1 //===-- AMDGPUCodeGenPrepare.cpp ------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file 10 /// This pass does misc. AMDGPU optimizations on IR before instruction 11 /// selection. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "AMDGPU.h" 16 #include "AMDGPUSubtarget.h" 17 #include "AMDGPUTargetMachine.h" 18 #include "llvm/ADT/StringRef.h" 19 #include "llvm/Analysis/AssumptionCache.h" 20 #include "llvm/Analysis/LegacyDivergenceAnalysis.h" 21 #include "llvm/Analysis/Loads.h" 22 #include "llvm/Analysis/ValueTracking.h" 23 #include "llvm/CodeGen/Passes.h" 24 #include "llvm/CodeGen/TargetPassConfig.h" 25 #include "llvm/IR/Attributes.h" 26 #include "llvm/IR/BasicBlock.h" 27 #include "llvm/IR/Constants.h" 28 #include "llvm/IR/DerivedTypes.h" 29 #include "llvm/IR/Function.h" 30 #include "llvm/IR/IRBuilder.h" 31 #include "llvm/IR/InstVisitor.h" 32 #include "llvm/IR/InstrTypes.h" 33 #include "llvm/IR/Instruction.h" 34 #include "llvm/IR/Instructions.h" 35 #include "llvm/IR/IntrinsicInst.h" 36 #include "llvm/IR/Intrinsics.h" 37 #include "llvm/IR/LLVMContext.h" 38 #include "llvm/IR/Operator.h" 39 #include "llvm/IR/Type.h" 40 #include "llvm/IR/Value.h" 41 #include "llvm/InitializePasses.h" 42 #include "llvm/Pass.h" 43 #include "llvm/Support/Casting.h" 44 #include <cassert> 45 #include <iterator> 46 47 #define DEBUG_TYPE "amdgpu-codegenprepare" 48 49 using namespace llvm; 50 51 namespace { 52 53 static cl::opt<bool> WidenLoads( 54 "amdgpu-codegenprepare-widen-constant-loads", 55 cl::desc("Widen sub-dword constant address space loads in AMDGPUCodeGenPrepare"), 56 cl::ReallyHidden, 57 cl::init(true)); 58 59 static cl::opt<bool> UseMul24Intrin( 60 "amdgpu-codegenprepare-mul24", 61 cl::desc("Introduce mul24 intrinsics in AMDGPUCodeGenPrepare"), 62 cl::ReallyHidden, 63 cl::init(true)); 64 65 class AMDGPUCodeGenPrepare : public FunctionPass, 66 public InstVisitor<AMDGPUCodeGenPrepare, bool> { 67 const GCNSubtarget *ST = nullptr; 68 AssumptionCache *AC = nullptr; 69 LegacyDivergenceAnalysis *DA = nullptr; 70 Module *Mod = nullptr; 71 const DataLayout *DL = nullptr; 72 bool HasUnsafeFPMath = false; 73 74 /// Copies exact/nsw/nuw flags (if any) from binary operation \p I to 75 /// binary operation \p V. 76 /// 77 /// \returns Binary operation \p V. 78 /// \returns \p T's base element bit width. 79 unsigned getBaseElementBitWidth(const Type *T) const; 80 81 /// \returns Equivalent 32 bit integer type for given type \p T. For example, 82 /// if \p T is i7, then i32 is returned; if \p T is <3 x i12>, then <3 x i32> 83 /// is returned. 84 Type *getI32Ty(IRBuilder<> &B, const Type *T) const; 85 86 /// \returns True if binary operation \p I is a signed binary operation, false 87 /// otherwise. 88 bool isSigned(const BinaryOperator &I) const; 89 90 /// \returns True if the condition of 'select' operation \p I comes from a 91 /// signed 'icmp' operation, false otherwise. 92 bool isSigned(const SelectInst &I) const; 93 94 /// \returns True if type \p T needs to be promoted to 32 bit integer type, 95 /// false otherwise. 96 bool needsPromotionToI32(const Type *T) const; 97 98 /// Promotes uniform binary operation \p I to equivalent 32 bit binary 99 /// operation. 100 /// 101 /// \details \p I's base element bit width must be greater than 1 and less 102 /// than or equal 16. Promotion is done by sign or zero extending operands to 103 /// 32 bits, replacing \p I with equivalent 32 bit binary operation, and 104 /// truncating the result of 32 bit binary operation back to \p I's original 105 /// type. Division operation is not promoted. 106 /// 107 /// \returns True if \p I is promoted to equivalent 32 bit binary operation, 108 /// false otherwise. 109 bool promoteUniformOpToI32(BinaryOperator &I) const; 110 111 /// Promotes uniform 'icmp' operation \p I to 32 bit 'icmp' operation. 112 /// 113 /// \details \p I's base element bit width must be greater than 1 and less 114 /// than or equal 16. Promotion is done by sign or zero extending operands to 115 /// 32 bits, and replacing \p I with 32 bit 'icmp' operation. 116 /// 117 /// \returns True. 118 bool promoteUniformOpToI32(ICmpInst &I) const; 119 120 /// Promotes uniform 'select' operation \p I to 32 bit 'select' 121 /// operation. 122 /// 123 /// \details \p I's base element bit width must be greater than 1 and less 124 /// than or equal 16. Promotion is done by sign or zero extending operands to 125 /// 32 bits, replacing \p I with 32 bit 'select' operation, and truncating the 126 /// result of 32 bit 'select' operation back to \p I's original type. 127 /// 128 /// \returns True. 129 bool promoteUniformOpToI32(SelectInst &I) const; 130 131 /// Promotes uniform 'bitreverse' intrinsic \p I to 32 bit 'bitreverse' 132 /// intrinsic. 133 /// 134 /// \details \p I's base element bit width must be greater than 1 and less 135 /// than or equal 16. Promotion is done by zero extending the operand to 32 136 /// bits, replacing \p I with 32 bit 'bitreverse' intrinsic, shifting the 137 /// result of 32 bit 'bitreverse' intrinsic to the right with zero fill (the 138 /// shift amount is 32 minus \p I's base element bit width), and truncating 139 /// the result of the shift operation back to \p I's original type. 140 /// 141 /// \returns True. 142 bool promoteUniformBitreverseToI32(IntrinsicInst &I) const; 143 144 145 unsigned numBitsUnsigned(Value *Op, unsigned ScalarSize) const; 146 unsigned numBitsSigned(Value *Op, unsigned ScalarSize) const; 147 bool isI24(Value *V, unsigned ScalarSize) const; 148 bool isU24(Value *V, unsigned ScalarSize) const; 149 150 /// Replace mul instructions with llvm.amdgcn.mul.u24 or llvm.amdgcn.mul.s24. 151 /// SelectionDAG has an issue where an and asserting the bits are known 152 bool replaceMulWithMul24(BinaryOperator &I) const; 153 154 /// Expands 24 bit div or rem. 155 Value* expandDivRem24(IRBuilder<> &Builder, BinaryOperator &I, 156 Value *Num, Value *Den, 157 bool IsDiv, bool IsSigned) const; 158 159 /// Expands 32 bit div or rem. 160 Value* expandDivRem32(IRBuilder<> &Builder, BinaryOperator &I, 161 Value *Num, Value *Den) const; 162 163 /// Widen a scalar load. 164 /// 165 /// \details \p Widen scalar load for uniform, small type loads from constant 166 // memory / to a full 32-bits and then truncate the input to allow a scalar 167 // load instead of a vector load. 168 // 169 /// \returns True. 170 171 bool canWidenScalarExtLoad(LoadInst &I) const; 172 173 public: 174 static char ID; 175 176 AMDGPUCodeGenPrepare() : FunctionPass(ID) {} 177 178 bool visitFDiv(BinaryOperator &I); 179 180 bool visitInstruction(Instruction &I) { return false; } 181 bool visitBinaryOperator(BinaryOperator &I); 182 bool visitLoadInst(LoadInst &I); 183 bool visitICmpInst(ICmpInst &I); 184 bool visitSelectInst(SelectInst &I); 185 186 bool visitIntrinsicInst(IntrinsicInst &I); 187 bool visitBitreverseIntrinsicInst(IntrinsicInst &I); 188 189 bool doInitialization(Module &M) override; 190 bool runOnFunction(Function &F) override; 191 192 StringRef getPassName() const override { return "AMDGPU IR optimizations"; } 193 194 void getAnalysisUsage(AnalysisUsage &AU) const override { 195 AU.addRequired<AssumptionCacheTracker>(); 196 AU.addRequired<LegacyDivergenceAnalysis>(); 197 AU.setPreservesAll(); 198 } 199 }; 200 201 } // end anonymous namespace 202 203 unsigned AMDGPUCodeGenPrepare::getBaseElementBitWidth(const Type *T) const { 204 assert(needsPromotionToI32(T) && "T does not need promotion to i32"); 205 206 if (T->isIntegerTy()) 207 return T->getIntegerBitWidth(); 208 return cast<VectorType>(T)->getElementType()->getIntegerBitWidth(); 209 } 210 211 Type *AMDGPUCodeGenPrepare::getI32Ty(IRBuilder<> &B, const Type *T) const { 212 assert(needsPromotionToI32(T) && "T does not need promotion to i32"); 213 214 if (T->isIntegerTy()) 215 return B.getInt32Ty(); 216 return VectorType::get(B.getInt32Ty(), cast<VectorType>(T)->getNumElements()); 217 } 218 219 bool AMDGPUCodeGenPrepare::isSigned(const BinaryOperator &I) const { 220 return I.getOpcode() == Instruction::AShr || 221 I.getOpcode() == Instruction::SDiv || I.getOpcode() == Instruction::SRem; 222 } 223 224 bool AMDGPUCodeGenPrepare::isSigned(const SelectInst &I) const { 225 return isa<ICmpInst>(I.getOperand(0)) ? 226 cast<ICmpInst>(I.getOperand(0))->isSigned() : false; 227 } 228 229 bool AMDGPUCodeGenPrepare::needsPromotionToI32(const Type *T) const { 230 const IntegerType *IntTy = dyn_cast<IntegerType>(T); 231 if (IntTy && IntTy->getBitWidth() > 1 && IntTy->getBitWidth() <= 16) 232 return true; 233 234 if (const VectorType *VT = dyn_cast<VectorType>(T)) { 235 // TODO: The set of packed operations is more limited, so may want to 236 // promote some anyway. 237 if (ST->hasVOP3PInsts()) 238 return false; 239 240 return needsPromotionToI32(VT->getElementType()); 241 } 242 243 return false; 244 } 245 246 // Return true if the op promoted to i32 should have nsw set. 247 static bool promotedOpIsNSW(const Instruction &I) { 248 switch (I.getOpcode()) { 249 case Instruction::Shl: 250 case Instruction::Add: 251 case Instruction::Sub: 252 return true; 253 case Instruction::Mul: 254 return I.hasNoUnsignedWrap(); 255 default: 256 return false; 257 } 258 } 259 260 // Return true if the op promoted to i32 should have nuw set. 261 static bool promotedOpIsNUW(const Instruction &I) { 262 switch (I.getOpcode()) { 263 case Instruction::Shl: 264 case Instruction::Add: 265 case Instruction::Mul: 266 return true; 267 case Instruction::Sub: 268 return I.hasNoUnsignedWrap(); 269 default: 270 return false; 271 } 272 } 273 274 bool AMDGPUCodeGenPrepare::canWidenScalarExtLoad(LoadInst &I) const { 275 Type *Ty = I.getType(); 276 const DataLayout &DL = Mod->getDataLayout(); 277 int TySize = DL.getTypeSizeInBits(Ty); 278 unsigned Align = I.getAlignment() ? 279 I.getAlignment() : DL.getABITypeAlignment(Ty); 280 281 return I.isSimple() && TySize < 32 && Align >= 4 && DA->isUniform(&I); 282 } 283 284 bool AMDGPUCodeGenPrepare::promoteUniformOpToI32(BinaryOperator &I) const { 285 assert(needsPromotionToI32(I.getType()) && 286 "I does not need promotion to i32"); 287 288 if (I.getOpcode() == Instruction::SDiv || 289 I.getOpcode() == Instruction::UDiv || 290 I.getOpcode() == Instruction::SRem || 291 I.getOpcode() == Instruction::URem) 292 return false; 293 294 IRBuilder<> Builder(&I); 295 Builder.SetCurrentDebugLocation(I.getDebugLoc()); 296 297 Type *I32Ty = getI32Ty(Builder, I.getType()); 298 Value *ExtOp0 = nullptr; 299 Value *ExtOp1 = nullptr; 300 Value *ExtRes = nullptr; 301 Value *TruncRes = nullptr; 302 303 if (isSigned(I)) { 304 ExtOp0 = Builder.CreateSExt(I.getOperand(0), I32Ty); 305 ExtOp1 = Builder.CreateSExt(I.getOperand(1), I32Ty); 306 } else { 307 ExtOp0 = Builder.CreateZExt(I.getOperand(0), I32Ty); 308 ExtOp1 = Builder.CreateZExt(I.getOperand(1), I32Ty); 309 } 310 311 ExtRes = Builder.CreateBinOp(I.getOpcode(), ExtOp0, ExtOp1); 312 if (Instruction *Inst = dyn_cast<Instruction>(ExtRes)) { 313 if (promotedOpIsNSW(cast<Instruction>(I))) 314 Inst->setHasNoSignedWrap(); 315 316 if (promotedOpIsNUW(cast<Instruction>(I))) 317 Inst->setHasNoUnsignedWrap(); 318 319 if (const auto *ExactOp = dyn_cast<PossiblyExactOperator>(&I)) 320 Inst->setIsExact(ExactOp->isExact()); 321 } 322 323 TruncRes = Builder.CreateTrunc(ExtRes, I.getType()); 324 325 I.replaceAllUsesWith(TruncRes); 326 I.eraseFromParent(); 327 328 return true; 329 } 330 331 bool AMDGPUCodeGenPrepare::promoteUniformOpToI32(ICmpInst &I) const { 332 assert(needsPromotionToI32(I.getOperand(0)->getType()) && 333 "I does not need promotion to i32"); 334 335 IRBuilder<> Builder(&I); 336 Builder.SetCurrentDebugLocation(I.getDebugLoc()); 337 338 Type *I32Ty = getI32Ty(Builder, I.getOperand(0)->getType()); 339 Value *ExtOp0 = nullptr; 340 Value *ExtOp1 = nullptr; 341 Value *NewICmp = nullptr; 342 343 if (I.isSigned()) { 344 ExtOp0 = Builder.CreateSExt(I.getOperand(0), I32Ty); 345 ExtOp1 = Builder.CreateSExt(I.getOperand(1), I32Ty); 346 } else { 347 ExtOp0 = Builder.CreateZExt(I.getOperand(0), I32Ty); 348 ExtOp1 = Builder.CreateZExt(I.getOperand(1), I32Ty); 349 } 350 NewICmp = Builder.CreateICmp(I.getPredicate(), ExtOp0, ExtOp1); 351 352 I.replaceAllUsesWith(NewICmp); 353 I.eraseFromParent(); 354 355 return true; 356 } 357 358 bool AMDGPUCodeGenPrepare::promoteUniformOpToI32(SelectInst &I) const { 359 assert(needsPromotionToI32(I.getType()) && 360 "I does not need promotion to i32"); 361 362 IRBuilder<> Builder(&I); 363 Builder.SetCurrentDebugLocation(I.getDebugLoc()); 364 365 Type *I32Ty = getI32Ty(Builder, I.getType()); 366 Value *ExtOp1 = nullptr; 367 Value *ExtOp2 = nullptr; 368 Value *ExtRes = nullptr; 369 Value *TruncRes = nullptr; 370 371 if (isSigned(I)) { 372 ExtOp1 = Builder.CreateSExt(I.getOperand(1), I32Ty); 373 ExtOp2 = Builder.CreateSExt(I.getOperand(2), I32Ty); 374 } else { 375 ExtOp1 = Builder.CreateZExt(I.getOperand(1), I32Ty); 376 ExtOp2 = Builder.CreateZExt(I.getOperand(2), I32Ty); 377 } 378 ExtRes = Builder.CreateSelect(I.getOperand(0), ExtOp1, ExtOp2); 379 TruncRes = Builder.CreateTrunc(ExtRes, I.getType()); 380 381 I.replaceAllUsesWith(TruncRes); 382 I.eraseFromParent(); 383 384 return true; 385 } 386 387 bool AMDGPUCodeGenPrepare::promoteUniformBitreverseToI32( 388 IntrinsicInst &I) const { 389 assert(I.getIntrinsicID() == Intrinsic::bitreverse && 390 "I must be bitreverse intrinsic"); 391 assert(needsPromotionToI32(I.getType()) && 392 "I does not need promotion to i32"); 393 394 IRBuilder<> Builder(&I); 395 Builder.SetCurrentDebugLocation(I.getDebugLoc()); 396 397 Type *I32Ty = getI32Ty(Builder, I.getType()); 398 Function *I32 = 399 Intrinsic::getDeclaration(Mod, Intrinsic::bitreverse, { I32Ty }); 400 Value *ExtOp = Builder.CreateZExt(I.getOperand(0), I32Ty); 401 Value *ExtRes = Builder.CreateCall(I32, { ExtOp }); 402 Value *LShrOp = 403 Builder.CreateLShr(ExtRes, 32 - getBaseElementBitWidth(I.getType())); 404 Value *TruncRes = 405 Builder.CreateTrunc(LShrOp, I.getType()); 406 407 I.replaceAllUsesWith(TruncRes); 408 I.eraseFromParent(); 409 410 return true; 411 } 412 413 unsigned AMDGPUCodeGenPrepare::numBitsUnsigned(Value *Op, 414 unsigned ScalarSize) const { 415 KnownBits Known = computeKnownBits(Op, *DL, 0, AC); 416 return ScalarSize - Known.countMinLeadingZeros(); 417 } 418 419 unsigned AMDGPUCodeGenPrepare::numBitsSigned(Value *Op, 420 unsigned ScalarSize) const { 421 // In order for this to be a signed 24-bit value, bit 23, must 422 // be a sign bit. 423 return ScalarSize - ComputeNumSignBits(Op, *DL, 0, AC); 424 } 425 426 bool AMDGPUCodeGenPrepare::isI24(Value *V, unsigned ScalarSize) const { 427 return ScalarSize >= 24 && // Types less than 24-bit should be treated 428 // as unsigned 24-bit values. 429 numBitsSigned(V, ScalarSize) < 24; 430 } 431 432 bool AMDGPUCodeGenPrepare::isU24(Value *V, unsigned ScalarSize) const { 433 return numBitsUnsigned(V, ScalarSize) <= 24; 434 } 435 436 static void extractValues(IRBuilder<> &Builder, 437 SmallVectorImpl<Value *> &Values, Value *V) { 438 VectorType *VT = dyn_cast<VectorType>(V->getType()); 439 if (!VT) { 440 Values.push_back(V); 441 return; 442 } 443 444 for (int I = 0, E = VT->getNumElements(); I != E; ++I) 445 Values.push_back(Builder.CreateExtractElement(V, I)); 446 } 447 448 static Value *insertValues(IRBuilder<> &Builder, 449 Type *Ty, 450 SmallVectorImpl<Value *> &Values) { 451 if (Values.size() == 1) 452 return Values[0]; 453 454 Value *NewVal = UndefValue::get(Ty); 455 for (int I = 0, E = Values.size(); I != E; ++I) 456 NewVal = Builder.CreateInsertElement(NewVal, Values[I], I); 457 458 return NewVal; 459 } 460 461 bool AMDGPUCodeGenPrepare::replaceMulWithMul24(BinaryOperator &I) const { 462 if (I.getOpcode() != Instruction::Mul) 463 return false; 464 465 Type *Ty = I.getType(); 466 unsigned Size = Ty->getScalarSizeInBits(); 467 if (Size <= 16 && ST->has16BitInsts()) 468 return false; 469 470 // Prefer scalar if this could be s_mul_i32 471 if (DA->isUniform(&I)) 472 return false; 473 474 Value *LHS = I.getOperand(0); 475 Value *RHS = I.getOperand(1); 476 IRBuilder<> Builder(&I); 477 Builder.SetCurrentDebugLocation(I.getDebugLoc()); 478 479 Intrinsic::ID IntrID = Intrinsic::not_intrinsic; 480 481 // TODO: Should this try to match mulhi24? 482 if (ST->hasMulU24() && isU24(LHS, Size) && isU24(RHS, Size)) { 483 IntrID = Intrinsic::amdgcn_mul_u24; 484 } else if (ST->hasMulI24() && isI24(LHS, Size) && isI24(RHS, Size)) { 485 IntrID = Intrinsic::amdgcn_mul_i24; 486 } else 487 return false; 488 489 SmallVector<Value *, 4> LHSVals; 490 SmallVector<Value *, 4> RHSVals; 491 SmallVector<Value *, 4> ResultVals; 492 extractValues(Builder, LHSVals, LHS); 493 extractValues(Builder, RHSVals, RHS); 494 495 496 IntegerType *I32Ty = Builder.getInt32Ty(); 497 FunctionCallee Intrin = Intrinsic::getDeclaration(Mod, IntrID); 498 for (int I = 0, E = LHSVals.size(); I != E; ++I) { 499 Value *LHS, *RHS; 500 if (IntrID == Intrinsic::amdgcn_mul_u24) { 501 LHS = Builder.CreateZExtOrTrunc(LHSVals[I], I32Ty); 502 RHS = Builder.CreateZExtOrTrunc(RHSVals[I], I32Ty); 503 } else { 504 LHS = Builder.CreateSExtOrTrunc(LHSVals[I], I32Ty); 505 RHS = Builder.CreateSExtOrTrunc(RHSVals[I], I32Ty); 506 } 507 508 Value *Result = Builder.CreateCall(Intrin, {LHS, RHS}); 509 510 if (IntrID == Intrinsic::amdgcn_mul_u24) { 511 ResultVals.push_back(Builder.CreateZExtOrTrunc(Result, 512 LHSVals[I]->getType())); 513 } else { 514 ResultVals.push_back(Builder.CreateSExtOrTrunc(Result, 515 LHSVals[I]->getType())); 516 } 517 } 518 519 Value *NewVal = insertValues(Builder, Ty, ResultVals); 520 NewVal->takeName(&I); 521 I.replaceAllUsesWith(NewVal); 522 I.eraseFromParent(); 523 524 return true; 525 } 526 527 static bool shouldKeepFDivF32(Value *Num, bool UnsafeDiv, bool HasDenormals) { 528 const ConstantFP *CNum = dyn_cast<ConstantFP>(Num); 529 if (!CNum) 530 return HasDenormals; 531 532 if (UnsafeDiv) 533 return true; 534 535 bool IsOne = CNum->isExactlyValue(+1.0) || CNum->isExactlyValue(-1.0); 536 537 // Reciprocal f32 is handled separately without denormals. 538 return HasDenormals ^ IsOne; 539 } 540 541 // Insert an intrinsic for fast fdiv for safe math situations where we can 542 // reduce precision. Leave fdiv for situations where the generic node is 543 // expected to be optimized. 544 bool AMDGPUCodeGenPrepare::visitFDiv(BinaryOperator &FDiv) { 545 Type *Ty = FDiv.getType(); 546 547 if (!Ty->getScalarType()->isFloatTy()) 548 return false; 549 550 MDNode *FPMath = FDiv.getMetadata(LLVMContext::MD_fpmath); 551 if (!FPMath) 552 return false; 553 554 const FPMathOperator *FPOp = cast<const FPMathOperator>(&FDiv); 555 float ULP = FPOp->getFPAccuracy(); 556 if (ULP < 2.5f) 557 return false; 558 559 FastMathFlags FMF = FPOp->getFastMathFlags(); 560 bool UnsafeDiv = HasUnsafeFPMath || FMF.isFast() || 561 FMF.allowReciprocal(); 562 563 // With UnsafeDiv node will be optimized to just rcp and mul. 564 if (UnsafeDiv) 565 return false; 566 567 IRBuilder<> Builder(FDiv.getParent(), std::next(FDiv.getIterator()), FPMath); 568 Builder.setFastMathFlags(FMF); 569 Builder.SetCurrentDebugLocation(FDiv.getDebugLoc()); 570 571 Function *Decl = Intrinsic::getDeclaration(Mod, Intrinsic::amdgcn_fdiv_fast); 572 573 Value *Num = FDiv.getOperand(0); 574 Value *Den = FDiv.getOperand(1); 575 576 Value *NewFDiv = nullptr; 577 578 bool HasDenormals = ST->hasFP32Denormals(); 579 if (VectorType *VT = dyn_cast<VectorType>(Ty)) { 580 NewFDiv = UndefValue::get(VT); 581 582 // FIXME: Doesn't do the right thing for cases where the vector is partially 583 // constant. This works when the scalarizer pass is run first. 584 for (unsigned I = 0, E = VT->getNumElements(); I != E; ++I) { 585 Value *NumEltI = Builder.CreateExtractElement(Num, I); 586 Value *DenEltI = Builder.CreateExtractElement(Den, I); 587 Value *NewElt; 588 589 if (shouldKeepFDivF32(NumEltI, UnsafeDiv, HasDenormals)) { 590 NewElt = Builder.CreateFDiv(NumEltI, DenEltI); 591 } else { 592 NewElt = Builder.CreateCall(Decl, { NumEltI, DenEltI }); 593 } 594 595 NewFDiv = Builder.CreateInsertElement(NewFDiv, NewElt, I); 596 } 597 } else { 598 if (!shouldKeepFDivF32(Num, UnsafeDiv, HasDenormals)) 599 NewFDiv = Builder.CreateCall(Decl, { Num, Den }); 600 } 601 602 if (NewFDiv) { 603 FDiv.replaceAllUsesWith(NewFDiv); 604 NewFDiv->takeName(&FDiv); 605 FDiv.eraseFromParent(); 606 } 607 608 return !!NewFDiv; 609 } 610 611 static bool hasUnsafeFPMath(const Function &F) { 612 Attribute Attr = F.getFnAttribute("unsafe-fp-math"); 613 return Attr.getValueAsString() == "true"; 614 } 615 616 static std::pair<Value*, Value*> getMul64(IRBuilder<> &Builder, 617 Value *LHS, Value *RHS) { 618 Type *I32Ty = Builder.getInt32Ty(); 619 Type *I64Ty = Builder.getInt64Ty(); 620 621 Value *LHS_EXT64 = Builder.CreateZExt(LHS, I64Ty); 622 Value *RHS_EXT64 = Builder.CreateZExt(RHS, I64Ty); 623 Value *MUL64 = Builder.CreateMul(LHS_EXT64, RHS_EXT64); 624 Value *Lo = Builder.CreateTrunc(MUL64, I32Ty); 625 Value *Hi = Builder.CreateLShr(MUL64, Builder.getInt64(32)); 626 Hi = Builder.CreateTrunc(Hi, I32Ty); 627 return std::make_pair(Lo, Hi); 628 } 629 630 static Value* getMulHu(IRBuilder<> &Builder, Value *LHS, Value *RHS) { 631 return getMul64(Builder, LHS, RHS).second; 632 } 633 634 // The fractional part of a float is enough to accurately represent up to 635 // a 24-bit signed integer. 636 Value* AMDGPUCodeGenPrepare::expandDivRem24(IRBuilder<> &Builder, 637 BinaryOperator &I, 638 Value *Num, Value *Den, 639 bool IsDiv, bool IsSigned) const { 640 assert(Num->getType()->isIntegerTy(32)); 641 642 const DataLayout &DL = Mod->getDataLayout(); 643 unsigned LHSSignBits = ComputeNumSignBits(Num, DL, 0, AC, &I); 644 if (LHSSignBits < 9) 645 return nullptr; 646 647 unsigned RHSSignBits = ComputeNumSignBits(Den, DL, 0, AC, &I); 648 if (RHSSignBits < 9) 649 return nullptr; 650 651 652 unsigned SignBits = std::min(LHSSignBits, RHSSignBits); 653 unsigned DivBits = 32 - SignBits; 654 if (IsSigned) 655 ++DivBits; 656 657 Type *Ty = Num->getType(); 658 Type *I32Ty = Builder.getInt32Ty(); 659 Type *F32Ty = Builder.getFloatTy(); 660 ConstantInt *One = Builder.getInt32(1); 661 Value *JQ = One; 662 663 if (IsSigned) { 664 // char|short jq = ia ^ ib; 665 JQ = Builder.CreateXor(Num, Den); 666 667 // jq = jq >> (bitsize - 2) 668 JQ = Builder.CreateAShr(JQ, Builder.getInt32(30)); 669 670 // jq = jq | 0x1 671 JQ = Builder.CreateOr(JQ, One); 672 } 673 674 // int ia = (int)LHS; 675 Value *IA = Num; 676 677 // int ib, (int)RHS; 678 Value *IB = Den; 679 680 // float fa = (float)ia; 681 Value *FA = IsSigned ? Builder.CreateSIToFP(IA, F32Ty) 682 : Builder.CreateUIToFP(IA, F32Ty); 683 684 // float fb = (float)ib; 685 Value *FB = IsSigned ? Builder.CreateSIToFP(IB,F32Ty) 686 : Builder.CreateUIToFP(IB,F32Ty); 687 688 Value *RCP = Builder.CreateFDiv(ConstantFP::get(F32Ty, 1.0), FB); 689 Value *FQM = Builder.CreateFMul(FA, RCP); 690 691 // fq = trunc(fqm); 692 CallInst *FQ = Builder.CreateUnaryIntrinsic(Intrinsic::trunc, FQM); 693 FQ->copyFastMathFlags(Builder.getFastMathFlags()); 694 695 // float fqneg = -fq; 696 Value *FQNeg = Builder.CreateFNeg(FQ); 697 698 // float fr = mad(fqneg, fb, fa); 699 Value *FR = Builder.CreateIntrinsic(Intrinsic::amdgcn_fmad_ftz, 700 {FQNeg->getType()}, {FQNeg, FB, FA}, FQ); 701 702 // int iq = (int)fq; 703 Value *IQ = IsSigned ? Builder.CreateFPToSI(FQ, I32Ty) 704 : Builder.CreateFPToUI(FQ, I32Ty); 705 706 // fr = fabs(fr); 707 FR = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, FR, FQ); 708 709 // fb = fabs(fb); 710 FB = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, FB, FQ); 711 712 // int cv = fr >= fb; 713 Value *CV = Builder.CreateFCmpOGE(FR, FB); 714 715 // jq = (cv ? jq : 0); 716 JQ = Builder.CreateSelect(CV, JQ, Builder.getInt32(0)); 717 718 // dst = iq + jq; 719 Value *Div = Builder.CreateAdd(IQ, JQ); 720 721 Value *Res = Div; 722 if (!IsDiv) { 723 // Rem needs compensation, it's easier to recompute it 724 Value *Rem = Builder.CreateMul(Div, Den); 725 Res = Builder.CreateSub(Num, Rem); 726 } 727 728 // Truncate to number of bits this divide really is. 729 if (IsSigned) { 730 Res = Builder.CreateTrunc(Res, Builder.getIntNTy(DivBits)); 731 Res = Builder.CreateSExt(Res, Ty); 732 } else { 733 ConstantInt *TruncMask = Builder.getInt32((UINT64_C(1) << DivBits) - 1); 734 Res = Builder.CreateAnd(Res, TruncMask); 735 } 736 737 return Res; 738 } 739 740 Value* AMDGPUCodeGenPrepare::expandDivRem32(IRBuilder<> &Builder, 741 BinaryOperator &I, 742 Value *Num, Value *Den) const { 743 Instruction::BinaryOps Opc = I.getOpcode(); 744 assert(Opc == Instruction::URem || Opc == Instruction::UDiv || 745 Opc == Instruction::SRem || Opc == Instruction::SDiv); 746 747 FastMathFlags FMF; 748 FMF.setFast(); 749 Builder.setFastMathFlags(FMF); 750 751 if (isa<Constant>(Den)) 752 return nullptr; // Keep it for optimization 753 754 bool IsDiv = Opc == Instruction::UDiv || Opc == Instruction::SDiv; 755 bool IsSigned = Opc == Instruction::SRem || Opc == Instruction::SDiv; 756 757 Type *Ty = Num->getType(); 758 Type *I32Ty = Builder.getInt32Ty(); 759 Type *F32Ty = Builder.getFloatTy(); 760 761 if (Ty->getScalarSizeInBits() < 32) { 762 if (IsSigned) { 763 Num = Builder.CreateSExt(Num, I32Ty); 764 Den = Builder.CreateSExt(Den, I32Ty); 765 } else { 766 Num = Builder.CreateZExt(Num, I32Ty); 767 Den = Builder.CreateZExt(Den, I32Ty); 768 } 769 } 770 771 if (Value *Res = expandDivRem24(Builder, I, Num, Den, IsDiv, IsSigned)) { 772 Res = Builder.CreateTrunc(Res, Ty); 773 return Res; 774 } 775 776 ConstantInt *Zero = Builder.getInt32(0); 777 ConstantInt *One = Builder.getInt32(1); 778 ConstantInt *MinusOne = Builder.getInt32(~0); 779 780 Value *Sign = nullptr; 781 if (IsSigned) { 782 ConstantInt *K31 = Builder.getInt32(31); 783 Value *LHSign = Builder.CreateAShr(Num, K31); 784 Value *RHSign = Builder.CreateAShr(Den, K31); 785 // Remainder sign is the same as LHS 786 Sign = IsDiv ? Builder.CreateXor(LHSign, RHSign) : LHSign; 787 788 Num = Builder.CreateAdd(Num, LHSign); 789 Den = Builder.CreateAdd(Den, RHSign); 790 791 Num = Builder.CreateXor(Num, LHSign); 792 Den = Builder.CreateXor(Den, RHSign); 793 } 794 795 // RCP = URECIP(Den) = 2^32 / Den + e 796 // e is rounding error. 797 Value *DEN_F32 = Builder.CreateUIToFP(Den, F32Ty); 798 Value *RCP_F32 = Builder.CreateFDiv(ConstantFP::get(F32Ty, 1.0), DEN_F32); 799 Constant *UINT_MAX_PLUS_1 = ConstantFP::get(F32Ty, BitsToFloat(0x4f800000)); 800 Value *RCP_SCALE = Builder.CreateFMul(RCP_F32, UINT_MAX_PLUS_1); 801 Value *RCP = Builder.CreateFPToUI(RCP_SCALE, I32Ty); 802 803 // RCP_LO, RCP_HI = mul(RCP, Den) */ 804 Value *RCP_LO, *RCP_HI; 805 std::tie(RCP_LO, RCP_HI) = getMul64(Builder, RCP, Den); 806 807 // NEG_RCP_LO = -RCP_LO 808 Value *NEG_RCP_LO = Builder.CreateNeg(RCP_LO); 809 810 // ABS_RCP_LO = (RCP_HI == 0 ? NEG_RCP_LO : RCP_LO) 811 Value *RCP_HI_0_CC = Builder.CreateICmpEQ(RCP_HI, Zero); 812 Value *ABS_RCP_LO = Builder.CreateSelect(RCP_HI_0_CC, NEG_RCP_LO, RCP_LO); 813 814 // Calculate the rounding error from the URECIP instruction 815 // E = mulhu(ABS_RCP_LO, RCP) 816 Value *E = getMulHu(Builder, ABS_RCP_LO, RCP); 817 818 // RCP_A_E = RCP + E 819 Value *RCP_A_E = Builder.CreateAdd(RCP, E); 820 821 // RCP_S_E = RCP - E 822 Value *RCP_S_E = Builder.CreateSub(RCP, E); 823 824 // Tmp0 = (RCP_HI == 0 ? RCP_A_E : RCP_SUB_E) 825 Value *Tmp0 = Builder.CreateSelect(RCP_HI_0_CC, RCP_A_E, RCP_S_E); 826 827 // Quotient = mulhu(Tmp0, Num) 828 Value *Quotient = getMulHu(Builder, Tmp0, Num); 829 830 // Num_S_Remainder = Quotient * Den 831 Value *Num_S_Remainder = Builder.CreateMul(Quotient, Den); 832 833 // Remainder = Num - Num_S_Remainder 834 Value *Remainder = Builder.CreateSub(Num, Num_S_Remainder); 835 836 // Remainder_GE_Den = (Remainder >= Den ? -1 : 0) 837 Value *Rem_GE_Den_CC = Builder.CreateICmpUGE(Remainder, Den); 838 Value *Remainder_GE_Den = Builder.CreateSelect(Rem_GE_Den_CC, MinusOne, Zero); 839 840 // Remainder_GE_Zero = (Num >= Num_S_Remainder ? -1 : 0) 841 Value *Num_GE_Num_S_Rem_CC = Builder.CreateICmpUGE(Num, Num_S_Remainder); 842 Value *Remainder_GE_Zero = Builder.CreateSelect(Num_GE_Num_S_Rem_CC, 843 MinusOne, Zero); 844 845 // Tmp1 = Remainder_GE_Den & Remainder_GE_Zero 846 Value *Tmp1 = Builder.CreateAnd(Remainder_GE_Den, Remainder_GE_Zero); 847 Value *Tmp1_0_CC = Builder.CreateICmpEQ(Tmp1, Zero); 848 849 Value *Res; 850 if (IsDiv) { 851 // Quotient_A_One = Quotient + 1 852 Value *Quotient_A_One = Builder.CreateAdd(Quotient, One); 853 854 // Quotient_S_One = Quotient - 1 855 Value *Quotient_S_One = Builder.CreateSub(Quotient, One); 856 857 // Div = (Tmp1 == 0 ? Quotient : Quotient_A_One) 858 Value *Div = Builder.CreateSelect(Tmp1_0_CC, Quotient, Quotient_A_One); 859 860 // Div = (Remainder_GE_Zero == 0 ? Quotient_S_One : Div) 861 Res = Builder.CreateSelect(Num_GE_Num_S_Rem_CC, Div, Quotient_S_One); 862 } else { 863 // Remainder_S_Den = Remainder - Den 864 Value *Remainder_S_Den = Builder.CreateSub(Remainder, Den); 865 866 // Remainder_A_Den = Remainder + Den 867 Value *Remainder_A_Den = Builder.CreateAdd(Remainder, Den); 868 869 // Rem = (Tmp1 == 0 ? Remainder : Remainder_S_Den) 870 Value *Rem = Builder.CreateSelect(Tmp1_0_CC, Remainder, Remainder_S_Den); 871 872 // Rem = (Remainder_GE_Zero == 0 ? Remainder_A_Den : Rem) 873 Res = Builder.CreateSelect(Num_GE_Num_S_Rem_CC, Rem, Remainder_A_Den); 874 } 875 876 if (IsSigned) { 877 Res = Builder.CreateXor(Res, Sign); 878 Res = Builder.CreateSub(Res, Sign); 879 } 880 881 Res = Builder.CreateTrunc(Res, Ty); 882 883 return Res; 884 } 885 886 bool AMDGPUCodeGenPrepare::visitBinaryOperator(BinaryOperator &I) { 887 if (ST->has16BitInsts() && needsPromotionToI32(I.getType()) && 888 DA->isUniform(&I) && promoteUniformOpToI32(I)) 889 return true; 890 891 if (UseMul24Intrin && replaceMulWithMul24(I)) 892 return true; 893 894 bool Changed = false; 895 Instruction::BinaryOps Opc = I.getOpcode(); 896 Type *Ty = I.getType(); 897 Value *NewDiv = nullptr; 898 if ((Opc == Instruction::URem || Opc == Instruction::UDiv || 899 Opc == Instruction::SRem || Opc == Instruction::SDiv) && 900 Ty->getScalarSizeInBits() <= 32) { 901 Value *Num = I.getOperand(0); 902 Value *Den = I.getOperand(1); 903 IRBuilder<> Builder(&I); 904 Builder.SetCurrentDebugLocation(I.getDebugLoc()); 905 906 if (VectorType *VT = dyn_cast<VectorType>(Ty)) { 907 NewDiv = UndefValue::get(VT); 908 909 for (unsigned N = 0, E = VT->getNumElements(); N != E; ++N) { 910 Value *NumEltN = Builder.CreateExtractElement(Num, N); 911 Value *DenEltN = Builder.CreateExtractElement(Den, N); 912 Value *NewElt = expandDivRem32(Builder, I, NumEltN, DenEltN); 913 if (!NewElt) 914 NewElt = Builder.CreateBinOp(Opc, NumEltN, DenEltN); 915 NewDiv = Builder.CreateInsertElement(NewDiv, NewElt, N); 916 } 917 } else { 918 NewDiv = expandDivRem32(Builder, I, Num, Den); 919 } 920 921 if (NewDiv) { 922 I.replaceAllUsesWith(NewDiv); 923 I.eraseFromParent(); 924 Changed = true; 925 } 926 } 927 928 return Changed; 929 } 930 931 bool AMDGPUCodeGenPrepare::visitLoadInst(LoadInst &I) { 932 if (!WidenLoads) 933 return false; 934 935 if ((I.getPointerAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS || 936 I.getPointerAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS_32BIT) && 937 canWidenScalarExtLoad(I)) { 938 IRBuilder<> Builder(&I); 939 Builder.SetCurrentDebugLocation(I.getDebugLoc()); 940 941 Type *I32Ty = Builder.getInt32Ty(); 942 Type *PT = PointerType::get(I32Ty, I.getPointerAddressSpace()); 943 Value *BitCast= Builder.CreateBitCast(I.getPointerOperand(), PT); 944 LoadInst *WidenLoad = Builder.CreateLoad(I32Ty, BitCast); 945 WidenLoad->copyMetadata(I); 946 947 // If we have range metadata, we need to convert the type, and not make 948 // assumptions about the high bits. 949 if (auto *Range = WidenLoad->getMetadata(LLVMContext::MD_range)) { 950 ConstantInt *Lower = 951 mdconst::extract<ConstantInt>(Range->getOperand(0)); 952 953 if (Lower->getValue().isNullValue()) { 954 WidenLoad->setMetadata(LLVMContext::MD_range, nullptr); 955 } else { 956 Metadata *LowAndHigh[] = { 957 ConstantAsMetadata::get(ConstantInt::get(I32Ty, Lower->getValue().zext(32))), 958 // Don't make assumptions about the high bits. 959 ConstantAsMetadata::get(ConstantInt::get(I32Ty, 0)) 960 }; 961 962 WidenLoad->setMetadata(LLVMContext::MD_range, 963 MDNode::get(Mod->getContext(), LowAndHigh)); 964 } 965 } 966 967 int TySize = Mod->getDataLayout().getTypeSizeInBits(I.getType()); 968 Type *IntNTy = Builder.getIntNTy(TySize); 969 Value *ValTrunc = Builder.CreateTrunc(WidenLoad, IntNTy); 970 Value *ValOrig = Builder.CreateBitCast(ValTrunc, I.getType()); 971 I.replaceAllUsesWith(ValOrig); 972 I.eraseFromParent(); 973 return true; 974 } 975 976 return false; 977 } 978 979 bool AMDGPUCodeGenPrepare::visitICmpInst(ICmpInst &I) { 980 bool Changed = false; 981 982 if (ST->has16BitInsts() && needsPromotionToI32(I.getOperand(0)->getType()) && 983 DA->isUniform(&I)) 984 Changed |= promoteUniformOpToI32(I); 985 986 return Changed; 987 } 988 989 bool AMDGPUCodeGenPrepare::visitSelectInst(SelectInst &I) { 990 bool Changed = false; 991 992 if (ST->has16BitInsts() && needsPromotionToI32(I.getType()) && 993 DA->isUniform(&I)) 994 Changed |= promoteUniformOpToI32(I); 995 996 return Changed; 997 } 998 999 bool AMDGPUCodeGenPrepare::visitIntrinsicInst(IntrinsicInst &I) { 1000 switch (I.getIntrinsicID()) { 1001 case Intrinsic::bitreverse: 1002 return visitBitreverseIntrinsicInst(I); 1003 default: 1004 return false; 1005 } 1006 } 1007 1008 bool AMDGPUCodeGenPrepare::visitBitreverseIntrinsicInst(IntrinsicInst &I) { 1009 bool Changed = false; 1010 1011 if (ST->has16BitInsts() && needsPromotionToI32(I.getType()) && 1012 DA->isUniform(&I)) 1013 Changed |= promoteUniformBitreverseToI32(I); 1014 1015 return Changed; 1016 } 1017 1018 bool AMDGPUCodeGenPrepare::doInitialization(Module &M) { 1019 Mod = &M; 1020 DL = &Mod->getDataLayout(); 1021 return false; 1022 } 1023 1024 bool AMDGPUCodeGenPrepare::runOnFunction(Function &F) { 1025 if (skipFunction(F)) 1026 return false; 1027 1028 auto *TPC = getAnalysisIfAvailable<TargetPassConfig>(); 1029 if (!TPC) 1030 return false; 1031 1032 const AMDGPUTargetMachine &TM = TPC->getTM<AMDGPUTargetMachine>(); 1033 ST = &TM.getSubtarget<GCNSubtarget>(F); 1034 AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 1035 DA = &getAnalysis<LegacyDivergenceAnalysis>(); 1036 HasUnsafeFPMath = hasUnsafeFPMath(F); 1037 1038 bool MadeChange = false; 1039 1040 for (BasicBlock &BB : F) { 1041 BasicBlock::iterator Next; 1042 for (BasicBlock::iterator I = BB.begin(), E = BB.end(); I != E; I = Next) { 1043 Next = std::next(I); 1044 MadeChange |= visit(*I); 1045 } 1046 } 1047 1048 return MadeChange; 1049 } 1050 1051 INITIALIZE_PASS_BEGIN(AMDGPUCodeGenPrepare, DEBUG_TYPE, 1052 "AMDGPU IR optimizations", false, false) 1053 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 1054 INITIALIZE_PASS_DEPENDENCY(LegacyDivergenceAnalysis) 1055 INITIALIZE_PASS_END(AMDGPUCodeGenPrepare, DEBUG_TYPE, "AMDGPU IR optimizations", 1056 false, false) 1057 1058 char AMDGPUCodeGenPrepare::ID = 0; 1059 1060 FunctionPass *llvm::createAMDGPUCodeGenPreparePass() { 1061 return new AMDGPUCodeGenPrepare(); 1062 } 1063