xref: /llvm-project/llvm/lib/Target/AMDGPU/AMDGPUAtomicOptimizer.cpp (revision 8c10fa1a903f8b8fe7880344f954cf19ee231bb6)
1 //===-- AMDGPUAtomicOptimizer.cpp -----------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file
10 /// This pass optimizes atomic operations by using a single lane of a wavefront
11 /// to perform the atomic operation, thus reducing contention on that memory
12 /// location.
13 //
14 //===----------------------------------------------------------------------===//
15 
16 #include "AMDGPU.h"
17 #include "AMDGPUSubtarget.h"
18 #include "llvm/Analysis/LegacyDivergenceAnalysis.h"
19 #include "llvm/CodeGen/TargetPassConfig.h"
20 #include "llvm/IR/IRBuilder.h"
21 #include "llvm/IR/InstVisitor.h"
22 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
23 
24 #define DEBUG_TYPE "amdgpu-atomic-optimizer"
25 
26 using namespace llvm;
27 
28 namespace {
29 
30 enum DPP_CTRL {
31   DPP_ROW_SR1 = 0x111,
32   DPP_ROW_SR2 = 0x112,
33   DPP_ROW_SR3 = 0x113,
34   DPP_ROW_SR4 = 0x114,
35   DPP_ROW_SR8 = 0x118,
36   DPP_WF_SR1 = 0x138,
37   DPP_ROW_BCAST15 = 0x142,
38   DPP_ROW_BCAST31 = 0x143
39 };
40 
41 struct ReplacementInfo {
42   Instruction *I;
43   Instruction::BinaryOps Op;
44   unsigned ValIdx;
45   bool ValDivergent;
46 };
47 
48 class AMDGPUAtomicOptimizer : public FunctionPass,
49                               public InstVisitor<AMDGPUAtomicOptimizer> {
50 private:
51   SmallVector<ReplacementInfo, 8> ToReplace;
52   const LegacyDivergenceAnalysis *DA;
53   const DataLayout *DL;
54   DominatorTree *DT;
55   bool HasDPP;
56   bool IsPixelShader;
57 
58   void optimizeAtomic(Instruction &I, Instruction::BinaryOps Op,
59                       unsigned ValIdx, bool ValDivergent) const;
60 
61   void setConvergent(CallInst *const CI) const;
62 
63 public:
64   static char ID;
65 
66   AMDGPUAtomicOptimizer() : FunctionPass(ID) {}
67 
68   bool runOnFunction(Function &F) override;
69 
70   void getAnalysisUsage(AnalysisUsage &AU) const override {
71     AU.addPreserved<DominatorTreeWrapperPass>();
72     AU.addRequired<LegacyDivergenceAnalysis>();
73     AU.addRequired<TargetPassConfig>();
74   }
75 
76   void visitAtomicRMWInst(AtomicRMWInst &I);
77   void visitIntrinsicInst(IntrinsicInst &I);
78 };
79 
80 } // namespace
81 
82 char AMDGPUAtomicOptimizer::ID = 0;
83 
84 char &llvm::AMDGPUAtomicOptimizerID = AMDGPUAtomicOptimizer::ID;
85 
86 bool AMDGPUAtomicOptimizer::runOnFunction(Function &F) {
87   if (skipFunction(F)) {
88     return false;
89   }
90 
91   DA = &getAnalysis<LegacyDivergenceAnalysis>();
92   DL = &F.getParent()->getDataLayout();
93   DominatorTreeWrapperPass *const DTW =
94       getAnalysisIfAvailable<DominatorTreeWrapperPass>();
95   DT = DTW ? &DTW->getDomTree() : nullptr;
96   const TargetPassConfig &TPC = getAnalysis<TargetPassConfig>();
97   const TargetMachine &TM = TPC.getTM<TargetMachine>();
98   const GCNSubtarget &ST = TM.getSubtarget<GCNSubtarget>(F);
99   HasDPP = ST.hasDPP();
100   IsPixelShader = F.getCallingConv() == CallingConv::AMDGPU_PS;
101 
102   visit(F);
103 
104   const bool Changed = !ToReplace.empty();
105 
106   for (ReplacementInfo &Info : ToReplace) {
107     optimizeAtomic(*Info.I, Info.Op, Info.ValIdx, Info.ValDivergent);
108   }
109 
110   ToReplace.clear();
111 
112   return Changed;
113 }
114 
115 void AMDGPUAtomicOptimizer::visitAtomicRMWInst(AtomicRMWInst &I) {
116   // Early exit for unhandled address space atomic instructions.
117   switch (I.getPointerAddressSpace()) {
118   default:
119     return;
120   case AMDGPUAS::GLOBAL_ADDRESS:
121   case AMDGPUAS::LOCAL_ADDRESS:
122     break;
123   }
124 
125   Instruction::BinaryOps Op;
126 
127   switch (I.getOperation()) {
128   default:
129     return;
130   case AtomicRMWInst::Add:
131     Op = Instruction::Add;
132     break;
133   case AtomicRMWInst::Sub:
134     Op = Instruction::Sub;
135     break;
136   }
137 
138   const unsigned PtrIdx = 0;
139   const unsigned ValIdx = 1;
140 
141   // If the pointer operand is divergent, then each lane is doing an atomic
142   // operation on a different address, and we cannot optimize that.
143   if (DA->isDivergent(I.getOperand(PtrIdx))) {
144     return;
145   }
146 
147   const bool ValDivergent = DA->isDivergent(I.getOperand(ValIdx));
148 
149   // If the value operand is divergent, each lane is contributing a different
150   // value to the atomic calculation. We can only optimize divergent values if
151   // we have DPP available on our subtarget, and the atomic operation is 32
152   // bits.
153   if (ValDivergent && (!HasDPP || (DL->getTypeSizeInBits(I.getType()) != 32))) {
154     return;
155   }
156 
157   // If we get here, we can optimize the atomic using a single wavefront-wide
158   // atomic operation to do the calculation for the entire wavefront, so
159   // remember the instruction so we can come back to it.
160   const ReplacementInfo Info = {&I, Op, ValIdx, ValDivergent};
161 
162   ToReplace.push_back(Info);
163 }
164 
165 void AMDGPUAtomicOptimizer::visitIntrinsicInst(IntrinsicInst &I) {
166   Instruction::BinaryOps Op;
167 
168   switch (I.getIntrinsicID()) {
169   default:
170     return;
171   case Intrinsic::amdgcn_buffer_atomic_add:
172   case Intrinsic::amdgcn_struct_buffer_atomic_add:
173   case Intrinsic::amdgcn_raw_buffer_atomic_add:
174     Op = Instruction::Add;
175     break;
176   case Intrinsic::amdgcn_buffer_atomic_sub:
177   case Intrinsic::amdgcn_struct_buffer_atomic_sub:
178   case Intrinsic::amdgcn_raw_buffer_atomic_sub:
179     Op = Instruction::Sub;
180     break;
181   }
182 
183   const unsigned ValIdx = 0;
184 
185   const bool ValDivergent = DA->isDivergent(I.getOperand(ValIdx));
186 
187   // If the value operand is divergent, each lane is contributing a different
188   // value to the atomic calculation. We can only optimize divergent values if
189   // we have DPP available on our subtarget, and the atomic operation is 32
190   // bits.
191   if (ValDivergent && (!HasDPP || (DL->getTypeSizeInBits(I.getType()) != 32))) {
192     return;
193   }
194 
195   // If any of the other arguments to the intrinsic are divergent, we can't
196   // optimize the operation.
197   for (unsigned Idx = 1; Idx < I.getNumOperands(); Idx++) {
198     if (DA->isDivergent(I.getOperand(Idx))) {
199       return;
200     }
201   }
202 
203   // If we get here, we can optimize the atomic using a single wavefront-wide
204   // atomic operation to do the calculation for the entire wavefront, so
205   // remember the instruction so we can come back to it.
206   const ReplacementInfo Info = {&I, Op, ValIdx, ValDivergent};
207 
208   ToReplace.push_back(Info);
209 }
210 
211 void AMDGPUAtomicOptimizer::optimizeAtomic(Instruction &I,
212                                            Instruction::BinaryOps Op,
213                                            unsigned ValIdx,
214                                            bool ValDivergent) const {
215   LLVMContext &Context = I.getContext();
216 
217   // Start building just before the instruction.
218   IRBuilder<> B(&I);
219 
220   // If we are in a pixel shader, because of how we have to mask out helper
221   // lane invocations, we need to record the entry and exit BB's.
222   BasicBlock *PixelEntryBB = nullptr;
223   BasicBlock *PixelExitBB = nullptr;
224 
225   // If we're optimizing an atomic within a pixel shader, we need to wrap the
226   // entire atomic operation in a helper-lane check. We do not want any helper
227   // lanes that are around only for the purposes of derivatives to take part
228   // in any cross-lane communication, and we use a branch on whether the lane is
229   // live to do this.
230   if (IsPixelShader) {
231     // Record I's original position as the entry block.
232     PixelEntryBB = I.getParent();
233 
234     Value *const Cond = B.CreateIntrinsic(Intrinsic::amdgcn_ps_live, {}, {});
235     Instruction *const NonHelperTerminator =
236         SplitBlockAndInsertIfThen(Cond, &I, false, nullptr, DT, nullptr);
237 
238     // Record I's new position as the exit block.
239     PixelExitBB = I.getParent();
240 
241     I.moveBefore(NonHelperTerminator);
242     B.SetInsertPoint(&I);
243   }
244 
245   Type *const Ty = I.getType();
246   const unsigned TyBitWidth = DL->getTypeSizeInBits(Ty);
247   Type *const VecTy = VectorType::get(B.getInt32Ty(), 2);
248 
249   // This is the value in the atomic operation we need to combine in order to
250   // reduce the number of atomic operations.
251   Value *const V = I.getOperand(ValIdx);
252 
253   // We need to know how many lanes are active within the wavefront, and we do
254   // this by doing a ballot of active lanes.
255   CallInst *const Ballot =
256       B.CreateIntrinsic(Intrinsic::amdgcn_icmp, {B.getInt32Ty()},
257                         {B.getInt32(1), B.getInt32(0), B.getInt32(33)});
258   setConvergent(Ballot);
259 
260   // We need to know how many lanes are active within the wavefront that are
261   // below us. If we counted each lane linearly starting from 0, a lane is
262   // below us only if its associated index was less than ours. We do this by
263   // using the mbcnt intrinsic.
264   Value *const BitCast = B.CreateBitCast(Ballot, VecTy);
265   Value *const ExtractLo = B.CreateExtractElement(BitCast, B.getInt32(0));
266   Value *const ExtractHi = B.CreateExtractElement(BitCast, B.getInt32(1));
267   CallInst *const PartialMbcnt = B.CreateIntrinsic(
268       Intrinsic::amdgcn_mbcnt_lo, {}, {ExtractLo, B.getInt32(0)});
269   CallInst *const Mbcnt = B.CreateIntrinsic(Intrinsic::amdgcn_mbcnt_hi, {},
270                                             {ExtractHi, PartialMbcnt});
271 
272   Value *const MbcntCast = B.CreateIntCast(Mbcnt, Ty, false);
273 
274   Value *LaneOffset = nullptr;
275   Value *NewV = nullptr;
276 
277   // If we have a divergent value in each lane, we need to combine the value
278   // using DPP.
279   if (ValDivergent) {
280     Value *const Identity = B.getIntN(TyBitWidth, 0);
281 
282     // First we need to set all inactive invocations to 0, so that they can
283     // correctly contribute to the final result.
284     CallInst *const SetInactive =
285         B.CreateIntrinsic(Intrinsic::amdgcn_set_inactive, Ty, {V, Identity});
286     setConvergent(SetInactive);
287 
288     CallInst *const FirstDPP =
289         B.CreateIntrinsic(Intrinsic::amdgcn_update_dpp, Ty,
290                           {Identity, SetInactive, B.getInt32(DPP_WF_SR1),
291                            B.getInt32(0xf), B.getInt32(0xf), B.getFalse()});
292     setConvergent(FirstDPP);
293     NewV = FirstDPP;
294 
295     const unsigned Iters = 7;
296     const unsigned DPPCtrl[Iters] = {
297         DPP_ROW_SR1, DPP_ROW_SR2,     DPP_ROW_SR3,    DPP_ROW_SR4,
298         DPP_ROW_SR8, DPP_ROW_BCAST15, DPP_ROW_BCAST31};
299     const unsigned RowMask[Iters] = {0xf, 0xf, 0xf, 0xf, 0xf, 0xa, 0xc};
300     const unsigned BankMask[Iters] = {0xf, 0xf, 0xf, 0xe, 0xc, 0xf, 0xf};
301 
302     // This loop performs an exclusive scan across the wavefront, with all lanes
303     // active (by using the WWM intrinsic).
304     for (unsigned Idx = 0; Idx < Iters; Idx++) {
305       Value *const UpdateValue = Idx < 3 ? FirstDPP : NewV;
306       CallInst *const DPP = B.CreateIntrinsic(
307           Intrinsic::amdgcn_update_dpp, Ty,
308           {Identity, UpdateValue, B.getInt32(DPPCtrl[Idx]),
309            B.getInt32(RowMask[Idx]), B.getInt32(BankMask[Idx]), B.getFalse()});
310       setConvergent(DPP);
311 
312       NewV = B.CreateBinOp(Op, NewV, DPP);
313     }
314 
315     LaneOffset = B.CreateIntrinsic(Intrinsic::amdgcn_wwm, Ty, NewV);
316     NewV = B.CreateBinOp(Op, NewV, SetInactive);
317 
318     // Read the value from the last lane, which has accumlated the values of
319     // each active lane in the wavefront. This will be our new value with which
320     // we will provide to the atomic operation.
321     if (TyBitWidth == 64) {
322       Value *const ExtractLo = B.CreateTrunc(NewV, B.getInt32Ty());
323       Value *const ExtractHi =
324           B.CreateTrunc(B.CreateLShr(NewV, B.getInt64(32)), B.getInt32Ty());
325       CallInst *const ReadLaneLo = B.CreateIntrinsic(
326           Intrinsic::amdgcn_readlane, {}, {ExtractLo, B.getInt32(63)});
327       setConvergent(ReadLaneLo);
328       CallInst *const ReadLaneHi = B.CreateIntrinsic(
329           Intrinsic::amdgcn_readlane, {}, {ExtractHi, B.getInt32(63)});
330       setConvergent(ReadLaneHi);
331       Value *const PartialInsert = B.CreateInsertElement(
332           UndefValue::get(VecTy), ReadLaneLo, B.getInt32(0));
333       Value *const Insert =
334           B.CreateInsertElement(PartialInsert, ReadLaneHi, B.getInt32(1));
335       NewV = B.CreateBitCast(Insert, Ty);
336     } else if (TyBitWidth == 32) {
337       CallInst *const ReadLane = B.CreateIntrinsic(Intrinsic::amdgcn_readlane,
338                                                    {}, {NewV, B.getInt32(63)});
339       setConvergent(ReadLane);
340       NewV = ReadLane;
341     } else {
342       llvm_unreachable("Unhandled atomic bit width");
343     }
344 
345     // Finally mark the readlanes in the WWM section.
346     NewV = B.CreateIntrinsic(Intrinsic::amdgcn_wwm, Ty, NewV);
347   } else {
348     // Get the total number of active lanes we have by using popcount.
349     Instruction *const Ctpop = B.CreateUnaryIntrinsic(Intrinsic::ctpop, Ballot);
350     Value *const CtpopCast = B.CreateIntCast(Ctpop, Ty, false);
351 
352     // Calculate the new value we will be contributing to the atomic operation
353     // for the entire wavefront.
354     NewV = B.CreateMul(V, CtpopCast);
355     LaneOffset = B.CreateMul(V, MbcntCast);
356   }
357 
358   // We only want a single lane to enter our new control flow, and we do this
359   // by checking if there are any active lanes below us. Only one lane will
360   // have 0 active lanes below us, so that will be the only one to progress.
361   Value *const Cond = B.CreateICmpEQ(MbcntCast, B.getIntN(TyBitWidth, 0));
362 
363   // Store I's original basic block before we split the block.
364   BasicBlock *const EntryBB = I.getParent();
365 
366   // We need to introduce some new control flow to force a single lane to be
367   // active. We do this by splitting I's basic block at I, and introducing the
368   // new block such that:
369   // entry --> single_lane -\
370   //       \------------------> exit
371   Instruction *const SingleLaneTerminator =
372       SplitBlockAndInsertIfThen(Cond, &I, false, nullptr, DT, nullptr);
373 
374   // Move the IR builder into single_lane next.
375   B.SetInsertPoint(SingleLaneTerminator);
376 
377   // Clone the original atomic operation into single lane, replacing the
378   // original value with our newly created one.
379   Instruction *const NewI = I.clone();
380   B.Insert(NewI);
381   NewI->setOperand(ValIdx, NewV);
382 
383   // Move the IR builder into exit next, and start inserting just before the
384   // original instruction.
385   B.SetInsertPoint(&I);
386 
387   // Create a PHI node to get our new atomic result into the exit block.
388   PHINode *const PHI = B.CreatePHI(Ty, 2);
389   PHI->addIncoming(UndefValue::get(Ty), EntryBB);
390   PHI->addIncoming(NewI, SingleLaneTerminator->getParent());
391 
392   // We need to broadcast the value who was the lowest active lane (the first
393   // lane) to all other lanes in the wavefront. We use an intrinsic for this,
394   // but have to handle 64-bit broadcasts with two calls to this intrinsic.
395   Value *BroadcastI = nullptr;
396 
397   if (TyBitWidth == 64) {
398     Value *const ExtractLo = B.CreateTrunc(PHI, B.getInt32Ty());
399     Value *const ExtractHi =
400         B.CreateTrunc(B.CreateLShr(PHI, B.getInt64(32)), B.getInt32Ty());
401     CallInst *const ReadFirstLaneLo =
402         B.CreateIntrinsic(Intrinsic::amdgcn_readfirstlane, {}, ExtractLo);
403     setConvergent(ReadFirstLaneLo);
404     CallInst *const ReadFirstLaneHi =
405         B.CreateIntrinsic(Intrinsic::amdgcn_readfirstlane, {}, ExtractHi);
406     setConvergent(ReadFirstLaneHi);
407     Value *const PartialInsert = B.CreateInsertElement(
408         UndefValue::get(VecTy), ReadFirstLaneLo, B.getInt32(0));
409     Value *const Insert =
410         B.CreateInsertElement(PartialInsert, ReadFirstLaneHi, B.getInt32(1));
411     BroadcastI = B.CreateBitCast(Insert, Ty);
412   } else if (TyBitWidth == 32) {
413     CallInst *const ReadFirstLane =
414         B.CreateIntrinsic(Intrinsic::amdgcn_readfirstlane, {}, PHI);
415     setConvergent(ReadFirstLane);
416     BroadcastI = ReadFirstLane;
417   } else {
418     llvm_unreachable("Unhandled atomic bit width");
419   }
420 
421   // Now that we have the result of our single atomic operation, we need to
422   // get our individual lane's slice into the result. We use the lane offset we
423   // previously calculated combined with the atomic result value we got from the
424   // first lane, to get our lane's index into the atomic result.
425   Value *const Result = B.CreateBinOp(Op, BroadcastI, LaneOffset);
426 
427   if (IsPixelShader) {
428     // Need a final PHI to reconverge to above the helper lane branch mask.
429     B.SetInsertPoint(PixelExitBB->getFirstNonPHI());
430 
431     PHINode *const PHI = B.CreatePHI(Ty, 2);
432     PHI->addIncoming(UndefValue::get(Ty), PixelEntryBB);
433     PHI->addIncoming(Result, I.getParent());
434     I.replaceAllUsesWith(PHI);
435   } else {
436     // Replace the original atomic instruction with the new one.
437     I.replaceAllUsesWith(Result);
438   }
439 
440   // And delete the original.
441   I.eraseFromParent();
442 }
443 
444 void AMDGPUAtomicOptimizer::setConvergent(CallInst *const CI) const {
445   CI->addAttribute(AttributeList::FunctionIndex, Attribute::Convergent);
446 }
447 
448 INITIALIZE_PASS_BEGIN(AMDGPUAtomicOptimizer, DEBUG_TYPE,
449                       "AMDGPU atomic optimizations", false, false)
450 INITIALIZE_PASS_DEPENDENCY(LegacyDivergenceAnalysis)
451 INITIALIZE_PASS_DEPENDENCY(TargetPassConfig)
452 INITIALIZE_PASS_END(AMDGPUAtomicOptimizer, DEBUG_TYPE,
453                     "AMDGPU atomic optimizations", false, false)
454 
455 FunctionPass *llvm::createAMDGPUAtomicOptimizerPass() {
456   return new AMDGPUAtomicOptimizer();
457 }
458