xref: /llvm-project/llvm/lib/Target/AMDGPU/AMDGPUCodeGenPrepare.cpp (revision 21a1d4cf719e977b1712cb4387b0f12b5175b916)
1 //===-- AMDGPUCodeGenPrepare.cpp ------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file
10 /// This pass does misc. AMDGPU optimizations on IR before instruction
11 /// selection.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "AMDGPU.h"
16 #include "AMDGPUTargetMachine.h"
17 #include "llvm/Analysis/AssumptionCache.h"
18 #include "llvm/Analysis/ConstantFolding.h"
19 #include "llvm/Analysis/LegacyDivergenceAnalysis.h"
20 #include "llvm/Analysis/ValueTracking.h"
21 #include "llvm/CodeGen/TargetPassConfig.h"
22 #include "llvm/IR/Dominators.h"
23 #include "llvm/IR/InstVisitor.h"
24 #include "llvm/IR/IntrinsicsAMDGPU.h"
25 #include "llvm/IR/IRBuilder.h"
26 #include "llvm/InitializePasses.h"
27 #include "llvm/Pass.h"
28 #include "llvm/Support/KnownBits.h"
29 #include "llvm/Transforms/Utils/IntegerDivision.h"
30 
31 #define DEBUG_TYPE "amdgpu-codegenprepare"
32 
33 using namespace llvm;
34 
35 namespace {
36 
37 static cl::opt<bool> WidenLoads(
38   "amdgpu-codegenprepare-widen-constant-loads",
39   cl::desc("Widen sub-dword constant address space loads in AMDGPUCodeGenPrepare"),
40   cl::ReallyHidden,
41   cl::init(false));
42 
43 static cl::opt<bool> Widen16BitOps(
44   "amdgpu-codegenprepare-widen-16-bit-ops",
45   cl::desc("Widen uniform 16-bit instructions to 32-bit in AMDGPUCodeGenPrepare"),
46   cl::ReallyHidden,
47   cl::init(true));
48 
49 static cl::opt<bool> UseMul24Intrin(
50   "amdgpu-codegenprepare-mul24",
51   cl::desc("Introduce mul24 intrinsics in AMDGPUCodeGenPrepare"),
52   cl::ReallyHidden,
53   cl::init(true));
54 
55 // Legalize 64-bit division by using the generic IR expansion.
56 static cl::opt<bool> ExpandDiv64InIR(
57   "amdgpu-codegenprepare-expand-div64",
58   cl::desc("Expand 64-bit division in AMDGPUCodeGenPrepare"),
59   cl::ReallyHidden,
60   cl::init(false));
61 
62 // Leave all division operations as they are. This supersedes ExpandDiv64InIR
63 // and is used for testing the legalizer.
64 static cl::opt<bool> DisableIDivExpand(
65   "amdgpu-codegenprepare-disable-idiv-expansion",
66   cl::desc("Prevent expanding integer division in AMDGPUCodeGenPrepare"),
67   cl::ReallyHidden,
68   cl::init(false));
69 
70 class AMDGPUCodeGenPrepare : public FunctionPass,
71                              public InstVisitor<AMDGPUCodeGenPrepare, bool> {
72   const GCNSubtarget *ST = nullptr;
73   AssumptionCache *AC = nullptr;
74   DominatorTree *DT = nullptr;
75   LegacyDivergenceAnalysis *DA = nullptr;
76   Module *Mod = nullptr;
77   const DataLayout *DL = nullptr;
78   bool HasUnsafeFPMath = false;
79   bool HasFP32Denormals = false;
80 
81   /// Copies exact/nsw/nuw flags (if any) from binary operation \p I to
82   /// binary operation \p V.
83   ///
84   /// \returns Binary operation \p V.
85   /// \returns \p T's base element bit width.
86   unsigned getBaseElementBitWidth(const Type *T) const;
87 
88   /// \returns Equivalent 32 bit integer type for given type \p T. For example,
89   /// if \p T is i7, then i32 is returned; if \p T is <3 x i12>, then <3 x i32>
90   /// is returned.
91   Type *getI32Ty(IRBuilder<> &B, const Type *T) const;
92 
93   /// \returns True if binary operation \p I is a signed binary operation, false
94   /// otherwise.
95   bool isSigned(const BinaryOperator &I) const;
96 
97   /// \returns True if the condition of 'select' operation \p I comes from a
98   /// signed 'icmp' operation, false otherwise.
99   bool isSigned(const SelectInst &I) const;
100 
101   /// \returns True if type \p T needs to be promoted to 32 bit integer type,
102   /// false otherwise.
103   bool needsPromotionToI32(const Type *T) const;
104 
105   /// Promotes uniform binary operation \p I to equivalent 32 bit binary
106   /// operation.
107   ///
108   /// \details \p I's base element bit width must be greater than 1 and less
109   /// than or equal 16. Promotion is done by sign or zero extending operands to
110   /// 32 bits, replacing \p I with equivalent 32 bit binary operation, and
111   /// truncating the result of 32 bit binary operation back to \p I's original
112   /// type. Division operation is not promoted.
113   ///
114   /// \returns True if \p I is promoted to equivalent 32 bit binary operation,
115   /// false otherwise.
116   bool promoteUniformOpToI32(BinaryOperator &I) const;
117 
118   /// Promotes uniform 'icmp' operation \p I to 32 bit 'icmp' operation.
119   ///
120   /// \details \p I's base element bit width must be greater than 1 and less
121   /// than or equal 16. Promotion is done by sign or zero extending operands to
122   /// 32 bits, and replacing \p I with 32 bit 'icmp' operation.
123   ///
124   /// \returns True.
125   bool promoteUniformOpToI32(ICmpInst &I) const;
126 
127   /// Promotes uniform 'select' operation \p I to 32 bit 'select'
128   /// operation.
129   ///
130   /// \details \p I's base element bit width must be greater than 1 and less
131   /// than or equal 16. Promotion is done by sign or zero extending operands to
132   /// 32 bits, replacing \p I with 32 bit 'select' operation, and truncating the
133   /// result of 32 bit 'select' operation back to \p I's original type.
134   ///
135   /// \returns True.
136   bool promoteUniformOpToI32(SelectInst &I) const;
137 
138   /// Promotes uniform 'bitreverse' intrinsic \p I to 32 bit 'bitreverse'
139   /// intrinsic.
140   ///
141   /// \details \p I's base element bit width must be greater than 1 and less
142   /// than or equal 16. Promotion is done by zero extending the operand to 32
143   /// bits, replacing \p I with 32 bit 'bitreverse' intrinsic, shifting the
144   /// result of 32 bit 'bitreverse' intrinsic to the right with zero fill (the
145   /// shift amount is 32 minus \p I's base element bit width), and truncating
146   /// the result of the shift operation back to \p I's original type.
147   ///
148   /// \returns True.
149   bool promoteUniformBitreverseToI32(IntrinsicInst &I) const;
150 
151   /// \returns The minimum number of bits needed to store the value of \Op as an
152   /// unsigned integer. Truncating to this size and then zero-extending to
153   /// ScalarSize will not change the value.
154   unsigned numBitsUnsigned(Value *Op, unsigned ScalarSize) const;
155 
156   /// \returns The minimum number of bits needed to store the value of \Op as a
157   /// signed integer. Truncating to this size and then sign-extending to
158   /// ScalarSize will not change the value.
159   unsigned numBitsSigned(Value *Op, unsigned ScalarSize) const;
160 
161   /// Replace mul instructions with llvm.amdgcn.mul.u24 or llvm.amdgcn.mul.s24.
162   /// SelectionDAG has an issue where an and asserting the bits are known
163   bool replaceMulWithMul24(BinaryOperator &I) const;
164 
165   /// Perform same function as equivalently named function in DAGCombiner. Since
166   /// we expand some divisions here, we need to perform this before obscuring.
167   bool foldBinOpIntoSelect(BinaryOperator &I) const;
168 
169   bool divHasSpecialOptimization(BinaryOperator &I,
170                                  Value *Num, Value *Den) const;
171   int getDivNumBits(BinaryOperator &I,
172                     Value *Num, Value *Den,
173                     unsigned AtLeast, bool Signed) const;
174 
175   /// Expands 24 bit div or rem.
176   Value* expandDivRem24(IRBuilder<> &Builder, BinaryOperator &I,
177                         Value *Num, Value *Den,
178                         bool IsDiv, bool IsSigned) const;
179 
180   Value *expandDivRem24Impl(IRBuilder<> &Builder, BinaryOperator &I,
181                             Value *Num, Value *Den, unsigned NumBits,
182                             bool IsDiv, bool IsSigned) const;
183 
184   /// Expands 32 bit div or rem.
185   Value* expandDivRem32(IRBuilder<> &Builder, BinaryOperator &I,
186                         Value *Num, Value *Den) const;
187 
188   Value *shrinkDivRem64(IRBuilder<> &Builder, BinaryOperator &I,
189                         Value *Num, Value *Den) const;
190   void expandDivRem64(BinaryOperator &I) const;
191 
192   /// Widen a scalar load.
193   ///
194   /// \details \p Widen scalar load for uniform, small type loads from constant
195   //  memory / to a full 32-bits and then truncate the input to allow a scalar
196   //  load instead of a vector load.
197   //
198   /// \returns True.
199 
200   bool canWidenScalarExtLoad(LoadInst &I) const;
201 
202 public:
203   static char ID;
204 
205   AMDGPUCodeGenPrepare() : FunctionPass(ID) {}
206 
207   bool visitFDiv(BinaryOperator &I);
208   bool visitXor(BinaryOperator &I);
209 
210   bool visitInstruction(Instruction &I) { return false; }
211   bool visitBinaryOperator(BinaryOperator &I);
212   bool visitLoadInst(LoadInst &I);
213   bool visitICmpInst(ICmpInst &I);
214   bool visitSelectInst(SelectInst &I);
215 
216   bool visitIntrinsicInst(IntrinsicInst &I);
217   bool visitBitreverseIntrinsicInst(IntrinsicInst &I);
218 
219   bool doInitialization(Module &M) override;
220   bool runOnFunction(Function &F) override;
221 
222   StringRef getPassName() const override { return "AMDGPU IR optimizations"; }
223 
224   void getAnalysisUsage(AnalysisUsage &AU) const override {
225     AU.addRequired<AssumptionCacheTracker>();
226     AU.addRequired<LegacyDivergenceAnalysis>();
227 
228     // FIXME: Division expansion needs to preserve the dominator tree.
229     if (!ExpandDiv64InIR)
230       AU.setPreservesAll();
231  }
232 };
233 
234 } // end anonymous namespace
235 
236 unsigned AMDGPUCodeGenPrepare::getBaseElementBitWidth(const Type *T) const {
237   assert(needsPromotionToI32(T) && "T does not need promotion to i32");
238 
239   if (T->isIntegerTy())
240     return T->getIntegerBitWidth();
241   return cast<VectorType>(T)->getElementType()->getIntegerBitWidth();
242 }
243 
244 Type *AMDGPUCodeGenPrepare::getI32Ty(IRBuilder<> &B, const Type *T) const {
245   assert(needsPromotionToI32(T) && "T does not need promotion to i32");
246 
247   if (T->isIntegerTy())
248     return B.getInt32Ty();
249   return FixedVectorType::get(B.getInt32Ty(), cast<FixedVectorType>(T));
250 }
251 
252 bool AMDGPUCodeGenPrepare::isSigned(const BinaryOperator &I) const {
253   return I.getOpcode() == Instruction::AShr ||
254       I.getOpcode() == Instruction::SDiv || I.getOpcode() == Instruction::SRem;
255 }
256 
257 bool AMDGPUCodeGenPrepare::isSigned(const SelectInst &I) const {
258   return isa<ICmpInst>(I.getOperand(0)) ?
259       cast<ICmpInst>(I.getOperand(0))->isSigned() : false;
260 }
261 
262 bool AMDGPUCodeGenPrepare::needsPromotionToI32(const Type *T) const {
263   if (!Widen16BitOps)
264     return false;
265 
266   const IntegerType *IntTy = dyn_cast<IntegerType>(T);
267   if (IntTy && IntTy->getBitWidth() > 1 && IntTy->getBitWidth() <= 16)
268     return true;
269 
270   if (const VectorType *VT = dyn_cast<VectorType>(T)) {
271     // TODO: The set of packed operations is more limited, so may want to
272     // promote some anyway.
273     if (ST->hasVOP3PInsts())
274       return false;
275 
276     return needsPromotionToI32(VT->getElementType());
277   }
278 
279   return false;
280 }
281 
282 // Return true if the op promoted to i32 should have nsw set.
283 static bool promotedOpIsNSW(const Instruction &I) {
284   switch (I.getOpcode()) {
285   case Instruction::Shl:
286   case Instruction::Add:
287   case Instruction::Sub:
288     return true;
289   case Instruction::Mul:
290     return I.hasNoUnsignedWrap();
291   default:
292     return false;
293   }
294 }
295 
296 // Return true if the op promoted to i32 should have nuw set.
297 static bool promotedOpIsNUW(const Instruction &I) {
298   switch (I.getOpcode()) {
299   case Instruction::Shl:
300   case Instruction::Add:
301   case Instruction::Mul:
302     return true;
303   case Instruction::Sub:
304     return I.hasNoUnsignedWrap();
305   default:
306     return false;
307   }
308 }
309 
310 bool AMDGPUCodeGenPrepare::canWidenScalarExtLoad(LoadInst &I) const {
311   Type *Ty = I.getType();
312   const DataLayout &DL = Mod->getDataLayout();
313   int TySize = DL.getTypeSizeInBits(Ty);
314   Align Alignment = DL.getValueOrABITypeAlignment(I.getAlign(), Ty);
315 
316   return I.isSimple() && TySize < 32 && Alignment >= 4 && DA->isUniform(&I);
317 }
318 
319 bool AMDGPUCodeGenPrepare::promoteUniformOpToI32(BinaryOperator &I) const {
320   assert(needsPromotionToI32(I.getType()) &&
321          "I does not need promotion to i32");
322 
323   if (I.getOpcode() == Instruction::SDiv ||
324       I.getOpcode() == Instruction::UDiv ||
325       I.getOpcode() == Instruction::SRem ||
326       I.getOpcode() == Instruction::URem)
327     return false;
328 
329   IRBuilder<> Builder(&I);
330   Builder.SetCurrentDebugLocation(I.getDebugLoc());
331 
332   Type *I32Ty = getI32Ty(Builder, I.getType());
333   Value *ExtOp0 = nullptr;
334   Value *ExtOp1 = nullptr;
335   Value *ExtRes = nullptr;
336   Value *TruncRes = nullptr;
337 
338   if (isSigned(I)) {
339     ExtOp0 = Builder.CreateSExt(I.getOperand(0), I32Ty);
340     ExtOp1 = Builder.CreateSExt(I.getOperand(1), I32Ty);
341   } else {
342     ExtOp0 = Builder.CreateZExt(I.getOperand(0), I32Ty);
343     ExtOp1 = Builder.CreateZExt(I.getOperand(1), I32Ty);
344   }
345 
346   ExtRes = Builder.CreateBinOp(I.getOpcode(), ExtOp0, ExtOp1);
347   if (Instruction *Inst = dyn_cast<Instruction>(ExtRes)) {
348     if (promotedOpIsNSW(cast<Instruction>(I)))
349       Inst->setHasNoSignedWrap();
350 
351     if (promotedOpIsNUW(cast<Instruction>(I)))
352       Inst->setHasNoUnsignedWrap();
353 
354     if (const auto *ExactOp = dyn_cast<PossiblyExactOperator>(&I))
355       Inst->setIsExact(ExactOp->isExact());
356   }
357 
358   TruncRes = Builder.CreateTrunc(ExtRes, I.getType());
359 
360   I.replaceAllUsesWith(TruncRes);
361   I.eraseFromParent();
362 
363   return true;
364 }
365 
366 bool AMDGPUCodeGenPrepare::promoteUniformOpToI32(ICmpInst &I) const {
367   assert(needsPromotionToI32(I.getOperand(0)->getType()) &&
368          "I does not need promotion to i32");
369 
370   IRBuilder<> Builder(&I);
371   Builder.SetCurrentDebugLocation(I.getDebugLoc());
372 
373   Type *I32Ty = getI32Ty(Builder, I.getOperand(0)->getType());
374   Value *ExtOp0 = nullptr;
375   Value *ExtOp1 = nullptr;
376   Value *NewICmp  = nullptr;
377 
378   if (I.isSigned()) {
379     ExtOp0 = Builder.CreateSExt(I.getOperand(0), I32Ty);
380     ExtOp1 = Builder.CreateSExt(I.getOperand(1), I32Ty);
381   } else {
382     ExtOp0 = Builder.CreateZExt(I.getOperand(0), I32Ty);
383     ExtOp1 = Builder.CreateZExt(I.getOperand(1), I32Ty);
384   }
385   NewICmp = Builder.CreateICmp(I.getPredicate(), ExtOp0, ExtOp1);
386 
387   I.replaceAllUsesWith(NewICmp);
388   I.eraseFromParent();
389 
390   return true;
391 }
392 
393 bool AMDGPUCodeGenPrepare::promoteUniformOpToI32(SelectInst &I) const {
394   assert(needsPromotionToI32(I.getType()) &&
395          "I does not need promotion to i32");
396 
397   IRBuilder<> Builder(&I);
398   Builder.SetCurrentDebugLocation(I.getDebugLoc());
399 
400   Type *I32Ty = getI32Ty(Builder, I.getType());
401   Value *ExtOp1 = nullptr;
402   Value *ExtOp2 = nullptr;
403   Value *ExtRes = nullptr;
404   Value *TruncRes = nullptr;
405 
406   if (isSigned(I)) {
407     ExtOp1 = Builder.CreateSExt(I.getOperand(1), I32Ty);
408     ExtOp2 = Builder.CreateSExt(I.getOperand(2), I32Ty);
409   } else {
410     ExtOp1 = Builder.CreateZExt(I.getOperand(1), I32Ty);
411     ExtOp2 = Builder.CreateZExt(I.getOperand(2), I32Ty);
412   }
413   ExtRes = Builder.CreateSelect(I.getOperand(0), ExtOp1, ExtOp2);
414   TruncRes = Builder.CreateTrunc(ExtRes, I.getType());
415 
416   I.replaceAllUsesWith(TruncRes);
417   I.eraseFromParent();
418 
419   return true;
420 }
421 
422 bool AMDGPUCodeGenPrepare::promoteUniformBitreverseToI32(
423     IntrinsicInst &I) const {
424   assert(I.getIntrinsicID() == Intrinsic::bitreverse &&
425          "I must be bitreverse intrinsic");
426   assert(needsPromotionToI32(I.getType()) &&
427          "I does not need promotion to i32");
428 
429   IRBuilder<> Builder(&I);
430   Builder.SetCurrentDebugLocation(I.getDebugLoc());
431 
432   Type *I32Ty = getI32Ty(Builder, I.getType());
433   Function *I32 =
434       Intrinsic::getDeclaration(Mod, Intrinsic::bitreverse, { I32Ty });
435   Value *ExtOp = Builder.CreateZExt(I.getOperand(0), I32Ty);
436   Value *ExtRes = Builder.CreateCall(I32, { ExtOp });
437   Value *LShrOp =
438       Builder.CreateLShr(ExtRes, 32 - getBaseElementBitWidth(I.getType()));
439   Value *TruncRes =
440       Builder.CreateTrunc(LShrOp, I.getType());
441 
442   I.replaceAllUsesWith(TruncRes);
443   I.eraseFromParent();
444 
445   return true;
446 }
447 
448 unsigned AMDGPUCodeGenPrepare::numBitsUnsigned(Value *Op,
449                                                unsigned ScalarSize) const {
450   KnownBits Known = computeKnownBits(Op, *DL, 0, AC);
451   return ScalarSize - Known.countMinLeadingZeros();
452 }
453 
454 unsigned AMDGPUCodeGenPrepare::numBitsSigned(Value *Op,
455                                              unsigned ScalarSize) const {
456   // In order for this to be a signed 24-bit value, bit 23, must
457   // be a sign bit.
458   return ScalarSize - ComputeNumSignBits(Op, *DL, 0, AC) + 1;
459 }
460 
461 static void extractValues(IRBuilder<> &Builder,
462                           SmallVectorImpl<Value *> &Values, Value *V) {
463   auto *VT = dyn_cast<FixedVectorType>(V->getType());
464   if (!VT) {
465     Values.push_back(V);
466     return;
467   }
468 
469   for (int I = 0, E = VT->getNumElements(); I != E; ++I)
470     Values.push_back(Builder.CreateExtractElement(V, I));
471 }
472 
473 static Value *insertValues(IRBuilder<> &Builder,
474                            Type *Ty,
475                            SmallVectorImpl<Value *> &Values) {
476   if (Values.size() == 1)
477     return Values[0];
478 
479   Value *NewVal = UndefValue::get(Ty);
480   for (int I = 0, E = Values.size(); I != E; ++I)
481     NewVal = Builder.CreateInsertElement(NewVal, Values[I], I);
482 
483   return NewVal;
484 }
485 
486 // Returns 24-bit or 48-bit (as per `NumBits` and `Size`) mul of `LHS` and
487 // `RHS`. `NumBits` is the number of KnownBits of the result and `Size` is the
488 // width of the original destination.
489 static Value *getMul24(IRBuilder<> &Builder, Value *LHS, Value *RHS,
490                        unsigned Size, unsigned NumBits, bool IsSigned) {
491   if (Size <= 32 || NumBits <= 32) {
492     Intrinsic::ID ID =
493         IsSigned ? Intrinsic::amdgcn_mul_i24 : Intrinsic::amdgcn_mul_u24;
494     return Builder.CreateIntrinsic(ID, {}, {LHS, RHS});
495   }
496 
497   assert(NumBits <= 48);
498 
499   Intrinsic::ID LoID =
500       IsSigned ? Intrinsic::amdgcn_mul_i24 : Intrinsic::amdgcn_mul_u24;
501   Intrinsic::ID HiID =
502       IsSigned ? Intrinsic::amdgcn_mulhi_i24 : Intrinsic::amdgcn_mulhi_u24;
503 
504   Value *Lo = Builder.CreateIntrinsic(LoID, {}, {LHS, RHS});
505   Value *Hi = Builder.CreateIntrinsic(HiID, {}, {LHS, RHS});
506 
507   IntegerType *I64Ty = Builder.getInt64Ty();
508   Lo = Builder.CreateZExtOrTrunc(Lo, I64Ty);
509   Hi = Builder.CreateZExtOrTrunc(Hi, I64Ty);
510 
511   return Builder.CreateOr(Lo, Builder.CreateShl(Hi, 32));
512 }
513 
514 bool AMDGPUCodeGenPrepare::replaceMulWithMul24(BinaryOperator &I) const {
515   if (I.getOpcode() != Instruction::Mul)
516     return false;
517 
518   Type *Ty = I.getType();
519   unsigned Size = Ty->getScalarSizeInBits();
520   if (Size <= 16 && ST->has16BitInsts())
521     return false;
522 
523   // Prefer scalar if this could be s_mul_i32
524   if (DA->isUniform(&I))
525     return false;
526 
527   Value *LHS = I.getOperand(0);
528   Value *RHS = I.getOperand(1);
529   IRBuilder<> Builder(&I);
530   Builder.SetCurrentDebugLocation(I.getDebugLoc());
531 
532   unsigned LHSBits = 0, RHSBits = 0;
533   bool IsSigned = false;
534 
535   if (ST->hasMulU24() && (LHSBits = numBitsUnsigned(LHS, Size)) <= 24 &&
536       (RHSBits = numBitsUnsigned(RHS, Size)) <= 24) {
537     IsSigned = false;
538 
539   } else if (ST->hasMulI24() && (LHSBits = numBitsSigned(LHS, Size)) <= 24 &&
540              (RHSBits = numBitsSigned(RHS, Size)) <= 24) {
541     IsSigned = true;
542 
543   } else
544     return false;
545 
546   SmallVector<Value *, 4> LHSVals;
547   SmallVector<Value *, 4> RHSVals;
548   SmallVector<Value *, 4> ResultVals;
549   extractValues(Builder, LHSVals, LHS);
550   extractValues(Builder, RHSVals, RHS);
551 
552   IntegerType *I32Ty = Builder.getInt32Ty();
553   for (int I = 0, E = LHSVals.size(); I != E; ++I) {
554     Value *LHS, *RHS;
555     if (IsSigned) {
556       LHS = Builder.CreateSExtOrTrunc(LHSVals[I], I32Ty);
557       RHS = Builder.CreateSExtOrTrunc(RHSVals[I], I32Ty);
558     } else {
559       LHS = Builder.CreateZExtOrTrunc(LHSVals[I], I32Ty);
560       RHS = Builder.CreateZExtOrTrunc(RHSVals[I], I32Ty);
561     }
562 
563     Value *Result =
564         getMul24(Builder, LHS, RHS, Size, LHSBits + RHSBits, IsSigned);
565 
566     if (IsSigned) {
567       ResultVals.push_back(
568           Builder.CreateSExtOrTrunc(Result, LHSVals[I]->getType()));
569     } else {
570       ResultVals.push_back(
571           Builder.CreateZExtOrTrunc(Result, LHSVals[I]->getType()));
572     }
573   }
574 
575   Value *NewVal = insertValues(Builder, Ty, ResultVals);
576   NewVal->takeName(&I);
577   I.replaceAllUsesWith(NewVal);
578   I.eraseFromParent();
579 
580   return true;
581 }
582 
583 // Find a select instruction, which may have been casted. This is mostly to deal
584 // with cases where i16 selects were promoted here to i32.
585 static SelectInst *findSelectThroughCast(Value *V, CastInst *&Cast) {
586   Cast = nullptr;
587   if (SelectInst *Sel = dyn_cast<SelectInst>(V))
588     return Sel;
589 
590   if ((Cast = dyn_cast<CastInst>(V))) {
591     if (SelectInst *Sel = dyn_cast<SelectInst>(Cast->getOperand(0)))
592       return Sel;
593   }
594 
595   return nullptr;
596 }
597 
598 bool AMDGPUCodeGenPrepare::foldBinOpIntoSelect(BinaryOperator &BO) const {
599   // Don't do this unless the old select is going away. We want to eliminate the
600   // binary operator, not replace a binop with a select.
601   int SelOpNo = 0;
602 
603   CastInst *CastOp;
604 
605   // TODO: Should probably try to handle some cases with multiple
606   // users. Duplicating the select may be profitable for division.
607   SelectInst *Sel = findSelectThroughCast(BO.getOperand(0), CastOp);
608   if (!Sel || !Sel->hasOneUse()) {
609     SelOpNo = 1;
610     Sel = findSelectThroughCast(BO.getOperand(1), CastOp);
611   }
612 
613   if (!Sel || !Sel->hasOneUse())
614     return false;
615 
616   Constant *CT = dyn_cast<Constant>(Sel->getTrueValue());
617   Constant *CF = dyn_cast<Constant>(Sel->getFalseValue());
618   Constant *CBO = dyn_cast<Constant>(BO.getOperand(SelOpNo ^ 1));
619   if (!CBO || !CT || !CF)
620     return false;
621 
622   if (CastOp) {
623     if (!CastOp->hasOneUse())
624       return false;
625     CT = ConstantFoldCastOperand(CastOp->getOpcode(), CT, BO.getType(), *DL);
626     CF = ConstantFoldCastOperand(CastOp->getOpcode(), CF, BO.getType(), *DL);
627   }
628 
629   // TODO: Handle special 0/-1 cases DAG combine does, although we only really
630   // need to handle divisions here.
631   Constant *FoldedT = SelOpNo ?
632     ConstantFoldBinaryOpOperands(BO.getOpcode(), CBO, CT, *DL) :
633     ConstantFoldBinaryOpOperands(BO.getOpcode(), CT, CBO, *DL);
634   if (isa<ConstantExpr>(FoldedT))
635     return false;
636 
637   Constant *FoldedF = SelOpNo ?
638     ConstantFoldBinaryOpOperands(BO.getOpcode(), CBO, CF, *DL) :
639     ConstantFoldBinaryOpOperands(BO.getOpcode(), CF, CBO, *DL);
640   if (isa<ConstantExpr>(FoldedF))
641     return false;
642 
643   IRBuilder<> Builder(&BO);
644   Builder.SetCurrentDebugLocation(BO.getDebugLoc());
645   if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(&BO))
646     Builder.setFastMathFlags(FPOp->getFastMathFlags());
647 
648   Value *NewSelect = Builder.CreateSelect(Sel->getCondition(),
649                                           FoldedT, FoldedF);
650   NewSelect->takeName(&BO);
651   BO.replaceAllUsesWith(NewSelect);
652   BO.eraseFromParent();
653   if (CastOp)
654     CastOp->eraseFromParent();
655   Sel->eraseFromParent();
656   return true;
657 }
658 
659 // Optimize fdiv with rcp:
660 //
661 // 1/x -> rcp(x) when rcp is sufficiently accurate or inaccurate rcp is
662 //               allowed with unsafe-fp-math or afn.
663 //
664 // a/b -> a*rcp(b) when inaccurate rcp is allowed with unsafe-fp-math or afn.
665 static Value *optimizeWithRcp(Value *Num, Value *Den, bool AllowInaccurateRcp,
666                               bool RcpIsAccurate, IRBuilder<> &Builder,
667                               Module *Mod) {
668 
669   if (!AllowInaccurateRcp && !RcpIsAccurate)
670     return nullptr;
671 
672   Type *Ty = Den->getType();
673   if (const ConstantFP *CLHS = dyn_cast<ConstantFP>(Num)) {
674     if (AllowInaccurateRcp || RcpIsAccurate) {
675       if (CLHS->isExactlyValue(1.0)) {
676         Function *Decl = Intrinsic::getDeclaration(
677           Mod, Intrinsic::amdgcn_rcp, Ty);
678 
679         // v_rcp_f32 and v_rsq_f32 do not support denormals, and according to
680         // the CI documentation has a worst case error of 1 ulp.
681         // OpenCL requires <= 2.5 ulp for 1.0 / x, so it should always be OK to
682         // use it as long as we aren't trying to use denormals.
683         //
684         // v_rcp_f16 and v_rsq_f16 DO support denormals.
685 
686         // NOTE: v_sqrt and v_rcp will be combined to v_rsq later. So we don't
687         //       insert rsq intrinsic here.
688 
689         // 1.0 / x -> rcp(x)
690         return Builder.CreateCall(Decl, { Den });
691       }
692 
693        // Same as for 1.0, but expand the sign out of the constant.
694       if (CLHS->isExactlyValue(-1.0)) {
695         Function *Decl = Intrinsic::getDeclaration(
696           Mod, Intrinsic::amdgcn_rcp, Ty);
697 
698          // -1.0 / x -> rcp (fneg x)
699          Value *FNeg = Builder.CreateFNeg(Den);
700          return Builder.CreateCall(Decl, { FNeg });
701        }
702     }
703   }
704 
705   if (AllowInaccurateRcp) {
706     Function *Decl = Intrinsic::getDeclaration(
707       Mod, Intrinsic::amdgcn_rcp, Ty);
708 
709     // Turn into multiply by the reciprocal.
710     // x / y -> x * (1.0 / y)
711     Value *Recip = Builder.CreateCall(Decl, { Den });
712     return Builder.CreateFMul(Num, Recip);
713   }
714   return nullptr;
715 }
716 
717 // optimize with fdiv.fast:
718 //
719 // a/b -> fdiv.fast(a, b) when !fpmath >= 2.5ulp with denormals flushed.
720 //
721 // 1/x -> fdiv.fast(1,x)  when !fpmath >= 2.5ulp.
722 //
723 // NOTE: optimizeWithRcp should be tried first because rcp is the preference.
724 static Value *optimizeWithFDivFast(Value *Num, Value *Den, float ReqdAccuracy,
725                                    bool HasDenormals, IRBuilder<> &Builder,
726                                    Module *Mod) {
727   // fdiv.fast can achieve 2.5 ULP accuracy.
728   if (ReqdAccuracy < 2.5f)
729     return nullptr;
730 
731   // Only have fdiv.fast for f32.
732   Type *Ty = Den->getType();
733   if (!Ty->isFloatTy())
734     return nullptr;
735 
736   bool NumIsOne = false;
737   if (const ConstantFP *CNum = dyn_cast<ConstantFP>(Num)) {
738     if (CNum->isExactlyValue(+1.0) || CNum->isExactlyValue(-1.0))
739       NumIsOne = true;
740   }
741 
742   // fdiv does not support denormals. But 1.0/x is always fine to use it.
743   if (HasDenormals && !NumIsOne)
744     return nullptr;
745 
746   Function *Decl = Intrinsic::getDeclaration(Mod, Intrinsic::amdgcn_fdiv_fast);
747   return Builder.CreateCall(Decl, { Num, Den });
748 }
749 
750 // Optimizations is performed based on fpmath, fast math flags as well as
751 // denormals to optimize fdiv with either rcp or fdiv.fast.
752 //
753 // With rcp:
754 //   1/x -> rcp(x) when rcp is sufficiently accurate or inaccurate rcp is
755 //                 allowed with unsafe-fp-math or afn.
756 //
757 //   a/b -> a*rcp(b) when inaccurate rcp is allowed with unsafe-fp-math or afn.
758 //
759 // With fdiv.fast:
760 //   a/b -> fdiv.fast(a, b) when !fpmath >= 2.5ulp with denormals flushed.
761 //
762 //   1/x -> fdiv.fast(1,x)  when !fpmath >= 2.5ulp.
763 //
764 // NOTE: rcp is the preference in cases that both are legal.
765 bool AMDGPUCodeGenPrepare::visitFDiv(BinaryOperator &FDiv) {
766 
767   Type *Ty = FDiv.getType()->getScalarType();
768 
769   // The f64 rcp/rsq approximations are pretty inaccurate. We can do an
770   // expansion around them in codegen.
771   if (Ty->isDoubleTy())
772     return false;
773 
774   // No intrinsic for fdiv16 if target does not support f16.
775   if (Ty->isHalfTy() && !ST->has16BitInsts())
776     return false;
777 
778   const FPMathOperator *FPOp = cast<const FPMathOperator>(&FDiv);
779   const float ReqdAccuracy =  FPOp->getFPAccuracy();
780 
781   // Inaccurate rcp is allowed with unsafe-fp-math or afn.
782   FastMathFlags FMF = FPOp->getFastMathFlags();
783   const bool AllowInaccurateRcp = HasUnsafeFPMath || FMF.approxFunc();
784 
785   // rcp_f16 is accurate for !fpmath >= 1.0ulp.
786   // rcp_f32 is accurate for !fpmath >= 1.0ulp and denormals are flushed.
787   // rcp_f64 is never accurate.
788   const bool RcpIsAccurate = (Ty->isHalfTy() && ReqdAccuracy >= 1.0f) ||
789             (Ty->isFloatTy() && !HasFP32Denormals && ReqdAccuracy >= 1.0f);
790 
791   IRBuilder<> Builder(FDiv.getParent(), std::next(FDiv.getIterator()));
792   Builder.setFastMathFlags(FMF);
793   Builder.SetCurrentDebugLocation(FDiv.getDebugLoc());
794 
795   Value *Num = FDiv.getOperand(0);
796   Value *Den = FDiv.getOperand(1);
797 
798   Value *NewFDiv = nullptr;
799   if (auto *VT = dyn_cast<FixedVectorType>(FDiv.getType())) {
800     NewFDiv = UndefValue::get(VT);
801 
802     // FIXME: Doesn't do the right thing for cases where the vector is partially
803     // constant. This works when the scalarizer pass is run first.
804     for (unsigned I = 0, E = VT->getNumElements(); I != E; ++I) {
805       Value *NumEltI = Builder.CreateExtractElement(Num, I);
806       Value *DenEltI = Builder.CreateExtractElement(Den, I);
807       // Try rcp first.
808       Value *NewElt = optimizeWithRcp(NumEltI, DenEltI, AllowInaccurateRcp,
809                                       RcpIsAccurate, Builder, Mod);
810       if (!NewElt) // Try fdiv.fast.
811         NewElt = optimizeWithFDivFast(NumEltI, DenEltI, ReqdAccuracy,
812                                       HasFP32Denormals, Builder, Mod);
813       if (!NewElt) // Keep the original.
814         NewElt = Builder.CreateFDiv(NumEltI, DenEltI);
815 
816       NewFDiv = Builder.CreateInsertElement(NewFDiv, NewElt, I);
817     }
818   } else { // Scalar FDiv.
819     // Try rcp first.
820     NewFDiv = optimizeWithRcp(Num, Den, AllowInaccurateRcp, RcpIsAccurate,
821                               Builder, Mod);
822     if (!NewFDiv) { // Try fdiv.fast.
823       NewFDiv = optimizeWithFDivFast(Num, Den, ReqdAccuracy, HasFP32Denormals,
824                                      Builder, Mod);
825     }
826   }
827 
828   if (NewFDiv) {
829     FDiv.replaceAllUsesWith(NewFDiv);
830     NewFDiv->takeName(&FDiv);
831     FDiv.eraseFromParent();
832   }
833 
834   return !!NewFDiv;
835 }
836 
837 bool AMDGPUCodeGenPrepare::visitXor(BinaryOperator &I) {
838   // Match the Xor instruction, its type and its operands
839   IntrinsicInst *IntrinsicCall = dyn_cast<IntrinsicInst>(I.getOperand(0));
840   ConstantInt *RHS = dyn_cast<ConstantInt>(I.getOperand(1));
841   if (!RHS || !IntrinsicCall || RHS->getSExtValue() != -1)
842     return visitBinaryOperator(I);
843 
844   // Check if the Call is an intrinsic instruction to amdgcn_class intrinsic
845   // has only one use
846   if (IntrinsicCall->getIntrinsicID() != Intrinsic::amdgcn_class ||
847       !IntrinsicCall->hasOneUse())
848     return visitBinaryOperator(I);
849 
850   // "Not" the second argument of the intrinsic call
851   ConstantInt *Arg = dyn_cast<ConstantInt>(IntrinsicCall->getOperand(1));
852   if (!Arg)
853     return visitBinaryOperator(I);
854 
855   IntrinsicCall->setOperand(
856       1, ConstantInt::get(Arg->getType(), Arg->getZExtValue() ^ 0x3ff));
857   I.replaceAllUsesWith(IntrinsicCall);
858   I.eraseFromParent();
859   return true;
860 }
861 
862 static bool hasUnsafeFPMath(const Function &F) {
863   Attribute Attr = F.getFnAttribute("unsafe-fp-math");
864   return Attr.getValueAsBool();
865 }
866 
867 static std::pair<Value*, Value*> getMul64(IRBuilder<> &Builder,
868                                           Value *LHS, Value *RHS) {
869   Type *I32Ty = Builder.getInt32Ty();
870   Type *I64Ty = Builder.getInt64Ty();
871 
872   Value *LHS_EXT64 = Builder.CreateZExt(LHS, I64Ty);
873   Value *RHS_EXT64 = Builder.CreateZExt(RHS, I64Ty);
874   Value *MUL64 = Builder.CreateMul(LHS_EXT64, RHS_EXT64);
875   Value *Lo = Builder.CreateTrunc(MUL64, I32Ty);
876   Value *Hi = Builder.CreateLShr(MUL64, Builder.getInt64(32));
877   Hi = Builder.CreateTrunc(Hi, I32Ty);
878   return std::make_pair(Lo, Hi);
879 }
880 
881 static Value* getMulHu(IRBuilder<> &Builder, Value *LHS, Value *RHS) {
882   return getMul64(Builder, LHS, RHS).second;
883 }
884 
885 /// Figure out how many bits are really needed for this ddivision. \p AtLeast is
886 /// an optimization hint to bypass the second ComputeNumSignBits call if we the
887 /// first one is insufficient. Returns -1 on failure.
888 int AMDGPUCodeGenPrepare::getDivNumBits(BinaryOperator &I,
889                                         Value *Num, Value *Den,
890                                         unsigned AtLeast, bool IsSigned) const {
891   const DataLayout &DL = Mod->getDataLayout();
892   unsigned LHSSignBits = ComputeNumSignBits(Num, DL, 0, AC, &I);
893   if (LHSSignBits < AtLeast)
894     return -1;
895 
896   unsigned RHSSignBits = ComputeNumSignBits(Den, DL, 0, AC, &I);
897   if (RHSSignBits < AtLeast)
898     return -1;
899 
900   unsigned SignBits = std::min(LHSSignBits, RHSSignBits);
901   unsigned DivBits = Num->getType()->getScalarSizeInBits() - SignBits;
902   if (IsSigned)
903     ++DivBits;
904   return DivBits;
905 }
906 
907 // The fractional part of a float is enough to accurately represent up to
908 // a 24-bit signed integer.
909 Value *AMDGPUCodeGenPrepare::expandDivRem24(IRBuilder<> &Builder,
910                                             BinaryOperator &I,
911                                             Value *Num, Value *Den,
912                                             bool IsDiv, bool IsSigned) const {
913   int DivBits = getDivNumBits(I, Num, Den, 9, IsSigned);
914   if (DivBits == -1)
915     return nullptr;
916   return expandDivRem24Impl(Builder, I, Num, Den, DivBits, IsDiv, IsSigned);
917 }
918 
919 Value *AMDGPUCodeGenPrepare::expandDivRem24Impl(IRBuilder<> &Builder,
920                                                 BinaryOperator &I,
921                                                 Value *Num, Value *Den,
922                                                 unsigned DivBits,
923                                                 bool IsDiv, bool IsSigned) const {
924   Type *I32Ty = Builder.getInt32Ty();
925   Num = Builder.CreateTrunc(Num, I32Ty);
926   Den = Builder.CreateTrunc(Den, I32Ty);
927 
928   Type *F32Ty = Builder.getFloatTy();
929   ConstantInt *One = Builder.getInt32(1);
930   Value *JQ = One;
931 
932   if (IsSigned) {
933     // char|short jq = ia ^ ib;
934     JQ = Builder.CreateXor(Num, Den);
935 
936     // jq = jq >> (bitsize - 2)
937     JQ = Builder.CreateAShr(JQ, Builder.getInt32(30));
938 
939     // jq = jq | 0x1
940     JQ = Builder.CreateOr(JQ, One);
941   }
942 
943   // int ia = (int)LHS;
944   Value *IA = Num;
945 
946   // int ib, (int)RHS;
947   Value *IB = Den;
948 
949   // float fa = (float)ia;
950   Value *FA = IsSigned ? Builder.CreateSIToFP(IA, F32Ty)
951                        : Builder.CreateUIToFP(IA, F32Ty);
952 
953   // float fb = (float)ib;
954   Value *FB = IsSigned ? Builder.CreateSIToFP(IB,F32Ty)
955                        : Builder.CreateUIToFP(IB,F32Ty);
956 
957   Function *RcpDecl = Intrinsic::getDeclaration(Mod, Intrinsic::amdgcn_rcp,
958                                                 Builder.getFloatTy());
959   Value *RCP = Builder.CreateCall(RcpDecl, { FB });
960   Value *FQM = Builder.CreateFMul(FA, RCP);
961 
962   // fq = trunc(fqm);
963   CallInst *FQ = Builder.CreateUnaryIntrinsic(Intrinsic::trunc, FQM);
964   FQ->copyFastMathFlags(Builder.getFastMathFlags());
965 
966   // float fqneg = -fq;
967   Value *FQNeg = Builder.CreateFNeg(FQ);
968 
969   // float fr = mad(fqneg, fb, fa);
970   auto FMAD = !ST->hasMadMacF32Insts()
971                   ? Intrinsic::fma
972                   : (Intrinsic::ID)Intrinsic::amdgcn_fmad_ftz;
973   Value *FR = Builder.CreateIntrinsic(FMAD,
974                                       {FQNeg->getType()}, {FQNeg, FB, FA}, FQ);
975 
976   // int iq = (int)fq;
977   Value *IQ = IsSigned ? Builder.CreateFPToSI(FQ, I32Ty)
978                        : Builder.CreateFPToUI(FQ, I32Ty);
979 
980   // fr = fabs(fr);
981   FR = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, FR, FQ);
982 
983   // fb = fabs(fb);
984   FB = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, FB, FQ);
985 
986   // int cv = fr >= fb;
987   Value *CV = Builder.CreateFCmpOGE(FR, FB);
988 
989   // jq = (cv ? jq : 0);
990   JQ = Builder.CreateSelect(CV, JQ, Builder.getInt32(0));
991 
992   // dst = iq + jq;
993   Value *Div = Builder.CreateAdd(IQ, JQ);
994 
995   Value *Res = Div;
996   if (!IsDiv) {
997     // Rem needs compensation, it's easier to recompute it
998     Value *Rem = Builder.CreateMul(Div, Den);
999     Res = Builder.CreateSub(Num, Rem);
1000   }
1001 
1002   if (DivBits != 0 && DivBits < 32) {
1003     // Extend in register from the number of bits this divide really is.
1004     if (IsSigned) {
1005       int InRegBits = 32 - DivBits;
1006 
1007       Res = Builder.CreateShl(Res, InRegBits);
1008       Res = Builder.CreateAShr(Res, InRegBits);
1009     } else {
1010       ConstantInt *TruncMask
1011         = Builder.getInt32((UINT64_C(1) << DivBits) - 1);
1012       Res = Builder.CreateAnd(Res, TruncMask);
1013     }
1014   }
1015 
1016   return Res;
1017 }
1018 
1019 // Try to recognize special cases the DAG will emit special, better expansions
1020 // than the general expansion we do here.
1021 
1022 // TODO: It would be better to just directly handle those optimizations here.
1023 bool AMDGPUCodeGenPrepare::divHasSpecialOptimization(
1024   BinaryOperator &I, Value *Num, Value *Den) const {
1025   if (Constant *C = dyn_cast<Constant>(Den)) {
1026     // Arbitrary constants get a better expansion as long as a wider mulhi is
1027     // legal.
1028     if (C->getType()->getScalarSizeInBits() <= 32)
1029       return true;
1030 
1031     // TODO: Sdiv check for not exact for some reason.
1032 
1033     // If there's no wider mulhi, there's only a better expansion for powers of
1034     // two.
1035     // TODO: Should really know for each vector element.
1036     if (isKnownToBeAPowerOfTwo(C, *DL, true, 0, AC, &I, DT))
1037       return true;
1038 
1039     return false;
1040   }
1041 
1042   if (BinaryOperator *BinOpDen = dyn_cast<BinaryOperator>(Den)) {
1043     // fold (udiv x, (shl c, y)) -> x >>u (log2(c)+y) iff c is power of 2
1044     if (BinOpDen->getOpcode() == Instruction::Shl &&
1045         isa<Constant>(BinOpDen->getOperand(0)) &&
1046         isKnownToBeAPowerOfTwo(BinOpDen->getOperand(0), *DL, true,
1047                                0, AC, &I, DT)) {
1048       return true;
1049     }
1050   }
1051 
1052   return false;
1053 }
1054 
1055 static Value *getSign32(Value *V, IRBuilder<> &Builder, const DataLayout *DL) {
1056   // Check whether the sign can be determined statically.
1057   KnownBits Known = computeKnownBits(V, *DL);
1058   if (Known.isNegative())
1059     return Constant::getAllOnesValue(V->getType());
1060   if (Known.isNonNegative())
1061     return Constant::getNullValue(V->getType());
1062   return Builder.CreateAShr(V, Builder.getInt32(31));
1063 }
1064 
1065 Value *AMDGPUCodeGenPrepare::expandDivRem32(IRBuilder<> &Builder,
1066                                             BinaryOperator &I, Value *X,
1067                                             Value *Y) const {
1068   Instruction::BinaryOps Opc = I.getOpcode();
1069   assert(Opc == Instruction::URem || Opc == Instruction::UDiv ||
1070          Opc == Instruction::SRem || Opc == Instruction::SDiv);
1071 
1072   FastMathFlags FMF;
1073   FMF.setFast();
1074   Builder.setFastMathFlags(FMF);
1075 
1076   if (divHasSpecialOptimization(I, X, Y))
1077     return nullptr;  // Keep it for later optimization.
1078 
1079   bool IsDiv = Opc == Instruction::UDiv || Opc == Instruction::SDiv;
1080   bool IsSigned = Opc == Instruction::SRem || Opc == Instruction::SDiv;
1081 
1082   Type *Ty = X->getType();
1083   Type *I32Ty = Builder.getInt32Ty();
1084   Type *F32Ty = Builder.getFloatTy();
1085 
1086   if (Ty->getScalarSizeInBits() < 32) {
1087     if (IsSigned) {
1088       X = Builder.CreateSExt(X, I32Ty);
1089       Y = Builder.CreateSExt(Y, I32Ty);
1090     } else {
1091       X = Builder.CreateZExt(X, I32Ty);
1092       Y = Builder.CreateZExt(Y, I32Ty);
1093     }
1094   }
1095 
1096   if (Value *Res = expandDivRem24(Builder, I, X, Y, IsDiv, IsSigned)) {
1097     return IsSigned ? Builder.CreateSExtOrTrunc(Res, Ty) :
1098                       Builder.CreateZExtOrTrunc(Res, Ty);
1099   }
1100 
1101   ConstantInt *Zero = Builder.getInt32(0);
1102   ConstantInt *One = Builder.getInt32(1);
1103 
1104   Value *Sign = nullptr;
1105   if (IsSigned) {
1106     Value *SignX = getSign32(X, Builder, DL);
1107     Value *SignY = getSign32(Y, Builder, DL);
1108     // Remainder sign is the same as LHS
1109     Sign = IsDiv ? Builder.CreateXor(SignX, SignY) : SignX;
1110 
1111     X = Builder.CreateAdd(X, SignX);
1112     Y = Builder.CreateAdd(Y, SignY);
1113 
1114     X = Builder.CreateXor(X, SignX);
1115     Y = Builder.CreateXor(Y, SignY);
1116   }
1117 
1118   // The algorithm here is based on ideas from "Software Integer Division", Tom
1119   // Rodeheffer, August 2008.
1120   //
1121   // unsigned udiv(unsigned x, unsigned y) {
1122   //   // Initial estimate of inv(y). The constant is less than 2^32 to ensure
1123   //   // that this is a lower bound on inv(y), even if some of the calculations
1124   //   // round up.
1125   //   unsigned z = (unsigned)((4294967296.0 - 512.0) * v_rcp_f32((float)y));
1126   //
1127   //   // One round of UNR (Unsigned integer Newton-Raphson) to improve z.
1128   //   // Empirically this is guaranteed to give a "two-y" lower bound on
1129   //   // inv(y).
1130   //   z += umulh(z, -y * z);
1131   //
1132   //   // Quotient/remainder estimate.
1133   //   unsigned q = umulh(x, z);
1134   //   unsigned r = x - q * y;
1135   //
1136   //   // Two rounds of quotient/remainder refinement.
1137   //   if (r >= y) {
1138   //     ++q;
1139   //     r -= y;
1140   //   }
1141   //   if (r >= y) {
1142   //     ++q;
1143   //     r -= y;
1144   //   }
1145   //
1146   //   return q;
1147   // }
1148 
1149   // Initial estimate of inv(y).
1150   Value *FloatY = Builder.CreateUIToFP(Y, F32Ty);
1151   Function *Rcp = Intrinsic::getDeclaration(Mod, Intrinsic::amdgcn_rcp, F32Ty);
1152   Value *RcpY = Builder.CreateCall(Rcp, {FloatY});
1153   Constant *Scale = ConstantFP::get(F32Ty, BitsToFloat(0x4F7FFFFE));
1154   Value *ScaledY = Builder.CreateFMul(RcpY, Scale);
1155   Value *Z = Builder.CreateFPToUI(ScaledY, I32Ty);
1156 
1157   // One round of UNR.
1158   Value *NegY = Builder.CreateSub(Zero, Y);
1159   Value *NegYZ = Builder.CreateMul(NegY, Z);
1160   Z = Builder.CreateAdd(Z, getMulHu(Builder, Z, NegYZ));
1161 
1162   // Quotient/remainder estimate.
1163   Value *Q = getMulHu(Builder, X, Z);
1164   Value *R = Builder.CreateSub(X, Builder.CreateMul(Q, Y));
1165 
1166   // First quotient/remainder refinement.
1167   Value *Cond = Builder.CreateICmpUGE(R, Y);
1168   if (IsDiv)
1169     Q = Builder.CreateSelect(Cond, Builder.CreateAdd(Q, One), Q);
1170   R = Builder.CreateSelect(Cond, Builder.CreateSub(R, Y), R);
1171 
1172   // Second quotient/remainder refinement.
1173   Cond = Builder.CreateICmpUGE(R, Y);
1174   Value *Res;
1175   if (IsDiv)
1176     Res = Builder.CreateSelect(Cond, Builder.CreateAdd(Q, One), Q);
1177   else
1178     Res = Builder.CreateSelect(Cond, Builder.CreateSub(R, Y), R);
1179 
1180   if (IsSigned) {
1181     Res = Builder.CreateXor(Res, Sign);
1182     Res = Builder.CreateSub(Res, Sign);
1183   }
1184 
1185   Res = Builder.CreateTrunc(Res, Ty);
1186 
1187   return Res;
1188 }
1189 
1190 Value *AMDGPUCodeGenPrepare::shrinkDivRem64(IRBuilder<> &Builder,
1191                                             BinaryOperator &I,
1192                                             Value *Num, Value *Den) const {
1193   if (!ExpandDiv64InIR && divHasSpecialOptimization(I, Num, Den))
1194     return nullptr;  // Keep it for later optimization.
1195 
1196   Instruction::BinaryOps Opc = I.getOpcode();
1197 
1198   bool IsDiv = Opc == Instruction::SDiv || Opc == Instruction::UDiv;
1199   bool IsSigned = Opc == Instruction::SDiv || Opc == Instruction::SRem;
1200 
1201   int NumDivBits = getDivNumBits(I, Num, Den, 32, IsSigned);
1202   if (NumDivBits == -1)
1203     return nullptr;
1204 
1205   Value *Narrowed = nullptr;
1206   if (NumDivBits <= 24) {
1207     Narrowed = expandDivRem24Impl(Builder, I, Num, Den, NumDivBits,
1208                                   IsDiv, IsSigned);
1209   } else if (NumDivBits <= 32) {
1210     Narrowed = expandDivRem32(Builder, I, Num, Den);
1211   }
1212 
1213   if (Narrowed) {
1214     return IsSigned ? Builder.CreateSExt(Narrowed, Num->getType()) :
1215                       Builder.CreateZExt(Narrowed, Num->getType());
1216   }
1217 
1218   return nullptr;
1219 }
1220 
1221 void AMDGPUCodeGenPrepare::expandDivRem64(BinaryOperator &I) const {
1222   Instruction::BinaryOps Opc = I.getOpcode();
1223   // Do the general expansion.
1224   if (Opc == Instruction::UDiv || Opc == Instruction::SDiv) {
1225     expandDivisionUpTo64Bits(&I);
1226     return;
1227   }
1228 
1229   if (Opc == Instruction::URem || Opc == Instruction::SRem) {
1230     expandRemainderUpTo64Bits(&I);
1231     return;
1232   }
1233 
1234   llvm_unreachable("not a division");
1235 }
1236 
1237 bool AMDGPUCodeGenPrepare::visitBinaryOperator(BinaryOperator &I) {
1238   if (foldBinOpIntoSelect(I))
1239     return true;
1240 
1241   if (ST->has16BitInsts() && needsPromotionToI32(I.getType()) &&
1242       DA->isUniform(&I) && promoteUniformOpToI32(I))
1243     return true;
1244 
1245   if (UseMul24Intrin && replaceMulWithMul24(I))
1246     return true;
1247 
1248   bool Changed = false;
1249   Instruction::BinaryOps Opc = I.getOpcode();
1250   Type *Ty = I.getType();
1251   Value *NewDiv = nullptr;
1252   unsigned ScalarSize = Ty->getScalarSizeInBits();
1253 
1254   SmallVector<BinaryOperator *, 8> Div64ToExpand;
1255 
1256   if ((Opc == Instruction::URem || Opc == Instruction::UDiv ||
1257        Opc == Instruction::SRem || Opc == Instruction::SDiv) &&
1258       ScalarSize <= 64 &&
1259       !DisableIDivExpand) {
1260     Value *Num = I.getOperand(0);
1261     Value *Den = I.getOperand(1);
1262     IRBuilder<> Builder(&I);
1263     Builder.SetCurrentDebugLocation(I.getDebugLoc());
1264 
1265     if (auto *VT = dyn_cast<FixedVectorType>(Ty)) {
1266       NewDiv = UndefValue::get(VT);
1267 
1268       for (unsigned N = 0, E = VT->getNumElements(); N != E; ++N) {
1269         Value *NumEltN = Builder.CreateExtractElement(Num, N);
1270         Value *DenEltN = Builder.CreateExtractElement(Den, N);
1271 
1272         Value *NewElt;
1273         if (ScalarSize <= 32) {
1274           NewElt = expandDivRem32(Builder, I, NumEltN, DenEltN);
1275           if (!NewElt)
1276             NewElt = Builder.CreateBinOp(Opc, NumEltN, DenEltN);
1277         } else {
1278           // See if this 64-bit division can be shrunk to 32/24-bits before
1279           // producing the general expansion.
1280           NewElt = shrinkDivRem64(Builder, I, NumEltN, DenEltN);
1281           if (!NewElt) {
1282             // The general 64-bit expansion introduces control flow and doesn't
1283             // return the new value. Just insert a scalar copy and defer
1284             // expanding it.
1285             NewElt = Builder.CreateBinOp(Opc, NumEltN, DenEltN);
1286             Div64ToExpand.push_back(cast<BinaryOperator>(NewElt));
1287           }
1288         }
1289 
1290         NewDiv = Builder.CreateInsertElement(NewDiv, NewElt, N);
1291       }
1292     } else {
1293       if (ScalarSize <= 32)
1294         NewDiv = expandDivRem32(Builder, I, Num, Den);
1295       else {
1296         NewDiv = shrinkDivRem64(Builder, I, Num, Den);
1297         if (!NewDiv)
1298           Div64ToExpand.push_back(&I);
1299       }
1300     }
1301 
1302     if (NewDiv) {
1303       I.replaceAllUsesWith(NewDiv);
1304       I.eraseFromParent();
1305       Changed = true;
1306     }
1307   }
1308 
1309   if (ExpandDiv64InIR) {
1310     // TODO: We get much worse code in specially handled constant cases.
1311     for (BinaryOperator *Div : Div64ToExpand) {
1312       expandDivRem64(*Div);
1313       Changed = true;
1314     }
1315   }
1316 
1317   return Changed;
1318 }
1319 
1320 bool AMDGPUCodeGenPrepare::visitLoadInst(LoadInst &I) {
1321   if (!WidenLoads)
1322     return false;
1323 
1324   if ((I.getPointerAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS ||
1325        I.getPointerAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS_32BIT) &&
1326       canWidenScalarExtLoad(I)) {
1327     IRBuilder<> Builder(&I);
1328     Builder.SetCurrentDebugLocation(I.getDebugLoc());
1329 
1330     Type *I32Ty = Builder.getInt32Ty();
1331     Type *PT = PointerType::get(I32Ty, I.getPointerAddressSpace());
1332     Value *BitCast= Builder.CreateBitCast(I.getPointerOperand(), PT);
1333     LoadInst *WidenLoad = Builder.CreateLoad(I32Ty, BitCast);
1334     WidenLoad->copyMetadata(I);
1335 
1336     // If we have range metadata, we need to convert the type, and not make
1337     // assumptions about the high bits.
1338     if (auto *Range = WidenLoad->getMetadata(LLVMContext::MD_range)) {
1339       ConstantInt *Lower =
1340         mdconst::extract<ConstantInt>(Range->getOperand(0));
1341 
1342       if (Lower->isNullValue()) {
1343         WidenLoad->setMetadata(LLVMContext::MD_range, nullptr);
1344       } else {
1345         Metadata *LowAndHigh[] = {
1346           ConstantAsMetadata::get(ConstantInt::get(I32Ty, Lower->getValue().zext(32))),
1347           // Don't make assumptions about the high bits.
1348           ConstantAsMetadata::get(ConstantInt::get(I32Ty, 0))
1349         };
1350 
1351         WidenLoad->setMetadata(LLVMContext::MD_range,
1352                                MDNode::get(Mod->getContext(), LowAndHigh));
1353       }
1354     }
1355 
1356     int TySize = Mod->getDataLayout().getTypeSizeInBits(I.getType());
1357     Type *IntNTy = Builder.getIntNTy(TySize);
1358     Value *ValTrunc = Builder.CreateTrunc(WidenLoad, IntNTy);
1359     Value *ValOrig = Builder.CreateBitCast(ValTrunc, I.getType());
1360     I.replaceAllUsesWith(ValOrig);
1361     I.eraseFromParent();
1362     return true;
1363   }
1364 
1365   return false;
1366 }
1367 
1368 bool AMDGPUCodeGenPrepare::visitICmpInst(ICmpInst &I) {
1369   bool Changed = false;
1370 
1371   if (ST->has16BitInsts() && needsPromotionToI32(I.getOperand(0)->getType()) &&
1372       DA->isUniform(&I))
1373     Changed |= promoteUniformOpToI32(I);
1374 
1375   return Changed;
1376 }
1377 
1378 bool AMDGPUCodeGenPrepare::visitSelectInst(SelectInst &I) {
1379   bool Changed = false;
1380 
1381   if (ST->has16BitInsts() && needsPromotionToI32(I.getType()) &&
1382       DA->isUniform(&I))
1383     Changed |= promoteUniformOpToI32(I);
1384 
1385   return Changed;
1386 }
1387 
1388 bool AMDGPUCodeGenPrepare::visitIntrinsicInst(IntrinsicInst &I) {
1389   switch (I.getIntrinsicID()) {
1390   case Intrinsic::bitreverse:
1391     return visitBitreverseIntrinsicInst(I);
1392   default:
1393     return false;
1394   }
1395 }
1396 
1397 bool AMDGPUCodeGenPrepare::visitBitreverseIntrinsicInst(IntrinsicInst &I) {
1398   bool Changed = false;
1399 
1400   if (ST->has16BitInsts() && needsPromotionToI32(I.getType()) &&
1401       DA->isUniform(&I))
1402     Changed |= promoteUniformBitreverseToI32(I);
1403 
1404   return Changed;
1405 }
1406 
1407 bool AMDGPUCodeGenPrepare::doInitialization(Module &M) {
1408   Mod = &M;
1409   DL = &Mod->getDataLayout();
1410   return false;
1411 }
1412 
1413 bool AMDGPUCodeGenPrepare::runOnFunction(Function &F) {
1414   if (skipFunction(F))
1415     return false;
1416 
1417   auto *TPC = getAnalysisIfAvailable<TargetPassConfig>();
1418   if (!TPC)
1419     return false;
1420 
1421   const AMDGPUTargetMachine &TM = TPC->getTM<AMDGPUTargetMachine>();
1422   ST = &TM.getSubtarget<GCNSubtarget>(F);
1423   AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
1424   DA = &getAnalysis<LegacyDivergenceAnalysis>();
1425 
1426   auto *DTWP = getAnalysisIfAvailable<DominatorTreeWrapperPass>();
1427   DT = DTWP ? &DTWP->getDomTree() : nullptr;
1428 
1429   HasUnsafeFPMath = hasUnsafeFPMath(F);
1430 
1431   AMDGPU::SIModeRegisterDefaults Mode(F);
1432   HasFP32Denormals = Mode.allFP32Denormals();
1433 
1434   bool MadeChange = false;
1435 
1436   Function::iterator NextBB;
1437   for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE; FI = NextBB) {
1438     BasicBlock *BB = &*FI;
1439     NextBB = std::next(FI);
1440 
1441     BasicBlock::iterator Next;
1442     for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; I = Next) {
1443       Next = std::next(I);
1444 
1445       MadeChange |= visit(*I);
1446 
1447       if (Next != E) { // Control flow changed
1448         BasicBlock *NextInstBB = Next->getParent();
1449         if (NextInstBB != BB) {
1450           BB = NextInstBB;
1451           E = BB->end();
1452           FE = F.end();
1453         }
1454       }
1455     }
1456   }
1457 
1458   return MadeChange;
1459 }
1460 
1461 INITIALIZE_PASS_BEGIN(AMDGPUCodeGenPrepare, DEBUG_TYPE,
1462                       "AMDGPU IR optimizations", false, false)
1463 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
1464 INITIALIZE_PASS_DEPENDENCY(LegacyDivergenceAnalysis)
1465 INITIALIZE_PASS_END(AMDGPUCodeGenPrepare, DEBUG_TYPE, "AMDGPU IR optimizations",
1466                     false, false)
1467 
1468 char AMDGPUCodeGenPrepare::ID = 0;
1469 
1470 FunctionPass *llvm::createAMDGPUCodeGenPreparePass() {
1471   return new AMDGPUCodeGenPrepare();
1472 }
1473