xref: /llvm-project/llvm/lib/Target/AMDGPU/AMDGPUAtomicOptimizer.cpp (revision 9df71d7673b5c98e1032d01be83724a45b42fafc)
1 //===-- AMDGPUAtomicOptimizer.cpp -----------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file
10 /// This pass optimizes atomic operations by using a single lane of a wavefront
11 /// to perform the atomic operation, thus reducing contention on that memory
12 /// location.
13 /// Atomic optimizer uses following strategies to compute scan and reduced
14 /// values
15 /// 1. DPP -
16 ///   This is the most efficient implementation for scan. DPP uses Whole Wave
17 ///   Mode (WWM)
18 /// 2. Iterative -
19 //    An alternative implementation iterates over all active lanes
20 ///   of Wavefront using llvm.cttz and performs scan  using readlane & writelane
21 ///   intrinsics
22 //===----------------------------------------------------------------------===//
23 
24 #include "AMDGPU.h"
25 #include "GCNSubtarget.h"
26 #include "llvm/Analysis/DomTreeUpdater.h"
27 #include "llvm/Analysis/UniformityAnalysis.h"
28 #include "llvm/CodeGen/TargetPassConfig.h"
29 #include "llvm/IR/IRBuilder.h"
30 #include "llvm/IR/InstVisitor.h"
31 #include "llvm/IR/IntrinsicsAMDGPU.h"
32 #include "llvm/InitializePasses.h"
33 #include "llvm/Target/TargetMachine.h"
34 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
35 
36 #define DEBUG_TYPE "amdgpu-atomic-optimizer"
37 
38 using namespace llvm;
39 using namespace llvm::AMDGPU;
40 
41 namespace {
42 
43 struct ReplacementInfo {
44   Instruction *I;
45   AtomicRMWInst::BinOp Op;
46   unsigned ValIdx;
47   bool ValDivergent;
48 };
49 
50 class AMDGPUAtomicOptimizer : public FunctionPass {
51 public:
52   static char ID;
53   ScanOptions ScanImpl;
54   AMDGPUAtomicOptimizer(ScanOptions ScanImpl)
55       : FunctionPass(ID), ScanImpl(ScanImpl) {}
56 
57   bool runOnFunction(Function &F) override;
58 
59   void getAnalysisUsage(AnalysisUsage &AU) const override {
60     AU.addPreserved<DominatorTreeWrapperPass>();
61     AU.addRequired<UniformityInfoWrapperPass>();
62     AU.addRequired<TargetPassConfig>();
63   }
64 };
65 
66 class AMDGPUAtomicOptimizerImpl
67     : public InstVisitor<AMDGPUAtomicOptimizerImpl> {
68 private:
69   SmallVector<ReplacementInfo, 8> ToReplace;
70   const UniformityInfo *UA;
71   const DataLayout *DL;
72   DomTreeUpdater &DTU;
73   const GCNSubtarget *ST;
74   bool IsPixelShader;
75   ScanOptions ScanImpl;
76 
77   Value *buildReduction(IRBuilder<> &B, AtomicRMWInst::BinOp Op, Value *V,
78                         Value *const Identity) const;
79   Value *buildScan(IRBuilder<> &B, AtomicRMWInst::BinOp Op, Value *V,
80                    Value *const Identity) const;
81   Value *buildShiftRight(IRBuilder<> &B, Value *V, Value *const Identity) const;
82 
83   std::pair<Value *, Value *>
84   buildScanIteratively(IRBuilder<> &B, AtomicRMWInst::BinOp Op,
85                        Value *const Identity, Value *V, Instruction &I,
86                        BasicBlock *ComputeLoop, BasicBlock *ComputeEnd) const;
87 
88   void optimizeAtomic(Instruction &I, AtomicRMWInst::BinOp Op, unsigned ValIdx,
89                       bool ValDivergent) const;
90 
91 public:
92   AMDGPUAtomicOptimizerImpl() = delete;
93 
94   AMDGPUAtomicOptimizerImpl(const UniformityInfo *UA, const DataLayout *DL,
95                             DomTreeUpdater &DTU, const GCNSubtarget *ST,
96                             bool IsPixelShader, ScanOptions ScanImpl)
97       : UA(UA), DL(DL), DTU(DTU), ST(ST), IsPixelShader(IsPixelShader),
98         ScanImpl(ScanImpl) {}
99 
100   bool run(Function &F);
101 
102   void visitAtomicRMWInst(AtomicRMWInst &I);
103   void visitIntrinsicInst(IntrinsicInst &I);
104 };
105 
106 } // namespace
107 
108 char AMDGPUAtomicOptimizer::ID = 0;
109 
110 char &llvm::AMDGPUAtomicOptimizerID = AMDGPUAtomicOptimizer::ID;
111 
112 bool AMDGPUAtomicOptimizer::runOnFunction(Function &F) {
113   if (skipFunction(F)) {
114     return false;
115   }
116 
117   const UniformityInfo *UA =
118       &getAnalysis<UniformityInfoWrapperPass>().getUniformityInfo();
119   const DataLayout *DL = &F.getDataLayout();
120 
121   DominatorTreeWrapperPass *const DTW =
122       getAnalysisIfAvailable<DominatorTreeWrapperPass>();
123   DomTreeUpdater DTU(DTW ? &DTW->getDomTree() : nullptr,
124                      DomTreeUpdater::UpdateStrategy::Lazy);
125 
126   const TargetPassConfig &TPC = getAnalysis<TargetPassConfig>();
127   const TargetMachine &TM = TPC.getTM<TargetMachine>();
128   const GCNSubtarget *ST = &TM.getSubtarget<GCNSubtarget>(F);
129 
130   bool IsPixelShader = F.getCallingConv() == CallingConv::AMDGPU_PS;
131 
132   return AMDGPUAtomicOptimizerImpl(UA, DL, DTU, ST, IsPixelShader, ScanImpl)
133       .run(F);
134 }
135 
136 PreservedAnalyses AMDGPUAtomicOptimizerPass::run(Function &F,
137                                                  FunctionAnalysisManager &AM) {
138 
139   const auto *UA = &AM.getResult<UniformityInfoAnalysis>(F);
140   const DataLayout *DL = &F.getDataLayout();
141 
142   DomTreeUpdater DTU(&AM.getResult<DominatorTreeAnalysis>(F),
143                      DomTreeUpdater::UpdateStrategy::Lazy);
144   const GCNSubtarget *ST = &TM.getSubtarget<GCNSubtarget>(F);
145 
146   bool IsPixelShader = F.getCallingConv() == CallingConv::AMDGPU_PS;
147 
148   bool IsChanged =
149       AMDGPUAtomicOptimizerImpl(UA, DL, DTU, ST, IsPixelShader, ScanImpl)
150           .run(F);
151 
152   if (!IsChanged) {
153     return PreservedAnalyses::all();
154   }
155 
156   PreservedAnalyses PA;
157   PA.preserve<DominatorTreeAnalysis>();
158   return PA;
159 }
160 
161 bool AMDGPUAtomicOptimizerImpl::run(Function &F) {
162 
163   // Scan option None disables the Pass
164   if (ScanImpl == ScanOptions::None) {
165     return false;
166   }
167 
168   visit(F);
169 
170   const bool Changed = !ToReplace.empty();
171 
172   for (ReplacementInfo &Info : ToReplace) {
173     optimizeAtomic(*Info.I, Info.Op, Info.ValIdx, Info.ValDivergent);
174   }
175 
176   ToReplace.clear();
177 
178   return Changed;
179 }
180 
181 void AMDGPUAtomicOptimizerImpl::visitAtomicRMWInst(AtomicRMWInst &I) {
182   // Early exit for unhandled address space atomic instructions.
183   switch (I.getPointerAddressSpace()) {
184   default:
185     return;
186   case AMDGPUAS::GLOBAL_ADDRESS:
187   case AMDGPUAS::LOCAL_ADDRESS:
188     break;
189   }
190 
191   AtomicRMWInst::BinOp Op = I.getOperation();
192 
193   switch (Op) {
194   default:
195     return;
196   case AtomicRMWInst::Add:
197   case AtomicRMWInst::Sub:
198   case AtomicRMWInst::And:
199   case AtomicRMWInst::Or:
200   case AtomicRMWInst::Xor:
201   case AtomicRMWInst::Max:
202   case AtomicRMWInst::Min:
203   case AtomicRMWInst::UMax:
204   case AtomicRMWInst::UMin:
205   case AtomicRMWInst::FAdd:
206   case AtomicRMWInst::FSub:
207   case AtomicRMWInst::FMax:
208   case AtomicRMWInst::FMin:
209     break;
210   }
211 
212   // Only 32 and 64 bit floating point atomic ops are supported.
213   if (AtomicRMWInst::isFPOperation(Op) &&
214       !(I.getType()->isFloatTy() || I.getType()->isDoubleTy())) {
215     return;
216   }
217 
218   const unsigned PtrIdx = 0;
219   const unsigned ValIdx = 1;
220 
221   // If the pointer operand is divergent, then each lane is doing an atomic
222   // operation on a different address, and we cannot optimize that.
223   if (UA->isDivergentUse(I.getOperandUse(PtrIdx))) {
224     return;
225   }
226 
227   const bool ValDivergent = UA->isDivergentUse(I.getOperandUse(ValIdx));
228 
229   // If the value operand is divergent, each lane is contributing a different
230   // value to the atomic calculation. We can only optimize divergent values if
231   // we have DPP available on our subtarget, and the atomic operation is 32
232   // bits.
233   if (ValDivergent &&
234       (!ST->hasDPP() || DL->getTypeSizeInBits(I.getType()) != 32)) {
235     return;
236   }
237 
238   // If we get here, we can optimize the atomic using a single wavefront-wide
239   // atomic operation to do the calculation for the entire wavefront, so
240   // remember the instruction so we can come back to it.
241   const ReplacementInfo Info = {&I, Op, ValIdx, ValDivergent};
242 
243   ToReplace.push_back(Info);
244 }
245 
246 void AMDGPUAtomicOptimizerImpl::visitIntrinsicInst(IntrinsicInst &I) {
247   AtomicRMWInst::BinOp Op;
248 
249   switch (I.getIntrinsicID()) {
250   default:
251     return;
252   case Intrinsic::amdgcn_struct_buffer_atomic_add:
253   case Intrinsic::amdgcn_struct_ptr_buffer_atomic_add:
254   case Intrinsic::amdgcn_raw_buffer_atomic_add:
255   case Intrinsic::amdgcn_raw_ptr_buffer_atomic_add:
256     Op = AtomicRMWInst::Add;
257     break;
258   case Intrinsic::amdgcn_struct_buffer_atomic_sub:
259   case Intrinsic::amdgcn_struct_ptr_buffer_atomic_sub:
260   case Intrinsic::amdgcn_raw_buffer_atomic_sub:
261   case Intrinsic::amdgcn_raw_ptr_buffer_atomic_sub:
262     Op = AtomicRMWInst::Sub;
263     break;
264   case Intrinsic::amdgcn_struct_buffer_atomic_and:
265   case Intrinsic::amdgcn_struct_ptr_buffer_atomic_and:
266   case Intrinsic::amdgcn_raw_buffer_atomic_and:
267   case Intrinsic::amdgcn_raw_ptr_buffer_atomic_and:
268     Op = AtomicRMWInst::And;
269     break;
270   case Intrinsic::amdgcn_struct_buffer_atomic_or:
271   case Intrinsic::amdgcn_struct_ptr_buffer_atomic_or:
272   case Intrinsic::amdgcn_raw_buffer_atomic_or:
273   case Intrinsic::amdgcn_raw_ptr_buffer_atomic_or:
274     Op = AtomicRMWInst::Or;
275     break;
276   case Intrinsic::amdgcn_struct_buffer_atomic_xor:
277   case Intrinsic::amdgcn_struct_ptr_buffer_atomic_xor:
278   case Intrinsic::amdgcn_raw_buffer_atomic_xor:
279   case Intrinsic::amdgcn_raw_ptr_buffer_atomic_xor:
280     Op = AtomicRMWInst::Xor;
281     break;
282   case Intrinsic::amdgcn_struct_buffer_atomic_smin:
283   case Intrinsic::amdgcn_struct_ptr_buffer_atomic_smin:
284   case Intrinsic::amdgcn_raw_buffer_atomic_smin:
285   case Intrinsic::amdgcn_raw_ptr_buffer_atomic_smin:
286     Op = AtomicRMWInst::Min;
287     break;
288   case Intrinsic::amdgcn_struct_buffer_atomic_umin:
289   case Intrinsic::amdgcn_struct_ptr_buffer_atomic_umin:
290   case Intrinsic::amdgcn_raw_buffer_atomic_umin:
291   case Intrinsic::amdgcn_raw_ptr_buffer_atomic_umin:
292     Op = AtomicRMWInst::UMin;
293     break;
294   case Intrinsic::amdgcn_struct_buffer_atomic_smax:
295   case Intrinsic::amdgcn_struct_ptr_buffer_atomic_smax:
296   case Intrinsic::amdgcn_raw_buffer_atomic_smax:
297   case Intrinsic::amdgcn_raw_ptr_buffer_atomic_smax:
298     Op = AtomicRMWInst::Max;
299     break;
300   case Intrinsic::amdgcn_struct_buffer_atomic_umax:
301   case Intrinsic::amdgcn_struct_ptr_buffer_atomic_umax:
302   case Intrinsic::amdgcn_raw_buffer_atomic_umax:
303   case Intrinsic::amdgcn_raw_ptr_buffer_atomic_umax:
304     Op = AtomicRMWInst::UMax;
305     break;
306   }
307 
308   const unsigned ValIdx = 0;
309 
310   const bool ValDivergent = UA->isDivergentUse(I.getOperandUse(ValIdx));
311 
312   // If the value operand is divergent, each lane is contributing a different
313   // value to the atomic calculation. We can only optimize divergent values if
314   // we have DPP available on our subtarget, and the atomic operation is 32
315   // bits.
316   if (ValDivergent &&
317       (!ST->hasDPP() || DL->getTypeSizeInBits(I.getType()) != 32)) {
318     return;
319   }
320 
321   // If any of the other arguments to the intrinsic are divergent, we can't
322   // optimize the operation.
323   for (unsigned Idx = 1; Idx < I.getNumOperands(); Idx++) {
324     if (UA->isDivergentUse(I.getOperandUse(Idx))) {
325       return;
326     }
327   }
328 
329   // If we get here, we can optimize the atomic using a single wavefront-wide
330   // atomic operation to do the calculation for the entire wavefront, so
331   // remember the instruction so we can come back to it.
332   const ReplacementInfo Info = {&I, Op, ValIdx, ValDivergent};
333 
334   ToReplace.push_back(Info);
335 }
336 
337 // Use the builder to create the non-atomic counterpart of the specified
338 // atomicrmw binary op.
339 static Value *buildNonAtomicBinOp(IRBuilder<> &B, AtomicRMWInst::BinOp Op,
340                                   Value *LHS, Value *RHS) {
341   CmpInst::Predicate Pred;
342 
343   switch (Op) {
344   default:
345     llvm_unreachable("Unhandled atomic op");
346   case AtomicRMWInst::Add:
347     return B.CreateBinOp(Instruction::Add, LHS, RHS);
348   case AtomicRMWInst::FAdd:
349     return B.CreateFAdd(LHS, RHS);
350   case AtomicRMWInst::Sub:
351     return B.CreateBinOp(Instruction::Sub, LHS, RHS);
352   case AtomicRMWInst::FSub:
353     return B.CreateFSub(LHS, RHS);
354   case AtomicRMWInst::And:
355     return B.CreateBinOp(Instruction::And, LHS, RHS);
356   case AtomicRMWInst::Or:
357     return B.CreateBinOp(Instruction::Or, LHS, RHS);
358   case AtomicRMWInst::Xor:
359     return B.CreateBinOp(Instruction::Xor, LHS, RHS);
360 
361   case AtomicRMWInst::Max:
362     Pred = CmpInst::ICMP_SGT;
363     break;
364   case AtomicRMWInst::Min:
365     Pred = CmpInst::ICMP_SLT;
366     break;
367   case AtomicRMWInst::UMax:
368     Pred = CmpInst::ICMP_UGT;
369     break;
370   case AtomicRMWInst::UMin:
371     Pred = CmpInst::ICMP_ULT;
372     break;
373   case AtomicRMWInst::FMax:
374     return B.CreateMaxNum(LHS, RHS);
375   case AtomicRMWInst::FMin:
376     return B.CreateMinNum(LHS, RHS);
377   }
378   Value *Cond = B.CreateICmp(Pred, LHS, RHS);
379   return B.CreateSelect(Cond, LHS, RHS);
380 }
381 
382 // Use the builder to create a reduction of V across the wavefront, with all
383 // lanes active, returning the same result in all lanes.
384 Value *AMDGPUAtomicOptimizerImpl::buildReduction(IRBuilder<> &B,
385                                                  AtomicRMWInst::BinOp Op,
386                                                  Value *V,
387                                                  Value *const Identity) const {
388   Type *AtomicTy = V->getType();
389   Type *IntNTy = B.getIntNTy(AtomicTy->getPrimitiveSizeInBits());
390   Module *M = B.GetInsertBlock()->getModule();
391   Function *UpdateDPP =
392       Intrinsic::getDeclaration(M, Intrinsic::amdgcn_update_dpp, AtomicTy);
393 
394   // Reduce within each row of 16 lanes.
395   for (unsigned Idx = 0; Idx < 4; Idx++) {
396     V = buildNonAtomicBinOp(
397         B, Op, V,
398         B.CreateCall(UpdateDPP,
399                      {Identity, V, B.getInt32(DPP::ROW_XMASK0 | 1 << Idx),
400                       B.getInt32(0xf), B.getInt32(0xf), B.getFalse()}));
401   }
402 
403   // Reduce within each pair of rows (i.e. 32 lanes).
404   assert(ST->hasPermLaneX16());
405   V = B.CreateBitCast(V, IntNTy);
406   Value *Permlanex16Call = B.CreateIntrinsic(
407       V->getType(), Intrinsic::amdgcn_permlanex16,
408       {V, V, B.getInt32(-1), B.getInt32(-1), B.getFalse(), B.getFalse()});
409   V = buildNonAtomicBinOp(B, Op, B.CreateBitCast(V, AtomicTy),
410                           B.CreateBitCast(Permlanex16Call, AtomicTy));
411   if (ST->isWave32()) {
412     return V;
413   }
414 
415   if (ST->hasPermLane64()) {
416     // Reduce across the upper and lower 32 lanes.
417     V = B.CreateBitCast(V, IntNTy);
418     Value *Permlane64Call =
419         B.CreateIntrinsic(V->getType(), Intrinsic::amdgcn_permlane64, V);
420     return buildNonAtomicBinOp(B, Op, B.CreateBitCast(V, AtomicTy),
421                                B.CreateBitCast(Permlane64Call, AtomicTy));
422   }
423 
424   // Pick an arbitrary lane from 0..31 and an arbitrary lane from 32..63 and
425   // combine them with a scalar operation.
426   Function *ReadLane =
427       Intrinsic::getDeclaration(M, Intrinsic::amdgcn_readlane, B.getInt32Ty());
428   V = B.CreateBitCast(V, IntNTy);
429   Value *Lane0 = B.CreateCall(ReadLane, {V, B.getInt32(0)});
430   Value *Lane32 = B.CreateCall(ReadLane, {V, B.getInt32(32)});
431   return buildNonAtomicBinOp(B, Op, B.CreateBitCast(Lane0, AtomicTy),
432                              B.CreateBitCast(Lane32, AtomicTy));
433 }
434 
435 // Use the builder to create an inclusive scan of V across the wavefront, with
436 // all lanes active.
437 Value *AMDGPUAtomicOptimizerImpl::buildScan(IRBuilder<> &B,
438                                             AtomicRMWInst::BinOp Op, Value *V,
439                                             Value *Identity) const {
440   Type *AtomicTy = V->getType();
441   Type *IntNTy = B.getIntNTy(AtomicTy->getPrimitiveSizeInBits());
442 
443   Module *M = B.GetInsertBlock()->getModule();
444   Function *UpdateDPP =
445       Intrinsic::getDeclaration(M, Intrinsic::amdgcn_update_dpp, AtomicTy);
446 
447   for (unsigned Idx = 0; Idx < 4; Idx++) {
448     V = buildNonAtomicBinOp(
449         B, Op, V,
450         B.CreateCall(UpdateDPP,
451                      {Identity, V, B.getInt32(DPP::ROW_SHR0 | 1 << Idx),
452                       B.getInt32(0xf), B.getInt32(0xf), B.getFalse()}));
453   }
454   if (ST->hasDPPBroadcasts()) {
455     // GFX9 has DPP row broadcast operations.
456     V = buildNonAtomicBinOp(
457         B, Op, V,
458         B.CreateCall(UpdateDPP,
459                      {Identity, V, B.getInt32(DPP::BCAST15), B.getInt32(0xa),
460                       B.getInt32(0xf), B.getFalse()}));
461     V = buildNonAtomicBinOp(
462         B, Op, V,
463         B.CreateCall(UpdateDPP,
464                      {Identity, V, B.getInt32(DPP::BCAST31), B.getInt32(0xc),
465                       B.getInt32(0xf), B.getFalse()}));
466   } else {
467     // On GFX10 all DPP operations are confined to a single row. To get cross-
468     // row operations we have to use permlane or readlane.
469 
470     // Combine lane 15 into lanes 16..31 (and, for wave 64, lane 47 into lanes
471     // 48..63).
472     assert(ST->hasPermLaneX16());
473     V = B.CreateBitCast(V, IntNTy);
474     Value *PermX = B.CreateIntrinsic(
475         V->getType(), Intrinsic::amdgcn_permlanex16,
476         {V, V, B.getInt32(-1), B.getInt32(-1), B.getFalse(), B.getFalse()});
477 
478     Value *UpdateDPPCall =
479         B.CreateCall(UpdateDPP, {Identity, B.CreateBitCast(PermX, AtomicTy),
480                                  B.getInt32(DPP::QUAD_PERM_ID), B.getInt32(0xa),
481                                  B.getInt32(0xf), B.getFalse()});
482     V = buildNonAtomicBinOp(B, Op, B.CreateBitCast(V, AtomicTy), UpdateDPPCall);
483 
484     if (!ST->isWave32()) {
485       // Combine lane 31 into lanes 32..63.
486       V = B.CreateBitCast(V, IntNTy);
487       Value *const Lane31 = B.CreateIntrinsic(
488           V->getType(), Intrinsic::amdgcn_readlane, {V, B.getInt32(31)});
489 
490       Value *UpdateDPPCall = B.CreateCall(
491           UpdateDPP, {Identity, Lane31, B.getInt32(DPP::QUAD_PERM_ID),
492                       B.getInt32(0xc), B.getInt32(0xf), B.getFalse()});
493 
494       V = buildNonAtomicBinOp(B, Op, B.CreateBitCast(V, AtomicTy),
495                               UpdateDPPCall);
496     }
497   }
498   return V;
499 }
500 
501 // Use the builder to create a shift right of V across the wavefront, with all
502 // lanes active, to turn an inclusive scan into an exclusive scan.
503 Value *AMDGPUAtomicOptimizerImpl::buildShiftRight(IRBuilder<> &B, Value *V,
504                                                   Value *Identity) const {
505   Type *AtomicTy = V->getType();
506   Type *IntNTy = B.getIntNTy(AtomicTy->getPrimitiveSizeInBits());
507 
508   Module *M = B.GetInsertBlock()->getModule();
509   Function *UpdateDPP =
510       Intrinsic::getDeclaration(M, Intrinsic::amdgcn_update_dpp, AtomicTy);
511   if (ST->hasDPPWavefrontShifts()) {
512     // GFX9 has DPP wavefront shift operations.
513     V = B.CreateCall(UpdateDPP,
514                      {Identity, V, B.getInt32(DPP::WAVE_SHR1), B.getInt32(0xf),
515                       B.getInt32(0xf), B.getFalse()});
516   } else {
517     Function *ReadLane = Intrinsic::getDeclaration(
518         M, Intrinsic::amdgcn_readlane, B.getInt32Ty());
519     Function *WriteLane = Intrinsic::getDeclaration(
520         M, Intrinsic::amdgcn_writelane, B.getInt32Ty());
521 
522     // On GFX10 all DPP operations are confined to a single row. To get cross-
523     // row operations we have to use permlane or readlane.
524     Value *Old = V;
525     V = B.CreateCall(UpdateDPP,
526                      {Identity, V, B.getInt32(DPP::ROW_SHR0 + 1),
527                       B.getInt32(0xf), B.getInt32(0xf), B.getFalse()});
528 
529     // Copy the old lane 15 to the new lane 16.
530     V = B.CreateCall(
531         WriteLane,
532         {B.CreateCall(ReadLane, {B.CreateBitCast(Old, IntNTy), B.getInt32(15)}),
533          B.getInt32(16), B.CreateBitCast(V, IntNTy)});
534     V = B.CreateBitCast(V, AtomicTy);
535     if (!ST->isWave32()) {
536       // Copy the old lane 31 to the new lane 32.
537       V = B.CreateBitCast(V, IntNTy);
538       V = B.CreateCall(WriteLane,
539                        {B.CreateCall(ReadLane, {B.CreateBitCast(Old, IntNTy),
540                                                 B.getInt32(31)}),
541                         B.getInt32(32), V});
542 
543       // Copy the old lane 47 to the new lane 48.
544       V = B.CreateCall(
545           WriteLane,
546           {B.CreateCall(ReadLane, {Old, B.getInt32(47)}), B.getInt32(48), V});
547       V = B.CreateBitCast(V, AtomicTy);
548     }
549   }
550 
551   return V;
552 }
553 
554 // Use the builder to create an exclusive scan and compute the final reduced
555 // value using an iterative approach. This provides an alternative
556 // implementation to DPP which uses WMM for scan computations. This API iterate
557 // over active lanes to read, compute and update the value using
558 // readlane and writelane intrinsics.
559 std::pair<Value *, Value *> AMDGPUAtomicOptimizerImpl::buildScanIteratively(
560     IRBuilder<> &B, AtomicRMWInst::BinOp Op, Value *const Identity, Value *V,
561     Instruction &I, BasicBlock *ComputeLoop, BasicBlock *ComputeEnd) const {
562   auto *Ty = I.getType();
563   auto *WaveTy = B.getIntNTy(ST->getWavefrontSize());
564   auto *EntryBB = I.getParent();
565   auto NeedResult = !I.use_empty();
566 
567   auto *Ballot =
568       B.CreateIntrinsic(Intrinsic::amdgcn_ballot, WaveTy, B.getTrue());
569 
570   // Start inserting instructions for ComputeLoop block
571   B.SetInsertPoint(ComputeLoop);
572   // Phi nodes for Accumulator, Scan results destination, and Active Lanes
573   auto *Accumulator = B.CreatePHI(Ty, 2, "Accumulator");
574   Accumulator->addIncoming(Identity, EntryBB);
575   PHINode *OldValuePhi = nullptr;
576   if (NeedResult) {
577     OldValuePhi = B.CreatePHI(Ty, 2, "OldValuePhi");
578     OldValuePhi->addIncoming(PoisonValue::get(Ty), EntryBB);
579   }
580   auto *ActiveBits = B.CreatePHI(WaveTy, 2, "ActiveBits");
581   ActiveBits->addIncoming(Ballot, EntryBB);
582 
583   // Use llvm.cttz instrinsic to find the lowest remaining active lane.
584   auto *FF1 =
585       B.CreateIntrinsic(Intrinsic::cttz, WaveTy, {ActiveBits, B.getTrue()});
586 
587   Type *IntNTy = B.getIntNTy(Ty->getPrimitiveSizeInBits());
588   auto *LaneIdxInt = B.CreateTrunc(FF1, IntNTy);
589 
590   // Get the value required for atomic operation
591   V = B.CreateBitCast(V, IntNTy);
592   Value *LaneValue = B.CreateIntrinsic(V->getType(), Intrinsic::amdgcn_readlane,
593                                        {V, LaneIdxInt});
594   LaneValue = B.CreateBitCast(LaneValue, Ty);
595 
596   // Perform writelane if intermediate scan results are required later in the
597   // kernel computations
598   Value *OldValue = nullptr;
599   if (NeedResult) {
600     OldValue =
601         B.CreateIntrinsic(IntNTy, Intrinsic::amdgcn_writelane,
602                           {B.CreateBitCast(Accumulator, IntNTy), LaneIdxInt,
603                            B.CreateBitCast(OldValuePhi, IntNTy)});
604     OldValue = B.CreateBitCast(OldValue, Ty);
605     OldValuePhi->addIncoming(OldValue, ComputeLoop);
606   }
607 
608   // Accumulate the results
609   auto *NewAccumulator = buildNonAtomicBinOp(B, Op, Accumulator, LaneValue);
610   Accumulator->addIncoming(NewAccumulator, ComputeLoop);
611 
612   // Set bit to zero of current active lane so that for next iteration llvm.cttz
613   // return the next active lane
614   auto *Mask = B.CreateShl(ConstantInt::get(WaveTy, 1), FF1);
615 
616   auto *InverseMask = B.CreateXor(Mask, ConstantInt::get(WaveTy, -1));
617   auto *NewActiveBits = B.CreateAnd(ActiveBits, InverseMask);
618   ActiveBits->addIncoming(NewActiveBits, ComputeLoop);
619 
620   // Branch out of the loop when all lanes are processed.
621   auto *IsEnd = B.CreateICmpEQ(NewActiveBits, ConstantInt::get(WaveTy, 0));
622   B.CreateCondBr(IsEnd, ComputeEnd, ComputeLoop);
623 
624   B.SetInsertPoint(ComputeEnd);
625 
626   return {OldValue, NewAccumulator};
627 }
628 
629 static Constant *getIdentityValueForAtomicOp(Type *const Ty,
630                                              AtomicRMWInst::BinOp Op) {
631   LLVMContext &C = Ty->getContext();
632   const unsigned BitWidth = Ty->getPrimitiveSizeInBits();
633   switch (Op) {
634   default:
635     llvm_unreachable("Unhandled atomic op");
636   case AtomicRMWInst::Add:
637   case AtomicRMWInst::Sub:
638   case AtomicRMWInst::Or:
639   case AtomicRMWInst::Xor:
640   case AtomicRMWInst::UMax:
641     return ConstantInt::get(C, APInt::getMinValue(BitWidth));
642   case AtomicRMWInst::And:
643   case AtomicRMWInst::UMin:
644     return ConstantInt::get(C, APInt::getMaxValue(BitWidth));
645   case AtomicRMWInst::Max:
646     return ConstantInt::get(C, APInt::getSignedMinValue(BitWidth));
647   case AtomicRMWInst::Min:
648     return ConstantInt::get(C, APInt::getSignedMaxValue(BitWidth));
649   case AtomicRMWInst::FAdd:
650     return ConstantFP::get(C, APFloat::getZero(Ty->getFltSemantics(), true));
651   case AtomicRMWInst::FSub:
652     return ConstantFP::get(C, APFloat::getZero(Ty->getFltSemantics(), false));
653   case AtomicRMWInst::FMin:
654     return ConstantFP::get(C, APFloat::getInf(Ty->getFltSemantics(), false));
655   case AtomicRMWInst::FMax:
656     return ConstantFP::get(C, APFloat::getInf(Ty->getFltSemantics(), true));
657   }
658 }
659 
660 static Value *buildMul(IRBuilder<> &B, Value *LHS, Value *RHS) {
661   const ConstantInt *CI = dyn_cast<ConstantInt>(LHS);
662   return (CI && CI->isOne()) ? RHS : B.CreateMul(LHS, RHS);
663 }
664 
665 void AMDGPUAtomicOptimizerImpl::optimizeAtomic(Instruction &I,
666                                                AtomicRMWInst::BinOp Op,
667                                                unsigned ValIdx,
668                                                bool ValDivergent) const {
669   // Start building just before the instruction.
670   IRBuilder<> B(&I);
671 
672   if (AtomicRMWInst::isFPOperation(Op)) {
673     B.setIsFPConstrained(I.getFunction()->hasFnAttribute(Attribute::StrictFP));
674   }
675 
676   // If we are in a pixel shader, because of how we have to mask out helper
677   // lane invocations, we need to record the entry and exit BB's.
678   BasicBlock *PixelEntryBB = nullptr;
679   BasicBlock *PixelExitBB = nullptr;
680 
681   // If we're optimizing an atomic within a pixel shader, we need to wrap the
682   // entire atomic operation in a helper-lane check. We do not want any helper
683   // lanes that are around only for the purposes of derivatives to take part
684   // in any cross-lane communication, and we use a branch on whether the lane is
685   // live to do this.
686   if (IsPixelShader) {
687     // Record I's original position as the entry block.
688     PixelEntryBB = I.getParent();
689 
690     Value *const Cond = B.CreateIntrinsic(Intrinsic::amdgcn_ps_live, {}, {});
691     Instruction *const NonHelperTerminator =
692         SplitBlockAndInsertIfThen(Cond, &I, false, nullptr, &DTU, nullptr);
693 
694     // Record I's new position as the exit block.
695     PixelExitBB = I.getParent();
696 
697     I.moveBefore(NonHelperTerminator);
698     B.SetInsertPoint(&I);
699   }
700 
701   Type *const Ty = I.getType();
702   Type *Int32Ty = B.getInt32Ty();
703   Type *IntNTy = B.getIntNTy(Ty->getPrimitiveSizeInBits());
704   bool isAtomicFloatingPointTy = Ty->isFloatingPointTy();
705   const unsigned TyBitWidth = DL->getTypeSizeInBits(Ty);
706   auto *const VecTy = FixedVectorType::get(Int32Ty, 2);
707 
708   // This is the value in the atomic operation we need to combine in order to
709   // reduce the number of atomic operations.
710   Value *V = I.getOperand(ValIdx);
711 
712   // We need to know how many lanes are active within the wavefront, and we do
713   // this by doing a ballot of active lanes.
714   Type *const WaveTy = B.getIntNTy(ST->getWavefrontSize());
715   CallInst *const Ballot =
716       B.CreateIntrinsic(Intrinsic::amdgcn_ballot, WaveTy, B.getTrue());
717 
718   // We need to know how many lanes are active within the wavefront that are
719   // below us. If we counted each lane linearly starting from 0, a lane is
720   // below us only if its associated index was less than ours. We do this by
721   // using the mbcnt intrinsic.
722   Value *Mbcnt;
723   if (ST->isWave32()) {
724     Mbcnt = B.CreateIntrinsic(Intrinsic::amdgcn_mbcnt_lo, {},
725                               {Ballot, B.getInt32(0)});
726   } else {
727     Value *const ExtractLo = B.CreateTrunc(Ballot, Int32Ty);
728     Value *const ExtractHi = B.CreateTrunc(B.CreateLShr(Ballot, 32), Int32Ty);
729     Mbcnt = B.CreateIntrinsic(Intrinsic::amdgcn_mbcnt_lo, {},
730                               {ExtractLo, B.getInt32(0)});
731     Mbcnt =
732         B.CreateIntrinsic(Intrinsic::amdgcn_mbcnt_hi, {}, {ExtractHi, Mbcnt});
733   }
734 
735   Function *F = I.getFunction();
736   LLVMContext &C = F->getContext();
737 
738   // For atomic sub, perform scan with add operation and allow one lane to
739   // subtract the reduced value later.
740   AtomicRMWInst::BinOp ScanOp = Op;
741   if (Op == AtomicRMWInst::Sub) {
742     ScanOp = AtomicRMWInst::Add;
743   } else if (Op == AtomicRMWInst::FSub) {
744     ScanOp = AtomicRMWInst::FAdd;
745   }
746   Value *Identity = getIdentityValueForAtomicOp(Ty, ScanOp);
747 
748   Value *ExclScan = nullptr;
749   Value *NewV = nullptr;
750 
751   const bool NeedResult = !I.use_empty();
752 
753   BasicBlock *ComputeLoop = nullptr;
754   BasicBlock *ComputeEnd = nullptr;
755   // If we have a divergent value in each lane, we need to combine the value
756   // using DPP.
757   if (ValDivergent) {
758     if (ScanImpl == ScanOptions::DPP) {
759       // First we need to set all inactive invocations to the identity value, so
760       // that they can correctly contribute to the final result.
761       V = B.CreateBitCast(V, IntNTy);
762       Identity = B.CreateBitCast(Identity, IntNTy);
763       NewV = B.CreateIntrinsic(Intrinsic::amdgcn_set_inactive, IntNTy,
764                                {V, Identity});
765       NewV = B.CreateBitCast(NewV, Ty);
766       V = B.CreateBitCast(V, Ty);
767       Identity = B.CreateBitCast(Identity, Ty);
768       if (!NeedResult && ST->hasPermLaneX16()) {
769         // On GFX10 the permlanex16 instruction helps us build a reduction
770         // without too many readlanes and writelanes, which are generally bad
771         // for performance.
772         NewV = buildReduction(B, ScanOp, NewV, Identity);
773       } else {
774         NewV = buildScan(B, ScanOp, NewV, Identity);
775         if (NeedResult)
776           ExclScan = buildShiftRight(B, NewV, Identity);
777         // Read the value from the last lane, which has accumulated the values
778         // of each active lane in the wavefront. This will be our new value
779         // which we will provide to the atomic operation.
780         Value *const LastLaneIdx = B.getInt32(ST->getWavefrontSize() - 1);
781         assert(TyBitWidth == 32);
782         NewV = B.CreateBitCast(NewV, IntNTy);
783         NewV = B.CreateIntrinsic(IntNTy, Intrinsic::amdgcn_readlane,
784                                  {NewV, LastLaneIdx});
785         NewV = B.CreateBitCast(NewV, Ty);
786       }
787       // Finally mark the readlanes in the WWM section.
788       NewV = B.CreateIntrinsic(Intrinsic::amdgcn_strict_wwm, Ty, NewV);
789     } else if (ScanImpl == ScanOptions::Iterative) {
790       // Alternative implementation for scan
791       ComputeLoop = BasicBlock::Create(C, "ComputeLoop", F);
792       ComputeEnd = BasicBlock::Create(C, "ComputeEnd", F);
793       std::tie(ExclScan, NewV) = buildScanIteratively(B, ScanOp, Identity, V, I,
794                                                       ComputeLoop, ComputeEnd);
795     } else {
796       llvm_unreachable("Atomic Optimzer is disabled for None strategy");
797     }
798   } else {
799     switch (Op) {
800     default:
801       llvm_unreachable("Unhandled atomic op");
802 
803     case AtomicRMWInst::Add:
804     case AtomicRMWInst::Sub: {
805       // The new value we will be contributing to the atomic operation is the
806       // old value times the number of active lanes.
807       Value *const Ctpop = B.CreateIntCast(
808           B.CreateUnaryIntrinsic(Intrinsic::ctpop, Ballot), Ty, false);
809       NewV = buildMul(B, V, Ctpop);
810       break;
811     }
812     case AtomicRMWInst::FAdd:
813     case AtomicRMWInst::FSub: {
814       Value *const Ctpop = B.CreateIntCast(
815           B.CreateUnaryIntrinsic(Intrinsic::ctpop, Ballot), Int32Ty, false);
816       Value *const CtpopFP = B.CreateUIToFP(Ctpop, Ty);
817       NewV = B.CreateFMul(V, CtpopFP);
818       break;
819     }
820     case AtomicRMWInst::And:
821     case AtomicRMWInst::Or:
822     case AtomicRMWInst::Max:
823     case AtomicRMWInst::Min:
824     case AtomicRMWInst::UMax:
825     case AtomicRMWInst::UMin:
826     case AtomicRMWInst::FMin:
827     case AtomicRMWInst::FMax:
828       // These operations with a uniform value are idempotent: doing the atomic
829       // operation multiple times has the same effect as doing it once.
830       NewV = V;
831       break;
832 
833     case AtomicRMWInst::Xor:
834       // The new value we will be contributing to the atomic operation is the
835       // old value times the parity of the number of active lanes.
836       Value *const Ctpop = B.CreateIntCast(
837           B.CreateUnaryIntrinsic(Intrinsic::ctpop, Ballot), Ty, false);
838       NewV = buildMul(B, V, B.CreateAnd(Ctpop, 1));
839       break;
840     }
841   }
842 
843   // We only want a single lane to enter our new control flow, and we do this
844   // by checking if there are any active lanes below us. Only one lane will
845   // have 0 active lanes below us, so that will be the only one to progress.
846   Value *const Cond = B.CreateICmpEQ(Mbcnt, B.getInt32(0));
847 
848   // Store I's original basic block before we split the block.
849   BasicBlock *const OriginalBB = I.getParent();
850 
851   // We need to introduce some new control flow to force a single lane to be
852   // active. We do this by splitting I's basic block at I, and introducing the
853   // new block such that:
854   // entry --> single_lane -\
855   //       \------------------> exit
856   Instruction *const SingleLaneTerminator =
857       SplitBlockAndInsertIfThen(Cond, &I, false, nullptr, &DTU, nullptr);
858 
859   // At this point, we have split the I's block to allow one lane in wavefront
860   // to update the precomputed reduced value. Also, completed the codegen for
861   // new control flow i.e. iterative loop which perform reduction and scan using
862   // ComputeLoop and ComputeEnd.
863   // For the new control flow, we need to move branch instruction i.e.
864   // terminator created during SplitBlockAndInsertIfThen from I's block to
865   // ComputeEnd block. We also need to set up predecessor to next block when
866   // single lane done updating the final reduced value.
867   BasicBlock *Predecessor = nullptr;
868   if (ValDivergent && ScanImpl == ScanOptions::Iterative) {
869     // Move terminator from I's block to ComputeEnd block.
870     //
871     // OriginalBB is known to have a branch as terminator because
872     // SplitBlockAndInsertIfThen will have inserted one.
873     BranchInst *Terminator = cast<BranchInst>(OriginalBB->getTerminator());
874     B.SetInsertPoint(ComputeEnd);
875     Terminator->removeFromParent();
876     B.Insert(Terminator);
877 
878     // Branch to ComputeLoop Block unconditionally from the I's block for
879     // iterative approach.
880     B.SetInsertPoint(OriginalBB);
881     B.CreateBr(ComputeLoop);
882 
883     // Update the dominator tree for new control flow.
884     SmallVector<DominatorTree::UpdateType, 6> DomTreeUpdates(
885         {{DominatorTree::Insert, OriginalBB, ComputeLoop},
886          {DominatorTree::Insert, ComputeLoop, ComputeEnd}});
887 
888     // We're moving the terminator from EntryBB to ComputeEnd, make sure we move
889     // the DT edges as well.
890     for (auto *Succ : Terminator->successors()) {
891       DomTreeUpdates.push_back({DominatorTree::Insert, ComputeEnd, Succ});
892       DomTreeUpdates.push_back({DominatorTree::Delete, OriginalBB, Succ});
893     }
894 
895     DTU.applyUpdates(DomTreeUpdates);
896 
897     Predecessor = ComputeEnd;
898   } else {
899     Predecessor = OriginalBB;
900   }
901   // Move the IR builder into single_lane next.
902   B.SetInsertPoint(SingleLaneTerminator);
903 
904   // Clone the original atomic operation into single lane, replacing the
905   // original value with our newly created one.
906   Instruction *const NewI = I.clone();
907   B.Insert(NewI);
908   NewI->setOperand(ValIdx, NewV);
909 
910   // Move the IR builder into exit next, and start inserting just before the
911   // original instruction.
912   B.SetInsertPoint(&I);
913 
914   if (NeedResult) {
915     // Create a PHI node to get our new atomic result into the exit block.
916     PHINode *const PHI = B.CreatePHI(Ty, 2);
917     PHI->addIncoming(PoisonValue::get(Ty), Predecessor);
918     PHI->addIncoming(NewI, SingleLaneTerminator->getParent());
919 
920     // We need to broadcast the value who was the lowest active lane (the first
921     // lane) to all other lanes in the wavefront. We use an intrinsic for this,
922     // but have to handle 64-bit broadcasts with two calls to this intrinsic.
923     Value *BroadcastI = nullptr;
924 
925     if (TyBitWidth == 64) {
926       Value *CastedPhi = B.CreateBitCast(PHI, IntNTy);
927       Value *const ExtractLo = B.CreateTrunc(CastedPhi, Int32Ty);
928       Value *const ExtractHi =
929           B.CreateTrunc(B.CreateLShr(CastedPhi, 32), Int32Ty);
930       CallInst *const ReadFirstLaneLo = B.CreateIntrinsic(
931           Int32Ty, Intrinsic::amdgcn_readfirstlane, ExtractLo);
932       CallInst *const ReadFirstLaneHi = B.CreateIntrinsic(
933           Int32Ty, Intrinsic::amdgcn_readfirstlane, ExtractHi);
934       Value *const PartialInsert = B.CreateInsertElement(
935           PoisonValue::get(VecTy), ReadFirstLaneLo, B.getInt32(0));
936       Value *const Insert =
937           B.CreateInsertElement(PartialInsert, ReadFirstLaneHi, B.getInt32(1));
938       BroadcastI = B.CreateBitCast(Insert, Ty);
939     } else if (TyBitWidth == 32) {
940       Value *CastedPhi = B.CreateBitCast(PHI, IntNTy);
941       BroadcastI =
942           B.CreateIntrinsic(IntNTy, Intrinsic::amdgcn_readfirstlane, CastedPhi);
943       BroadcastI = B.CreateBitCast(BroadcastI, Ty);
944 
945     } else {
946       llvm_unreachable("Unhandled atomic bit width");
947     }
948 
949     // Now that we have the result of our single atomic operation, we need to
950     // get our individual lane's slice into the result. We use the lane offset
951     // we previously calculated combined with the atomic result value we got
952     // from the first lane, to get our lane's index into the atomic result.
953     Value *LaneOffset = nullptr;
954     if (ValDivergent) {
955       if (ScanImpl == ScanOptions::DPP) {
956         LaneOffset =
957             B.CreateIntrinsic(Intrinsic::amdgcn_strict_wwm, Ty, ExclScan);
958       } else if (ScanImpl == ScanOptions::Iterative) {
959         LaneOffset = ExclScan;
960       } else {
961         llvm_unreachable("Atomic Optimzer is disabled for None strategy");
962       }
963     } else {
964       Mbcnt = isAtomicFloatingPointTy ? B.CreateUIToFP(Mbcnt, Ty)
965                                       : B.CreateIntCast(Mbcnt, Ty, false);
966       switch (Op) {
967       default:
968         llvm_unreachable("Unhandled atomic op");
969       case AtomicRMWInst::Add:
970       case AtomicRMWInst::Sub:
971         LaneOffset = buildMul(B, V, Mbcnt);
972         break;
973       case AtomicRMWInst::And:
974       case AtomicRMWInst::Or:
975       case AtomicRMWInst::Max:
976       case AtomicRMWInst::Min:
977       case AtomicRMWInst::UMax:
978       case AtomicRMWInst::UMin:
979       case AtomicRMWInst::FMin:
980       case AtomicRMWInst::FMax:
981         LaneOffset = B.CreateSelect(Cond, Identity, V);
982         break;
983       case AtomicRMWInst::Xor:
984         LaneOffset = buildMul(B, V, B.CreateAnd(Mbcnt, 1));
985         break;
986       case AtomicRMWInst::FAdd:
987       case AtomicRMWInst::FSub: {
988         LaneOffset = B.CreateFMul(V, Mbcnt);
989         break;
990       }
991       }
992     }
993     Value *const Result = buildNonAtomicBinOp(B, Op, BroadcastI, LaneOffset);
994 
995     if (IsPixelShader) {
996       // Need a final PHI to reconverge to above the helper lane branch mask.
997       B.SetInsertPoint(PixelExitBB, PixelExitBB->getFirstNonPHIIt());
998 
999       PHINode *const PHI = B.CreatePHI(Ty, 2);
1000       PHI->addIncoming(PoisonValue::get(Ty), PixelEntryBB);
1001       PHI->addIncoming(Result, I.getParent());
1002       I.replaceAllUsesWith(PHI);
1003     } else {
1004       // Replace the original atomic instruction with the new one.
1005       I.replaceAllUsesWith(Result);
1006     }
1007   }
1008 
1009   // And delete the original.
1010   I.eraseFromParent();
1011 }
1012 
1013 INITIALIZE_PASS_BEGIN(AMDGPUAtomicOptimizer, DEBUG_TYPE,
1014                       "AMDGPU atomic optimizations", false, false)
1015 INITIALIZE_PASS_DEPENDENCY(UniformityInfoWrapperPass)
1016 INITIALIZE_PASS_DEPENDENCY(TargetPassConfig)
1017 INITIALIZE_PASS_END(AMDGPUAtomicOptimizer, DEBUG_TYPE,
1018                     "AMDGPU atomic optimizations", false, false)
1019 
1020 FunctionPass *llvm::createAMDGPUAtomicOptimizerPass(ScanOptions ScanStrategy) {
1021   return new AMDGPUAtomicOptimizer(ScanStrategy);
1022 }
1023