1 //===-- AMDGPUCodeGenPrepare.cpp ------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file 10 /// This pass does misc. AMDGPU optimizations on IR before instruction 11 /// selection. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "AMDGPU.h" 16 #include "AMDGPUTargetMachine.h" 17 #include "SIModeRegisterDefaults.h" 18 #include "llvm/Analysis/AssumptionCache.h" 19 #include "llvm/Analysis/ConstantFolding.h" 20 #include "llvm/Analysis/TargetLibraryInfo.h" 21 #include "llvm/Analysis/UniformityAnalysis.h" 22 #include "llvm/Analysis/ValueTracking.h" 23 #include "llvm/CodeGen/TargetPassConfig.h" 24 #include "llvm/IR/Dominators.h" 25 #include "llvm/IR/IRBuilder.h" 26 #include "llvm/IR/InstVisitor.h" 27 #include "llvm/IR/IntrinsicsAMDGPU.h" 28 #include "llvm/IR/PatternMatch.h" 29 #include "llvm/InitializePasses.h" 30 #include "llvm/Pass.h" 31 #include "llvm/Support/KnownBits.h" 32 #include "llvm/Transforms/Utils/IntegerDivision.h" 33 #include "llvm/Transforms/Utils/Local.h" 34 35 #define DEBUG_TYPE "amdgpu-codegenprepare" 36 37 using namespace llvm; 38 using namespace llvm::PatternMatch; 39 40 namespace { 41 42 static cl::opt<bool> WidenLoads( 43 "amdgpu-codegenprepare-widen-constant-loads", 44 cl::desc("Widen sub-dword constant address space loads in AMDGPUCodeGenPrepare"), 45 cl::ReallyHidden, 46 cl::init(false)); 47 48 static cl::opt<bool> Widen16BitOps( 49 "amdgpu-codegenprepare-widen-16-bit-ops", 50 cl::desc("Widen uniform 16-bit instructions to 32-bit in AMDGPUCodeGenPrepare"), 51 cl::ReallyHidden, 52 cl::init(true)); 53 54 static cl::opt<bool> 55 ScalarizeLargePHIs("amdgpu-codegenprepare-break-large-phis", 56 cl::desc("Break large PHI nodes for DAGISel"), 57 cl::ReallyHidden, cl::init(true)); 58 59 static cl::opt<bool> 60 ForceScalarizeLargePHIs("amdgpu-codegenprepare-force-break-large-phis", 61 cl::desc("For testing purposes, always break large " 62 "PHIs even if it isn't profitable."), 63 cl::ReallyHidden, cl::init(false)); 64 65 static cl::opt<unsigned> ScalarizeLargePHIsThreshold( 66 "amdgpu-codegenprepare-break-large-phis-threshold", 67 cl::desc("Minimum type size in bits for breaking large PHI nodes"), 68 cl::ReallyHidden, cl::init(32)); 69 70 static cl::opt<bool> UseMul24Intrin( 71 "amdgpu-codegenprepare-mul24", 72 cl::desc("Introduce mul24 intrinsics in AMDGPUCodeGenPrepare"), 73 cl::ReallyHidden, 74 cl::init(true)); 75 76 // Legalize 64-bit division by using the generic IR expansion. 77 static cl::opt<bool> ExpandDiv64InIR( 78 "amdgpu-codegenprepare-expand-div64", 79 cl::desc("Expand 64-bit division in AMDGPUCodeGenPrepare"), 80 cl::ReallyHidden, 81 cl::init(false)); 82 83 // Leave all division operations as they are. This supersedes ExpandDiv64InIR 84 // and is used for testing the legalizer. 85 static cl::opt<bool> DisableIDivExpand( 86 "amdgpu-codegenprepare-disable-idiv-expansion", 87 cl::desc("Prevent expanding integer division in AMDGPUCodeGenPrepare"), 88 cl::ReallyHidden, 89 cl::init(false)); 90 91 class AMDGPUCodeGenPrepare : public FunctionPass, 92 public InstVisitor<AMDGPUCodeGenPrepare, bool> { 93 const GCNSubtarget *ST = nullptr; 94 const TargetLibraryInfo *TLInfo = nullptr; 95 AssumptionCache *AC = nullptr; 96 DominatorTree *DT = nullptr; 97 UniformityInfo *UA = nullptr; 98 Module *Mod = nullptr; 99 const DataLayout *DL = nullptr; 100 bool HasUnsafeFPMath = false; 101 bool HasFP32Denormals = false; 102 103 DenseMap<const PHINode *, bool> BreakPhiNodesCache; 104 105 bool canBreakPHINode(const PHINode &I); 106 107 /// Copies exact/nsw/nuw flags (if any) from binary operation \p I to 108 /// binary operation \p V. 109 /// 110 /// \returns Binary operation \p V. 111 /// \returns \p T's base element bit width. 112 unsigned getBaseElementBitWidth(const Type *T) const; 113 114 /// \returns Equivalent 32 bit integer type for given type \p T. For example, 115 /// if \p T is i7, then i32 is returned; if \p T is <3 x i12>, then <3 x i32> 116 /// is returned. 117 Type *getI32Ty(IRBuilder<> &B, const Type *T) const; 118 119 /// \returns True if binary operation \p I is a signed binary operation, false 120 /// otherwise. 121 bool isSigned(const BinaryOperator &I) const; 122 123 /// \returns True if the condition of 'select' operation \p I comes from a 124 /// signed 'icmp' operation, false otherwise. 125 bool isSigned(const SelectInst &I) const; 126 127 /// \returns True if type \p T needs to be promoted to 32 bit integer type, 128 /// false otherwise. 129 bool needsPromotionToI32(const Type *T) const; 130 131 /// Return true if \p T is a legal scalar floating point type. 132 bool isLegalFloatingTy(const Type *T) const; 133 134 /// Promotes uniform binary operation \p I to equivalent 32 bit binary 135 /// operation. 136 /// 137 /// \details \p I's base element bit width must be greater than 1 and less 138 /// than or equal 16. Promotion is done by sign or zero extending operands to 139 /// 32 bits, replacing \p I with equivalent 32 bit binary operation, and 140 /// truncating the result of 32 bit binary operation back to \p I's original 141 /// type. Division operation is not promoted. 142 /// 143 /// \returns True if \p I is promoted to equivalent 32 bit binary operation, 144 /// false otherwise. 145 bool promoteUniformOpToI32(BinaryOperator &I) const; 146 147 /// Promotes uniform 'icmp' operation \p I to 32 bit 'icmp' operation. 148 /// 149 /// \details \p I's base element bit width must be greater than 1 and less 150 /// than or equal 16. Promotion is done by sign or zero extending operands to 151 /// 32 bits, and replacing \p I with 32 bit 'icmp' operation. 152 /// 153 /// \returns True. 154 bool promoteUniformOpToI32(ICmpInst &I) const; 155 156 /// Promotes uniform 'select' operation \p I to 32 bit 'select' 157 /// operation. 158 /// 159 /// \details \p I's base element bit width must be greater than 1 and less 160 /// than or equal 16. Promotion is done by sign or zero extending operands to 161 /// 32 bits, replacing \p I with 32 bit 'select' operation, and truncating the 162 /// result of 32 bit 'select' operation back to \p I's original type. 163 /// 164 /// \returns True. 165 bool promoteUniformOpToI32(SelectInst &I) const; 166 167 /// Promotes uniform 'bitreverse' intrinsic \p I to 32 bit 'bitreverse' 168 /// intrinsic. 169 /// 170 /// \details \p I's base element bit width must be greater than 1 and less 171 /// than or equal 16. Promotion is done by zero extending the operand to 32 172 /// bits, replacing \p I with 32 bit 'bitreverse' intrinsic, shifting the 173 /// result of 32 bit 'bitreverse' intrinsic to the right with zero fill (the 174 /// shift amount is 32 minus \p I's base element bit width), and truncating 175 /// the result of the shift operation back to \p I's original type. 176 /// 177 /// \returns True. 178 bool promoteUniformBitreverseToI32(IntrinsicInst &I) const; 179 180 /// \returns The minimum number of bits needed to store the value of \Op as an 181 /// unsigned integer. Truncating to this size and then zero-extending to 182 /// the original will not change the value. 183 unsigned numBitsUnsigned(Value *Op) const; 184 185 /// \returns The minimum number of bits needed to store the value of \Op as a 186 /// signed integer. Truncating to this size and then sign-extending to 187 /// the original size will not change the value. 188 unsigned numBitsSigned(Value *Op) const; 189 190 /// Replace mul instructions with llvm.amdgcn.mul.u24 or llvm.amdgcn.mul.s24. 191 /// SelectionDAG has an issue where an and asserting the bits are known 192 bool replaceMulWithMul24(BinaryOperator &I) const; 193 194 /// Perform same function as equivalently named function in DAGCombiner. Since 195 /// we expand some divisions here, we need to perform this before obscuring. 196 bool foldBinOpIntoSelect(BinaryOperator &I) const; 197 198 bool divHasSpecialOptimization(BinaryOperator &I, 199 Value *Num, Value *Den) const; 200 int getDivNumBits(BinaryOperator &I, 201 Value *Num, Value *Den, 202 unsigned AtLeast, bool Signed) const; 203 204 /// Expands 24 bit div or rem. 205 Value* expandDivRem24(IRBuilder<> &Builder, BinaryOperator &I, 206 Value *Num, Value *Den, 207 bool IsDiv, bool IsSigned) const; 208 209 Value *expandDivRem24Impl(IRBuilder<> &Builder, BinaryOperator &I, 210 Value *Num, Value *Den, unsigned NumBits, 211 bool IsDiv, bool IsSigned) const; 212 213 /// Expands 32 bit div or rem. 214 Value* expandDivRem32(IRBuilder<> &Builder, BinaryOperator &I, 215 Value *Num, Value *Den) const; 216 217 Value *shrinkDivRem64(IRBuilder<> &Builder, BinaryOperator &I, 218 Value *Num, Value *Den) const; 219 void expandDivRem64(BinaryOperator &I) const; 220 221 /// Widen a scalar load. 222 /// 223 /// \details \p Widen scalar load for uniform, small type loads from constant 224 // memory / to a full 32-bits and then truncate the input to allow a scalar 225 // load instead of a vector load. 226 // 227 /// \returns True. 228 229 bool canWidenScalarExtLoad(LoadInst &I) const; 230 231 Value *matchFractPat(IntrinsicInst &I); 232 Value *applyFractPat(IRBuilder<> &Builder, Value *FractArg); 233 234 public: 235 static char ID; 236 237 AMDGPUCodeGenPrepare() : FunctionPass(ID) {} 238 239 bool visitFDiv(BinaryOperator &I); 240 bool visitXor(BinaryOperator &I); 241 242 bool visitInstruction(Instruction &I) { return false; } 243 bool visitBinaryOperator(BinaryOperator &I); 244 bool visitLoadInst(LoadInst &I); 245 bool visitICmpInst(ICmpInst &I); 246 bool visitSelectInst(SelectInst &I); 247 bool visitPHINode(PHINode &I); 248 249 bool visitIntrinsicInst(IntrinsicInst &I); 250 bool visitBitreverseIntrinsicInst(IntrinsicInst &I); 251 bool visitMinNum(IntrinsicInst &I); 252 253 bool doInitialization(Module &M) override; 254 bool runOnFunction(Function &F) override; 255 256 StringRef getPassName() const override { return "AMDGPU IR optimizations"; } 257 258 void getAnalysisUsage(AnalysisUsage &AU) const override { 259 AU.addRequired<AssumptionCacheTracker>(); 260 AU.addRequired<UniformityInfoWrapperPass>(); 261 AU.addRequired<TargetLibraryInfoWrapperPass>(); 262 263 // FIXME: Division expansion needs to preserve the dominator tree. 264 if (!ExpandDiv64InIR) 265 AU.setPreservesAll(); 266 } 267 }; 268 269 } // end anonymous namespace 270 271 unsigned AMDGPUCodeGenPrepare::getBaseElementBitWidth(const Type *T) const { 272 assert(needsPromotionToI32(T) && "T does not need promotion to i32"); 273 274 if (T->isIntegerTy()) 275 return T->getIntegerBitWidth(); 276 return cast<VectorType>(T)->getElementType()->getIntegerBitWidth(); 277 } 278 279 Type *AMDGPUCodeGenPrepare::getI32Ty(IRBuilder<> &B, const Type *T) const { 280 assert(needsPromotionToI32(T) && "T does not need promotion to i32"); 281 282 if (T->isIntegerTy()) 283 return B.getInt32Ty(); 284 return FixedVectorType::get(B.getInt32Ty(), cast<FixedVectorType>(T)); 285 } 286 287 bool AMDGPUCodeGenPrepare::isSigned(const BinaryOperator &I) const { 288 return I.getOpcode() == Instruction::AShr || 289 I.getOpcode() == Instruction::SDiv || I.getOpcode() == Instruction::SRem; 290 } 291 292 bool AMDGPUCodeGenPrepare::isSigned(const SelectInst &I) const { 293 return isa<ICmpInst>(I.getOperand(0)) ? 294 cast<ICmpInst>(I.getOperand(0))->isSigned() : false; 295 } 296 297 bool AMDGPUCodeGenPrepare::needsPromotionToI32(const Type *T) const { 298 if (!Widen16BitOps) 299 return false; 300 301 const IntegerType *IntTy = dyn_cast<IntegerType>(T); 302 if (IntTy && IntTy->getBitWidth() > 1 && IntTy->getBitWidth() <= 16) 303 return true; 304 305 if (const VectorType *VT = dyn_cast<VectorType>(T)) { 306 // TODO: The set of packed operations is more limited, so may want to 307 // promote some anyway. 308 if (ST->hasVOP3PInsts()) 309 return false; 310 311 return needsPromotionToI32(VT->getElementType()); 312 } 313 314 return false; 315 } 316 317 bool AMDGPUCodeGenPrepare::isLegalFloatingTy(const Type *Ty) const { 318 return Ty->isFloatTy() || Ty->isDoubleTy() || 319 (Ty->isHalfTy() && ST->has16BitInsts()); 320 } 321 322 // Return true if the op promoted to i32 should have nsw set. 323 static bool promotedOpIsNSW(const Instruction &I) { 324 switch (I.getOpcode()) { 325 case Instruction::Shl: 326 case Instruction::Add: 327 case Instruction::Sub: 328 return true; 329 case Instruction::Mul: 330 return I.hasNoUnsignedWrap(); 331 default: 332 return false; 333 } 334 } 335 336 // Return true if the op promoted to i32 should have nuw set. 337 static bool promotedOpIsNUW(const Instruction &I) { 338 switch (I.getOpcode()) { 339 case Instruction::Shl: 340 case Instruction::Add: 341 case Instruction::Mul: 342 return true; 343 case Instruction::Sub: 344 return I.hasNoUnsignedWrap(); 345 default: 346 return false; 347 } 348 } 349 350 bool AMDGPUCodeGenPrepare::canWidenScalarExtLoad(LoadInst &I) const { 351 Type *Ty = I.getType(); 352 const DataLayout &DL = Mod->getDataLayout(); 353 int TySize = DL.getTypeSizeInBits(Ty); 354 Align Alignment = DL.getValueOrABITypeAlignment(I.getAlign(), Ty); 355 356 return I.isSimple() && TySize < 32 && Alignment >= 4 && UA->isUniform(&I); 357 } 358 359 bool AMDGPUCodeGenPrepare::promoteUniformOpToI32(BinaryOperator &I) const { 360 assert(needsPromotionToI32(I.getType()) && 361 "I does not need promotion to i32"); 362 363 if (I.getOpcode() == Instruction::SDiv || 364 I.getOpcode() == Instruction::UDiv || 365 I.getOpcode() == Instruction::SRem || 366 I.getOpcode() == Instruction::URem) 367 return false; 368 369 IRBuilder<> Builder(&I); 370 Builder.SetCurrentDebugLocation(I.getDebugLoc()); 371 372 Type *I32Ty = getI32Ty(Builder, I.getType()); 373 Value *ExtOp0 = nullptr; 374 Value *ExtOp1 = nullptr; 375 Value *ExtRes = nullptr; 376 Value *TruncRes = nullptr; 377 378 if (isSigned(I)) { 379 ExtOp0 = Builder.CreateSExt(I.getOperand(0), I32Ty); 380 ExtOp1 = Builder.CreateSExt(I.getOperand(1), I32Ty); 381 } else { 382 ExtOp0 = Builder.CreateZExt(I.getOperand(0), I32Ty); 383 ExtOp1 = Builder.CreateZExt(I.getOperand(1), I32Ty); 384 } 385 386 ExtRes = Builder.CreateBinOp(I.getOpcode(), ExtOp0, ExtOp1); 387 if (Instruction *Inst = dyn_cast<Instruction>(ExtRes)) { 388 if (promotedOpIsNSW(cast<Instruction>(I))) 389 Inst->setHasNoSignedWrap(); 390 391 if (promotedOpIsNUW(cast<Instruction>(I))) 392 Inst->setHasNoUnsignedWrap(); 393 394 if (const auto *ExactOp = dyn_cast<PossiblyExactOperator>(&I)) 395 Inst->setIsExact(ExactOp->isExact()); 396 } 397 398 TruncRes = Builder.CreateTrunc(ExtRes, I.getType()); 399 400 I.replaceAllUsesWith(TruncRes); 401 I.eraseFromParent(); 402 403 return true; 404 } 405 406 bool AMDGPUCodeGenPrepare::promoteUniformOpToI32(ICmpInst &I) const { 407 assert(needsPromotionToI32(I.getOperand(0)->getType()) && 408 "I does not need promotion to i32"); 409 410 IRBuilder<> Builder(&I); 411 Builder.SetCurrentDebugLocation(I.getDebugLoc()); 412 413 Type *I32Ty = getI32Ty(Builder, I.getOperand(0)->getType()); 414 Value *ExtOp0 = nullptr; 415 Value *ExtOp1 = nullptr; 416 Value *NewICmp = nullptr; 417 418 if (I.isSigned()) { 419 ExtOp0 = Builder.CreateSExt(I.getOperand(0), I32Ty); 420 ExtOp1 = Builder.CreateSExt(I.getOperand(1), I32Ty); 421 } else { 422 ExtOp0 = Builder.CreateZExt(I.getOperand(0), I32Ty); 423 ExtOp1 = Builder.CreateZExt(I.getOperand(1), I32Ty); 424 } 425 NewICmp = Builder.CreateICmp(I.getPredicate(), ExtOp0, ExtOp1); 426 427 I.replaceAllUsesWith(NewICmp); 428 I.eraseFromParent(); 429 430 return true; 431 } 432 433 bool AMDGPUCodeGenPrepare::promoteUniformOpToI32(SelectInst &I) const { 434 assert(needsPromotionToI32(I.getType()) && 435 "I does not need promotion to i32"); 436 437 IRBuilder<> Builder(&I); 438 Builder.SetCurrentDebugLocation(I.getDebugLoc()); 439 440 Type *I32Ty = getI32Ty(Builder, I.getType()); 441 Value *ExtOp1 = nullptr; 442 Value *ExtOp2 = nullptr; 443 Value *ExtRes = nullptr; 444 Value *TruncRes = nullptr; 445 446 if (isSigned(I)) { 447 ExtOp1 = Builder.CreateSExt(I.getOperand(1), I32Ty); 448 ExtOp2 = Builder.CreateSExt(I.getOperand(2), I32Ty); 449 } else { 450 ExtOp1 = Builder.CreateZExt(I.getOperand(1), I32Ty); 451 ExtOp2 = Builder.CreateZExt(I.getOperand(2), I32Ty); 452 } 453 ExtRes = Builder.CreateSelect(I.getOperand(0), ExtOp1, ExtOp2); 454 TruncRes = Builder.CreateTrunc(ExtRes, I.getType()); 455 456 I.replaceAllUsesWith(TruncRes); 457 I.eraseFromParent(); 458 459 return true; 460 } 461 462 bool AMDGPUCodeGenPrepare::promoteUniformBitreverseToI32( 463 IntrinsicInst &I) const { 464 assert(I.getIntrinsicID() == Intrinsic::bitreverse && 465 "I must be bitreverse intrinsic"); 466 assert(needsPromotionToI32(I.getType()) && 467 "I does not need promotion to i32"); 468 469 IRBuilder<> Builder(&I); 470 Builder.SetCurrentDebugLocation(I.getDebugLoc()); 471 472 Type *I32Ty = getI32Ty(Builder, I.getType()); 473 Function *I32 = 474 Intrinsic::getDeclaration(Mod, Intrinsic::bitreverse, { I32Ty }); 475 Value *ExtOp = Builder.CreateZExt(I.getOperand(0), I32Ty); 476 Value *ExtRes = Builder.CreateCall(I32, { ExtOp }); 477 Value *LShrOp = 478 Builder.CreateLShr(ExtRes, 32 - getBaseElementBitWidth(I.getType())); 479 Value *TruncRes = 480 Builder.CreateTrunc(LShrOp, I.getType()); 481 482 I.replaceAllUsesWith(TruncRes); 483 I.eraseFromParent(); 484 485 return true; 486 } 487 488 unsigned AMDGPUCodeGenPrepare::numBitsUnsigned(Value *Op) const { 489 return computeKnownBits(Op, *DL, 0, AC).countMaxActiveBits(); 490 } 491 492 unsigned AMDGPUCodeGenPrepare::numBitsSigned(Value *Op) const { 493 return ComputeMaxSignificantBits(Op, *DL, 0, AC); 494 } 495 496 static void extractValues(IRBuilder<> &Builder, 497 SmallVectorImpl<Value *> &Values, Value *V) { 498 auto *VT = dyn_cast<FixedVectorType>(V->getType()); 499 if (!VT) { 500 Values.push_back(V); 501 return; 502 } 503 504 for (int I = 0, E = VT->getNumElements(); I != E; ++I) 505 Values.push_back(Builder.CreateExtractElement(V, I)); 506 } 507 508 static Value *insertValues(IRBuilder<> &Builder, 509 Type *Ty, 510 SmallVectorImpl<Value *> &Values) { 511 if (!Ty->isVectorTy()) { 512 assert(Values.size() == 1); 513 return Values[0]; 514 } 515 516 Value *NewVal = PoisonValue::get(Ty); 517 for (int I = 0, E = Values.size(); I != E; ++I) 518 NewVal = Builder.CreateInsertElement(NewVal, Values[I], I); 519 520 return NewVal; 521 } 522 523 // Returns 24-bit or 48-bit (as per `NumBits` and `Size`) mul of `LHS` and 524 // `RHS`. `NumBits` is the number of KnownBits of the result and `Size` is the 525 // width of the original destination. 526 static Value *getMul24(IRBuilder<> &Builder, Value *LHS, Value *RHS, 527 unsigned Size, unsigned NumBits, bool IsSigned) { 528 if (Size <= 32 || NumBits <= 32) { 529 Intrinsic::ID ID = 530 IsSigned ? Intrinsic::amdgcn_mul_i24 : Intrinsic::amdgcn_mul_u24; 531 return Builder.CreateIntrinsic(ID, {}, {LHS, RHS}); 532 } 533 534 assert(NumBits <= 48); 535 536 Intrinsic::ID LoID = 537 IsSigned ? Intrinsic::amdgcn_mul_i24 : Intrinsic::amdgcn_mul_u24; 538 Intrinsic::ID HiID = 539 IsSigned ? Intrinsic::amdgcn_mulhi_i24 : Intrinsic::amdgcn_mulhi_u24; 540 541 Value *Lo = Builder.CreateIntrinsic(LoID, {}, {LHS, RHS}); 542 Value *Hi = Builder.CreateIntrinsic(HiID, {}, {LHS, RHS}); 543 544 IntegerType *I64Ty = Builder.getInt64Ty(); 545 Lo = Builder.CreateZExtOrTrunc(Lo, I64Ty); 546 Hi = Builder.CreateZExtOrTrunc(Hi, I64Ty); 547 548 return Builder.CreateOr(Lo, Builder.CreateShl(Hi, 32)); 549 } 550 551 bool AMDGPUCodeGenPrepare::replaceMulWithMul24(BinaryOperator &I) const { 552 if (I.getOpcode() != Instruction::Mul) 553 return false; 554 555 Type *Ty = I.getType(); 556 unsigned Size = Ty->getScalarSizeInBits(); 557 if (Size <= 16 && ST->has16BitInsts()) 558 return false; 559 560 // Prefer scalar if this could be s_mul_i32 561 if (UA->isUniform(&I)) 562 return false; 563 564 Value *LHS = I.getOperand(0); 565 Value *RHS = I.getOperand(1); 566 IRBuilder<> Builder(&I); 567 Builder.SetCurrentDebugLocation(I.getDebugLoc()); 568 569 unsigned LHSBits = 0, RHSBits = 0; 570 bool IsSigned = false; 571 572 if (ST->hasMulU24() && (LHSBits = numBitsUnsigned(LHS)) <= 24 && 573 (RHSBits = numBitsUnsigned(RHS)) <= 24) { 574 IsSigned = false; 575 576 } else if (ST->hasMulI24() && (LHSBits = numBitsSigned(LHS)) <= 24 && 577 (RHSBits = numBitsSigned(RHS)) <= 24) { 578 IsSigned = true; 579 580 } else 581 return false; 582 583 SmallVector<Value *, 4> LHSVals; 584 SmallVector<Value *, 4> RHSVals; 585 SmallVector<Value *, 4> ResultVals; 586 extractValues(Builder, LHSVals, LHS); 587 extractValues(Builder, RHSVals, RHS); 588 589 IntegerType *I32Ty = Builder.getInt32Ty(); 590 for (int I = 0, E = LHSVals.size(); I != E; ++I) { 591 Value *LHS, *RHS; 592 if (IsSigned) { 593 LHS = Builder.CreateSExtOrTrunc(LHSVals[I], I32Ty); 594 RHS = Builder.CreateSExtOrTrunc(RHSVals[I], I32Ty); 595 } else { 596 LHS = Builder.CreateZExtOrTrunc(LHSVals[I], I32Ty); 597 RHS = Builder.CreateZExtOrTrunc(RHSVals[I], I32Ty); 598 } 599 600 Value *Result = 601 getMul24(Builder, LHS, RHS, Size, LHSBits + RHSBits, IsSigned); 602 603 if (IsSigned) { 604 ResultVals.push_back( 605 Builder.CreateSExtOrTrunc(Result, LHSVals[I]->getType())); 606 } else { 607 ResultVals.push_back( 608 Builder.CreateZExtOrTrunc(Result, LHSVals[I]->getType())); 609 } 610 } 611 612 Value *NewVal = insertValues(Builder, Ty, ResultVals); 613 NewVal->takeName(&I); 614 I.replaceAllUsesWith(NewVal); 615 I.eraseFromParent(); 616 617 return true; 618 } 619 620 // Find a select instruction, which may have been casted. This is mostly to deal 621 // with cases where i16 selects were promoted here to i32. 622 static SelectInst *findSelectThroughCast(Value *V, CastInst *&Cast) { 623 Cast = nullptr; 624 if (SelectInst *Sel = dyn_cast<SelectInst>(V)) 625 return Sel; 626 627 if ((Cast = dyn_cast<CastInst>(V))) { 628 if (SelectInst *Sel = dyn_cast<SelectInst>(Cast->getOperand(0))) 629 return Sel; 630 } 631 632 return nullptr; 633 } 634 635 bool AMDGPUCodeGenPrepare::foldBinOpIntoSelect(BinaryOperator &BO) const { 636 // Don't do this unless the old select is going away. We want to eliminate the 637 // binary operator, not replace a binop with a select. 638 int SelOpNo = 0; 639 640 CastInst *CastOp; 641 642 // TODO: Should probably try to handle some cases with multiple 643 // users. Duplicating the select may be profitable for division. 644 SelectInst *Sel = findSelectThroughCast(BO.getOperand(0), CastOp); 645 if (!Sel || !Sel->hasOneUse()) { 646 SelOpNo = 1; 647 Sel = findSelectThroughCast(BO.getOperand(1), CastOp); 648 } 649 650 if (!Sel || !Sel->hasOneUse()) 651 return false; 652 653 Constant *CT = dyn_cast<Constant>(Sel->getTrueValue()); 654 Constant *CF = dyn_cast<Constant>(Sel->getFalseValue()); 655 Constant *CBO = dyn_cast<Constant>(BO.getOperand(SelOpNo ^ 1)); 656 if (!CBO || !CT || !CF) 657 return false; 658 659 if (CastOp) { 660 if (!CastOp->hasOneUse()) 661 return false; 662 CT = ConstantFoldCastOperand(CastOp->getOpcode(), CT, BO.getType(), *DL); 663 CF = ConstantFoldCastOperand(CastOp->getOpcode(), CF, BO.getType(), *DL); 664 } 665 666 // TODO: Handle special 0/-1 cases DAG combine does, although we only really 667 // need to handle divisions here. 668 Constant *FoldedT = SelOpNo ? 669 ConstantFoldBinaryOpOperands(BO.getOpcode(), CBO, CT, *DL) : 670 ConstantFoldBinaryOpOperands(BO.getOpcode(), CT, CBO, *DL); 671 if (!FoldedT || isa<ConstantExpr>(FoldedT)) 672 return false; 673 674 Constant *FoldedF = SelOpNo ? 675 ConstantFoldBinaryOpOperands(BO.getOpcode(), CBO, CF, *DL) : 676 ConstantFoldBinaryOpOperands(BO.getOpcode(), CF, CBO, *DL); 677 if (!FoldedF || isa<ConstantExpr>(FoldedF)) 678 return false; 679 680 IRBuilder<> Builder(&BO); 681 Builder.SetCurrentDebugLocation(BO.getDebugLoc()); 682 if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(&BO)) 683 Builder.setFastMathFlags(FPOp->getFastMathFlags()); 684 685 Value *NewSelect = Builder.CreateSelect(Sel->getCondition(), 686 FoldedT, FoldedF); 687 NewSelect->takeName(&BO); 688 BO.replaceAllUsesWith(NewSelect); 689 BO.eraseFromParent(); 690 if (CastOp) 691 CastOp->eraseFromParent(); 692 Sel->eraseFromParent(); 693 return true; 694 } 695 696 // Optimize fdiv with rcp: 697 // 698 // 1/x -> rcp(x) when rcp is sufficiently accurate or inaccurate rcp is 699 // allowed with unsafe-fp-math or afn. 700 // 701 // a/b -> a*rcp(b) when inaccurate rcp is allowed with unsafe-fp-math or afn. 702 static Value *optimizeWithRcp(Value *Num, Value *Den, bool AllowInaccurateRcp, 703 bool RcpIsAccurate, IRBuilder<> &Builder, 704 Module *Mod) { 705 706 if (!AllowInaccurateRcp && !RcpIsAccurate) 707 return nullptr; 708 709 Type *Ty = Den->getType(); 710 if (const ConstantFP *CLHS = dyn_cast<ConstantFP>(Num)) { 711 if (AllowInaccurateRcp || RcpIsAccurate) { 712 if (CLHS->isExactlyValue(1.0)) { 713 Function *Decl = Intrinsic::getDeclaration( 714 Mod, Intrinsic::amdgcn_rcp, Ty); 715 716 // v_rcp_f32 and v_rsq_f32 do not support denormals, and according to 717 // the CI documentation has a worst case error of 1 ulp. 718 // OpenCL requires <= 2.5 ulp for 1.0 / x, so it should always be OK to 719 // use it as long as we aren't trying to use denormals. 720 // 721 // v_rcp_f16 and v_rsq_f16 DO support denormals. 722 723 // NOTE: v_sqrt and v_rcp will be combined to v_rsq later. So we don't 724 // insert rsq intrinsic here. 725 726 // 1.0 / x -> rcp(x) 727 return Builder.CreateCall(Decl, { Den }); 728 } 729 730 // Same as for 1.0, but expand the sign out of the constant. 731 if (CLHS->isExactlyValue(-1.0)) { 732 Function *Decl = Intrinsic::getDeclaration( 733 Mod, Intrinsic::amdgcn_rcp, Ty); 734 735 // -1.0 / x -> rcp (fneg x) 736 Value *FNeg = Builder.CreateFNeg(Den); 737 return Builder.CreateCall(Decl, { FNeg }); 738 } 739 } 740 } 741 742 if (AllowInaccurateRcp) { 743 Function *Decl = Intrinsic::getDeclaration( 744 Mod, Intrinsic::amdgcn_rcp, Ty); 745 746 // Turn into multiply by the reciprocal. 747 // x / y -> x * (1.0 / y) 748 Value *Recip = Builder.CreateCall(Decl, { Den }); 749 return Builder.CreateFMul(Num, Recip); 750 } 751 return nullptr; 752 } 753 754 // optimize with fdiv.fast: 755 // 756 // a/b -> fdiv.fast(a, b) when !fpmath >= 2.5ulp with denormals flushed. 757 // 758 // 1/x -> fdiv.fast(1,x) when !fpmath >= 2.5ulp. 759 // 760 // NOTE: optimizeWithRcp should be tried first because rcp is the preference. 761 static Value *optimizeWithFDivFast(Value *Num, Value *Den, float ReqdAccuracy, 762 bool HasDenormals, IRBuilder<> &Builder, 763 Module *Mod) { 764 // fdiv.fast can achieve 2.5 ULP accuracy. 765 if (ReqdAccuracy < 2.5f) 766 return nullptr; 767 768 // Only have fdiv.fast for f32. 769 Type *Ty = Den->getType(); 770 if (!Ty->isFloatTy()) 771 return nullptr; 772 773 bool NumIsOne = false; 774 if (const ConstantFP *CNum = dyn_cast<ConstantFP>(Num)) { 775 if (CNum->isExactlyValue(+1.0) || CNum->isExactlyValue(-1.0)) 776 NumIsOne = true; 777 } 778 779 // fdiv does not support denormals. But 1.0/x is always fine to use it. 780 if (HasDenormals && !NumIsOne) 781 return nullptr; 782 783 Function *Decl = Intrinsic::getDeclaration(Mod, Intrinsic::amdgcn_fdiv_fast); 784 return Builder.CreateCall(Decl, { Num, Den }); 785 } 786 787 // Optimizations is performed based on fpmath, fast math flags as well as 788 // denormals to optimize fdiv with either rcp or fdiv.fast. 789 // 790 // With rcp: 791 // 1/x -> rcp(x) when rcp is sufficiently accurate or inaccurate rcp is 792 // allowed with unsafe-fp-math or afn. 793 // 794 // a/b -> a*rcp(b) when inaccurate rcp is allowed with unsafe-fp-math or afn. 795 // 796 // With fdiv.fast: 797 // a/b -> fdiv.fast(a, b) when !fpmath >= 2.5ulp with denormals flushed. 798 // 799 // 1/x -> fdiv.fast(1,x) when !fpmath >= 2.5ulp. 800 // 801 // NOTE: rcp is the preference in cases that both are legal. 802 bool AMDGPUCodeGenPrepare::visitFDiv(BinaryOperator &FDiv) { 803 804 Type *Ty = FDiv.getType()->getScalarType(); 805 806 // The f64 rcp/rsq approximations are pretty inaccurate. We can do an 807 // expansion around them in codegen. 808 if (Ty->isDoubleTy()) 809 return false; 810 811 // No intrinsic for fdiv16 if target does not support f16. 812 if (Ty->isHalfTy() && !ST->has16BitInsts()) 813 return false; 814 815 const FPMathOperator *FPOp = cast<const FPMathOperator>(&FDiv); 816 const float ReqdAccuracy = FPOp->getFPAccuracy(); 817 818 // Inaccurate rcp is allowed with unsafe-fp-math or afn. 819 FastMathFlags FMF = FPOp->getFastMathFlags(); 820 const bool AllowInaccurateRcp = HasUnsafeFPMath || FMF.approxFunc(); 821 822 // rcp_f16 is accurate for !fpmath >= 1.0ulp. 823 // rcp_f32 is accurate for !fpmath >= 1.0ulp and denormals are flushed. 824 // rcp_f64 is never accurate. 825 const bool RcpIsAccurate = (Ty->isHalfTy() && ReqdAccuracy >= 1.0f) || 826 (Ty->isFloatTy() && !HasFP32Denormals && ReqdAccuracy >= 1.0f); 827 828 IRBuilder<> Builder(FDiv.getParent(), std::next(FDiv.getIterator())); 829 Builder.setFastMathFlags(FMF); 830 Builder.SetCurrentDebugLocation(FDiv.getDebugLoc()); 831 832 Value *Num = FDiv.getOperand(0); 833 Value *Den = FDiv.getOperand(1); 834 835 Value *NewFDiv = nullptr; 836 if (auto *VT = dyn_cast<FixedVectorType>(FDiv.getType())) { 837 NewFDiv = PoisonValue::get(VT); 838 839 // FIXME: Doesn't do the right thing for cases where the vector is partially 840 // constant. This works when the scalarizer pass is run first. 841 for (unsigned I = 0, E = VT->getNumElements(); I != E; ++I) { 842 Value *NumEltI = Builder.CreateExtractElement(Num, I); 843 Value *DenEltI = Builder.CreateExtractElement(Den, I); 844 // Try rcp first. 845 Value *NewElt = optimizeWithRcp(NumEltI, DenEltI, AllowInaccurateRcp, 846 RcpIsAccurate, Builder, Mod); 847 if (!NewElt) // Try fdiv.fast. 848 NewElt = optimizeWithFDivFast(NumEltI, DenEltI, ReqdAccuracy, 849 HasFP32Denormals, Builder, Mod); 850 if (!NewElt) // Keep the original. 851 NewElt = Builder.CreateFDiv(NumEltI, DenEltI); 852 853 NewFDiv = Builder.CreateInsertElement(NewFDiv, NewElt, I); 854 } 855 } else { // Scalar FDiv. 856 // Try rcp first. 857 NewFDiv = optimizeWithRcp(Num, Den, AllowInaccurateRcp, RcpIsAccurate, 858 Builder, Mod); 859 if (!NewFDiv) { // Try fdiv.fast. 860 NewFDiv = optimizeWithFDivFast(Num, Den, ReqdAccuracy, HasFP32Denormals, 861 Builder, Mod); 862 } 863 } 864 865 if (NewFDiv) { 866 FDiv.replaceAllUsesWith(NewFDiv); 867 NewFDiv->takeName(&FDiv); 868 FDiv.eraseFromParent(); 869 } 870 871 return !!NewFDiv; 872 } 873 874 bool AMDGPUCodeGenPrepare::visitXor(BinaryOperator &I) { 875 // Match the Xor instruction, its type and its operands 876 IntrinsicInst *IntrinsicCall = dyn_cast<IntrinsicInst>(I.getOperand(0)); 877 ConstantInt *RHS = dyn_cast<ConstantInt>(I.getOperand(1)); 878 if (!RHS || !IntrinsicCall || RHS->getSExtValue() != -1) 879 return visitBinaryOperator(I); 880 881 // Check if the Call is an intrinsic instruction to amdgcn_class intrinsic 882 // has only one use 883 if (IntrinsicCall->getIntrinsicID() != Intrinsic::amdgcn_class || 884 !IntrinsicCall->hasOneUse()) 885 return visitBinaryOperator(I); 886 887 // "Not" the second argument of the intrinsic call 888 ConstantInt *Arg = dyn_cast<ConstantInt>(IntrinsicCall->getOperand(1)); 889 if (!Arg) 890 return visitBinaryOperator(I); 891 892 IntrinsicCall->setOperand( 893 1, ConstantInt::get(Arg->getType(), Arg->getZExtValue() ^ 0x3ff)); 894 I.replaceAllUsesWith(IntrinsicCall); 895 I.eraseFromParent(); 896 return true; 897 } 898 899 static bool hasUnsafeFPMath(const Function &F) { 900 Attribute Attr = F.getFnAttribute("unsafe-fp-math"); 901 return Attr.getValueAsBool(); 902 } 903 904 static std::pair<Value*, Value*> getMul64(IRBuilder<> &Builder, 905 Value *LHS, Value *RHS) { 906 Type *I32Ty = Builder.getInt32Ty(); 907 Type *I64Ty = Builder.getInt64Ty(); 908 909 Value *LHS_EXT64 = Builder.CreateZExt(LHS, I64Ty); 910 Value *RHS_EXT64 = Builder.CreateZExt(RHS, I64Ty); 911 Value *MUL64 = Builder.CreateMul(LHS_EXT64, RHS_EXT64); 912 Value *Lo = Builder.CreateTrunc(MUL64, I32Ty); 913 Value *Hi = Builder.CreateLShr(MUL64, Builder.getInt64(32)); 914 Hi = Builder.CreateTrunc(Hi, I32Ty); 915 return std::pair(Lo, Hi); 916 } 917 918 static Value* getMulHu(IRBuilder<> &Builder, Value *LHS, Value *RHS) { 919 return getMul64(Builder, LHS, RHS).second; 920 } 921 922 /// Figure out how many bits are really needed for this division. \p AtLeast is 923 /// an optimization hint to bypass the second ComputeNumSignBits call if we the 924 /// first one is insufficient. Returns -1 on failure. 925 int AMDGPUCodeGenPrepare::getDivNumBits(BinaryOperator &I, 926 Value *Num, Value *Den, 927 unsigned AtLeast, bool IsSigned) const { 928 const DataLayout &DL = Mod->getDataLayout(); 929 unsigned LHSSignBits = ComputeNumSignBits(Num, DL, 0, AC, &I); 930 if (LHSSignBits < AtLeast) 931 return -1; 932 933 unsigned RHSSignBits = ComputeNumSignBits(Den, DL, 0, AC, &I); 934 if (RHSSignBits < AtLeast) 935 return -1; 936 937 unsigned SignBits = std::min(LHSSignBits, RHSSignBits); 938 unsigned DivBits = Num->getType()->getScalarSizeInBits() - SignBits; 939 if (IsSigned) 940 ++DivBits; 941 return DivBits; 942 } 943 944 // The fractional part of a float is enough to accurately represent up to 945 // a 24-bit signed integer. 946 Value *AMDGPUCodeGenPrepare::expandDivRem24(IRBuilder<> &Builder, 947 BinaryOperator &I, 948 Value *Num, Value *Den, 949 bool IsDiv, bool IsSigned) const { 950 int DivBits = getDivNumBits(I, Num, Den, 9, IsSigned); 951 if (DivBits == -1) 952 return nullptr; 953 return expandDivRem24Impl(Builder, I, Num, Den, DivBits, IsDiv, IsSigned); 954 } 955 956 Value *AMDGPUCodeGenPrepare::expandDivRem24Impl(IRBuilder<> &Builder, 957 BinaryOperator &I, 958 Value *Num, Value *Den, 959 unsigned DivBits, 960 bool IsDiv, bool IsSigned) const { 961 Type *I32Ty = Builder.getInt32Ty(); 962 Num = Builder.CreateTrunc(Num, I32Ty); 963 Den = Builder.CreateTrunc(Den, I32Ty); 964 965 Type *F32Ty = Builder.getFloatTy(); 966 ConstantInt *One = Builder.getInt32(1); 967 Value *JQ = One; 968 969 if (IsSigned) { 970 // char|short jq = ia ^ ib; 971 JQ = Builder.CreateXor(Num, Den); 972 973 // jq = jq >> (bitsize - 2) 974 JQ = Builder.CreateAShr(JQ, Builder.getInt32(30)); 975 976 // jq = jq | 0x1 977 JQ = Builder.CreateOr(JQ, One); 978 } 979 980 // int ia = (int)LHS; 981 Value *IA = Num; 982 983 // int ib, (int)RHS; 984 Value *IB = Den; 985 986 // float fa = (float)ia; 987 Value *FA = IsSigned ? Builder.CreateSIToFP(IA, F32Ty) 988 : Builder.CreateUIToFP(IA, F32Ty); 989 990 // float fb = (float)ib; 991 Value *FB = IsSigned ? Builder.CreateSIToFP(IB,F32Ty) 992 : Builder.CreateUIToFP(IB,F32Ty); 993 994 Function *RcpDecl = Intrinsic::getDeclaration(Mod, Intrinsic::amdgcn_rcp, 995 Builder.getFloatTy()); 996 Value *RCP = Builder.CreateCall(RcpDecl, { FB }); 997 Value *FQM = Builder.CreateFMul(FA, RCP); 998 999 // fq = trunc(fqm); 1000 CallInst *FQ = Builder.CreateUnaryIntrinsic(Intrinsic::trunc, FQM); 1001 FQ->copyFastMathFlags(Builder.getFastMathFlags()); 1002 1003 // float fqneg = -fq; 1004 Value *FQNeg = Builder.CreateFNeg(FQ); 1005 1006 // float fr = mad(fqneg, fb, fa); 1007 auto FMAD = !ST->hasMadMacF32Insts() 1008 ? Intrinsic::fma 1009 : (Intrinsic::ID)Intrinsic::amdgcn_fmad_ftz; 1010 Value *FR = Builder.CreateIntrinsic(FMAD, 1011 {FQNeg->getType()}, {FQNeg, FB, FA}, FQ); 1012 1013 // int iq = (int)fq; 1014 Value *IQ = IsSigned ? Builder.CreateFPToSI(FQ, I32Ty) 1015 : Builder.CreateFPToUI(FQ, I32Ty); 1016 1017 // fr = fabs(fr); 1018 FR = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, FR, FQ); 1019 1020 // fb = fabs(fb); 1021 FB = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, FB, FQ); 1022 1023 // int cv = fr >= fb; 1024 Value *CV = Builder.CreateFCmpOGE(FR, FB); 1025 1026 // jq = (cv ? jq : 0); 1027 JQ = Builder.CreateSelect(CV, JQ, Builder.getInt32(0)); 1028 1029 // dst = iq + jq; 1030 Value *Div = Builder.CreateAdd(IQ, JQ); 1031 1032 Value *Res = Div; 1033 if (!IsDiv) { 1034 // Rem needs compensation, it's easier to recompute it 1035 Value *Rem = Builder.CreateMul(Div, Den); 1036 Res = Builder.CreateSub(Num, Rem); 1037 } 1038 1039 if (DivBits != 0 && DivBits < 32) { 1040 // Extend in register from the number of bits this divide really is. 1041 if (IsSigned) { 1042 int InRegBits = 32 - DivBits; 1043 1044 Res = Builder.CreateShl(Res, InRegBits); 1045 Res = Builder.CreateAShr(Res, InRegBits); 1046 } else { 1047 ConstantInt *TruncMask 1048 = Builder.getInt32((UINT64_C(1) << DivBits) - 1); 1049 Res = Builder.CreateAnd(Res, TruncMask); 1050 } 1051 } 1052 1053 return Res; 1054 } 1055 1056 // Try to recognize special cases the DAG will emit special, better expansions 1057 // than the general expansion we do here. 1058 1059 // TODO: It would be better to just directly handle those optimizations here. 1060 bool AMDGPUCodeGenPrepare::divHasSpecialOptimization( 1061 BinaryOperator &I, Value *Num, Value *Den) const { 1062 if (Constant *C = dyn_cast<Constant>(Den)) { 1063 // Arbitrary constants get a better expansion as long as a wider mulhi is 1064 // legal. 1065 if (C->getType()->getScalarSizeInBits() <= 32) 1066 return true; 1067 1068 // TODO: Sdiv check for not exact for some reason. 1069 1070 // If there's no wider mulhi, there's only a better expansion for powers of 1071 // two. 1072 // TODO: Should really know for each vector element. 1073 if (isKnownToBeAPowerOfTwo(C, *DL, true, 0, AC, &I, DT)) 1074 return true; 1075 1076 return false; 1077 } 1078 1079 if (BinaryOperator *BinOpDen = dyn_cast<BinaryOperator>(Den)) { 1080 // fold (udiv x, (shl c, y)) -> x >>u (log2(c)+y) iff c is power of 2 1081 if (BinOpDen->getOpcode() == Instruction::Shl && 1082 isa<Constant>(BinOpDen->getOperand(0)) && 1083 isKnownToBeAPowerOfTwo(BinOpDen->getOperand(0), *DL, true, 1084 0, AC, &I, DT)) { 1085 return true; 1086 } 1087 } 1088 1089 return false; 1090 } 1091 1092 static Value *getSign32(Value *V, IRBuilder<> &Builder, const DataLayout *DL) { 1093 // Check whether the sign can be determined statically. 1094 KnownBits Known = computeKnownBits(V, *DL); 1095 if (Known.isNegative()) 1096 return Constant::getAllOnesValue(V->getType()); 1097 if (Known.isNonNegative()) 1098 return Constant::getNullValue(V->getType()); 1099 return Builder.CreateAShr(V, Builder.getInt32(31)); 1100 } 1101 1102 Value *AMDGPUCodeGenPrepare::expandDivRem32(IRBuilder<> &Builder, 1103 BinaryOperator &I, Value *X, 1104 Value *Y) const { 1105 Instruction::BinaryOps Opc = I.getOpcode(); 1106 assert(Opc == Instruction::URem || Opc == Instruction::UDiv || 1107 Opc == Instruction::SRem || Opc == Instruction::SDiv); 1108 1109 FastMathFlags FMF; 1110 FMF.setFast(); 1111 Builder.setFastMathFlags(FMF); 1112 1113 if (divHasSpecialOptimization(I, X, Y)) 1114 return nullptr; // Keep it for later optimization. 1115 1116 bool IsDiv = Opc == Instruction::UDiv || Opc == Instruction::SDiv; 1117 bool IsSigned = Opc == Instruction::SRem || Opc == Instruction::SDiv; 1118 1119 Type *Ty = X->getType(); 1120 Type *I32Ty = Builder.getInt32Ty(); 1121 Type *F32Ty = Builder.getFloatTy(); 1122 1123 if (Ty->getScalarSizeInBits() < 32) { 1124 if (IsSigned) { 1125 X = Builder.CreateSExt(X, I32Ty); 1126 Y = Builder.CreateSExt(Y, I32Ty); 1127 } else { 1128 X = Builder.CreateZExt(X, I32Ty); 1129 Y = Builder.CreateZExt(Y, I32Ty); 1130 } 1131 } 1132 1133 if (Value *Res = expandDivRem24(Builder, I, X, Y, IsDiv, IsSigned)) { 1134 return IsSigned ? Builder.CreateSExtOrTrunc(Res, Ty) : 1135 Builder.CreateZExtOrTrunc(Res, Ty); 1136 } 1137 1138 ConstantInt *Zero = Builder.getInt32(0); 1139 ConstantInt *One = Builder.getInt32(1); 1140 1141 Value *Sign = nullptr; 1142 if (IsSigned) { 1143 Value *SignX = getSign32(X, Builder, DL); 1144 Value *SignY = getSign32(Y, Builder, DL); 1145 // Remainder sign is the same as LHS 1146 Sign = IsDiv ? Builder.CreateXor(SignX, SignY) : SignX; 1147 1148 X = Builder.CreateAdd(X, SignX); 1149 Y = Builder.CreateAdd(Y, SignY); 1150 1151 X = Builder.CreateXor(X, SignX); 1152 Y = Builder.CreateXor(Y, SignY); 1153 } 1154 1155 // The algorithm here is based on ideas from "Software Integer Division", Tom 1156 // Rodeheffer, August 2008. 1157 // 1158 // unsigned udiv(unsigned x, unsigned y) { 1159 // // Initial estimate of inv(y). The constant is less than 2^32 to ensure 1160 // // that this is a lower bound on inv(y), even if some of the calculations 1161 // // round up. 1162 // unsigned z = (unsigned)((4294967296.0 - 512.0) * v_rcp_f32((float)y)); 1163 // 1164 // // One round of UNR (Unsigned integer Newton-Raphson) to improve z. 1165 // // Empirically this is guaranteed to give a "two-y" lower bound on 1166 // // inv(y). 1167 // z += umulh(z, -y * z); 1168 // 1169 // // Quotient/remainder estimate. 1170 // unsigned q = umulh(x, z); 1171 // unsigned r = x - q * y; 1172 // 1173 // // Two rounds of quotient/remainder refinement. 1174 // if (r >= y) { 1175 // ++q; 1176 // r -= y; 1177 // } 1178 // if (r >= y) { 1179 // ++q; 1180 // r -= y; 1181 // } 1182 // 1183 // return q; 1184 // } 1185 1186 // Initial estimate of inv(y). 1187 Value *FloatY = Builder.CreateUIToFP(Y, F32Ty); 1188 Function *Rcp = Intrinsic::getDeclaration(Mod, Intrinsic::amdgcn_rcp, F32Ty); 1189 Value *RcpY = Builder.CreateCall(Rcp, {FloatY}); 1190 Constant *Scale = ConstantFP::get(F32Ty, llvm::bit_cast<float>(0x4F7FFFFE)); 1191 Value *ScaledY = Builder.CreateFMul(RcpY, Scale); 1192 Value *Z = Builder.CreateFPToUI(ScaledY, I32Ty); 1193 1194 // One round of UNR. 1195 Value *NegY = Builder.CreateSub(Zero, Y); 1196 Value *NegYZ = Builder.CreateMul(NegY, Z); 1197 Z = Builder.CreateAdd(Z, getMulHu(Builder, Z, NegYZ)); 1198 1199 // Quotient/remainder estimate. 1200 Value *Q = getMulHu(Builder, X, Z); 1201 Value *R = Builder.CreateSub(X, Builder.CreateMul(Q, Y)); 1202 1203 // First quotient/remainder refinement. 1204 Value *Cond = Builder.CreateICmpUGE(R, Y); 1205 if (IsDiv) 1206 Q = Builder.CreateSelect(Cond, Builder.CreateAdd(Q, One), Q); 1207 R = Builder.CreateSelect(Cond, Builder.CreateSub(R, Y), R); 1208 1209 // Second quotient/remainder refinement. 1210 Cond = Builder.CreateICmpUGE(R, Y); 1211 Value *Res; 1212 if (IsDiv) 1213 Res = Builder.CreateSelect(Cond, Builder.CreateAdd(Q, One), Q); 1214 else 1215 Res = Builder.CreateSelect(Cond, Builder.CreateSub(R, Y), R); 1216 1217 if (IsSigned) { 1218 Res = Builder.CreateXor(Res, Sign); 1219 Res = Builder.CreateSub(Res, Sign); 1220 } 1221 1222 Res = Builder.CreateTrunc(Res, Ty); 1223 1224 return Res; 1225 } 1226 1227 Value *AMDGPUCodeGenPrepare::shrinkDivRem64(IRBuilder<> &Builder, 1228 BinaryOperator &I, 1229 Value *Num, Value *Den) const { 1230 if (!ExpandDiv64InIR && divHasSpecialOptimization(I, Num, Den)) 1231 return nullptr; // Keep it for later optimization. 1232 1233 Instruction::BinaryOps Opc = I.getOpcode(); 1234 1235 bool IsDiv = Opc == Instruction::SDiv || Opc == Instruction::UDiv; 1236 bool IsSigned = Opc == Instruction::SDiv || Opc == Instruction::SRem; 1237 1238 int NumDivBits = getDivNumBits(I, Num, Den, 32, IsSigned); 1239 if (NumDivBits == -1) 1240 return nullptr; 1241 1242 Value *Narrowed = nullptr; 1243 if (NumDivBits <= 24) { 1244 Narrowed = expandDivRem24Impl(Builder, I, Num, Den, NumDivBits, 1245 IsDiv, IsSigned); 1246 } else if (NumDivBits <= 32) { 1247 Narrowed = expandDivRem32(Builder, I, Num, Den); 1248 } 1249 1250 if (Narrowed) { 1251 return IsSigned ? Builder.CreateSExt(Narrowed, Num->getType()) : 1252 Builder.CreateZExt(Narrowed, Num->getType()); 1253 } 1254 1255 return nullptr; 1256 } 1257 1258 void AMDGPUCodeGenPrepare::expandDivRem64(BinaryOperator &I) const { 1259 Instruction::BinaryOps Opc = I.getOpcode(); 1260 // Do the general expansion. 1261 if (Opc == Instruction::UDiv || Opc == Instruction::SDiv) { 1262 expandDivisionUpTo64Bits(&I); 1263 return; 1264 } 1265 1266 if (Opc == Instruction::URem || Opc == Instruction::SRem) { 1267 expandRemainderUpTo64Bits(&I); 1268 return; 1269 } 1270 1271 llvm_unreachable("not a division"); 1272 } 1273 1274 bool AMDGPUCodeGenPrepare::visitBinaryOperator(BinaryOperator &I) { 1275 if (foldBinOpIntoSelect(I)) 1276 return true; 1277 1278 if (ST->has16BitInsts() && needsPromotionToI32(I.getType()) && 1279 UA->isUniform(&I) && promoteUniformOpToI32(I)) 1280 return true; 1281 1282 if (UseMul24Intrin && replaceMulWithMul24(I)) 1283 return true; 1284 1285 bool Changed = false; 1286 Instruction::BinaryOps Opc = I.getOpcode(); 1287 Type *Ty = I.getType(); 1288 Value *NewDiv = nullptr; 1289 unsigned ScalarSize = Ty->getScalarSizeInBits(); 1290 1291 SmallVector<BinaryOperator *, 8> Div64ToExpand; 1292 1293 if ((Opc == Instruction::URem || Opc == Instruction::UDiv || 1294 Opc == Instruction::SRem || Opc == Instruction::SDiv) && 1295 ScalarSize <= 64 && 1296 !DisableIDivExpand) { 1297 Value *Num = I.getOperand(0); 1298 Value *Den = I.getOperand(1); 1299 IRBuilder<> Builder(&I); 1300 Builder.SetCurrentDebugLocation(I.getDebugLoc()); 1301 1302 if (auto *VT = dyn_cast<FixedVectorType>(Ty)) { 1303 NewDiv = PoisonValue::get(VT); 1304 1305 for (unsigned N = 0, E = VT->getNumElements(); N != E; ++N) { 1306 Value *NumEltN = Builder.CreateExtractElement(Num, N); 1307 Value *DenEltN = Builder.CreateExtractElement(Den, N); 1308 1309 Value *NewElt; 1310 if (ScalarSize <= 32) { 1311 NewElt = expandDivRem32(Builder, I, NumEltN, DenEltN); 1312 if (!NewElt) 1313 NewElt = Builder.CreateBinOp(Opc, NumEltN, DenEltN); 1314 } else { 1315 // See if this 64-bit division can be shrunk to 32/24-bits before 1316 // producing the general expansion. 1317 NewElt = shrinkDivRem64(Builder, I, NumEltN, DenEltN); 1318 if (!NewElt) { 1319 // The general 64-bit expansion introduces control flow and doesn't 1320 // return the new value. Just insert a scalar copy and defer 1321 // expanding it. 1322 NewElt = Builder.CreateBinOp(Opc, NumEltN, DenEltN); 1323 Div64ToExpand.push_back(cast<BinaryOperator>(NewElt)); 1324 } 1325 } 1326 1327 NewDiv = Builder.CreateInsertElement(NewDiv, NewElt, N); 1328 } 1329 } else { 1330 if (ScalarSize <= 32) 1331 NewDiv = expandDivRem32(Builder, I, Num, Den); 1332 else { 1333 NewDiv = shrinkDivRem64(Builder, I, Num, Den); 1334 if (!NewDiv) 1335 Div64ToExpand.push_back(&I); 1336 } 1337 } 1338 1339 if (NewDiv) { 1340 I.replaceAllUsesWith(NewDiv); 1341 I.eraseFromParent(); 1342 Changed = true; 1343 } 1344 } 1345 1346 if (ExpandDiv64InIR) { 1347 // TODO: We get much worse code in specially handled constant cases. 1348 for (BinaryOperator *Div : Div64ToExpand) { 1349 expandDivRem64(*Div); 1350 Changed = true; 1351 } 1352 } 1353 1354 return Changed; 1355 } 1356 1357 bool AMDGPUCodeGenPrepare::visitLoadInst(LoadInst &I) { 1358 if (!WidenLoads) 1359 return false; 1360 1361 if ((I.getPointerAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS || 1362 I.getPointerAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS_32BIT) && 1363 canWidenScalarExtLoad(I)) { 1364 IRBuilder<> Builder(&I); 1365 Builder.SetCurrentDebugLocation(I.getDebugLoc()); 1366 1367 Type *I32Ty = Builder.getInt32Ty(); 1368 LoadInst *WidenLoad = Builder.CreateLoad(I32Ty, I.getPointerOperand()); 1369 WidenLoad->copyMetadata(I); 1370 1371 // If we have range metadata, we need to convert the type, and not make 1372 // assumptions about the high bits. 1373 if (auto *Range = WidenLoad->getMetadata(LLVMContext::MD_range)) { 1374 ConstantInt *Lower = 1375 mdconst::extract<ConstantInt>(Range->getOperand(0)); 1376 1377 if (Lower->isNullValue()) { 1378 WidenLoad->setMetadata(LLVMContext::MD_range, nullptr); 1379 } else { 1380 Metadata *LowAndHigh[] = { 1381 ConstantAsMetadata::get(ConstantInt::get(I32Ty, Lower->getValue().zext(32))), 1382 // Don't make assumptions about the high bits. 1383 ConstantAsMetadata::get(ConstantInt::get(I32Ty, 0)) 1384 }; 1385 1386 WidenLoad->setMetadata(LLVMContext::MD_range, 1387 MDNode::get(Mod->getContext(), LowAndHigh)); 1388 } 1389 } 1390 1391 int TySize = Mod->getDataLayout().getTypeSizeInBits(I.getType()); 1392 Type *IntNTy = Builder.getIntNTy(TySize); 1393 Value *ValTrunc = Builder.CreateTrunc(WidenLoad, IntNTy); 1394 Value *ValOrig = Builder.CreateBitCast(ValTrunc, I.getType()); 1395 I.replaceAllUsesWith(ValOrig); 1396 I.eraseFromParent(); 1397 return true; 1398 } 1399 1400 return false; 1401 } 1402 1403 bool AMDGPUCodeGenPrepare::visitICmpInst(ICmpInst &I) { 1404 bool Changed = false; 1405 1406 if (ST->has16BitInsts() && needsPromotionToI32(I.getOperand(0)->getType()) && 1407 UA->isUniform(&I)) 1408 Changed |= promoteUniformOpToI32(I); 1409 1410 return Changed; 1411 } 1412 1413 bool AMDGPUCodeGenPrepare::visitSelectInst(SelectInst &I) { 1414 if (ST->has16BitInsts() && needsPromotionToI32(I.getType())) { 1415 if (UA->isUniform(&I)) 1416 return promoteUniformOpToI32(I); 1417 return false; 1418 } 1419 1420 Value *Cond = I.getCondition(); 1421 Value *TrueVal = I.getTrueValue(); 1422 Value *FalseVal = I.getFalseValue(); 1423 Value *CmpVal; 1424 FCmpInst::Predicate Pred; 1425 1426 // Match fract pattern with nan check. 1427 if (!match(Cond, m_FCmp(Pred, m_Value(CmpVal), m_NonNaN()))) 1428 return false; 1429 1430 FPMathOperator *FPOp = dyn_cast<FPMathOperator>(&I); 1431 if (!FPOp) 1432 return false; 1433 1434 IRBuilder<> Builder(&I); 1435 Builder.setFastMathFlags(FPOp->getFastMathFlags()); 1436 1437 auto *IITrue = dyn_cast<IntrinsicInst>(TrueVal); 1438 auto *IIFalse = dyn_cast<IntrinsicInst>(FalseVal); 1439 1440 Value *Fract = nullptr; 1441 if (Pred == FCmpInst::FCMP_UNO && TrueVal == CmpVal && IIFalse && 1442 CmpVal == matchFractPat(*IIFalse)) { 1443 // isnan(x) ? x : fract(x) 1444 Fract = applyFractPat(Builder, CmpVal); 1445 } else if (Pred == FCmpInst::FCMP_ORD && FalseVal == CmpVal && IITrue && 1446 CmpVal == matchFractPat(*IITrue)) { 1447 // !isnan(x) ? fract(x) : x 1448 Fract = applyFractPat(Builder, CmpVal); 1449 } else 1450 return false; 1451 1452 Fract->takeName(&I); 1453 I.replaceAllUsesWith(Fract); 1454 RecursivelyDeleteTriviallyDeadInstructions(&I, TLInfo); 1455 return true; 1456 } 1457 1458 static bool areInSameBB(const Value *A, const Value *B) { 1459 const auto *IA = dyn_cast<Instruction>(A); 1460 const auto *IB = dyn_cast<Instruction>(B); 1461 return IA && IB && IA->getParent() == IB->getParent(); 1462 } 1463 1464 // Helper for breaking large PHIs that returns true when an extractelement on V 1465 // is likely to be folded away by the DAG combiner. 1466 static bool isInterestingPHIIncomingValue(const Value *V) { 1467 const auto *FVT = dyn_cast<FixedVectorType>(V->getType()); 1468 if (!FVT) 1469 return false; 1470 1471 const Value *CurVal = V; 1472 1473 // Check for insertelements, keeping track of the elements covered. 1474 BitVector EltsCovered(FVT->getNumElements()); 1475 while (const auto *IE = dyn_cast<InsertElementInst>(CurVal)) { 1476 const auto *Idx = dyn_cast<ConstantInt>(IE->getOperand(2)); 1477 1478 // Non constant index/out of bounds index -> folding is unlikely. 1479 // The latter is more of a sanity check because canonical IR should just 1480 // have replaced those with poison. 1481 if (!Idx || Idx->getSExtValue() >= FVT->getNumElements()) 1482 return false; 1483 1484 const auto *VecSrc = IE->getOperand(0); 1485 1486 // If the vector source is another instruction, it must be in the same basic 1487 // block. Otherwise, the DAGCombiner won't see the whole thing and is 1488 // unlikely to be able to do anything interesting here. 1489 if (isa<Instruction>(VecSrc) && !areInSameBB(VecSrc, IE)) 1490 return false; 1491 1492 CurVal = VecSrc; 1493 EltsCovered.set(Idx->getSExtValue()); 1494 1495 // All elements covered. 1496 if (EltsCovered.all()) 1497 return true; 1498 } 1499 1500 // We either didn't find a single insertelement, or the insertelement chain 1501 // ended before all elements were covered. Check for other interesting values. 1502 1503 // Constants are always interesting because we can just constant fold the 1504 // extractelements. 1505 if (isa<Constant>(CurVal)) 1506 return true; 1507 1508 // shufflevector is likely to be profitable if either operand is a constant, 1509 // or if either source is in the same block. 1510 // This is because shufflevector is most often lowered as a series of 1511 // insert/extract elements anyway. 1512 if (const auto *SV = dyn_cast<ShuffleVectorInst>(CurVal)) { 1513 return isa<Constant>(SV->getOperand(1)) || 1514 areInSameBB(SV, SV->getOperand(0)) || 1515 areInSameBB(SV, SV->getOperand(1)); 1516 } 1517 1518 return false; 1519 } 1520 1521 bool AMDGPUCodeGenPrepare::canBreakPHINode(const PHINode &I) { 1522 // Check in the cache, or add an entry for this node. 1523 // 1524 // We init with false because we consider all PHI nodes unbreakable until we 1525 // reach a conclusion. Doing the opposite - assuming they're break-able until 1526 // proven otherwise - can be harmful in some pathological cases so we're 1527 // conservative for now. 1528 const auto [It, DidInsert] = BreakPhiNodesCache.insert({&I, false}); 1529 if (!DidInsert) 1530 return It->second; 1531 1532 // This function may recurse, so to guard against infinite looping, this PHI 1533 // is conservatively considered unbreakable until we reach a conclusion. 1534 1535 // Don't break PHIs that have no interesting incoming values. That is, where 1536 // there is no clear opportunity to fold the "extractelement" instructions we 1537 // would add. 1538 // 1539 // Note: IC does not run after this pass, so we're only interested in the 1540 // foldings that the DAG combiner can do. 1541 if (none_of(I.incoming_values(), 1542 [&](Value *V) { return isInterestingPHIIncomingValue(V); })) 1543 return false; 1544 1545 // Now, check users for unbreakable PHI nodes. If we have an unbreakable PHI 1546 // node as user, we don't want to break this PHI either because it's unlikely 1547 // to be beneficial. We would just explode the vector and reassemble it 1548 // directly, wasting instructions. 1549 for (const Value *U : I.users()) { 1550 if (const auto *PU = dyn_cast<PHINode>(U)) { 1551 if (!canBreakPHINode(*PU)) 1552 return false; 1553 } 1554 } 1555 1556 return BreakPhiNodesCache[&I] = true; 1557 } 1558 1559 bool AMDGPUCodeGenPrepare::visitPHINode(PHINode &I) { 1560 // Break-up fixed-vector PHIs into smaller pieces. 1561 // Default threshold is 32, so it breaks up any vector that's >32 bits into 1562 // its elements, or into 32-bit pieces (for 8/16 bit elts). 1563 // 1564 // This is only helpful for DAGISel because it doesn't handle large PHIs as 1565 // well as GlobalISel. DAGISel lowers PHIs by using CopyToReg/CopyFromReg. 1566 // With large, odd-sized PHIs we may end up needing many `build_vector` 1567 // operations with most elements being "undef". This inhibits a lot of 1568 // optimization opportunities and can result in unreasonably high register 1569 // pressure and the inevitable stack spilling. 1570 if (!ScalarizeLargePHIs || getCGPassBuilderOption().EnableGlobalISelOption) 1571 return false; 1572 1573 FixedVectorType *FVT = dyn_cast<FixedVectorType>(I.getType()); 1574 if (!FVT || DL->getTypeSizeInBits(FVT) <= ScalarizeLargePHIsThreshold) 1575 return false; 1576 1577 if (!ForceScalarizeLargePHIs && !canBreakPHINode(I)) 1578 return false; 1579 1580 struct VectorSlice { 1581 Type *Ty = nullptr; 1582 unsigned Idx = 0; 1583 unsigned NumElts = 0; 1584 std::vector<Value *> IncomingValues = {}; 1585 PHINode *NewPHI = nullptr; 1586 }; 1587 1588 std::vector<VectorSlice> Slices; 1589 1590 Type *EltTy = FVT->getElementType(); 1591 { 1592 unsigned Idx = 0; 1593 // For 8/16 bits type, don't scalarize fully but break it up into as many 1594 // 32-bit slices as we can, and scalarize the tail. 1595 const unsigned EltSize = DL->getTypeSizeInBits(EltTy); 1596 const unsigned NumElts = FVT->getNumElements(); 1597 if (EltSize == 8 || EltSize == 16) { 1598 const unsigned SubVecSize = (32 / EltSize); 1599 Type *SubVecTy = FixedVectorType::get(EltTy, SubVecSize); 1600 for (unsigned End = alignDown(NumElts, SubVecSize); Idx < End; 1601 Idx += SubVecSize) 1602 Slices.push_back(VectorSlice{SubVecTy, Idx, SubVecSize}); 1603 } 1604 1605 // Scalarize all remaining elements. 1606 for (; Idx < NumElts; ++Idx) 1607 Slices.push_back(VectorSlice{EltTy, Idx, 1}); 1608 } 1609 1610 if (Slices.size() == 1) 1611 return false; 1612 1613 // Break up this PHI's incoming values. 1614 for (unsigned Idx = 0; Idx < I.getNumIncomingValues(); ++Idx) { 1615 Value *Inc = I.getIncomingValue(Idx); 1616 1617 IRBuilder<> B(I.getIncomingBlock(Idx)->getTerminator()); 1618 if (Instruction *IncInst = dyn_cast<Instruction>(Inc)) 1619 B.SetCurrentDebugLocation(IncInst->getDebugLoc()); 1620 1621 unsigned NameSuffix = 0; 1622 for (VectorSlice &S : Slices) { 1623 const auto ValName = 1624 "largephi.extractslice" + std::to_string(NameSuffix++); 1625 if (S.NumElts > 1) { 1626 SmallVector<int, 4> Mask; 1627 for (unsigned K = S.Idx; K < (S.Idx + S.NumElts); ++K) 1628 Mask.push_back(K); 1629 S.IncomingValues.push_back(B.CreateShuffleVector(Inc, Mask, ValName)); 1630 } else 1631 S.IncomingValues.push_back(B.CreateExtractElement(Inc, S.Idx, ValName)); 1632 } 1633 } 1634 1635 // Now create one PHI per vector piece. 1636 IRBuilder<> B(I.getParent()->getFirstNonPHI()); 1637 B.SetCurrentDebugLocation(I.getDebugLoc()); 1638 1639 for (VectorSlice &S : Slices) { 1640 S.NewPHI = B.CreatePHI(S.Ty, I.getNumIncomingValues()); 1641 for (const auto &[Idx, BB] : enumerate(I.blocks())) 1642 S.NewPHI->addIncoming(S.IncomingValues[Idx], BB); 1643 } 1644 1645 // And replace this PHI with a vector of all the previous PHI values. 1646 Value *Vec = PoisonValue::get(FVT); 1647 unsigned NameSuffix = 0; 1648 for (VectorSlice &S : Slices) { 1649 const auto ValName = "largephi.insertslice" + std::to_string(NameSuffix++); 1650 if (S.NumElts > 1) 1651 Vec = 1652 B.CreateInsertVector(FVT, Vec, S.NewPHI, B.getInt64(S.Idx), ValName); 1653 else 1654 Vec = B.CreateInsertElement(Vec, S.NewPHI, S.Idx, ValName); 1655 } 1656 1657 I.replaceAllUsesWith(Vec); 1658 I.eraseFromParent(); 1659 return true; 1660 } 1661 1662 bool AMDGPUCodeGenPrepare::visitIntrinsicInst(IntrinsicInst &I) { 1663 switch (I.getIntrinsicID()) { 1664 case Intrinsic::bitreverse: 1665 return visitBitreverseIntrinsicInst(I); 1666 case Intrinsic::minnum: 1667 return visitMinNum(I); 1668 default: 1669 return false; 1670 } 1671 } 1672 1673 bool AMDGPUCodeGenPrepare::visitBitreverseIntrinsicInst(IntrinsicInst &I) { 1674 bool Changed = false; 1675 1676 if (ST->has16BitInsts() && needsPromotionToI32(I.getType()) && 1677 UA->isUniform(&I)) 1678 Changed |= promoteUniformBitreverseToI32(I); 1679 1680 return Changed; 1681 } 1682 1683 /// Match non-nan fract pattern. 1684 /// minnum(fsub(x, floor(x)), nextafter(1.0, -1.0) 1685 /// 1686 /// If fract is a useful instruction for the subtarget. Does not account for the 1687 /// nan handling; the instruction has a nan check on the input value. 1688 Value *AMDGPUCodeGenPrepare::matchFractPat(IntrinsicInst &I) { 1689 if (ST->hasFractBug()) 1690 return nullptr; 1691 1692 if (I.getIntrinsicID() != Intrinsic::minnum) 1693 return nullptr; 1694 1695 Type *Ty = I.getType(); 1696 if (!isLegalFloatingTy(Ty->getScalarType())) 1697 return nullptr; 1698 1699 Value *Arg0 = I.getArgOperand(0); 1700 Value *Arg1 = I.getArgOperand(1); 1701 1702 const APFloat *C; 1703 if (!match(Arg1, m_APFloat(C))) 1704 return nullptr; 1705 1706 APFloat One(1.0); 1707 bool LosesInfo; 1708 One.convert(C->getSemantics(), APFloat::rmNearestTiesToEven, &LosesInfo); 1709 1710 // Match nextafter(1.0, -1) 1711 One.next(true); 1712 if (One != *C) 1713 return nullptr; 1714 1715 Value *FloorSrc; 1716 if (match(Arg0, m_FSub(m_Value(FloorSrc), 1717 m_Intrinsic<Intrinsic::floor>(m_Deferred(FloorSrc))))) 1718 return FloorSrc; 1719 return nullptr; 1720 } 1721 1722 Value *AMDGPUCodeGenPrepare::applyFractPat(IRBuilder<> &Builder, 1723 Value *FractArg) { 1724 SmallVector<Value *, 4> FractVals; 1725 extractValues(Builder, FractVals, FractArg); 1726 1727 SmallVector<Value *, 4> ResultVals(FractVals.size()); 1728 1729 Type *Ty = FractArg->getType()->getScalarType(); 1730 for (unsigned I = 0, E = FractVals.size(); I != E; ++I) { 1731 ResultVals[I] = 1732 Builder.CreateIntrinsic(Intrinsic::amdgcn_fract, {Ty}, {FractVals[I]}); 1733 } 1734 1735 return insertValues(Builder, FractArg->getType(), ResultVals); 1736 } 1737 1738 bool AMDGPUCodeGenPrepare::visitMinNum(IntrinsicInst &I) { 1739 Value *FractArg = matchFractPat(I); 1740 if (!FractArg) 1741 return false; 1742 1743 // Match pattern for fract intrinsic in contexts where the nan check has been 1744 // optimized out (and hope the knowledge the source can't be nan wasn't lost). 1745 if (!I.hasNoNaNs() && !isKnownNeverNaN(FractArg, *DL, TLInfo)) 1746 return false; 1747 1748 IRBuilder<> Builder(&I); 1749 FastMathFlags FMF = I.getFastMathFlags(); 1750 FMF.setNoNaNs(); 1751 Builder.setFastMathFlags(FMF); 1752 1753 Value *Fract = applyFractPat(Builder, FractArg); 1754 Fract->takeName(&I); 1755 I.replaceAllUsesWith(Fract); 1756 1757 RecursivelyDeleteTriviallyDeadInstructions(&I, TLInfo); 1758 return true; 1759 } 1760 1761 bool AMDGPUCodeGenPrepare::doInitialization(Module &M) { 1762 Mod = &M; 1763 DL = &Mod->getDataLayout(); 1764 return false; 1765 } 1766 1767 bool AMDGPUCodeGenPrepare::runOnFunction(Function &F) { 1768 if (skipFunction(F)) 1769 return false; 1770 1771 auto *TPC = getAnalysisIfAvailable<TargetPassConfig>(); 1772 if (!TPC) 1773 return false; 1774 1775 const AMDGPUTargetMachine &TM = TPC->getTM<AMDGPUTargetMachine>(); 1776 ST = &TM.getSubtarget<GCNSubtarget>(F); 1777 TLInfo = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F); 1778 AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 1779 UA = &getAnalysis<UniformityInfoWrapperPass>().getUniformityInfo(); 1780 1781 auto *DTWP = getAnalysisIfAvailable<DominatorTreeWrapperPass>(); 1782 DT = DTWP ? &DTWP->getDomTree() : nullptr; 1783 1784 HasUnsafeFPMath = hasUnsafeFPMath(F); 1785 1786 SIModeRegisterDefaults Mode(F); 1787 HasFP32Denormals = Mode.allFP32Denormals(); 1788 1789 bool MadeChange = false; 1790 1791 Function::iterator NextBB; 1792 for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE; FI = NextBB) { 1793 BasicBlock *BB = &*FI; 1794 NextBB = std::next(FI); 1795 1796 BasicBlock::iterator Next; 1797 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; I = Next) { 1798 Next = std::next(I); 1799 1800 MadeChange |= visit(*I); 1801 1802 if (Next != E) { // Control flow changed 1803 BasicBlock *NextInstBB = Next->getParent(); 1804 if (NextInstBB != BB) { 1805 BB = NextInstBB; 1806 E = BB->end(); 1807 FE = F.end(); 1808 } 1809 } 1810 } 1811 } 1812 1813 return MadeChange; 1814 } 1815 1816 INITIALIZE_PASS_BEGIN(AMDGPUCodeGenPrepare, DEBUG_TYPE, 1817 "AMDGPU IR optimizations", false, false) 1818 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 1819 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 1820 INITIALIZE_PASS_DEPENDENCY(UniformityInfoWrapperPass) 1821 INITIALIZE_PASS_END(AMDGPUCodeGenPrepare, DEBUG_TYPE, "AMDGPU IR optimizations", 1822 false, false) 1823 1824 char AMDGPUCodeGenPrepare::ID = 0; 1825 1826 FunctionPass *llvm::createAMDGPUCodeGenPreparePass() { 1827 return new AMDGPUCodeGenPrepare(); 1828 } 1829