1 //===-- AMDGPUAtomicOptimizer.cpp -----------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file 10 /// This pass optimizes atomic operations by using a single lane of a wavefront 11 /// to perform the atomic operation, thus reducing contention on that memory 12 /// location. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "AMDGPU.h" 17 #include "AMDGPUSubtarget.h" 18 #include "llvm/Analysis/LegacyDivergenceAnalysis.h" 19 #include "llvm/CodeGen/TargetPassConfig.h" 20 #include "llvm/IR/IRBuilder.h" 21 #include "llvm/IR/InstVisitor.h" 22 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 23 24 #define DEBUG_TYPE "amdgpu-atomic-optimizer" 25 26 using namespace llvm; 27 28 namespace { 29 30 enum DPP_CTRL { 31 DPP_ROW_SR1 = 0x111, 32 DPP_ROW_SR2 = 0x112, 33 DPP_ROW_SR3 = 0x113, 34 DPP_ROW_SR4 = 0x114, 35 DPP_ROW_SR8 = 0x118, 36 DPP_WF_SR1 = 0x138, 37 DPP_ROW_BCAST15 = 0x142, 38 DPP_ROW_BCAST31 = 0x143 39 }; 40 41 struct ReplacementInfo { 42 Instruction *I; 43 Instruction::BinaryOps Op; 44 unsigned ValIdx; 45 bool ValDivergent; 46 }; 47 48 class AMDGPUAtomicOptimizer : public FunctionPass, 49 public InstVisitor<AMDGPUAtomicOptimizer> { 50 private: 51 SmallVector<ReplacementInfo, 8> ToReplace; 52 const LegacyDivergenceAnalysis *DA; 53 const DataLayout *DL; 54 DominatorTree *DT; 55 bool HasDPP; 56 bool IsPixelShader; 57 58 void optimizeAtomic(Instruction &I, Instruction::BinaryOps Op, 59 unsigned ValIdx, bool ValDivergent) const; 60 61 void setConvergent(CallInst *const CI) const; 62 63 public: 64 static char ID; 65 66 AMDGPUAtomicOptimizer() : FunctionPass(ID) {} 67 68 bool runOnFunction(Function &F) override; 69 70 void getAnalysisUsage(AnalysisUsage &AU) const override { 71 AU.addPreserved<DominatorTreeWrapperPass>(); 72 AU.addRequired<LegacyDivergenceAnalysis>(); 73 AU.addRequired<TargetPassConfig>(); 74 } 75 76 void visitAtomicRMWInst(AtomicRMWInst &I); 77 void visitIntrinsicInst(IntrinsicInst &I); 78 }; 79 80 } // namespace 81 82 char AMDGPUAtomicOptimizer::ID = 0; 83 84 char &llvm::AMDGPUAtomicOptimizerID = AMDGPUAtomicOptimizer::ID; 85 86 bool AMDGPUAtomicOptimizer::runOnFunction(Function &F) { 87 if (skipFunction(F)) { 88 return false; 89 } 90 91 DA = &getAnalysis<LegacyDivergenceAnalysis>(); 92 DL = &F.getParent()->getDataLayout(); 93 DominatorTreeWrapperPass *const DTW = 94 getAnalysisIfAvailable<DominatorTreeWrapperPass>(); 95 DT = DTW ? &DTW->getDomTree() : nullptr; 96 const TargetPassConfig &TPC = getAnalysis<TargetPassConfig>(); 97 const TargetMachine &TM = TPC.getTM<TargetMachine>(); 98 const GCNSubtarget &ST = TM.getSubtarget<GCNSubtarget>(F); 99 HasDPP = ST.hasDPP(); 100 IsPixelShader = F.getCallingConv() == CallingConv::AMDGPU_PS; 101 102 visit(F); 103 104 const bool Changed = !ToReplace.empty(); 105 106 for (ReplacementInfo &Info : ToReplace) { 107 optimizeAtomic(*Info.I, Info.Op, Info.ValIdx, Info.ValDivergent); 108 } 109 110 ToReplace.clear(); 111 112 return Changed; 113 } 114 115 void AMDGPUAtomicOptimizer::visitAtomicRMWInst(AtomicRMWInst &I) { 116 // Early exit for unhandled address space atomic instructions. 117 switch (I.getPointerAddressSpace()) { 118 default: 119 return; 120 case AMDGPUAS::GLOBAL_ADDRESS: 121 case AMDGPUAS::LOCAL_ADDRESS: 122 break; 123 } 124 125 Instruction::BinaryOps Op; 126 127 switch (I.getOperation()) { 128 default: 129 return; 130 case AtomicRMWInst::Add: 131 Op = Instruction::Add; 132 break; 133 case AtomicRMWInst::Sub: 134 Op = Instruction::Sub; 135 break; 136 } 137 138 const unsigned PtrIdx = 0; 139 const unsigned ValIdx = 1; 140 141 // If the pointer operand is divergent, then each lane is doing an atomic 142 // operation on a different address, and we cannot optimize that. 143 if (DA->isDivergent(I.getOperand(PtrIdx))) { 144 return; 145 } 146 147 const bool ValDivergent = DA->isDivergent(I.getOperand(ValIdx)); 148 149 // If the value operand is divergent, each lane is contributing a different 150 // value to the atomic calculation. We can only optimize divergent values if 151 // we have DPP available on our subtarget, and the atomic operation is 32 152 // bits. 153 if (ValDivergent && (!HasDPP || (DL->getTypeSizeInBits(I.getType()) != 32))) { 154 return; 155 } 156 157 // If we get here, we can optimize the atomic using a single wavefront-wide 158 // atomic operation to do the calculation for the entire wavefront, so 159 // remember the instruction so we can come back to it. 160 const ReplacementInfo Info = {&I, Op, ValIdx, ValDivergent}; 161 162 ToReplace.push_back(Info); 163 } 164 165 void AMDGPUAtomicOptimizer::visitIntrinsicInst(IntrinsicInst &I) { 166 Instruction::BinaryOps Op; 167 168 switch (I.getIntrinsicID()) { 169 default: 170 return; 171 case Intrinsic::amdgcn_buffer_atomic_add: 172 case Intrinsic::amdgcn_struct_buffer_atomic_add: 173 case Intrinsic::amdgcn_raw_buffer_atomic_add: 174 Op = Instruction::Add; 175 break; 176 case Intrinsic::amdgcn_buffer_atomic_sub: 177 case Intrinsic::amdgcn_struct_buffer_atomic_sub: 178 case Intrinsic::amdgcn_raw_buffer_atomic_sub: 179 Op = Instruction::Sub; 180 break; 181 } 182 183 const unsigned ValIdx = 0; 184 185 const bool ValDivergent = DA->isDivergent(I.getOperand(ValIdx)); 186 187 // If the value operand is divergent, each lane is contributing a different 188 // value to the atomic calculation. We can only optimize divergent values if 189 // we have DPP available on our subtarget, and the atomic operation is 32 190 // bits. 191 if (ValDivergent && (!HasDPP || (DL->getTypeSizeInBits(I.getType()) != 32))) { 192 return; 193 } 194 195 // If any of the other arguments to the intrinsic are divergent, we can't 196 // optimize the operation. 197 for (unsigned Idx = 1; Idx < I.getNumOperands(); Idx++) { 198 if (DA->isDivergent(I.getOperand(Idx))) { 199 return; 200 } 201 } 202 203 // If we get here, we can optimize the atomic using a single wavefront-wide 204 // atomic operation to do the calculation for the entire wavefront, so 205 // remember the instruction so we can come back to it. 206 const ReplacementInfo Info = {&I, Op, ValIdx, ValDivergent}; 207 208 ToReplace.push_back(Info); 209 } 210 211 void AMDGPUAtomicOptimizer::optimizeAtomic(Instruction &I, 212 Instruction::BinaryOps Op, 213 unsigned ValIdx, 214 bool ValDivergent) const { 215 LLVMContext &Context = I.getContext(); 216 217 // Start building just before the instruction. 218 IRBuilder<> B(&I); 219 220 // If we are in a pixel shader, because of how we have to mask out helper 221 // lane invocations, we need to record the entry and exit BB's. 222 BasicBlock *PixelEntryBB = nullptr; 223 BasicBlock *PixelExitBB = nullptr; 224 225 // If we're optimizing an atomic within a pixel shader, we need to wrap the 226 // entire atomic operation in a helper-lane check. We do not want any helper 227 // lanes that are around only for the purposes of derivatives to take part 228 // in any cross-lane communication, and we use a branch on whether the lane is 229 // live to do this. 230 if (IsPixelShader) { 231 // Record I's original position as the entry block. 232 PixelEntryBB = I.getParent(); 233 234 Value *const Cond = B.CreateIntrinsic(Intrinsic::amdgcn_ps_live, {}, {}); 235 Instruction *const NonHelperTerminator = 236 SplitBlockAndInsertIfThen(Cond, &I, false, nullptr, DT, nullptr); 237 238 // Record I's new position as the exit block. 239 PixelExitBB = I.getParent(); 240 241 I.moveBefore(NonHelperTerminator); 242 B.SetInsertPoint(&I); 243 } 244 245 Type *const Ty = I.getType(); 246 const unsigned TyBitWidth = DL->getTypeSizeInBits(Ty); 247 Type *const VecTy = VectorType::get(B.getInt32Ty(), 2); 248 249 // This is the value in the atomic operation we need to combine in order to 250 // reduce the number of atomic operations. 251 Value *const V = I.getOperand(ValIdx); 252 253 // We need to know how many lanes are active within the wavefront, and we do 254 // this by doing a ballot of active lanes. 255 CallInst *const Ballot = 256 B.CreateIntrinsic(Intrinsic::amdgcn_icmp, {B.getInt32Ty()}, 257 {B.getInt32(1), B.getInt32(0), B.getInt32(33)}); 258 setConvergent(Ballot); 259 260 // We need to know how many lanes are active within the wavefront that are 261 // below us. If we counted each lane linearly starting from 0, a lane is 262 // below us only if its associated index was less than ours. We do this by 263 // using the mbcnt intrinsic. 264 Value *const BitCast = B.CreateBitCast(Ballot, VecTy); 265 Value *const ExtractLo = B.CreateExtractElement(BitCast, B.getInt32(0)); 266 Value *const ExtractHi = B.CreateExtractElement(BitCast, B.getInt32(1)); 267 CallInst *const PartialMbcnt = B.CreateIntrinsic( 268 Intrinsic::amdgcn_mbcnt_lo, {}, {ExtractLo, B.getInt32(0)}); 269 CallInst *const Mbcnt = B.CreateIntrinsic(Intrinsic::amdgcn_mbcnt_hi, {}, 270 {ExtractHi, PartialMbcnt}); 271 272 Value *const MbcntCast = B.CreateIntCast(Mbcnt, Ty, false); 273 274 Value *LaneOffset = nullptr; 275 Value *NewV = nullptr; 276 277 // If we have a divergent value in each lane, we need to combine the value 278 // using DPP. 279 if (ValDivergent) { 280 Value *const Identity = B.getIntN(TyBitWidth, 0); 281 282 // First we need to set all inactive invocations to 0, so that they can 283 // correctly contribute to the final result. 284 CallInst *const SetInactive = 285 B.CreateIntrinsic(Intrinsic::amdgcn_set_inactive, Ty, {V, Identity}); 286 setConvergent(SetInactive); 287 288 CallInst *const FirstDPP = 289 B.CreateIntrinsic(Intrinsic::amdgcn_update_dpp, Ty, 290 {Identity, SetInactive, B.getInt32(DPP_WF_SR1), 291 B.getInt32(0xf), B.getInt32(0xf), B.getFalse()}); 292 setConvergent(FirstDPP); 293 NewV = FirstDPP; 294 295 const unsigned Iters = 7; 296 const unsigned DPPCtrl[Iters] = { 297 DPP_ROW_SR1, DPP_ROW_SR2, DPP_ROW_SR3, DPP_ROW_SR4, 298 DPP_ROW_SR8, DPP_ROW_BCAST15, DPP_ROW_BCAST31}; 299 const unsigned RowMask[Iters] = {0xf, 0xf, 0xf, 0xf, 0xf, 0xa, 0xc}; 300 const unsigned BankMask[Iters] = {0xf, 0xf, 0xf, 0xe, 0xc, 0xf, 0xf}; 301 302 // This loop performs an exclusive scan across the wavefront, with all lanes 303 // active (by using the WWM intrinsic). 304 for (unsigned Idx = 0; Idx < Iters; Idx++) { 305 Value *const UpdateValue = Idx < 3 ? FirstDPP : NewV; 306 CallInst *const DPP = B.CreateIntrinsic( 307 Intrinsic::amdgcn_update_dpp, Ty, 308 {Identity, UpdateValue, B.getInt32(DPPCtrl[Idx]), 309 B.getInt32(RowMask[Idx]), B.getInt32(BankMask[Idx]), B.getFalse()}); 310 setConvergent(DPP); 311 312 NewV = B.CreateBinOp(Op, NewV, DPP); 313 } 314 315 LaneOffset = B.CreateIntrinsic(Intrinsic::amdgcn_wwm, Ty, NewV); 316 NewV = B.CreateBinOp(Op, NewV, SetInactive); 317 318 // Read the value from the last lane, which has accumlated the values of 319 // each active lane in the wavefront. This will be our new value with which 320 // we will provide to the atomic operation. 321 if (TyBitWidth == 64) { 322 Value *const ExtractLo = B.CreateTrunc(NewV, B.getInt32Ty()); 323 Value *const ExtractHi = 324 B.CreateTrunc(B.CreateLShr(NewV, B.getInt64(32)), B.getInt32Ty()); 325 CallInst *const ReadLaneLo = B.CreateIntrinsic( 326 Intrinsic::amdgcn_readlane, {}, {ExtractLo, B.getInt32(63)}); 327 setConvergent(ReadLaneLo); 328 CallInst *const ReadLaneHi = B.CreateIntrinsic( 329 Intrinsic::amdgcn_readlane, {}, {ExtractHi, B.getInt32(63)}); 330 setConvergent(ReadLaneHi); 331 Value *const PartialInsert = B.CreateInsertElement( 332 UndefValue::get(VecTy), ReadLaneLo, B.getInt32(0)); 333 Value *const Insert = 334 B.CreateInsertElement(PartialInsert, ReadLaneHi, B.getInt32(1)); 335 NewV = B.CreateBitCast(Insert, Ty); 336 } else if (TyBitWidth == 32) { 337 CallInst *const ReadLane = B.CreateIntrinsic(Intrinsic::amdgcn_readlane, 338 {}, {NewV, B.getInt32(63)}); 339 setConvergent(ReadLane); 340 NewV = ReadLane; 341 } else { 342 llvm_unreachable("Unhandled atomic bit width"); 343 } 344 345 // Finally mark the readlanes in the WWM section. 346 NewV = B.CreateIntrinsic(Intrinsic::amdgcn_wwm, Ty, NewV); 347 } else { 348 // Get the total number of active lanes we have by using popcount. 349 Instruction *const Ctpop = B.CreateUnaryIntrinsic(Intrinsic::ctpop, Ballot); 350 Value *const CtpopCast = B.CreateIntCast(Ctpop, Ty, false); 351 352 // Calculate the new value we will be contributing to the atomic operation 353 // for the entire wavefront. 354 NewV = B.CreateMul(V, CtpopCast); 355 LaneOffset = B.CreateMul(V, MbcntCast); 356 } 357 358 // We only want a single lane to enter our new control flow, and we do this 359 // by checking if there are any active lanes below us. Only one lane will 360 // have 0 active lanes below us, so that will be the only one to progress. 361 Value *const Cond = B.CreateICmpEQ(MbcntCast, B.getIntN(TyBitWidth, 0)); 362 363 // Store I's original basic block before we split the block. 364 BasicBlock *const EntryBB = I.getParent(); 365 366 // We need to introduce some new control flow to force a single lane to be 367 // active. We do this by splitting I's basic block at I, and introducing the 368 // new block such that: 369 // entry --> single_lane -\ 370 // \------------------> exit 371 Instruction *const SingleLaneTerminator = 372 SplitBlockAndInsertIfThen(Cond, &I, false, nullptr, DT, nullptr); 373 374 // Move the IR builder into single_lane next. 375 B.SetInsertPoint(SingleLaneTerminator); 376 377 // Clone the original atomic operation into single lane, replacing the 378 // original value with our newly created one. 379 Instruction *const NewI = I.clone(); 380 B.Insert(NewI); 381 NewI->setOperand(ValIdx, NewV); 382 383 // Move the IR builder into exit next, and start inserting just before the 384 // original instruction. 385 B.SetInsertPoint(&I); 386 387 // Create a PHI node to get our new atomic result into the exit block. 388 PHINode *const PHI = B.CreatePHI(Ty, 2); 389 PHI->addIncoming(UndefValue::get(Ty), EntryBB); 390 PHI->addIncoming(NewI, SingleLaneTerminator->getParent()); 391 392 // We need to broadcast the value who was the lowest active lane (the first 393 // lane) to all other lanes in the wavefront. We use an intrinsic for this, 394 // but have to handle 64-bit broadcasts with two calls to this intrinsic. 395 Value *BroadcastI = nullptr; 396 397 if (TyBitWidth == 64) { 398 Value *const ExtractLo = B.CreateTrunc(PHI, B.getInt32Ty()); 399 Value *const ExtractHi = 400 B.CreateTrunc(B.CreateLShr(PHI, B.getInt64(32)), B.getInt32Ty()); 401 CallInst *const ReadFirstLaneLo = 402 B.CreateIntrinsic(Intrinsic::amdgcn_readfirstlane, {}, ExtractLo); 403 setConvergent(ReadFirstLaneLo); 404 CallInst *const ReadFirstLaneHi = 405 B.CreateIntrinsic(Intrinsic::amdgcn_readfirstlane, {}, ExtractHi); 406 setConvergent(ReadFirstLaneHi); 407 Value *const PartialInsert = B.CreateInsertElement( 408 UndefValue::get(VecTy), ReadFirstLaneLo, B.getInt32(0)); 409 Value *const Insert = 410 B.CreateInsertElement(PartialInsert, ReadFirstLaneHi, B.getInt32(1)); 411 BroadcastI = B.CreateBitCast(Insert, Ty); 412 } else if (TyBitWidth == 32) { 413 CallInst *const ReadFirstLane = 414 B.CreateIntrinsic(Intrinsic::amdgcn_readfirstlane, {}, PHI); 415 setConvergent(ReadFirstLane); 416 BroadcastI = ReadFirstLane; 417 } else { 418 llvm_unreachable("Unhandled atomic bit width"); 419 } 420 421 // Now that we have the result of our single atomic operation, we need to 422 // get our individual lane's slice into the result. We use the lane offset we 423 // previously calculated combined with the atomic result value we got from the 424 // first lane, to get our lane's index into the atomic result. 425 Value *const Result = B.CreateBinOp(Op, BroadcastI, LaneOffset); 426 427 if (IsPixelShader) { 428 // Need a final PHI to reconverge to above the helper lane branch mask. 429 B.SetInsertPoint(PixelExitBB->getFirstNonPHI()); 430 431 PHINode *const PHI = B.CreatePHI(Ty, 2); 432 PHI->addIncoming(UndefValue::get(Ty), PixelEntryBB); 433 PHI->addIncoming(Result, I.getParent()); 434 I.replaceAllUsesWith(PHI); 435 } else { 436 // Replace the original atomic instruction with the new one. 437 I.replaceAllUsesWith(Result); 438 } 439 440 // And delete the original. 441 I.eraseFromParent(); 442 } 443 444 void AMDGPUAtomicOptimizer::setConvergent(CallInst *const CI) const { 445 CI->addAttribute(AttributeList::FunctionIndex, Attribute::Convergent); 446 } 447 448 INITIALIZE_PASS_BEGIN(AMDGPUAtomicOptimizer, DEBUG_TYPE, 449 "AMDGPU atomic optimizations", false, false) 450 INITIALIZE_PASS_DEPENDENCY(LegacyDivergenceAnalysis) 451 INITIALIZE_PASS_DEPENDENCY(TargetPassConfig) 452 INITIALIZE_PASS_END(AMDGPUAtomicOptimizer, DEBUG_TYPE, 453 "AMDGPU atomic optimizations", false, false) 454 455 FunctionPass *llvm::createAMDGPUAtomicOptimizerPass() { 456 return new AMDGPUAtomicOptimizer(); 457 } 458