.CreateZExt(LHS, I64Ty); 699 Value *RHS_EXT64 = Builder.CreateZExt(RHS, I64Ty); 700 Value *MUL64 = Builder.CreateMul(LHS_EXT64, RHS_EXT64); 701 Value *Lo = Builder.CreateTrunc(MUL64, I32Ty); 702 Value *Hi = Builder.CreateLShr(MUL64, Builder.getInt64(32)); 703 Hi = Builder.CreateTrunc(Hi, I32Ty); 704 return std::make_pair(Lo, Hi); 705 } 706 707 static Value* getMulHu(IRBuilder<> &Builder, Value *LHS, Value *RHS) { 708 return getMul64(Builder, LHS, RHS).second; 709 } 710 711 // The fractional part of a float is enough to accurately represent up to 712 // a 24-bit signed integer. 713 Value* AMDGPUCodeGenPrepare::expandDivRem24(IRBuilder<> &Builder, 714 BinaryOperator &I, 715 Value *Num, Value *Den, 716 bool IsDiv, bool IsSigned) const { 717 assert(Num->getType()->isIntegerTy(32)); 718 719 const DataLayout &DL = Mod->getDataLayout(); 720 unsigned LHSSignBits = ComputeNumSignBits(Num, DL, 0, AC, &I); 721 if (LHSSignBits < 9) 722 return nullptr; 723 724 unsigned RHSSignBits = ComputeNumSignBits(Den, DL, 0, AC, &I); 725 if (RHSSignBits < 9) 726 return nullptr; 727 728 729 unsigned SignBits = std::min(LHSSignBits, RHSSignBits); 730 unsigned DivBits = 32 - SignBits; 731 if (IsSigned) 732 ++DivBits; 733 734 Type *I32Ty = Builder.getInt32Ty(); 735 Type *F32Ty = Builder.getFloatTy(); 736 ConstantInt *One = Builder.getInt32(1); 737 Value *JQ = One; 738 739 if (IsSigned) { 740 // char|short jq = ia ^ ib; 741 JQ = Builder.CreateXor(Num, Den); 742 743 // jq = jq >> (bitsize - 2) 744 JQ = Builder.CreateAShr(JQ, Builder.getInt32(30)); 745 746 // jq = jq | 0x1 747 JQ = Builder.CreateOr(JQ, One); 748 } 749 750 // int ia = (int)LHS; 751 Value *IA = Num; 752 753 // int ib, (int)RHS; 754 Value *IB = Den; 755 756 // float fa = (float)ia; 757 Value *FA = IsSigned ? Builder.CreateSIToFP(IA, F32Ty) 758 : Builder.CreateUIToFP(IA, F32Ty); 759 760 // float fb = (float)ib; 761 Value *FB = IsSigned ? Builder.CreateSIToFP(IB,F32Ty) 762 : Builder.CreateUIToFP(IB,F32Ty); 763 764 Value *RCP = Builder.CreateFDiv(ConstantFP::get(F32Ty, 1.0), FB); 765 Value *FQM = Builder.CreateFMul(FA, RCP); 766 767 // fq = trunc(fqm); 768 CallInst *FQ = Builder.CreateUnaryIntrinsic(Intrinsic::trunc, FQM); 769 FQ->copyFastMathFlags(Builder.getFastMathFlags()); 770 771 // float fqneg = -fq; 772 Value *FQNeg = Builder.CreateFNeg(FQ); 773 774 // float fr = mad(fqneg, fb, fa); 775 Value *FR = Builder.CreateIntrinsic(Intrinsic::amdgcn_fmad_ftz, 776 {FQNeg->getType()}, {FQNeg, FB, FA}, FQ); 777 778 // int iq = (int)fq; 779 Value *IQ = IsSigned ? Builder.CreateFPToSI(FQ, I32Ty) 780 : Builder.CreateFPToUI(FQ, I32Ty); 781 782 // fr = fabs(fr); 783 FR = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, FR, FQ); 784 785 // fb = fabs(fb); 786 FB = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, FB, FQ); 787 788 // int cv = fr >= fb; 789 Value *CV = Builder.CreateFCmpOGE(FR, FB); 790 791 // jq = (cv ? jq : 0); 792 JQ = Builder.CreateSelect(CV, JQ, Builder.getInt32(0)); 793 794 // dst = iq + jq; 795 Value *Div = Builder.CreateAdd(IQ, JQ); 796 797 Value *Res = Div; 798 if (!IsDiv) { 799 // Rem needs compensation, it's easier to recompute it 800 Value *Rem = Builder.CreateMul(Div, Den); 801 Res = Builder.CreateSub(Num, Rem); 802 } 803 804 // Extend in register from the number of bits this divide really is. 805 if (IsSigned) { 806 Res = Builder.CreateShl(Res, 32 - DivBits); 807 Res = Builder.CreateAShr(Res, 32 - DivBits); 808 } else { 809 ConstantInt *TruncMask = Builder.getInt32((UINT64_C(1) << DivBits) - 1); 810 Res = Builder.CreateAnd(Res, TruncMask); 811 } 812 813 return Res; 814 } 815 816 Value* AMDGPUCodeGenPrepare::expandDivRem32(IRBuilder<> &Builder, 817 BinaryOperator &I, 818 Value *Num, Value *Den) const { 819 Instruction::BinaryOps Opc = I.getOpcode(); 820 assert(Opc == Instruction::URem || Opc == Instruction::UDiv || 821 Opc == Instruction::SRem || Opc == Instruction::SDiv); 822 823 FastMathFlags FMF; 824 FMF.setFast(); 825 Builder.setFastMathFlags(FMF); 826 827 if (isa<Constant>(Den)) 828 return nullptr; // Keep it for optimization 829 830 bool IsDiv = Opc == Instruction::UDiv || Opc == Instruction::SDiv; 831 bool IsSigned = Opc == Instruction::SRem || Opc == Instruction::SDiv; 832 833 Type *Ty = Num->getType(); 834 Type *I32Ty = Builder.getInt32Ty(); 835 Type *F32Ty = Builder.getFloatTy(); 836 837 if (Ty->getScalarSizeInBits() < 32) { 838 if (IsSigned) { 839 Num = Builder.CreateSExt(Num, I32Ty); 840 Den = Builder.CreateSExt(Den, I32Ty); 841 } else { 842 Num = Builder.CreateZExt(Num, I32Ty); 843 Den = Builder.CreateZExt(Den, I32Ty); 844 } 845 } 846 847 if (Value *Res = expandDivRem24(Builder, I, Num, Den, IsDiv, IsSigned)) { 848 Res = Builder.CreateTrunc(Res, Ty); 849 return Res; 850 } 851 852 ConstantInt *Zero = Builder.getInt32(0); 853 ConstantInt *One = Builder.getInt32(1); 854 ConstantInt *MinusOne = Builder.getInt32(~0); 855 856 Value *Sign = nullptr; 857 if (IsSigned) { 858 ConstantInt *K31 = Builder.getInt32(31); 859 Value *LHSign = Builder.CreateAShr(Num, K31); 860 Value *RHSign = Builder.CreateAShr(Den, K31); 861 // Remainder sign is the same as LHS 862 Sign = IsDiv ? Builder.CreateXor(LHSign, RHSign) : LHSign; 863 864 Num = Builder.CreateAdd(Num, LHSign); 865 Den = Builder.CreateAdd(Den, RHSign); 866 867 Num = Builder.CreateXor(Num, LHSign); 868 Den = Builder.CreateXor(Den, RHSign); 869 } 870 871 // RCP = URECIP(Den) = 2^32 / Den + e 872 // e is rounding error. 873 Value *DEN_F32 = Builder.CreateUIToFP(Den, F32Ty); 874 Value *RCP_F32 = Builder.CreateFDiv(ConstantFP::get(F32Ty, 1.0), DEN_F32); 875 Constant *UINT_MAX_PLUS_1 = ConstantFP::get(F32Ty, BitsToFloat(0x4f800000)); 876 Value *RCP_SCALE = Builder.CreateFMul(RCP_F32, UINT_MAX_PLUS_1); 877 Value *RCP = Builder.CreateFPToUI(RCP_SCALE, I32Ty); 878 879 // RCP_LO, RCP_HI = mul(RCP, Den) */ 880 Value *RCP_LO, *RCP_HI; 881 std::tie(RCP_LO, RCP_HI) = getMul64(Builder, RCP, Den); 882 883 // NEG_RCP_LO = -RCP_LO 884 Value *NEG_RCP_LO = Builder.CreateNeg(RCP_LO); 885 886 // ABS_RCP_LO = (RCP_HI == 0 ? NEG_RCP_LO : RCP_LO) 887 Value *RCP_HI_0_CC = Builder.CreateICmpEQ(RCP_HI, Zero); 888 Value *ABS_RCP_LO = Builder.CreateSelect(RCP_HI_0_CC, NEG_RCP_LO, RCP_LO); 889 890 // Calculate the rounding error from the URECIP instruction 891 // E = mulhu(ABS_RCP_LO, RCP) 892 Value *E = getMulHu(Builder, ABS_RCP_LO, RCP); 893 894 // RCP_A_E = RCP + E 895 Value *RCP_A_E = Builder.CreateAdd(RCP, E); 896 897 // RCP_S_E = RCP - E 898 Value *RCP_S_E = Builder.CreateSub(RCP, E); 899 900 // Tmp0 = (RCP_HI == 0 ? RCP_A_E : RCP_SUB_E) 901 Value *Tmp0 = Builder.CreateSelect(RCP_HI_0_CC, RCP_A_E, RCP_S_E); 902 903 // Quotient = mulhu(Tmp0, Num) 904 Value *Quotient = getMulHu(Builder, Tmp0, Num); 905 906 // Num_S_Remainder = Quotient * Den 907 Value *Num_S_Remainder = Builder.CreateMul(Quotient, Den); 908 909 // Remainder = Num - Num_S_Remainder 910 Value *Remainder = Builder.CreateSub(Num, Num_S_Remainder); 911 912 // Remainder_GE_Den = (Remainder >= Den ? -1 : 0) 913 Value *Rem_GE_Den_CC = Builder.CreateICmpUGE(Remainder, Den); 914 Value *Remainder_GE_Den = Builder.CreateSelect(Rem_GE_Den_CC, MinusOne, Zero); 915 916 // Remainder_GE_Zero = (Num >= Num_S_Remainder ? -1 : 0) 917 Value *Num_GE_Num_S_Rem_CC = Builder.CreateICmpUGE(Num, Num_S_Remainder); 918 Value *Remainder_GE_Zero = Builder.CreateSelect(Num_GE_Num_S_Rem_CC, 919 MinusOne, Zero); 920 921 // Tmp1 = Remainder_GE_Den & Remainder_GE_Zero 922 Value *Tmp1 = Builder.CreateAnd(Remainder_GE_Den, Remainder_GE_Zero); 923 Value *Tmp1_0_CC = Builder.CreateICmpEQ(Tmp1, Zero); 924 925 Value *Res; 926 if (IsDiv) { 927 // Quotient_A_One = Quotient + 1 928 Value *Quotient_A_One = Builder.CreateAdd(Quotient, One); 929 930 // Quotient_S_One = Quotient - 1 931 Value *Quotient_S_One = Builder.CreateSub(Quotient, One); 932 933 // Div = (Tmp1 == 0 ? Quotient : Quotient_A_One) 934 Value *Div = Builder.CreateSelect(Tmp1_0_CC, Quotient, Quotient_A_One); 935 936 // Div = (Remainder_GE_Zero == 0 ? Quotient_S_One : Div) 937 Res = Builder.CreateSelect(Num_GE_Num_S_Rem_CC, Div, Quotient_S_One); 938 } else { 939 // Remainder_S_Den = Remainder - Den 940 Value *Remainder_S_Den = Builder.CreateSub(Remainder, Den); 941 942 // Remainder_A_Den = Remainder + Den 943 Value *Remainder_A_Den = Builder.CreateAdd(Remainder, Den); 944 945 // Rem = (Tmp1 == 0 ? Remainder : Remainder_S_Den) 946 Value *Rem = Builder.CreateSelect(Tmp1_0_CC, Remainder, Remainder_S_Den); 947 948 // Rem = (Remainder_GE_Zero == 0 ? Remainder_A_Den : Rem) 949 Res = Builder.CreateSelect(Num_GE_Num_S_Rem_CC, Rem, Remainder_A_Den); 950 } 951 952 if (IsSigned) { 953 Res = Builder.CreateXor(Res, Sign); 954 Res = Builder.CreateSub(Res, Sign); 955 } 956 957 Res = Builder.CreateTrunc(Res, Ty); 958 959 return Res; 960 } 961 962 bool AMDGPUCodeGenPrepare::visitBinaryOperator(BinaryOperator &I) { 963 if (foldBinOpIntoSelect(I)) 964 return true; 965 966 if (ST->has16BitInsts() && needsPromotionToI32(I.getType()) && 967 DA->isUniform(&I) && promoteUniformOpToI32(I)) 968 return true; 969 970 if (UseMul24Intrin && replaceMulWithMul24(I)) 971 return true; 972 973 bool Changed = false; 974 Instruction::BinaryOps Opc = I.getOpcode(); 975 Type *Ty = I.getType(); 976 Value *NewDiv = nullptr; 977 if ((Opc == Instruction::URem || Opc == Instruction::UDiv || 978 Opc == Instruction::SRem || Opc == Instruction::SDiv) && 979 Ty->getScalarSizeInBits() <= 32) { 980 Value *Num = I.getOperand(0); 981 Value *Den = I.getOperand(1); 982 IRBuilder<> Builder(&I); 983 Builder.SetCurrentDebugLocation(I.getDebugLoc()); 984 985 if (VectorType *VT = dyn_cast<VectorType>(Ty)) { 986 NewDiv = UndefValue::get(VT); 987 988 for (unsigned N = 0, E = VT->getNumElements(); N != E; ++N) { 989 Value *NumEltN = Builder.CreateExtractElement(Num, N); 990 Value *DenEltN = Builder.CreateExtractElement(Den, N); 991 Value *NewElt = expandDivRem32(Builder, I, NumEltN, DenEltN); 992 if (!NewElt) 993 NewElt = Builder.CreateBinOp(Opc, NumEltN, DenEltN); 994 NewDiv = Builder.CreateInsertElement(NewDiv, NewElt, N); 995 } 996 } else { 997 NewDiv = expandDivRem32(Builder, I, Num, Den); 998 } 999 1000 if (NewDiv) { 1001 I.replaceAllUsesWith(NewDiv); 1002 I.eraseFromParent(); 1003 Changed = true; 1004 } 1005 } 1006 1007 return Changed; 1008 } 1009 1010 bool AMDGPUCodeGenPrepare::visitLoadInst(LoadInst &I) { 1011 if (!WidenLoads) 1012 return false; 1013 1014 if ((I.getPointerAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS || 1015 I.getPointerAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS_32BIT) && 1016 canWidenScalarExtLoad(I)) { 1017 IRBuilder<> Builder(&I); 1018 Builder.SetCurrentDebugLocation(I.getDebugLoc()); 1019 1020 Type *I32Ty = Builder.getInt32Ty(); 1021 Type *PT = PointerType::get(I32Ty, I.getPointerAddressSpace()); 1022 Value *BitCast= Builder.CreateBitCast(I.getPointerOperand(), PT); 1023 LoadInst *WidenLoad = Builder.CreateLoad(I32Ty, BitCast); 1024 WidenLoad->copyMetadata(I); 1025 1026 // If we have range metadata, we need to convert the type, and not make 1027 // assumptions about the high bits. 1028 if (auto *Range = WidenLoad->getMetadata(LLVMContext::MD_range)) { 1029 ConstantInt *Lower = 1030 mdconst::extract<ConstantInt>(Range->getOperand(0)); 1031 1032 if (Lower->getValue().isNullValue()) { 1033 WidenLoad->setMetadata(LLVMContext::MD_range, nullptr); 1034 } else { 1035 Metadata *LowAndHigh[] = { 1036 ConstantAsMetadata::get(ConstantInt::get(I32Ty, Lower->getValue().zext(32))), 1037 // Don't make assumptions about the high bits. 1038 ConstantAsMetadata::get(ConstantInt::get(I32Ty, 0)) 1039 }; 1040 1041 WidenLoad->setMetadata(LLVMContext::MD_range, 1042 MDNode::get(Mod->getContext(), LowAndHigh)); 1043 } 1044 } 1045 1046 int TySize = Mod->getDataLayout().getTypeSizeInBits(I.getType()); 1047 Type *IntNTy = Builder.getIntNTy(TySize); 1048 Value *ValTrunc = Builder.CreateTrunc(WidenLoad, IntNTy); 1049 Value *ValOrig = Builder.CreateBitCast(ValTrunc, I.getType()); 1050 I.replaceAllUsesWith(ValOrig); 1051 I.eraseFromParent(); 1052 return true; 1053 } 1054 1055 return false; 1056 } 1057 1058 bool AMDGPUCodeGenPrepare::visitICmpInst(ICmpInst &I) { 1059 bool Changed = false; 1060 1061 if (ST->has16BitInsts() && needsPromotionToI32(I.getOperand(0)->getType()) && 1062 DA->isUniform(&I)) 1063 Changed |= promoteUniformOpToI32(I); 1064 1065 return Changed; 1066 } 1067 1068 bool AMDGPUCodeGenPrepare::visitSelectInst(SelectInst &I) { 1069 bool Changed = false; 1070 1071 if (ST->has16BitInsts() && needsPromotionToI32(I.getType()) && 1072 DA->isUniform(&I)) 1073 Changed |= promoteUniformOpToI32(I); 1074 1075 return Changed; 1076 } 1077 1078 bool AMDGPUCodeGenPrepare::visitIntrinsicInst(IntrinsicInst &I) { 1079 switch (I.getIntrinsicID()) { 1080 case Intrinsic::bitreverse: 1081 return visitBitreverseIntrinsicInst(I); 1082 default: 1083 return false; 1084 } 1085 } 1086 1087 bool AMDGPUCodeGenPrepare::visitBitreverseIntrinsicInst(IntrinsicInst &I) { 1088 bool Changed = false; 1089 1090 if (ST->has16BitInsts() && needsPromotionToI32(I.getType()) && 1091 DA->isUniform(&I)) 1092 Changed |= promoteUniformBitreverseToI32(I); 1093 1094 return Changed; 1095 } 1096 1097 bool AMDGPUCodeGenPrepare::doInitialization(Module &M) { 1098 Mod = &M; 1099 DL = &Mod->getDataLayout(); 1100 return false; 1101 } 1102 1103 bool AMDGPUCodeGenPrepare::runOnFunction(Function &F) { 1104 if (skipFunction(F)) 1105 return false; 1106 1107 auto *TPC = getAnalysisIfAvailable<TargetPassConfig>(); 1108 if (!TPC) 1109 return false; 1110 1111 const AMDGPUTargetMachine &TM = TPC->getTM<AMDGPUTargetMachine>(); 1112 ST = &TM.getSubtarget<GCNSubtarget>(F); 1113 AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 1114 DA = &getAnalysis<LegacyDivergenceAnalysis>(); 1115 HasUnsafeFPMath = hasUnsafeFPMath(F); 1116 HasFP32Denormals = ST->hasFP32Denormals(F); 1117 1118 bool MadeChange = false; 1119 1120 for (BasicBlock &BB : F) { 1121 BasicBlock::iterator Next; 1122 for (BasicBlock::iterator I = BB.begin(), E = BB.end(); I != E; I = Next) { 1123 Next = std::next(I); 1124 MadeChange |= visit(*I); 1125 } 1126 } 1127 1128 return MadeChange; 1129 } 1130 1131 INITIALIZE_PASS_BEGIN(AMDGPUCodeGenPrepare, DEBUG_TYPE, 1132 "AMDGPU IR optimizations", false, false) 1133 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 1134 INITIALIZE_PASS_DEPENDENCY(LegacyDivergenceAnalysis) 1135 INITIALIZE_PASS_END(AMDGPUCodeGenPrepare, DEBUG_TYPE, "AMDGPU IR optimizations", 1136 false, false) 1137 1138 char AMDGPUCodeGenPrepare::ID = 0; 1139 1140 FunctionPass *llvm::createAMDGPUCodeGenPreparePass() { 1141 return new AMDGPUCodeGenPrepare(); 1142 } 1143