xref: /llvm-project/llvm/lib/Target/AMDGPU/AMDGPUCallLowering.cpp (revision 2f4328e6979004fbf531d69a40c2e06d43d3128c)
1 //===-- llvm/lib/Target/AMDGPU/AMDGPUCallLowering.cpp - Call lowering -----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// This file implements the lowering of LLVM calls to machine code calls for
11 /// GlobalISel.
12 ///
13 //===----------------------------------------------------------------------===//
14 
15 #include "AMDGPUCallLowering.h"
16 #include "AMDGPU.h"
17 #include "AMDGPULegalizerInfo.h"
18 #include "AMDGPUTargetMachine.h"
19 #include "SIMachineFunctionInfo.h"
20 #include "SIRegisterInfo.h"
21 #include "llvm/CodeGen/Analysis.h"
22 #include "llvm/CodeGen/FunctionLoweringInfo.h"
23 #include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h"
24 #include "llvm/CodeGen/MachineFrameInfo.h"
25 #include "llvm/IR/IntrinsicsAMDGPU.h"
26 
27 #define DEBUG_TYPE "amdgpu-call-lowering"
28 
29 using namespace llvm;
30 
31 namespace {
32 
33 /// Wrapper around extendRegister to ensure we extend to a full 32-bit register.
34 static Register extendRegisterMin32(CallLowering::ValueHandler &Handler,
35                                     Register ValVReg, const CCValAssign &VA) {
36   if (VA.getLocVT().getSizeInBits() < 32) {
37     // 16-bit types are reported as legal for 32-bit registers. We need to
38     // extend and do a 32-bit copy to avoid the verifier complaining about it.
39     return Handler.MIRBuilder.buildAnyExt(LLT::scalar(32), ValVReg).getReg(0);
40   }
41 
42   return Handler.extendRegister(ValVReg, VA);
43 }
44 
45 struct AMDGPUOutgoingValueHandler : public CallLowering::OutgoingValueHandler {
46   AMDGPUOutgoingValueHandler(MachineIRBuilder &B, MachineRegisterInfo &MRI,
47                              MachineInstrBuilder MIB)
48       : OutgoingValueHandler(B, MRI), MIB(MIB) {}
49 
50   MachineInstrBuilder MIB;
51 
52   Register getStackAddress(uint64_t Size, int64_t Offset,
53                            MachinePointerInfo &MPO,
54                            ISD::ArgFlagsTy Flags) override {
55     llvm_unreachable("not implemented");
56   }
57 
58   void assignValueToAddress(Register ValVReg, Register Addr, LLT MemTy,
59                             const MachinePointerInfo &MPO,
60                             const CCValAssign &VA) override {
61     llvm_unreachable("not implemented");
62   }
63 
64   void assignValueToReg(Register ValVReg, Register PhysReg,
65                         const CCValAssign &VA) override {
66     Register ExtReg = extendRegisterMin32(*this, ValVReg, VA);
67 
68     // If this is a scalar return, insert a readfirstlane just in case the value
69     // ends up in a VGPR.
70     // FIXME: Assert this is a shader return.
71     const SIRegisterInfo *TRI
72       = static_cast<const SIRegisterInfo *>(MRI.getTargetRegisterInfo());
73     if (TRI->isSGPRReg(MRI, PhysReg)) {
74       LLT Ty = MRI.getType(ExtReg);
75       LLT S32 = LLT::scalar(32);
76       if (Ty != S32) {
77         // FIXME: We should probably support readfirstlane intrinsics with all
78         // legal 32-bit types.
79         assert(Ty.getSizeInBits() == 32);
80         if (Ty.isPointer())
81           ExtReg = MIRBuilder.buildPtrToInt(S32, ExtReg).getReg(0);
82         else
83           ExtReg = MIRBuilder.buildBitcast(S32, ExtReg).getReg(0);
84       }
85 
86       auto ToSGPR = MIRBuilder
87                         .buildIntrinsic(Intrinsic::amdgcn_readfirstlane,
88                                         {MRI.getType(ExtReg)})
89                         .addReg(ExtReg);
90       ExtReg = ToSGPR.getReg(0);
91     }
92 
93     MIRBuilder.buildCopy(PhysReg, ExtReg);
94     MIB.addUse(PhysReg, RegState::Implicit);
95   }
96 };
97 
98 struct AMDGPUIncomingArgHandler : public CallLowering::IncomingValueHandler {
99   uint64_t StackUsed = 0;
100 
101   AMDGPUIncomingArgHandler(MachineIRBuilder &B, MachineRegisterInfo &MRI)
102       : IncomingValueHandler(B, MRI) {}
103 
104   Register getStackAddress(uint64_t Size, int64_t Offset,
105                            MachinePointerInfo &MPO,
106                            ISD::ArgFlagsTy Flags) override {
107     auto &MFI = MIRBuilder.getMF().getFrameInfo();
108 
109     // Byval is assumed to be writable memory, but other stack passed arguments
110     // are not.
111     const bool IsImmutable = !Flags.isByVal();
112     int FI = MFI.CreateFixedObject(Size, Offset, IsImmutable);
113     MPO = MachinePointerInfo::getFixedStack(MIRBuilder.getMF(), FI);
114     auto AddrReg = MIRBuilder.buildFrameIndex(
115         LLT::pointer(AMDGPUAS::PRIVATE_ADDRESS, 32), FI);
116     StackUsed = std::max(StackUsed, Size + Offset);
117     return AddrReg.getReg(0);
118   }
119 
120   void assignValueToReg(Register ValVReg, Register PhysReg,
121                         const CCValAssign &VA) override {
122     markPhysRegUsed(PhysReg);
123 
124     if (VA.getLocVT().getSizeInBits() < 32) {
125       // 16-bit types are reported as legal for 32-bit registers. We need to do
126       // a 32-bit copy, and truncate to avoid the verifier complaining about it.
127       auto Copy = MIRBuilder.buildCopy(LLT::scalar(32), PhysReg);
128 
129       // If we have signext/zeroext, it applies to the whole 32-bit register
130       // before truncation.
131       auto Extended =
132           buildExtensionHint(VA, Copy.getReg(0), LLT(VA.getLocVT()));
133       MIRBuilder.buildTrunc(ValVReg, Extended);
134       return;
135     }
136 
137     IncomingValueHandler::assignValueToReg(ValVReg, PhysReg, VA);
138   }
139 
140   void assignValueToAddress(Register ValVReg, Register Addr, LLT MemTy,
141                             const MachinePointerInfo &MPO,
142                             const CCValAssign &VA) override {
143     MachineFunction &MF = MIRBuilder.getMF();
144 
145     auto MMO = MF.getMachineMemOperand(
146         MPO, MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant, MemTy,
147         inferAlignFromPtrInfo(MF, MPO));
148     MIRBuilder.buildLoad(ValVReg, Addr, *MMO);
149   }
150 
151   /// How the physical register gets marked varies between formal
152   /// parameters (it's a basic-block live-in), and a call instruction
153   /// (it's an implicit-def of the BL).
154   virtual void markPhysRegUsed(unsigned PhysReg) = 0;
155 };
156 
157 struct FormalArgHandler : public AMDGPUIncomingArgHandler {
158   FormalArgHandler(MachineIRBuilder &B, MachineRegisterInfo &MRI)
159       : AMDGPUIncomingArgHandler(B, MRI) {}
160 
161   void markPhysRegUsed(unsigned PhysReg) override {
162     MIRBuilder.getMBB().addLiveIn(PhysReg);
163   }
164 };
165 
166 struct CallReturnHandler : public AMDGPUIncomingArgHandler {
167   CallReturnHandler(MachineIRBuilder &MIRBuilder, MachineRegisterInfo &MRI,
168                     MachineInstrBuilder MIB)
169       : AMDGPUIncomingArgHandler(MIRBuilder, MRI), MIB(MIB) {}
170 
171   void markPhysRegUsed(unsigned PhysReg) override {
172     MIB.addDef(PhysReg, RegState::Implicit);
173   }
174 
175   MachineInstrBuilder MIB;
176 };
177 
178 struct AMDGPUOutgoingArgHandler : public AMDGPUOutgoingValueHandler {
179   /// For tail calls, the byte offset of the call's argument area from the
180   /// callee's. Unused elsewhere.
181   int FPDiff;
182 
183   // Cache the SP register vreg if we need it more than once in this call site.
184   Register SPReg;
185 
186   bool IsTailCall;
187 
188   AMDGPUOutgoingArgHandler(MachineIRBuilder &MIRBuilder,
189                            MachineRegisterInfo &MRI, MachineInstrBuilder MIB,
190                            bool IsTailCall = false, int FPDiff = 0)
191       : AMDGPUOutgoingValueHandler(MIRBuilder, MRI, MIB), FPDiff(FPDiff),
192         IsTailCall(IsTailCall) {}
193 
194   Register getStackAddress(uint64_t Size, int64_t Offset,
195                            MachinePointerInfo &MPO,
196                            ISD::ArgFlagsTy Flags) override {
197     MachineFunction &MF = MIRBuilder.getMF();
198     const LLT PtrTy = LLT::pointer(AMDGPUAS::PRIVATE_ADDRESS, 32);
199     const LLT S32 = LLT::scalar(32);
200 
201     if (IsTailCall) {
202       Offset += FPDiff;
203       int FI = MF.getFrameInfo().CreateFixedObject(Size, Offset, true);
204       auto FIReg = MIRBuilder.buildFrameIndex(PtrTy, FI);
205       MPO = MachinePointerInfo::getFixedStack(MF, FI);
206       return FIReg.getReg(0);
207     }
208 
209     const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
210 
211     if (!SPReg) {
212       const GCNSubtarget &ST = MIRBuilder.getMF().getSubtarget<GCNSubtarget>();
213       if (ST.enableFlatScratch()) {
214         // The stack is accessed unswizzled, so we can use a regular copy.
215         SPReg = MIRBuilder.buildCopy(PtrTy,
216                                      MFI->getStackPtrOffsetReg()).getReg(0);
217       } else {
218         // The address we produce here, without knowing the use context, is going
219         // to be interpreted as a vector address, so we need to convert to a
220         // swizzled address.
221         SPReg = MIRBuilder.buildInstr(AMDGPU::G_AMDGPU_WAVE_ADDRESS, {PtrTy},
222                                       {MFI->getStackPtrOffsetReg()}).getReg(0);
223       }
224     }
225 
226     auto OffsetReg = MIRBuilder.buildConstant(S32, Offset);
227 
228     auto AddrReg = MIRBuilder.buildPtrAdd(PtrTy, SPReg, OffsetReg);
229     MPO = MachinePointerInfo::getStack(MF, Offset);
230     return AddrReg.getReg(0);
231   }
232 
233   void assignValueToReg(Register ValVReg, Register PhysReg,
234                         const CCValAssign &VA) override {
235     MIB.addUse(PhysReg, RegState::Implicit);
236     Register ExtReg = extendRegisterMin32(*this, ValVReg, VA);
237     MIRBuilder.buildCopy(PhysReg, ExtReg);
238   }
239 
240   void assignValueToAddress(Register ValVReg, Register Addr, LLT MemTy,
241                             const MachinePointerInfo &MPO,
242                             const CCValAssign &VA) override {
243     MachineFunction &MF = MIRBuilder.getMF();
244     uint64_t LocMemOffset = VA.getLocMemOffset();
245     const auto &ST = MF.getSubtarget<GCNSubtarget>();
246 
247     auto MMO = MF.getMachineMemOperand(
248         MPO, MachineMemOperand::MOStore, MemTy,
249         commonAlignment(ST.getStackAlignment(), LocMemOffset));
250     MIRBuilder.buildStore(ValVReg, Addr, *MMO);
251   }
252 
253   void assignValueToAddress(const CallLowering::ArgInfo &Arg,
254                             unsigned ValRegIndex, Register Addr, LLT MemTy,
255                             const MachinePointerInfo &MPO,
256                             const CCValAssign &VA) override {
257     Register ValVReg = VA.getLocInfo() != CCValAssign::LocInfo::FPExt
258                            ? extendRegister(Arg.Regs[ValRegIndex], VA)
259                            : Arg.Regs[ValRegIndex];
260     assignValueToAddress(ValVReg, Addr, MemTy, MPO, VA);
261   }
262 };
263 }
264 
265 AMDGPUCallLowering::AMDGPUCallLowering(const AMDGPUTargetLowering &TLI)
266   : CallLowering(&TLI) {
267 }
268 
269 // FIXME: Compatibility shim
270 static ISD::NodeType extOpcodeToISDExtOpcode(unsigned MIOpc) {
271   switch (MIOpc) {
272   case TargetOpcode::G_SEXT:
273     return ISD::SIGN_EXTEND;
274   case TargetOpcode::G_ZEXT:
275     return ISD::ZERO_EXTEND;
276   case TargetOpcode::G_ANYEXT:
277     return ISD::ANY_EXTEND;
278   default:
279     llvm_unreachable("not an extend opcode");
280   }
281 }
282 
283 bool AMDGPUCallLowering::canLowerReturn(MachineFunction &MF,
284                                         CallingConv::ID CallConv,
285                                         SmallVectorImpl<BaseArgInfo> &Outs,
286                                         bool IsVarArg) const {
287   // For shaders. Vector types should be explicitly handled by CC.
288   if (AMDGPU::isEntryFunctionCC(CallConv))
289     return true;
290 
291   SmallVector<CCValAssign, 16> ArgLocs;
292   const SITargetLowering &TLI = *getTLI<SITargetLowering>();
293   CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs,
294                  MF.getFunction().getContext());
295 
296   return checkReturn(CCInfo, Outs, TLI.CCAssignFnForReturn(CallConv, IsVarArg));
297 }
298 
299 /// Lower the return value for the already existing \p Ret. This assumes that
300 /// \p B's insertion point is correct.
301 bool AMDGPUCallLowering::lowerReturnVal(MachineIRBuilder &B,
302                                         const Value *Val, ArrayRef<Register> VRegs,
303                                         MachineInstrBuilder &Ret) const {
304   if (!Val)
305     return true;
306 
307   auto &MF = B.getMF();
308   const auto &F = MF.getFunction();
309   const DataLayout &DL = MF.getDataLayout();
310   MachineRegisterInfo *MRI = B.getMRI();
311   LLVMContext &Ctx = F.getContext();
312 
313   CallingConv::ID CC = F.getCallingConv();
314   const SITargetLowering &TLI = *getTLI<SITargetLowering>();
315 
316   SmallVector<EVT, 8> SplitEVTs;
317   ComputeValueVTs(TLI, DL, Val->getType(), SplitEVTs);
318   assert(VRegs.size() == SplitEVTs.size() &&
319          "For each split Type there should be exactly one VReg.");
320 
321   SmallVector<ArgInfo, 8> SplitRetInfos;
322 
323   for (unsigned i = 0; i < SplitEVTs.size(); ++i) {
324     EVT VT = SplitEVTs[i];
325     Register Reg = VRegs[i];
326     ArgInfo RetInfo(Reg, VT.getTypeForEVT(Ctx), 0);
327     setArgFlags(RetInfo, AttributeList::ReturnIndex, DL, F);
328 
329     if (VT.isScalarInteger()) {
330       unsigned ExtendOp = TargetOpcode::G_ANYEXT;
331       if (RetInfo.Flags[0].isSExt()) {
332         assert(RetInfo.Regs.size() == 1 && "expect only simple return values");
333         ExtendOp = TargetOpcode::G_SEXT;
334       } else if (RetInfo.Flags[0].isZExt()) {
335         assert(RetInfo.Regs.size() == 1 && "expect only simple return values");
336         ExtendOp = TargetOpcode::G_ZEXT;
337       }
338 
339       EVT ExtVT = TLI.getTypeForExtReturn(Ctx, VT,
340                                           extOpcodeToISDExtOpcode(ExtendOp));
341       if (ExtVT != VT) {
342         RetInfo.Ty = ExtVT.getTypeForEVT(Ctx);
343         LLT ExtTy = getLLTForType(*RetInfo.Ty, DL);
344         Reg = B.buildInstr(ExtendOp, {ExtTy}, {Reg}).getReg(0);
345       }
346     }
347 
348     if (Reg != RetInfo.Regs[0]) {
349       RetInfo.Regs[0] = Reg;
350       // Reset the arg flags after modifying Reg.
351       setArgFlags(RetInfo, AttributeList::ReturnIndex, DL, F);
352     }
353 
354     splitToValueTypes(RetInfo, SplitRetInfos, DL, CC);
355   }
356 
357   CCAssignFn *AssignFn = TLI.CCAssignFnForReturn(CC, F.isVarArg());
358 
359   OutgoingValueAssigner Assigner(AssignFn);
360   AMDGPUOutgoingValueHandler RetHandler(B, *MRI, Ret);
361   return determineAndHandleAssignments(RetHandler, Assigner, SplitRetInfos, B,
362                                        CC, F.isVarArg());
363 }
364 
365 bool AMDGPUCallLowering::lowerReturn(MachineIRBuilder &B, const Value *Val,
366                                      ArrayRef<Register> VRegs,
367                                      FunctionLoweringInfo &FLI) const {
368 
369   MachineFunction &MF = B.getMF();
370   SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
371   MFI->setIfReturnsVoid(!Val);
372 
373   assert(!Val == VRegs.empty() && "Return value without a vreg");
374 
375   CallingConv::ID CC = B.getMF().getFunction().getCallingConv();
376   const bool IsShader = AMDGPU::isShader(CC);
377   const bool IsWaveEnd =
378       (IsShader && MFI->returnsVoid()) || AMDGPU::isKernel(CC);
379   if (IsWaveEnd) {
380     B.buildInstr(AMDGPU::S_ENDPGM)
381       .addImm(0);
382     return true;
383   }
384 
385   unsigned ReturnOpc =
386       IsShader ? AMDGPU::SI_RETURN_TO_EPILOG : AMDGPU::SI_RETURN;
387   auto Ret = B.buildInstrNoInsert(ReturnOpc);
388 
389   if (!FLI.CanLowerReturn)
390     insertSRetStores(B, Val->getType(), VRegs, FLI.DemoteRegister);
391   else if (!lowerReturnVal(B, Val, VRegs, Ret))
392     return false;
393 
394   // TODO: Handle CalleeSavedRegsViaCopy.
395 
396   B.insertInstr(Ret);
397   return true;
398 }
399 
400 void AMDGPUCallLowering::lowerParameterPtr(Register DstReg, MachineIRBuilder &B,
401                                            uint64_t Offset) const {
402   MachineFunction &MF = B.getMF();
403   const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
404   MachineRegisterInfo &MRI = MF.getRegInfo();
405   Register KernArgSegmentPtr =
406     MFI->getPreloadedReg(AMDGPUFunctionArgInfo::KERNARG_SEGMENT_PTR);
407   Register KernArgSegmentVReg = MRI.getLiveInVirtReg(KernArgSegmentPtr);
408 
409   auto OffsetReg = B.buildConstant(LLT::scalar(64), Offset);
410 
411   B.buildPtrAdd(DstReg, KernArgSegmentVReg, OffsetReg);
412 }
413 
414 void AMDGPUCallLowering::lowerParameter(MachineIRBuilder &B, ArgInfo &OrigArg,
415                                         uint64_t Offset,
416                                         Align Alignment) const {
417   MachineFunction &MF = B.getMF();
418   const Function &F = MF.getFunction();
419   const DataLayout &DL = F.getParent()->getDataLayout();
420   MachinePointerInfo PtrInfo(AMDGPUAS::CONSTANT_ADDRESS);
421 
422   LLT PtrTy = LLT::pointer(AMDGPUAS::CONSTANT_ADDRESS, 64);
423 
424   SmallVector<ArgInfo, 32> SplitArgs;
425   SmallVector<uint64_t> FieldOffsets;
426   splitToValueTypes(OrigArg, SplitArgs, DL, F.getCallingConv(), &FieldOffsets);
427 
428   unsigned Idx = 0;
429   for (ArgInfo &SplitArg : SplitArgs) {
430     Register PtrReg = B.getMRI()->createGenericVirtualRegister(PtrTy);
431     lowerParameterPtr(PtrReg, B, Offset + FieldOffsets[Idx]);
432 
433     LLT ArgTy = getLLTForType(*SplitArg.Ty, DL);
434     if (SplitArg.Flags[0].isPointer()) {
435       // Compensate for losing pointeriness in splitValueTypes.
436       LLT PtrTy = LLT::pointer(SplitArg.Flags[0].getPointerAddrSpace(),
437                                ArgTy.getScalarSizeInBits());
438       ArgTy = ArgTy.isVector() ? LLT::vector(ArgTy.getElementCount(), PtrTy)
439                                : PtrTy;
440     }
441 
442     MachineMemOperand *MMO = MF.getMachineMemOperand(
443         PtrInfo,
444         MachineMemOperand::MOLoad | MachineMemOperand::MODereferenceable |
445             MachineMemOperand::MOInvariant,
446         ArgTy, commonAlignment(Alignment, FieldOffsets[Idx]));
447 
448     assert(SplitArg.Regs.size() == 1);
449 
450     B.buildLoad(SplitArg.Regs[0], PtrReg, *MMO);
451     ++Idx;
452   }
453 }
454 
455 // Allocate special inputs passed in user SGPRs.
456 static void allocateHSAUserSGPRs(CCState &CCInfo,
457                                  MachineIRBuilder &B,
458                                  MachineFunction &MF,
459                                  const SIRegisterInfo &TRI,
460                                  SIMachineFunctionInfo &Info) {
461   // FIXME: How should these inputs interact with inreg / custom SGPR inputs?
462   const GCNUserSGPRUsageInfo &UserSGPRInfo = Info.getUserSGPRInfo();
463   if (UserSGPRInfo.hasPrivateSegmentBuffer()) {
464     Register PrivateSegmentBufferReg = Info.addPrivateSegmentBuffer(TRI);
465     MF.addLiveIn(PrivateSegmentBufferReg, &AMDGPU::SGPR_128RegClass);
466     CCInfo.AllocateReg(PrivateSegmentBufferReg);
467   }
468 
469   if (UserSGPRInfo.hasDispatchPtr()) {
470     Register DispatchPtrReg = Info.addDispatchPtr(TRI);
471     MF.addLiveIn(DispatchPtrReg, &AMDGPU::SGPR_64RegClass);
472     CCInfo.AllocateReg(DispatchPtrReg);
473   }
474 
475   const Module *M = MF.getFunction().getParent();
476   if (UserSGPRInfo.hasQueuePtr() &&
477       AMDGPU::getCodeObjectVersion(*M) < AMDGPU::AMDHSA_COV5) {
478     Register QueuePtrReg = Info.addQueuePtr(TRI);
479     MF.addLiveIn(QueuePtrReg, &AMDGPU::SGPR_64RegClass);
480     CCInfo.AllocateReg(QueuePtrReg);
481   }
482 
483   if (UserSGPRInfo.hasKernargSegmentPtr()) {
484     MachineRegisterInfo &MRI = MF.getRegInfo();
485     Register InputPtrReg = Info.addKernargSegmentPtr(TRI);
486     const LLT P4 = LLT::pointer(AMDGPUAS::CONSTANT_ADDRESS, 64);
487     Register VReg = MRI.createGenericVirtualRegister(P4);
488     MRI.addLiveIn(InputPtrReg, VReg);
489     B.getMBB().addLiveIn(InputPtrReg);
490     B.buildCopy(VReg, InputPtrReg);
491     CCInfo.AllocateReg(InputPtrReg);
492   }
493 
494   if (UserSGPRInfo.hasDispatchID()) {
495     Register DispatchIDReg = Info.addDispatchID(TRI);
496     MF.addLiveIn(DispatchIDReg, &AMDGPU::SGPR_64RegClass);
497     CCInfo.AllocateReg(DispatchIDReg);
498   }
499 
500   if (UserSGPRInfo.hasFlatScratchInit()) {
501     Register FlatScratchInitReg = Info.addFlatScratchInit(TRI);
502     MF.addLiveIn(FlatScratchInitReg, &AMDGPU::SGPR_64RegClass);
503     CCInfo.AllocateReg(FlatScratchInitReg);
504   }
505 
506   // TODO: Add GridWorkGroupCount user SGPRs when used. For now with HSA we read
507   // these from the dispatch pointer.
508 }
509 
510 bool AMDGPUCallLowering::lowerFormalArgumentsKernel(
511     MachineIRBuilder &B, const Function &F,
512     ArrayRef<ArrayRef<Register>> VRegs) const {
513   MachineFunction &MF = B.getMF();
514   const GCNSubtarget *Subtarget = &MF.getSubtarget<GCNSubtarget>();
515   MachineRegisterInfo &MRI = MF.getRegInfo();
516   SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
517   const SIRegisterInfo *TRI = Subtarget->getRegisterInfo();
518   const SITargetLowering &TLI = *getTLI<SITargetLowering>();
519   const DataLayout &DL = F.getParent()->getDataLayout();
520 
521   SmallVector<CCValAssign, 16> ArgLocs;
522   CCState CCInfo(F.getCallingConv(), F.isVarArg(), MF, ArgLocs, F.getContext());
523 
524   allocateHSAUserSGPRs(CCInfo, B, MF, *TRI, *Info);
525 
526   unsigned i = 0;
527   const Align KernArgBaseAlign(16);
528   const unsigned BaseOffset = Subtarget->getExplicitKernelArgOffset();
529   uint64_t ExplicitArgOffset = 0;
530 
531   // TODO: Align down to dword alignment and extract bits for extending loads.
532   for (auto &Arg : F.args()) {
533     const bool IsByRef = Arg.hasByRefAttr();
534     Type *ArgTy = IsByRef ? Arg.getParamByRefType() : Arg.getType();
535     unsigned AllocSize = DL.getTypeAllocSize(ArgTy);
536     if (AllocSize == 0)
537       continue;
538 
539     MaybeAlign ParamAlign = IsByRef ? Arg.getParamAlign() : std::nullopt;
540     Align ABIAlign = DL.getValueOrABITypeAlignment(ParamAlign, ArgTy);
541 
542     uint64_t ArgOffset = alignTo(ExplicitArgOffset, ABIAlign) + BaseOffset;
543     ExplicitArgOffset = alignTo(ExplicitArgOffset, ABIAlign) + AllocSize;
544 
545     if (Arg.use_empty()) {
546       ++i;
547       continue;
548     }
549 
550     Align Alignment = commonAlignment(KernArgBaseAlign, ArgOffset);
551 
552     if (IsByRef) {
553       unsigned ByRefAS = cast<PointerType>(Arg.getType())->getAddressSpace();
554 
555       assert(VRegs[i].size() == 1 &&
556              "expected only one register for byval pointers");
557       if (ByRefAS == AMDGPUAS::CONSTANT_ADDRESS) {
558         lowerParameterPtr(VRegs[i][0], B, ArgOffset);
559       } else {
560         const LLT ConstPtrTy = LLT::pointer(AMDGPUAS::CONSTANT_ADDRESS, 64);
561         Register PtrReg = MRI.createGenericVirtualRegister(ConstPtrTy);
562         lowerParameterPtr(PtrReg, B, ArgOffset);
563 
564         B.buildAddrSpaceCast(VRegs[i][0], PtrReg);
565       }
566     } else {
567       ArgInfo OrigArg(VRegs[i], Arg, i);
568       const unsigned OrigArgIdx = i + AttributeList::FirstArgIndex;
569       setArgFlags(OrigArg, OrigArgIdx, DL, F);
570       lowerParameter(B, OrigArg, ArgOffset, Alignment);
571     }
572 
573     ++i;
574   }
575 
576   TLI.allocateSpecialEntryInputVGPRs(CCInfo, MF, *TRI, *Info);
577   TLI.allocateSystemSGPRs(CCInfo, MF, *Info, F.getCallingConv(), false);
578   return true;
579 }
580 
581 bool AMDGPUCallLowering::lowerFormalArguments(
582     MachineIRBuilder &B, const Function &F, ArrayRef<ArrayRef<Register>> VRegs,
583     FunctionLoweringInfo &FLI) const {
584   CallingConv::ID CC = F.getCallingConv();
585 
586   // The infrastructure for normal calling convention lowering is essentially
587   // useless for kernels. We want to avoid any kind of legalization or argument
588   // splitting.
589   if (CC == CallingConv::AMDGPU_KERNEL)
590     return lowerFormalArgumentsKernel(B, F, VRegs);
591 
592   const bool IsGraphics = AMDGPU::isGraphics(CC);
593   const bool IsEntryFunc = AMDGPU::isEntryFunctionCC(CC);
594 
595   MachineFunction &MF = B.getMF();
596   MachineBasicBlock &MBB = B.getMBB();
597   MachineRegisterInfo &MRI = MF.getRegInfo();
598   SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
599   const GCNSubtarget &Subtarget = MF.getSubtarget<GCNSubtarget>();
600   const SIRegisterInfo *TRI = Subtarget.getRegisterInfo();
601   const DataLayout &DL = F.getParent()->getDataLayout();
602 
603   SmallVector<CCValAssign, 16> ArgLocs;
604   CCState CCInfo(CC, F.isVarArg(), MF, ArgLocs, F.getContext());
605   const GCNUserSGPRUsageInfo &UserSGPRInfo = Info->getUserSGPRInfo();
606 
607   if (UserSGPRInfo.hasImplicitBufferPtr()) {
608     Register ImplicitBufferPtrReg = Info->addImplicitBufferPtr(*TRI);
609     MF.addLiveIn(ImplicitBufferPtrReg, &AMDGPU::SGPR_64RegClass);
610     CCInfo.AllocateReg(ImplicitBufferPtrReg);
611   }
612 
613   // FIXME: This probably isn't defined for mesa
614   if (UserSGPRInfo.hasFlatScratchInit() && !Subtarget.isAmdPalOS()) {
615     Register FlatScratchInitReg = Info->addFlatScratchInit(*TRI);
616     MF.addLiveIn(FlatScratchInitReg, &AMDGPU::SGPR_64RegClass);
617     CCInfo.AllocateReg(FlatScratchInitReg);
618   }
619 
620   SmallVector<ArgInfo, 32> SplitArgs;
621   unsigned Idx = 0;
622   unsigned PSInputNum = 0;
623 
624   // Insert the hidden sret parameter if the return value won't fit in the
625   // return registers.
626   if (!FLI.CanLowerReturn)
627     insertSRetIncomingArgument(F, SplitArgs, FLI.DemoteRegister, MRI, DL);
628 
629   for (auto &Arg : F.args()) {
630     if (DL.getTypeStoreSize(Arg.getType()) == 0)
631       continue;
632 
633     const bool InReg = Arg.hasAttribute(Attribute::InReg);
634 
635     // SGPR arguments to functions not implemented.
636     if (!IsGraphics && InReg)
637       return false;
638 
639     if (Arg.hasAttribute(Attribute::SwiftSelf) ||
640         Arg.hasAttribute(Attribute::SwiftError) ||
641         Arg.hasAttribute(Attribute::Nest))
642       return false;
643 
644     if (CC == CallingConv::AMDGPU_PS && !InReg && PSInputNum <= 15) {
645       const bool ArgUsed = !Arg.use_empty();
646       bool SkipArg = !ArgUsed && !Info->isPSInputAllocated(PSInputNum);
647 
648       if (!SkipArg) {
649         Info->markPSInputAllocated(PSInputNum);
650         if (ArgUsed)
651           Info->markPSInputEnabled(PSInputNum);
652       }
653 
654       ++PSInputNum;
655 
656       if (SkipArg) {
657         for (Register R : VRegs[Idx])
658           B.buildUndef(R);
659 
660         ++Idx;
661         continue;
662       }
663     }
664 
665     ArgInfo OrigArg(VRegs[Idx], Arg, Idx);
666     const unsigned OrigArgIdx = Idx + AttributeList::FirstArgIndex;
667     setArgFlags(OrigArg, OrigArgIdx, DL, F);
668 
669     splitToValueTypes(OrigArg, SplitArgs, DL, CC);
670     ++Idx;
671   }
672 
673   // At least one interpolation mode must be enabled or else the GPU will
674   // hang.
675   //
676   // Check PSInputAddr instead of PSInputEnable. The idea is that if the user
677   // set PSInputAddr, the user wants to enable some bits after the compilation
678   // based on run-time states. Since we can't know what the final PSInputEna
679   // will look like, so we shouldn't do anything here and the user should take
680   // responsibility for the correct programming.
681   //
682   // Otherwise, the following restrictions apply:
683   // - At least one of PERSP_* (0xF) or LINEAR_* (0x70) must be enabled.
684   // - If POS_W_FLOAT (11) is enabled, at least one of PERSP_* must be
685   //   enabled too.
686   if (CC == CallingConv::AMDGPU_PS) {
687     if ((Info->getPSInputAddr() & 0x7F) == 0 ||
688         ((Info->getPSInputAddr() & 0xF) == 0 &&
689          Info->isPSInputAllocated(11))) {
690       CCInfo.AllocateReg(AMDGPU::VGPR0);
691       CCInfo.AllocateReg(AMDGPU::VGPR1);
692       Info->markPSInputAllocated(0);
693       Info->markPSInputEnabled(0);
694     }
695 
696     if (Subtarget.isAmdPalOS()) {
697       // For isAmdPalOS, the user does not enable some bits after compilation
698       // based on run-time states; the register values being generated here are
699       // the final ones set in hardware. Therefore we need to apply the
700       // workaround to PSInputAddr and PSInputEnable together.  (The case where
701       // a bit is set in PSInputAddr but not PSInputEnable is where the frontend
702       // set up an input arg for a particular interpolation mode, but nothing
703       // uses that input arg. Really we should have an earlier pass that removes
704       // such an arg.)
705       unsigned PsInputBits = Info->getPSInputAddr() & Info->getPSInputEnable();
706       if ((PsInputBits & 0x7F) == 0 ||
707           ((PsInputBits & 0xF) == 0 &&
708            (PsInputBits >> 11 & 1)))
709         Info->markPSInputEnabled(llvm::countr_zero(Info->getPSInputAddr()));
710     }
711   }
712 
713   const SITargetLowering &TLI = *getTLI<SITargetLowering>();
714   CCAssignFn *AssignFn = TLI.CCAssignFnForCall(CC, F.isVarArg());
715 
716   if (!MBB.empty())
717     B.setInstr(*MBB.begin());
718 
719   if (!IsEntryFunc && !IsGraphics) {
720     // For the fixed ABI, pass workitem IDs in the last argument register.
721     TLI.allocateSpecialInputVGPRsFixed(CCInfo, MF, *TRI, *Info);
722   }
723 
724   IncomingValueAssigner Assigner(AssignFn);
725   if (!determineAssignments(Assigner, SplitArgs, CCInfo))
726     return false;
727 
728   FormalArgHandler Handler(B, MRI);
729   if (!handleAssignments(Handler, SplitArgs, CCInfo, ArgLocs, B))
730     return false;
731 
732   uint64_t StackSize = Assigner.StackSize;
733 
734   // Start adding system SGPRs.
735   if (IsEntryFunc) {
736     TLI.allocateSystemSGPRs(CCInfo, MF, *Info, CC, IsGraphics);
737   } else {
738     if (!Subtarget.enableFlatScratch())
739       CCInfo.AllocateReg(Info->getScratchRSrcReg());
740     TLI.allocateSpecialInputSGPRs(CCInfo, MF, *TRI, *Info);
741   }
742 
743   // When we tail call, we need to check if the callee's arguments will fit on
744   // the caller's stack. So, whenever we lower formal arguments, we should keep
745   // track of this information, since we might lower a tail call in this
746   // function later.
747   Info->setBytesInStackArgArea(StackSize);
748 
749   // Move back to the end of the basic block.
750   B.setMBB(MBB);
751 
752   return true;
753 }
754 
755 bool AMDGPUCallLowering::passSpecialInputs(MachineIRBuilder &MIRBuilder,
756                                            CCState &CCInfo,
757                                            SmallVectorImpl<std::pair<MCRegister, Register>> &ArgRegs,
758                                            CallLoweringInfo &Info) const {
759   MachineFunction &MF = MIRBuilder.getMF();
760 
761   // If there's no call site, this doesn't correspond to a call from the IR and
762   // doesn't need implicit inputs.
763   if (!Info.CB)
764     return true;
765 
766   const AMDGPUFunctionArgInfo *CalleeArgInfo
767     = &AMDGPUArgumentUsageInfo::FixedABIFunctionInfo;
768 
769   const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
770   const AMDGPUFunctionArgInfo &CallerArgInfo = MFI->getArgInfo();
771 
772 
773   // TODO: Unify with private memory register handling. This is complicated by
774   // the fact that at least in kernels, the input argument is not necessarily
775   // in the same location as the input.
776   AMDGPUFunctionArgInfo::PreloadedValue InputRegs[] = {
777     AMDGPUFunctionArgInfo::DISPATCH_PTR,
778     AMDGPUFunctionArgInfo::QUEUE_PTR,
779     AMDGPUFunctionArgInfo::IMPLICIT_ARG_PTR,
780     AMDGPUFunctionArgInfo::DISPATCH_ID,
781     AMDGPUFunctionArgInfo::WORKGROUP_ID_X,
782     AMDGPUFunctionArgInfo::WORKGROUP_ID_Y,
783     AMDGPUFunctionArgInfo::WORKGROUP_ID_Z,
784     AMDGPUFunctionArgInfo::LDS_KERNEL_ID,
785   };
786 
787   static constexpr StringLiteral ImplicitAttrNames[] = {
788     "amdgpu-no-dispatch-ptr",
789     "amdgpu-no-queue-ptr",
790     "amdgpu-no-implicitarg-ptr",
791     "amdgpu-no-dispatch-id",
792     "amdgpu-no-workgroup-id-x",
793     "amdgpu-no-workgroup-id-y",
794     "amdgpu-no-workgroup-id-z",
795     "amdgpu-no-lds-kernel-id",
796   };
797 
798   MachineRegisterInfo &MRI = MF.getRegInfo();
799 
800   const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>();
801   const AMDGPULegalizerInfo *LI
802     = static_cast<const AMDGPULegalizerInfo*>(ST.getLegalizerInfo());
803 
804   unsigned I = 0;
805   for (auto InputID : InputRegs) {
806     const ArgDescriptor *OutgoingArg;
807     const TargetRegisterClass *ArgRC;
808     LLT ArgTy;
809 
810     // If the callee does not use the attribute value, skip copying the value.
811     if (Info.CB->hasFnAttr(ImplicitAttrNames[I++]))
812       continue;
813 
814     std::tie(OutgoingArg, ArgRC, ArgTy) =
815         CalleeArgInfo->getPreloadedValue(InputID);
816     if (!OutgoingArg)
817       continue;
818 
819     const ArgDescriptor *IncomingArg;
820     const TargetRegisterClass *IncomingArgRC;
821     std::tie(IncomingArg, IncomingArgRC, ArgTy) =
822         CallerArgInfo.getPreloadedValue(InputID);
823     assert(IncomingArgRC == ArgRC);
824 
825     Register InputReg = MRI.createGenericVirtualRegister(ArgTy);
826 
827     if (IncomingArg) {
828       LI->loadInputValue(InputReg, MIRBuilder, IncomingArg, ArgRC, ArgTy);
829     } else if (InputID == AMDGPUFunctionArgInfo::IMPLICIT_ARG_PTR) {
830       LI->getImplicitArgPtr(InputReg, MRI, MIRBuilder);
831     } else if (InputID == AMDGPUFunctionArgInfo::LDS_KERNEL_ID) {
832       std::optional<uint32_t> Id =
833           AMDGPUMachineFunction::getLDSKernelIdMetadata(MF.getFunction());
834       if (Id) {
835         MIRBuilder.buildConstant(InputReg, *Id);
836       } else {
837         MIRBuilder.buildUndef(InputReg);
838       }
839     } else {
840       // We may have proven the input wasn't needed, although the ABI is
841       // requiring it. We just need to allocate the register appropriately.
842       MIRBuilder.buildUndef(InputReg);
843     }
844 
845     if (OutgoingArg->isRegister()) {
846       ArgRegs.emplace_back(OutgoingArg->getRegister(), InputReg);
847       if (!CCInfo.AllocateReg(OutgoingArg->getRegister()))
848         report_fatal_error("failed to allocate implicit input argument");
849     } else {
850       LLVM_DEBUG(dbgs() << "Unhandled stack passed implicit input argument\n");
851       return false;
852     }
853   }
854 
855   // Pack workitem IDs into a single register or pass it as is if already
856   // packed.
857   const ArgDescriptor *OutgoingArg;
858   const TargetRegisterClass *ArgRC;
859   LLT ArgTy;
860 
861   std::tie(OutgoingArg, ArgRC, ArgTy) =
862       CalleeArgInfo->getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_X);
863   if (!OutgoingArg)
864     std::tie(OutgoingArg, ArgRC, ArgTy) =
865         CalleeArgInfo->getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_Y);
866   if (!OutgoingArg)
867     std::tie(OutgoingArg, ArgRC, ArgTy) =
868         CalleeArgInfo->getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_Z);
869   if (!OutgoingArg)
870     return false;
871 
872   auto WorkitemIDX =
873       CallerArgInfo.getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_X);
874   auto WorkitemIDY =
875       CallerArgInfo.getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_Y);
876   auto WorkitemIDZ =
877       CallerArgInfo.getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_Z);
878 
879   const ArgDescriptor *IncomingArgX = std::get<0>(WorkitemIDX);
880   const ArgDescriptor *IncomingArgY = std::get<0>(WorkitemIDY);
881   const ArgDescriptor *IncomingArgZ = std::get<0>(WorkitemIDZ);
882   const LLT S32 = LLT::scalar(32);
883 
884   const bool NeedWorkItemIDX = !Info.CB->hasFnAttr("amdgpu-no-workitem-id-x");
885   const bool NeedWorkItemIDY = !Info.CB->hasFnAttr("amdgpu-no-workitem-id-y");
886   const bool NeedWorkItemIDZ = !Info.CB->hasFnAttr("amdgpu-no-workitem-id-z");
887 
888   // If incoming ids are not packed we need to pack them.
889   // FIXME: Should consider known workgroup size to eliminate known 0 cases.
890   Register InputReg;
891   if (IncomingArgX && !IncomingArgX->isMasked() && CalleeArgInfo->WorkItemIDX &&
892       NeedWorkItemIDX) {
893     if (ST.getMaxWorkitemID(MF.getFunction(), 0) != 0) {
894       InputReg = MRI.createGenericVirtualRegister(S32);
895       LI->loadInputValue(InputReg, MIRBuilder, IncomingArgX,
896                          std::get<1>(WorkitemIDX), std::get<2>(WorkitemIDX));
897     } else {
898       InputReg = MIRBuilder.buildConstant(S32, 0).getReg(0);
899     }
900   }
901 
902   if (IncomingArgY && !IncomingArgY->isMasked() && CalleeArgInfo->WorkItemIDY &&
903       NeedWorkItemIDY && ST.getMaxWorkitemID(MF.getFunction(), 1) != 0) {
904     Register Y = MRI.createGenericVirtualRegister(S32);
905     LI->loadInputValue(Y, MIRBuilder, IncomingArgY, std::get<1>(WorkitemIDY),
906                        std::get<2>(WorkitemIDY));
907 
908     Y = MIRBuilder.buildShl(S32, Y, MIRBuilder.buildConstant(S32, 10)).getReg(0);
909     InputReg = InputReg ? MIRBuilder.buildOr(S32, InputReg, Y).getReg(0) : Y;
910   }
911 
912   if (IncomingArgZ && !IncomingArgZ->isMasked() && CalleeArgInfo->WorkItemIDZ &&
913       NeedWorkItemIDZ && ST.getMaxWorkitemID(MF.getFunction(), 2) != 0) {
914     Register Z = MRI.createGenericVirtualRegister(S32);
915     LI->loadInputValue(Z, MIRBuilder, IncomingArgZ, std::get<1>(WorkitemIDZ),
916                        std::get<2>(WorkitemIDZ));
917 
918     Z = MIRBuilder.buildShl(S32, Z, MIRBuilder.buildConstant(S32, 20)).getReg(0);
919     InputReg = InputReg ? MIRBuilder.buildOr(S32, InputReg, Z).getReg(0) : Z;
920   }
921 
922   if (!InputReg &&
923       (NeedWorkItemIDX || NeedWorkItemIDY || NeedWorkItemIDZ)) {
924     InputReg = MRI.createGenericVirtualRegister(S32);
925     if (!IncomingArgX && !IncomingArgY && !IncomingArgZ) {
926       // We're in a situation where the outgoing function requires the workitem
927       // ID, but the calling function does not have it (e.g a graphics function
928       // calling a C calling convention function). This is illegal, but we need
929       // to produce something.
930       MIRBuilder.buildUndef(InputReg);
931     } else {
932       // Workitem ids are already packed, any of present incoming arguments will
933       // carry all required fields.
934       ArgDescriptor IncomingArg = ArgDescriptor::createArg(
935         IncomingArgX ? *IncomingArgX :
936         IncomingArgY ? *IncomingArgY : *IncomingArgZ, ~0u);
937       LI->loadInputValue(InputReg, MIRBuilder, &IncomingArg,
938                          &AMDGPU::VGPR_32RegClass, S32);
939     }
940   }
941 
942   if (OutgoingArg->isRegister()) {
943     if (InputReg)
944       ArgRegs.emplace_back(OutgoingArg->getRegister(), InputReg);
945 
946     if (!CCInfo.AllocateReg(OutgoingArg->getRegister()))
947       report_fatal_error("failed to allocate implicit input argument");
948   } else {
949     LLVM_DEBUG(dbgs() << "Unhandled stack passed implicit input argument\n");
950     return false;
951   }
952 
953   return true;
954 }
955 
956 /// Returns a pair containing the fixed CCAssignFn and the vararg CCAssignFn for
957 /// CC.
958 static std::pair<CCAssignFn *, CCAssignFn *>
959 getAssignFnsForCC(CallingConv::ID CC, const SITargetLowering &TLI) {
960   return {TLI.CCAssignFnForCall(CC, false), TLI.CCAssignFnForCall(CC, true)};
961 }
962 
963 static unsigned getCallOpcode(const MachineFunction &CallerF, bool IsIndirect,
964                               bool IsTailCall, CallingConv::ID CC) {
965   assert(!(IsIndirect && IsTailCall) && "Indirect calls can't be tail calls, "
966                                         "because the address can be divergent");
967   if (!IsTailCall)
968     return AMDGPU::G_SI_CALL;
969 
970   return CC == CallingConv::AMDGPU_Gfx ? AMDGPU::SI_TCRETURN_GFX :
971                                          AMDGPU::SI_TCRETURN;
972 }
973 
974 // Add operands to call instruction to track the callee.
975 static bool addCallTargetOperands(MachineInstrBuilder &CallInst,
976                                   MachineIRBuilder &MIRBuilder,
977                                   AMDGPUCallLowering::CallLoweringInfo &Info) {
978   if (Info.Callee.isReg()) {
979     CallInst.addReg(Info.Callee.getReg());
980     CallInst.addImm(0);
981   } else if (Info.Callee.isGlobal() && Info.Callee.getOffset() == 0) {
982     // The call lowering lightly assumed we can directly encode a call target in
983     // the instruction, which is not the case. Materialize the address here.
984     const GlobalValue *GV = Info.Callee.getGlobal();
985     auto Ptr = MIRBuilder.buildGlobalValue(
986       LLT::pointer(GV->getAddressSpace(), 64), GV);
987     CallInst.addReg(Ptr.getReg(0));
988     CallInst.add(Info.Callee);
989   } else
990     return false;
991 
992   return true;
993 }
994 
995 bool AMDGPUCallLowering::doCallerAndCalleePassArgsTheSameWay(
996     CallLoweringInfo &Info, MachineFunction &MF,
997     SmallVectorImpl<ArgInfo> &InArgs) const {
998   const Function &CallerF = MF.getFunction();
999   CallingConv::ID CalleeCC = Info.CallConv;
1000   CallingConv::ID CallerCC = CallerF.getCallingConv();
1001 
1002   // If the calling conventions match, then everything must be the same.
1003   if (CalleeCC == CallerCC)
1004     return true;
1005 
1006   const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>();
1007 
1008   // Make sure that the caller and callee preserve all of the same registers.
1009   auto TRI = ST.getRegisterInfo();
1010 
1011   const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC);
1012   const uint32_t *CalleePreserved = TRI->getCallPreservedMask(MF, CalleeCC);
1013   if (!TRI->regmaskSubsetEqual(CallerPreserved, CalleePreserved))
1014     return false;
1015 
1016   // Check if the caller and callee will handle arguments in the same way.
1017   const SITargetLowering &TLI = *getTLI<SITargetLowering>();
1018   CCAssignFn *CalleeAssignFnFixed;
1019   CCAssignFn *CalleeAssignFnVarArg;
1020   std::tie(CalleeAssignFnFixed, CalleeAssignFnVarArg) =
1021       getAssignFnsForCC(CalleeCC, TLI);
1022 
1023   CCAssignFn *CallerAssignFnFixed;
1024   CCAssignFn *CallerAssignFnVarArg;
1025   std::tie(CallerAssignFnFixed, CallerAssignFnVarArg) =
1026       getAssignFnsForCC(CallerCC, TLI);
1027 
1028   // FIXME: We are not accounting for potential differences in implicitly passed
1029   // inputs, but only the fixed ABI is supported now anyway.
1030   IncomingValueAssigner CalleeAssigner(CalleeAssignFnFixed,
1031                                        CalleeAssignFnVarArg);
1032   IncomingValueAssigner CallerAssigner(CallerAssignFnFixed,
1033                                        CallerAssignFnVarArg);
1034   return resultsCompatible(Info, MF, InArgs, CalleeAssigner, CallerAssigner);
1035 }
1036 
1037 bool AMDGPUCallLowering::areCalleeOutgoingArgsTailCallable(
1038     CallLoweringInfo &Info, MachineFunction &MF,
1039     SmallVectorImpl<ArgInfo> &OutArgs) const {
1040   // If there are no outgoing arguments, then we are done.
1041   if (OutArgs.empty())
1042     return true;
1043 
1044   const Function &CallerF = MF.getFunction();
1045   CallingConv::ID CalleeCC = Info.CallConv;
1046   CallingConv::ID CallerCC = CallerF.getCallingConv();
1047   const SITargetLowering &TLI = *getTLI<SITargetLowering>();
1048 
1049   CCAssignFn *AssignFnFixed;
1050   CCAssignFn *AssignFnVarArg;
1051   std::tie(AssignFnFixed, AssignFnVarArg) = getAssignFnsForCC(CalleeCC, TLI);
1052 
1053   // We have outgoing arguments. Make sure that we can tail call with them.
1054   SmallVector<CCValAssign, 16> OutLocs;
1055   CCState OutInfo(CalleeCC, false, MF, OutLocs, CallerF.getContext());
1056   OutgoingValueAssigner Assigner(AssignFnFixed, AssignFnVarArg);
1057 
1058   if (!determineAssignments(Assigner, OutArgs, OutInfo)) {
1059     LLVM_DEBUG(dbgs() << "... Could not analyze call operands.\n");
1060     return false;
1061   }
1062 
1063   // Make sure that they can fit on the caller's stack.
1064   const SIMachineFunctionInfo *FuncInfo = MF.getInfo<SIMachineFunctionInfo>();
1065   if (OutInfo.getStackSize() > FuncInfo->getBytesInStackArgArea()) {
1066     LLVM_DEBUG(dbgs() << "... Cannot fit call operands on caller's stack.\n");
1067     return false;
1068   }
1069 
1070   // Verify that the parameters in callee-saved registers match.
1071   const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>();
1072   const SIRegisterInfo *TRI = ST.getRegisterInfo();
1073   const uint32_t *CallerPreservedMask = TRI->getCallPreservedMask(MF, CallerCC);
1074   MachineRegisterInfo &MRI = MF.getRegInfo();
1075   return parametersInCSRMatch(MRI, CallerPreservedMask, OutLocs, OutArgs);
1076 }
1077 
1078 /// Return true if the calling convention is one that we can guarantee TCO for.
1079 static bool canGuaranteeTCO(CallingConv::ID CC) {
1080   return CC == CallingConv::Fast;
1081 }
1082 
1083 /// Return true if we might ever do TCO for calls with this calling convention.
1084 static bool mayTailCallThisCC(CallingConv::ID CC) {
1085   switch (CC) {
1086   case CallingConv::C:
1087   case CallingConv::AMDGPU_Gfx:
1088     return true;
1089   default:
1090     return canGuaranteeTCO(CC);
1091   }
1092 }
1093 
1094 bool AMDGPUCallLowering::isEligibleForTailCallOptimization(
1095     MachineIRBuilder &B, CallLoweringInfo &Info,
1096     SmallVectorImpl<ArgInfo> &InArgs, SmallVectorImpl<ArgInfo> &OutArgs) const {
1097   // Must pass all target-independent checks in order to tail call optimize.
1098   if (!Info.IsTailCall)
1099     return false;
1100 
1101   // Indirect calls can't be tail calls, because the address can be divergent.
1102   // TODO Check divergence info if the call really is divergent.
1103   if (Info.Callee.isReg())
1104     return false;
1105 
1106   MachineFunction &MF = B.getMF();
1107   const Function &CallerF = MF.getFunction();
1108   CallingConv::ID CalleeCC = Info.CallConv;
1109   CallingConv::ID CallerCC = CallerF.getCallingConv();
1110 
1111   const SIRegisterInfo *TRI = MF.getSubtarget<GCNSubtarget>().getRegisterInfo();
1112   const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC);
1113   // Kernels aren't callable, and don't have a live in return address so it
1114   // doesn't make sense to do a tail call with entry functions.
1115   if (!CallerPreserved)
1116     return false;
1117 
1118   if (!mayTailCallThisCC(CalleeCC)) {
1119     LLVM_DEBUG(dbgs() << "... Calling convention cannot be tail called.\n");
1120     return false;
1121   }
1122 
1123   if (any_of(CallerF.args(), [](const Argument &A) {
1124         return A.hasByValAttr() || A.hasSwiftErrorAttr();
1125       })) {
1126     LLVM_DEBUG(dbgs() << "... Cannot tail call from callers with byval "
1127                          "or swifterror arguments\n");
1128     return false;
1129   }
1130 
1131   // If we have -tailcallopt, then we're done.
1132   if (MF.getTarget().Options.GuaranteedTailCallOpt)
1133     return canGuaranteeTCO(CalleeCC) && CalleeCC == CallerF.getCallingConv();
1134 
1135   // Verify that the incoming and outgoing arguments from the callee are
1136   // safe to tail call.
1137   if (!doCallerAndCalleePassArgsTheSameWay(Info, MF, InArgs)) {
1138     LLVM_DEBUG(
1139         dbgs()
1140         << "... Caller and callee have incompatible calling conventions.\n");
1141     return false;
1142   }
1143 
1144   if (!areCalleeOutgoingArgsTailCallable(Info, MF, OutArgs))
1145     return false;
1146 
1147   LLVM_DEBUG(dbgs() << "... Call is eligible for tail call optimization.\n");
1148   return true;
1149 }
1150 
1151 // Insert outgoing implicit arguments for a call, by inserting copies to the
1152 // implicit argument registers and adding the necessary implicit uses to the
1153 // call instruction.
1154 void AMDGPUCallLowering::handleImplicitCallArguments(
1155     MachineIRBuilder &MIRBuilder, MachineInstrBuilder &CallInst,
1156     const GCNSubtarget &ST, const SIMachineFunctionInfo &FuncInfo,
1157     ArrayRef<std::pair<MCRegister, Register>> ImplicitArgRegs) const {
1158   if (!ST.enableFlatScratch()) {
1159     // Insert copies for the SRD. In the HSA case, this should be an identity
1160     // copy.
1161     auto ScratchRSrcReg = MIRBuilder.buildCopy(LLT::fixed_vector(4, 32),
1162                                                FuncInfo.getScratchRSrcReg());
1163     MIRBuilder.buildCopy(AMDGPU::SGPR0_SGPR1_SGPR2_SGPR3, ScratchRSrcReg);
1164     CallInst.addReg(AMDGPU::SGPR0_SGPR1_SGPR2_SGPR3, RegState::Implicit);
1165   }
1166 
1167   for (std::pair<MCRegister, Register> ArgReg : ImplicitArgRegs) {
1168     MIRBuilder.buildCopy((Register)ArgReg.first, ArgReg.second);
1169     CallInst.addReg(ArgReg.first, RegState::Implicit);
1170   }
1171 }
1172 
1173 bool AMDGPUCallLowering::lowerTailCall(
1174     MachineIRBuilder &MIRBuilder, CallLoweringInfo &Info,
1175     SmallVectorImpl<ArgInfo> &OutArgs) const {
1176   MachineFunction &MF = MIRBuilder.getMF();
1177   const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>();
1178   SIMachineFunctionInfo *FuncInfo = MF.getInfo<SIMachineFunctionInfo>();
1179   const Function &F = MF.getFunction();
1180   MachineRegisterInfo &MRI = MF.getRegInfo();
1181   const SITargetLowering &TLI = *getTLI<SITargetLowering>();
1182 
1183   // True when we're tail calling, but without -tailcallopt.
1184   bool IsSibCall = !MF.getTarget().Options.GuaranteedTailCallOpt;
1185 
1186   // Find out which ABI gets to decide where things go.
1187   CallingConv::ID CalleeCC = Info.CallConv;
1188   CCAssignFn *AssignFnFixed;
1189   CCAssignFn *AssignFnVarArg;
1190   std::tie(AssignFnFixed, AssignFnVarArg) = getAssignFnsForCC(CalleeCC, TLI);
1191 
1192   MachineInstrBuilder CallSeqStart;
1193   if (!IsSibCall)
1194     CallSeqStart = MIRBuilder.buildInstr(AMDGPU::ADJCALLSTACKUP);
1195 
1196   unsigned Opc = getCallOpcode(MF, Info.Callee.isReg(), true, CalleeCC);
1197   auto MIB = MIRBuilder.buildInstrNoInsert(Opc);
1198   if (!addCallTargetOperands(MIB, MIRBuilder, Info))
1199     return false;
1200 
1201   // Byte offset for the tail call. When we are sibcalling, this will always
1202   // be 0.
1203   MIB.addImm(0);
1204 
1205   // Tell the call which registers are clobbered.
1206   const SIRegisterInfo *TRI = ST.getRegisterInfo();
1207   const uint32_t *Mask = TRI->getCallPreservedMask(MF, CalleeCC);
1208   MIB.addRegMask(Mask);
1209 
1210   // FPDiff is the byte offset of the call's argument area from the callee's.
1211   // Stores to callee stack arguments will be placed in FixedStackSlots offset
1212   // by this amount for a tail call. In a sibling call it must be 0 because the
1213   // caller will deallocate the entire stack and the callee still expects its
1214   // arguments to begin at SP+0.
1215   int FPDiff = 0;
1216 
1217   // This will be 0 for sibcalls, potentially nonzero for tail calls produced
1218   // by -tailcallopt. For sibcalls, the memory operands for the call are
1219   // already available in the caller's incoming argument space.
1220   unsigned NumBytes = 0;
1221   if (!IsSibCall) {
1222     // We aren't sibcalling, so we need to compute FPDiff. We need to do this
1223     // before handling assignments, because FPDiff must be known for memory
1224     // arguments.
1225     unsigned NumReusableBytes = FuncInfo->getBytesInStackArgArea();
1226     SmallVector<CCValAssign, 16> OutLocs;
1227     CCState OutInfo(CalleeCC, false, MF, OutLocs, F.getContext());
1228 
1229     // FIXME: Not accounting for callee implicit inputs
1230     OutgoingValueAssigner CalleeAssigner(AssignFnFixed, AssignFnVarArg);
1231     if (!determineAssignments(CalleeAssigner, OutArgs, OutInfo))
1232       return false;
1233 
1234     // The callee will pop the argument stack as a tail call. Thus, we must
1235     // keep it 16-byte aligned.
1236     NumBytes = alignTo(OutInfo.getStackSize(), ST.getStackAlignment());
1237 
1238     // FPDiff will be negative if this tail call requires more space than we
1239     // would automatically have in our incoming argument space. Positive if we
1240     // actually shrink the stack.
1241     FPDiff = NumReusableBytes - NumBytes;
1242 
1243     // The stack pointer must be 16-byte aligned at all times it's used for a
1244     // memory operation, which in practice means at *all* times and in
1245     // particular across call boundaries. Therefore our own arguments started at
1246     // a 16-byte aligned SP and the delta applied for the tail call should
1247     // satisfy the same constraint.
1248     assert(isAligned(ST.getStackAlignment(), FPDiff) &&
1249            "unaligned stack on tail call");
1250   }
1251 
1252   SmallVector<CCValAssign, 16> ArgLocs;
1253   CCState CCInfo(Info.CallConv, Info.IsVarArg, MF, ArgLocs, F.getContext());
1254 
1255   // We could pass MIB and directly add the implicit uses to the call
1256   // now. However, as an aesthetic choice, place implicit argument operands
1257   // after the ordinary user argument registers.
1258   SmallVector<std::pair<MCRegister, Register>, 12> ImplicitArgRegs;
1259 
1260   if (Info.CallConv != CallingConv::AMDGPU_Gfx) {
1261     // With a fixed ABI, allocate fixed registers before user arguments.
1262     if (!passSpecialInputs(MIRBuilder, CCInfo, ImplicitArgRegs, Info))
1263       return false;
1264   }
1265 
1266   OutgoingValueAssigner Assigner(AssignFnFixed, AssignFnVarArg);
1267 
1268   if (!determineAssignments(Assigner, OutArgs, CCInfo))
1269     return false;
1270 
1271   // Do the actual argument marshalling.
1272   AMDGPUOutgoingArgHandler Handler(MIRBuilder, MRI, MIB, true, FPDiff);
1273   if (!handleAssignments(Handler, OutArgs, CCInfo, ArgLocs, MIRBuilder))
1274     return false;
1275 
1276   handleImplicitCallArguments(MIRBuilder, MIB, ST, *FuncInfo, ImplicitArgRegs);
1277 
1278   // If we have -tailcallopt, we need to adjust the stack. We'll do the call
1279   // sequence start and end here.
1280   if (!IsSibCall) {
1281     MIB->getOperand(1).setImm(FPDiff);
1282     CallSeqStart.addImm(NumBytes).addImm(0);
1283     // End the call sequence *before* emitting the call. Normally, we would
1284     // tidy the frame up after the call. However, here, we've laid out the
1285     // parameters so that when SP is reset, they will be in the correct
1286     // location.
1287     MIRBuilder.buildInstr(AMDGPU::ADJCALLSTACKDOWN).addImm(NumBytes).addImm(0);
1288   }
1289 
1290   // Now we can add the actual call instruction to the correct basic block.
1291   MIRBuilder.insertInstr(MIB);
1292 
1293   // If Callee is a reg, since it is used by a target specific
1294   // instruction, it must have a register class matching the
1295   // constraint of that instruction.
1296 
1297   // FIXME: We should define regbankselectable call instructions to handle
1298   // divergent call targets.
1299   if (MIB->getOperand(0).isReg()) {
1300     MIB->getOperand(0).setReg(constrainOperandRegClass(
1301         MF, *TRI, MRI, *ST.getInstrInfo(), *ST.getRegBankInfo(), *MIB,
1302         MIB->getDesc(), MIB->getOperand(0), 0));
1303   }
1304 
1305   MF.getFrameInfo().setHasTailCall();
1306   Info.LoweredTailCall = true;
1307   return true;
1308 }
1309 
1310 bool AMDGPUCallLowering::lowerCall(MachineIRBuilder &MIRBuilder,
1311                                    CallLoweringInfo &Info) const {
1312   if (Info.IsVarArg) {
1313     LLVM_DEBUG(dbgs() << "Variadic functions not implemented\n");
1314     return false;
1315   }
1316 
1317   MachineFunction &MF = MIRBuilder.getMF();
1318   const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>();
1319   const SIRegisterInfo *TRI = ST.getRegisterInfo();
1320 
1321   const Function &F = MF.getFunction();
1322   MachineRegisterInfo &MRI = MF.getRegInfo();
1323   const SITargetLowering &TLI = *getTLI<SITargetLowering>();
1324   const DataLayout &DL = F.getParent()->getDataLayout();
1325 
1326   SmallVector<ArgInfo, 8> OutArgs;
1327   for (auto &OrigArg : Info.OrigArgs)
1328     splitToValueTypes(OrigArg, OutArgs, DL, Info.CallConv);
1329 
1330   SmallVector<ArgInfo, 8> InArgs;
1331   if (Info.CanLowerReturn && !Info.OrigRet.Ty->isVoidTy())
1332     splitToValueTypes(Info.OrigRet, InArgs, DL, Info.CallConv);
1333 
1334   // If we can lower as a tail call, do that instead.
1335   bool CanTailCallOpt =
1336       isEligibleForTailCallOptimization(MIRBuilder, Info, InArgs, OutArgs);
1337 
1338   // We must emit a tail call if we have musttail.
1339   if (Info.IsMustTailCall && !CanTailCallOpt) {
1340     LLVM_DEBUG(dbgs() << "Failed to lower musttail call as tail call\n");
1341     return false;
1342   }
1343 
1344   Info.IsTailCall = CanTailCallOpt;
1345   if (CanTailCallOpt)
1346     return lowerTailCall(MIRBuilder, Info, OutArgs);
1347 
1348   // Find out which ABI gets to decide where things go.
1349   CCAssignFn *AssignFnFixed;
1350   CCAssignFn *AssignFnVarArg;
1351   std::tie(AssignFnFixed, AssignFnVarArg) =
1352       getAssignFnsForCC(Info.CallConv, TLI);
1353 
1354   MIRBuilder.buildInstr(AMDGPU::ADJCALLSTACKUP)
1355     .addImm(0)
1356     .addImm(0);
1357 
1358   // Create a temporarily-floating call instruction so we can add the implicit
1359   // uses of arg registers.
1360   unsigned Opc = getCallOpcode(MF, Info.Callee.isReg(), false, Info.CallConv);
1361 
1362   auto MIB = MIRBuilder.buildInstrNoInsert(Opc);
1363   MIB.addDef(TRI->getReturnAddressReg(MF));
1364 
1365   if (!Info.IsConvergent)
1366     MIB.setMIFlag(MachineInstr::NoConvergent);
1367 
1368   if (!addCallTargetOperands(MIB, MIRBuilder, Info))
1369     return false;
1370 
1371   // Tell the call which registers are clobbered.
1372   const uint32_t *Mask = TRI->getCallPreservedMask(MF, Info.CallConv);
1373   MIB.addRegMask(Mask);
1374 
1375   SmallVector<CCValAssign, 16> ArgLocs;
1376   CCState CCInfo(Info.CallConv, Info.IsVarArg, MF, ArgLocs, F.getContext());
1377 
1378   // We could pass MIB and directly add the implicit uses to the call
1379   // now. However, as an aesthetic choice, place implicit argument operands
1380   // after the ordinary user argument registers.
1381   SmallVector<std::pair<MCRegister, Register>, 12> ImplicitArgRegs;
1382 
1383   if (Info.CallConv != CallingConv::AMDGPU_Gfx) {
1384     // With a fixed ABI, allocate fixed registers before user arguments.
1385     if (!passSpecialInputs(MIRBuilder, CCInfo, ImplicitArgRegs, Info))
1386       return false;
1387   }
1388 
1389   // Do the actual argument marshalling.
1390   SmallVector<Register, 8> PhysRegs;
1391 
1392   OutgoingValueAssigner Assigner(AssignFnFixed, AssignFnVarArg);
1393   if (!determineAssignments(Assigner, OutArgs, CCInfo))
1394     return false;
1395 
1396   AMDGPUOutgoingArgHandler Handler(MIRBuilder, MRI, MIB, false);
1397   if (!handleAssignments(Handler, OutArgs, CCInfo, ArgLocs, MIRBuilder))
1398     return false;
1399 
1400   const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
1401 
1402   handleImplicitCallArguments(MIRBuilder, MIB, ST, *MFI, ImplicitArgRegs);
1403 
1404   // Get a count of how many bytes are to be pushed on the stack.
1405   unsigned NumBytes = CCInfo.getStackSize();
1406 
1407   // If Callee is a reg, since it is used by a target specific
1408   // instruction, it must have a register class matching the
1409   // constraint of that instruction.
1410 
1411   // FIXME: We should define regbankselectable call instructions to handle
1412   // divergent call targets.
1413   if (MIB->getOperand(1).isReg()) {
1414     MIB->getOperand(1).setReg(constrainOperandRegClass(
1415         MF, *TRI, MRI, *ST.getInstrInfo(),
1416         *ST.getRegBankInfo(), *MIB, MIB->getDesc(), MIB->getOperand(1),
1417         1));
1418   }
1419 
1420   // Now we can add the actual call instruction to the correct position.
1421   MIRBuilder.insertInstr(MIB);
1422 
1423   // Finally we can copy the returned value back into its virtual-register. In
1424   // symmetry with the arguments, the physical register must be an
1425   // implicit-define of the call instruction.
1426   if (Info.CanLowerReturn && !Info.OrigRet.Ty->isVoidTy()) {
1427     CCAssignFn *RetAssignFn = TLI.CCAssignFnForReturn(Info.CallConv,
1428                                                       Info.IsVarArg);
1429     IncomingValueAssigner Assigner(RetAssignFn);
1430     CallReturnHandler Handler(MIRBuilder, MRI, MIB);
1431     if (!determineAndHandleAssignments(Handler, Assigner, InArgs, MIRBuilder,
1432                                        Info.CallConv, Info.IsVarArg))
1433       return false;
1434   }
1435 
1436   uint64_t CalleePopBytes = NumBytes;
1437 
1438   MIRBuilder.buildInstr(AMDGPU::ADJCALLSTACKDOWN)
1439             .addImm(0)
1440             .addImm(CalleePopBytes);
1441 
1442   if (!Info.CanLowerReturn) {
1443     insertSRetLoads(MIRBuilder, Info.OrigRet.Ty, Info.OrigRet.Regs,
1444                     Info.DemoteRegister, Info.DemoteStackIndex);
1445   }
1446 
1447   return true;
1448 }
1449