xref: /llvm-project/llvm/lib/Target/AMDGPU/AMDGPUAtomicOptimizer.cpp (revision 5ab9e003c8bd1e8b095869e472336447de1ed148)
1 //===-- AMDGPUAtomicOptimizer.cpp -----------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file
10 /// This pass optimizes atomic operations by using a single lane of a wavefront
11 /// to perform the atomic operation, thus reducing contention on that memory
12 /// location.
13 /// Atomic optimizer uses following strategies to compute scan and reduced
14 /// values
15 /// 1. DPP -
16 ///   This is the most efficient implementation for scan. DPP uses Whole Wave
17 ///   Mode (WWM)
18 /// 2. Iterative -
19 //    An alternative implementation iterates over all active lanes
20 ///   of Wavefront using llvm.cttz and performs scan  using readlane & writelane
21 ///   intrinsics
22 //===----------------------------------------------------------------------===//
23 
24 #include "AMDGPU.h"
25 #include "GCNSubtarget.h"
26 #include "llvm/Analysis/DomTreeUpdater.h"
27 #include "llvm/Analysis/UniformityAnalysis.h"
28 #include "llvm/CodeGen/TargetPassConfig.h"
29 #include "llvm/IR/IRBuilder.h"
30 #include "llvm/IR/InstVisitor.h"
31 #include "llvm/IR/IntrinsicsAMDGPU.h"
32 #include "llvm/InitializePasses.h"
33 #include "llvm/Target/TargetMachine.h"
34 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
35 
36 #define DEBUG_TYPE "amdgpu-atomic-optimizer"
37 
38 using namespace llvm;
39 using namespace llvm::AMDGPU;
40 
41 namespace {
42 
43 struct ReplacementInfo {
44   Instruction *I;
45   AtomicRMWInst::BinOp Op;
46   unsigned ValIdx;
47   bool ValDivergent;
48 };
49 
50 class AMDGPUAtomicOptimizer : public FunctionPass {
51 public:
52   static char ID;
53   ScanOptions ScanImpl;
54   AMDGPUAtomicOptimizer(ScanOptions ScanImpl)
55       : FunctionPass(ID), ScanImpl(ScanImpl) {}
56 
57   bool runOnFunction(Function &F) override;
58 
59   void getAnalysisUsage(AnalysisUsage &AU) const override {
60     AU.addPreserved<DominatorTreeWrapperPass>();
61     AU.addRequired<UniformityInfoWrapperPass>();
62     AU.addRequired<TargetPassConfig>();
63   }
64 };
65 
66 class AMDGPUAtomicOptimizerImpl
67     : public InstVisitor<AMDGPUAtomicOptimizerImpl> {
68 private:
69   SmallVector<ReplacementInfo, 8> ToReplace;
70   const UniformityInfo *UA;
71   const DataLayout *DL;
72   DomTreeUpdater &DTU;
73   const GCNSubtarget *ST;
74   bool IsPixelShader;
75   ScanOptions ScanImpl;
76 
77   Value *buildReduction(IRBuilder<> &B, AtomicRMWInst::BinOp Op, Value *V,
78                         Value *const Identity) const;
79   Value *buildScan(IRBuilder<> &B, AtomicRMWInst::BinOp Op, Value *V,
80                    Value *const Identity) const;
81   Value *buildShiftRight(IRBuilder<> &B, Value *V, Value *const Identity) const;
82 
83   std::pair<Value *, Value *>
84   buildScanIteratively(IRBuilder<> &B, AtomicRMWInst::BinOp Op,
85                        Value *const Identity, Value *V, Instruction &I,
86                        BasicBlock *ComputeLoop, BasicBlock *ComputeEnd) const;
87 
88   void optimizeAtomic(Instruction &I, AtomicRMWInst::BinOp Op, unsigned ValIdx,
89                       bool ValDivergent) const;
90 
91 public:
92   AMDGPUAtomicOptimizerImpl() = delete;
93 
94   AMDGPUAtomicOptimizerImpl(const UniformityInfo *UA, const DataLayout *DL,
95                             DomTreeUpdater &DTU, const GCNSubtarget *ST,
96                             bool IsPixelShader, ScanOptions ScanImpl)
97       : UA(UA), DL(DL), DTU(DTU), ST(ST), IsPixelShader(IsPixelShader),
98         ScanImpl(ScanImpl) {}
99 
100   bool run(Function &F);
101 
102   void visitAtomicRMWInst(AtomicRMWInst &I);
103   void visitIntrinsicInst(IntrinsicInst &I);
104 };
105 
106 } // namespace
107 
108 char AMDGPUAtomicOptimizer::ID = 0;
109 
110 char &llvm::AMDGPUAtomicOptimizerID = AMDGPUAtomicOptimizer::ID;
111 
112 bool AMDGPUAtomicOptimizer::runOnFunction(Function &F) {
113   if (skipFunction(F)) {
114     return false;
115   }
116 
117   const UniformityInfo *UA =
118       &getAnalysis<UniformityInfoWrapperPass>().getUniformityInfo();
119   const DataLayout *DL = &F.getDataLayout();
120 
121   DominatorTreeWrapperPass *const DTW =
122       getAnalysisIfAvailable<DominatorTreeWrapperPass>();
123   DomTreeUpdater DTU(DTW ? &DTW->getDomTree() : nullptr,
124                      DomTreeUpdater::UpdateStrategy::Lazy);
125 
126   const TargetPassConfig &TPC = getAnalysis<TargetPassConfig>();
127   const TargetMachine &TM = TPC.getTM<TargetMachine>();
128   const GCNSubtarget *ST = &TM.getSubtarget<GCNSubtarget>(F);
129 
130   bool IsPixelShader = F.getCallingConv() == CallingConv::AMDGPU_PS;
131 
132   return AMDGPUAtomicOptimizerImpl(UA, DL, DTU, ST, IsPixelShader, ScanImpl)
133       .run(F);
134 }
135 
136 PreservedAnalyses AMDGPUAtomicOptimizerPass::run(Function &F,
137                                                  FunctionAnalysisManager &AM) {
138 
139   const auto *UA = &AM.getResult<UniformityInfoAnalysis>(F);
140   const DataLayout *DL = &F.getDataLayout();
141 
142   DomTreeUpdater DTU(&AM.getResult<DominatorTreeAnalysis>(F),
143                      DomTreeUpdater::UpdateStrategy::Lazy);
144   const GCNSubtarget *ST = &TM.getSubtarget<GCNSubtarget>(F);
145 
146   bool IsPixelShader = F.getCallingConv() == CallingConv::AMDGPU_PS;
147 
148   bool IsChanged =
149       AMDGPUAtomicOptimizerImpl(UA, DL, DTU, ST, IsPixelShader, ScanImpl)
150           .run(F);
151 
152   if (!IsChanged) {
153     return PreservedAnalyses::all();
154   }
155 
156   PreservedAnalyses PA;
157   PA.preserve<DominatorTreeAnalysis>();
158   return PA;
159 }
160 
161 bool AMDGPUAtomicOptimizerImpl::run(Function &F) {
162 
163   // Scan option None disables the Pass
164   if (ScanImpl == ScanOptions::None) {
165     return false;
166   }
167 
168   visit(F);
169 
170   const bool Changed = !ToReplace.empty();
171 
172   for (ReplacementInfo &Info : ToReplace) {
173     optimizeAtomic(*Info.I, Info.Op, Info.ValIdx, Info.ValDivergent);
174   }
175 
176   ToReplace.clear();
177 
178   return Changed;
179 }
180 
181 void AMDGPUAtomicOptimizerImpl::visitAtomicRMWInst(AtomicRMWInst &I) {
182   // Early exit for unhandled address space atomic instructions.
183   switch (I.getPointerAddressSpace()) {
184   default:
185     return;
186   case AMDGPUAS::GLOBAL_ADDRESS:
187   case AMDGPUAS::LOCAL_ADDRESS:
188     break;
189   }
190 
191   AtomicRMWInst::BinOp Op = I.getOperation();
192 
193   switch (Op) {
194   default:
195     return;
196   case AtomicRMWInst::Add:
197   case AtomicRMWInst::Sub:
198   case AtomicRMWInst::And:
199   case AtomicRMWInst::Or:
200   case AtomicRMWInst::Xor:
201   case AtomicRMWInst::Max:
202   case AtomicRMWInst::Min:
203   case AtomicRMWInst::UMax:
204   case AtomicRMWInst::UMin:
205   case AtomicRMWInst::FAdd:
206   case AtomicRMWInst::FSub:
207   case AtomicRMWInst::FMax:
208   case AtomicRMWInst::FMin:
209     break;
210   }
211 
212   // Only 32 and 64 bit floating point atomic ops are supported.
213   if (AtomicRMWInst::isFPOperation(Op) &&
214       !(I.getType()->isFloatTy() || I.getType()->isDoubleTy())) {
215     return;
216   }
217 
218   const unsigned PtrIdx = 0;
219   const unsigned ValIdx = 1;
220 
221   // If the pointer operand is divergent, then each lane is doing an atomic
222   // operation on a different address, and we cannot optimize that.
223   if (UA->isDivergentUse(I.getOperandUse(PtrIdx))) {
224     return;
225   }
226 
227   bool ValDivergent = UA->isDivergentUse(I.getOperandUse(ValIdx));
228 
229   if ((Op == AtomicRMWInst::FAdd || Op == AtomicRMWInst::FSub) &&
230       !I.use_empty()) {
231     // Disable the uniform return value calculation using fmul because it
232     // mishandles infinities, NaNs and signed zeros. FIXME.
233     ValDivergent = true;
234   }
235 
236   // If the value operand is divergent, each lane is contributing a different
237   // value to the atomic calculation. We can only optimize divergent values if
238   // we have DPP available on our subtarget, and the atomic operation is 32
239   // bits.
240   if (ValDivergent &&
241       (!ST->hasDPP() || DL->getTypeSizeInBits(I.getType()) != 32)) {
242     return;
243   }
244 
245   // If we get here, we can optimize the atomic using a single wavefront-wide
246   // atomic operation to do the calculation for the entire wavefront, so
247   // remember the instruction so we can come back to it.
248   const ReplacementInfo Info = {&I, Op, ValIdx, ValDivergent};
249 
250   ToReplace.push_back(Info);
251 }
252 
253 void AMDGPUAtomicOptimizerImpl::visitIntrinsicInst(IntrinsicInst &I) {
254   AtomicRMWInst::BinOp Op;
255 
256   switch (I.getIntrinsicID()) {
257   default:
258     return;
259   case Intrinsic::amdgcn_struct_buffer_atomic_add:
260   case Intrinsic::amdgcn_struct_ptr_buffer_atomic_add:
261   case Intrinsic::amdgcn_raw_buffer_atomic_add:
262   case Intrinsic::amdgcn_raw_ptr_buffer_atomic_add:
263     Op = AtomicRMWInst::Add;
264     break;
265   case Intrinsic::amdgcn_struct_buffer_atomic_sub:
266   case Intrinsic::amdgcn_struct_ptr_buffer_atomic_sub:
267   case Intrinsic::amdgcn_raw_buffer_atomic_sub:
268   case Intrinsic::amdgcn_raw_ptr_buffer_atomic_sub:
269     Op = AtomicRMWInst::Sub;
270     break;
271   case Intrinsic::amdgcn_struct_buffer_atomic_and:
272   case Intrinsic::amdgcn_struct_ptr_buffer_atomic_and:
273   case Intrinsic::amdgcn_raw_buffer_atomic_and:
274   case Intrinsic::amdgcn_raw_ptr_buffer_atomic_and:
275     Op = AtomicRMWInst::And;
276     break;
277   case Intrinsic::amdgcn_struct_buffer_atomic_or:
278   case Intrinsic::amdgcn_struct_ptr_buffer_atomic_or:
279   case Intrinsic::amdgcn_raw_buffer_atomic_or:
280   case Intrinsic::amdgcn_raw_ptr_buffer_atomic_or:
281     Op = AtomicRMWInst::Or;
282     break;
283   case Intrinsic::amdgcn_struct_buffer_atomic_xor:
284   case Intrinsic::amdgcn_struct_ptr_buffer_atomic_xor:
285   case Intrinsic::amdgcn_raw_buffer_atomic_xor:
286   case Intrinsic::amdgcn_raw_ptr_buffer_atomic_xor:
287     Op = AtomicRMWInst::Xor;
288     break;
289   case Intrinsic::amdgcn_struct_buffer_atomic_smin:
290   case Intrinsic::amdgcn_struct_ptr_buffer_atomic_smin:
291   case Intrinsic::amdgcn_raw_buffer_atomic_smin:
292   case Intrinsic::amdgcn_raw_ptr_buffer_atomic_smin:
293     Op = AtomicRMWInst::Min;
294     break;
295   case Intrinsic::amdgcn_struct_buffer_atomic_umin:
296   case Intrinsic::amdgcn_struct_ptr_buffer_atomic_umin:
297   case Intrinsic::amdgcn_raw_buffer_atomic_umin:
298   case Intrinsic::amdgcn_raw_ptr_buffer_atomic_umin:
299     Op = AtomicRMWInst::UMin;
300     break;
301   case Intrinsic::amdgcn_struct_buffer_atomic_smax:
302   case Intrinsic::amdgcn_struct_ptr_buffer_atomic_smax:
303   case Intrinsic::amdgcn_raw_buffer_atomic_smax:
304   case Intrinsic::amdgcn_raw_ptr_buffer_atomic_smax:
305     Op = AtomicRMWInst::Max;
306     break;
307   case Intrinsic::amdgcn_struct_buffer_atomic_umax:
308   case Intrinsic::amdgcn_struct_ptr_buffer_atomic_umax:
309   case Intrinsic::amdgcn_raw_buffer_atomic_umax:
310   case Intrinsic::amdgcn_raw_ptr_buffer_atomic_umax:
311     Op = AtomicRMWInst::UMax;
312     break;
313   }
314 
315   const unsigned ValIdx = 0;
316 
317   const bool ValDivergent = UA->isDivergentUse(I.getOperandUse(ValIdx));
318 
319   // If the value operand is divergent, each lane is contributing a different
320   // value to the atomic calculation. We can only optimize divergent values if
321   // we have DPP available on our subtarget, and the atomic operation is 32
322   // bits.
323   if (ValDivergent &&
324       (!ST->hasDPP() || DL->getTypeSizeInBits(I.getType()) != 32)) {
325     return;
326   }
327 
328   // If any of the other arguments to the intrinsic are divergent, we can't
329   // optimize the operation.
330   for (unsigned Idx = 1; Idx < I.getNumOperands(); Idx++) {
331     if (UA->isDivergentUse(I.getOperandUse(Idx))) {
332       return;
333     }
334   }
335 
336   // If we get here, we can optimize the atomic using a single wavefront-wide
337   // atomic operation to do the calculation for the entire wavefront, so
338   // remember the instruction so we can come back to it.
339   const ReplacementInfo Info = {&I, Op, ValIdx, ValDivergent};
340 
341   ToReplace.push_back(Info);
342 }
343 
344 // Use the builder to create the non-atomic counterpart of the specified
345 // atomicrmw binary op.
346 static Value *buildNonAtomicBinOp(IRBuilder<> &B, AtomicRMWInst::BinOp Op,
347                                   Value *LHS, Value *RHS) {
348   CmpInst::Predicate Pred;
349 
350   switch (Op) {
351   default:
352     llvm_unreachable("Unhandled atomic op");
353   case AtomicRMWInst::Add:
354     return B.CreateBinOp(Instruction::Add, LHS, RHS);
355   case AtomicRMWInst::FAdd:
356     return B.CreateFAdd(LHS, RHS);
357   case AtomicRMWInst::Sub:
358     return B.CreateBinOp(Instruction::Sub, LHS, RHS);
359   case AtomicRMWInst::FSub:
360     return B.CreateFSub(LHS, RHS);
361   case AtomicRMWInst::And:
362     return B.CreateBinOp(Instruction::And, LHS, RHS);
363   case AtomicRMWInst::Or:
364     return B.CreateBinOp(Instruction::Or, LHS, RHS);
365   case AtomicRMWInst::Xor:
366     return B.CreateBinOp(Instruction::Xor, LHS, RHS);
367 
368   case AtomicRMWInst::Max:
369     Pred = CmpInst::ICMP_SGT;
370     break;
371   case AtomicRMWInst::Min:
372     Pred = CmpInst::ICMP_SLT;
373     break;
374   case AtomicRMWInst::UMax:
375     Pred = CmpInst::ICMP_UGT;
376     break;
377   case AtomicRMWInst::UMin:
378     Pred = CmpInst::ICMP_ULT;
379     break;
380   case AtomicRMWInst::FMax:
381     return B.CreateMaxNum(LHS, RHS);
382   case AtomicRMWInst::FMin:
383     return B.CreateMinNum(LHS, RHS);
384   }
385   Value *Cond = B.CreateICmp(Pred, LHS, RHS);
386   return B.CreateSelect(Cond, LHS, RHS);
387 }
388 
389 // Use the builder to create a reduction of V across the wavefront, with all
390 // lanes active, returning the same result in all lanes.
391 Value *AMDGPUAtomicOptimizerImpl::buildReduction(IRBuilder<> &B,
392                                                  AtomicRMWInst::BinOp Op,
393                                                  Value *V,
394                                                  Value *const Identity) const {
395   Type *AtomicTy = V->getType();
396   Module *M = B.GetInsertBlock()->getModule();
397   Function *UpdateDPP =
398       Intrinsic::getDeclaration(M, Intrinsic::amdgcn_update_dpp, AtomicTy);
399 
400   // Reduce within each row of 16 lanes.
401   for (unsigned Idx = 0; Idx < 4; Idx++) {
402     V = buildNonAtomicBinOp(
403         B, Op, V,
404         B.CreateCall(UpdateDPP,
405                      {Identity, V, B.getInt32(DPP::ROW_XMASK0 | 1 << Idx),
406                       B.getInt32(0xf), B.getInt32(0xf), B.getFalse()}));
407   }
408 
409   // Reduce within each pair of rows (i.e. 32 lanes).
410   assert(ST->hasPermLaneX16());
411   Value *Permlanex16Call = B.CreateIntrinsic(
412       V->getType(), Intrinsic::amdgcn_permlanex16,
413       {V, V, B.getInt32(-1), B.getInt32(-1), B.getFalse(), B.getFalse()});
414   V = buildNonAtomicBinOp(B, Op, V, Permlanex16Call);
415   if (ST->isWave32()) {
416     return V;
417   }
418 
419   if (ST->hasPermLane64()) {
420     // Reduce across the upper and lower 32 lanes.
421     Value *Permlane64Call =
422         B.CreateIntrinsic(V->getType(), Intrinsic::amdgcn_permlane64, V);
423     return buildNonAtomicBinOp(B, Op, V, Permlane64Call);
424   }
425 
426   // Pick an arbitrary lane from 0..31 and an arbitrary lane from 32..63 and
427   // combine them with a scalar operation.
428   Function *ReadLane =
429       Intrinsic::getDeclaration(M, Intrinsic::amdgcn_readlane, AtomicTy);
430   Value *Lane0 = B.CreateCall(ReadLane, {V, B.getInt32(0)});
431   Value *Lane32 = B.CreateCall(ReadLane, {V, B.getInt32(32)});
432   return buildNonAtomicBinOp(B, Op, Lane0, Lane32);
433 }
434 
435 // Use the builder to create an inclusive scan of V across the wavefront, with
436 // all lanes active.
437 Value *AMDGPUAtomicOptimizerImpl::buildScan(IRBuilder<> &B,
438                                             AtomicRMWInst::BinOp Op, Value *V,
439                                             Value *Identity) const {
440   Type *AtomicTy = V->getType();
441   Module *M = B.GetInsertBlock()->getModule();
442   Function *UpdateDPP =
443       Intrinsic::getDeclaration(M, Intrinsic::amdgcn_update_dpp, AtomicTy);
444 
445   for (unsigned Idx = 0; Idx < 4; Idx++) {
446     V = buildNonAtomicBinOp(
447         B, Op, V,
448         B.CreateCall(UpdateDPP,
449                      {Identity, V, B.getInt32(DPP::ROW_SHR0 | 1 << Idx),
450                       B.getInt32(0xf), B.getInt32(0xf), B.getFalse()}));
451   }
452   if (ST->hasDPPBroadcasts()) {
453     // GFX9 has DPP row broadcast operations.
454     V = buildNonAtomicBinOp(
455         B, Op, V,
456         B.CreateCall(UpdateDPP,
457                      {Identity, V, B.getInt32(DPP::BCAST15), B.getInt32(0xa),
458                       B.getInt32(0xf), B.getFalse()}));
459     V = buildNonAtomicBinOp(
460         B, Op, V,
461         B.CreateCall(UpdateDPP,
462                      {Identity, V, B.getInt32(DPP::BCAST31), B.getInt32(0xc),
463                       B.getInt32(0xf), B.getFalse()}));
464   } else {
465     // On GFX10 all DPP operations are confined to a single row. To get cross-
466     // row operations we have to use permlane or readlane.
467 
468     // Combine lane 15 into lanes 16..31 (and, for wave 64, lane 47 into lanes
469     // 48..63).
470     assert(ST->hasPermLaneX16());
471     Value *PermX = B.CreateIntrinsic(
472         V->getType(), Intrinsic::amdgcn_permlanex16,
473         {V, V, B.getInt32(-1), B.getInt32(-1), B.getFalse(), B.getFalse()});
474 
475     Value *UpdateDPPCall = B.CreateCall(
476         UpdateDPP, {Identity, PermX, B.getInt32(DPP::QUAD_PERM_ID),
477                     B.getInt32(0xa), B.getInt32(0xf), B.getFalse()});
478     V = buildNonAtomicBinOp(B, Op, V, UpdateDPPCall);
479 
480     if (!ST->isWave32()) {
481       // Combine lane 31 into lanes 32..63.
482       Value *const Lane31 = B.CreateIntrinsic(
483           V->getType(), Intrinsic::amdgcn_readlane, {V, B.getInt32(31)});
484 
485       Value *UpdateDPPCall = B.CreateCall(
486           UpdateDPP, {Identity, Lane31, B.getInt32(DPP::QUAD_PERM_ID),
487                       B.getInt32(0xc), B.getInt32(0xf), B.getFalse()});
488 
489       V = buildNonAtomicBinOp(B, Op, V, UpdateDPPCall);
490     }
491   }
492   return V;
493 }
494 
495 // Use the builder to create a shift right of V across the wavefront, with all
496 // lanes active, to turn an inclusive scan into an exclusive scan.
497 Value *AMDGPUAtomicOptimizerImpl::buildShiftRight(IRBuilder<> &B, Value *V,
498                                                   Value *Identity) const {
499   Type *AtomicTy = V->getType();
500   Module *M = B.GetInsertBlock()->getModule();
501   Function *UpdateDPP =
502       Intrinsic::getDeclaration(M, Intrinsic::amdgcn_update_dpp, AtomicTy);
503   if (ST->hasDPPWavefrontShifts()) {
504     // GFX9 has DPP wavefront shift operations.
505     V = B.CreateCall(UpdateDPP,
506                      {Identity, V, B.getInt32(DPP::WAVE_SHR1), B.getInt32(0xf),
507                       B.getInt32(0xf), B.getFalse()});
508   } else {
509     Function *ReadLane =
510         Intrinsic::getDeclaration(M, Intrinsic::amdgcn_readlane, AtomicTy);
511     Function *WriteLane =
512         Intrinsic::getDeclaration(M, Intrinsic::amdgcn_writelane, AtomicTy);
513 
514     // On GFX10 all DPP operations are confined to a single row. To get cross-
515     // row operations we have to use permlane or readlane.
516     Value *Old = V;
517     V = B.CreateCall(UpdateDPP,
518                      {Identity, V, B.getInt32(DPP::ROW_SHR0 + 1),
519                       B.getInt32(0xf), B.getInt32(0xf), B.getFalse()});
520 
521     // Copy the old lane 15 to the new lane 16.
522     V = B.CreateCall(WriteLane, {B.CreateCall(ReadLane, {Old, B.getInt32(15)}),
523                                  B.getInt32(16), V});
524 
525     if (!ST->isWave32()) {
526       // Copy the old lane 31 to the new lane 32.
527       V = B.CreateCall(
528           WriteLane,
529           {B.CreateCall(ReadLane, {Old, B.getInt32(31)}), B.getInt32(32), V});
530 
531       // Copy the old lane 47 to the new lane 48.
532       V = B.CreateCall(
533           WriteLane,
534           {B.CreateCall(ReadLane, {Old, B.getInt32(47)}), B.getInt32(48), V});
535     }
536   }
537 
538   return V;
539 }
540 
541 // Use the builder to create an exclusive scan and compute the final reduced
542 // value using an iterative approach. This provides an alternative
543 // implementation to DPP which uses WMM for scan computations. This API iterate
544 // over active lanes to read, compute and update the value using
545 // readlane and writelane intrinsics.
546 std::pair<Value *, Value *> AMDGPUAtomicOptimizerImpl::buildScanIteratively(
547     IRBuilder<> &B, AtomicRMWInst::BinOp Op, Value *const Identity, Value *V,
548     Instruction &I, BasicBlock *ComputeLoop, BasicBlock *ComputeEnd) const {
549   auto *Ty = I.getType();
550   auto *WaveTy = B.getIntNTy(ST->getWavefrontSize());
551   auto *EntryBB = I.getParent();
552   auto NeedResult = !I.use_empty();
553 
554   auto *Ballot =
555       B.CreateIntrinsic(Intrinsic::amdgcn_ballot, WaveTy, B.getTrue());
556 
557   // Start inserting instructions for ComputeLoop block
558   B.SetInsertPoint(ComputeLoop);
559   // Phi nodes for Accumulator, Scan results destination, and Active Lanes
560   auto *Accumulator = B.CreatePHI(Ty, 2, "Accumulator");
561   Accumulator->addIncoming(Identity, EntryBB);
562   PHINode *OldValuePhi = nullptr;
563   if (NeedResult) {
564     OldValuePhi = B.CreatePHI(Ty, 2, "OldValuePhi");
565     OldValuePhi->addIncoming(PoisonValue::get(Ty), EntryBB);
566   }
567   auto *ActiveBits = B.CreatePHI(WaveTy, 2, "ActiveBits");
568   ActiveBits->addIncoming(Ballot, EntryBB);
569 
570   // Use llvm.cttz instrinsic to find the lowest remaining active lane.
571   auto *FF1 =
572       B.CreateIntrinsic(Intrinsic::cttz, WaveTy, {ActiveBits, B.getTrue()});
573 
574   auto *LaneIdxInt = B.CreateTrunc(FF1, B.getInt32Ty());
575 
576   // Get the value required for atomic operation
577   Value *LaneValue = B.CreateIntrinsic(V->getType(), Intrinsic::amdgcn_readlane,
578                                        {V, LaneIdxInt});
579 
580   // Perform writelane if intermediate scan results are required later in the
581   // kernel computations
582   Value *OldValue = nullptr;
583   if (NeedResult) {
584     OldValue = B.CreateIntrinsic(V->getType(), Intrinsic::amdgcn_writelane,
585                                  {Accumulator, LaneIdxInt, OldValuePhi});
586     OldValuePhi->addIncoming(OldValue, ComputeLoop);
587   }
588 
589   // Accumulate the results
590   auto *NewAccumulator = buildNonAtomicBinOp(B, Op, Accumulator, LaneValue);
591   Accumulator->addIncoming(NewAccumulator, ComputeLoop);
592 
593   // Set bit to zero of current active lane so that for next iteration llvm.cttz
594   // return the next active lane
595   auto *Mask = B.CreateShl(ConstantInt::get(WaveTy, 1), FF1);
596 
597   auto *InverseMask = B.CreateXor(Mask, ConstantInt::get(WaveTy, -1));
598   auto *NewActiveBits = B.CreateAnd(ActiveBits, InverseMask);
599   ActiveBits->addIncoming(NewActiveBits, ComputeLoop);
600 
601   // Branch out of the loop when all lanes are processed.
602   auto *IsEnd = B.CreateICmpEQ(NewActiveBits, ConstantInt::get(WaveTy, 0));
603   B.CreateCondBr(IsEnd, ComputeEnd, ComputeLoop);
604 
605   B.SetInsertPoint(ComputeEnd);
606 
607   return {OldValue, NewAccumulator};
608 }
609 
610 static Constant *getIdentityValueForAtomicOp(Type *const Ty,
611                                              AtomicRMWInst::BinOp Op) {
612   LLVMContext &C = Ty->getContext();
613   const unsigned BitWidth = Ty->getPrimitiveSizeInBits();
614   switch (Op) {
615   default:
616     llvm_unreachable("Unhandled atomic op");
617   case AtomicRMWInst::Add:
618   case AtomicRMWInst::Sub:
619   case AtomicRMWInst::Or:
620   case AtomicRMWInst::Xor:
621   case AtomicRMWInst::UMax:
622     return ConstantInt::get(C, APInt::getMinValue(BitWidth));
623   case AtomicRMWInst::And:
624   case AtomicRMWInst::UMin:
625     return ConstantInt::get(C, APInt::getMaxValue(BitWidth));
626   case AtomicRMWInst::Max:
627     return ConstantInt::get(C, APInt::getSignedMinValue(BitWidth));
628   case AtomicRMWInst::Min:
629     return ConstantInt::get(C, APInt::getSignedMaxValue(BitWidth));
630   case AtomicRMWInst::FAdd:
631     return ConstantFP::get(C, APFloat::getZero(Ty->getFltSemantics(), true));
632   case AtomicRMWInst::FSub:
633     return ConstantFP::get(C, APFloat::getZero(Ty->getFltSemantics(), false));
634   case AtomicRMWInst::FMin:
635   case AtomicRMWInst::FMax:
636     // FIXME: atomicrmw fmax/fmin behave like llvm.maxnum/minnum so NaN is the
637     // closest thing they have to an identity, but it still does not preserve
638     // the difference between quiet and signaling NaNs or NaNs with different
639     // payloads.
640     return ConstantFP::get(C, APFloat::getNaN(Ty->getFltSemantics()));
641   }
642 }
643 
644 static Value *buildMul(IRBuilder<> &B, Value *LHS, Value *RHS) {
645   const ConstantInt *CI = dyn_cast<ConstantInt>(LHS);
646   return (CI && CI->isOne()) ? RHS : B.CreateMul(LHS, RHS);
647 }
648 
649 void AMDGPUAtomicOptimizerImpl::optimizeAtomic(Instruction &I,
650                                                AtomicRMWInst::BinOp Op,
651                                                unsigned ValIdx,
652                                                bool ValDivergent) const {
653   // Start building just before the instruction.
654   IRBuilder<> B(&I);
655 
656   if (AtomicRMWInst::isFPOperation(Op)) {
657     B.setIsFPConstrained(I.getFunction()->hasFnAttribute(Attribute::StrictFP));
658   }
659 
660   // If we are in a pixel shader, because of how we have to mask out helper
661   // lane invocations, we need to record the entry and exit BB's.
662   BasicBlock *PixelEntryBB = nullptr;
663   BasicBlock *PixelExitBB = nullptr;
664 
665   // If we're optimizing an atomic within a pixel shader, we need to wrap the
666   // entire atomic operation in a helper-lane check. We do not want any helper
667   // lanes that are around only for the purposes of derivatives to take part
668   // in any cross-lane communication, and we use a branch on whether the lane is
669   // live to do this.
670   if (IsPixelShader) {
671     // Record I's original position as the entry block.
672     PixelEntryBB = I.getParent();
673 
674     Value *const Cond = B.CreateIntrinsic(Intrinsic::amdgcn_ps_live, {}, {});
675     Instruction *const NonHelperTerminator =
676         SplitBlockAndInsertIfThen(Cond, &I, false, nullptr, &DTU, nullptr);
677 
678     // Record I's new position as the exit block.
679     PixelExitBB = I.getParent();
680 
681     I.moveBefore(NonHelperTerminator);
682     B.SetInsertPoint(&I);
683   }
684 
685   Type *const Ty = I.getType();
686   Type *Int32Ty = B.getInt32Ty();
687   bool isAtomicFloatingPointTy = Ty->isFloatingPointTy();
688   [[maybe_unused]] const unsigned TyBitWidth = DL->getTypeSizeInBits(Ty);
689 
690   // This is the value in the atomic operation we need to combine in order to
691   // reduce the number of atomic operations.
692   Value *V = I.getOperand(ValIdx);
693 
694   // We need to know how many lanes are active within the wavefront, and we do
695   // this by doing a ballot of active lanes.
696   Type *const WaveTy = B.getIntNTy(ST->getWavefrontSize());
697   CallInst *const Ballot =
698       B.CreateIntrinsic(Intrinsic::amdgcn_ballot, WaveTy, B.getTrue());
699 
700   // We need to know how many lanes are active within the wavefront that are
701   // below us. If we counted each lane linearly starting from 0, a lane is
702   // below us only if its associated index was less than ours. We do this by
703   // using the mbcnt intrinsic.
704   Value *Mbcnt;
705   if (ST->isWave32()) {
706     Mbcnt = B.CreateIntrinsic(Intrinsic::amdgcn_mbcnt_lo, {},
707                               {Ballot, B.getInt32(0)});
708   } else {
709     Value *const ExtractLo = B.CreateTrunc(Ballot, Int32Ty);
710     Value *const ExtractHi = B.CreateTrunc(B.CreateLShr(Ballot, 32), Int32Ty);
711     Mbcnt = B.CreateIntrinsic(Intrinsic::amdgcn_mbcnt_lo, {},
712                               {ExtractLo, B.getInt32(0)});
713     Mbcnt =
714         B.CreateIntrinsic(Intrinsic::amdgcn_mbcnt_hi, {}, {ExtractHi, Mbcnt});
715   }
716 
717   Function *F = I.getFunction();
718   LLVMContext &C = F->getContext();
719 
720   // For atomic sub, perform scan with add operation and allow one lane to
721   // subtract the reduced value later.
722   AtomicRMWInst::BinOp ScanOp = Op;
723   if (Op == AtomicRMWInst::Sub) {
724     ScanOp = AtomicRMWInst::Add;
725   } else if (Op == AtomicRMWInst::FSub) {
726     ScanOp = AtomicRMWInst::FAdd;
727   }
728   Value *Identity = getIdentityValueForAtomicOp(Ty, ScanOp);
729 
730   Value *ExclScan = nullptr;
731   Value *NewV = nullptr;
732 
733   const bool NeedResult = !I.use_empty();
734 
735   BasicBlock *ComputeLoop = nullptr;
736   BasicBlock *ComputeEnd = nullptr;
737   // If we have a divergent value in each lane, we need to combine the value
738   // using DPP.
739   if (ValDivergent) {
740     if (ScanImpl == ScanOptions::DPP) {
741       // First we need to set all inactive invocations to the identity value, so
742       // that they can correctly contribute to the final result.
743       NewV =
744           B.CreateIntrinsic(Intrinsic::amdgcn_set_inactive, Ty, {V, Identity});
745       if (!NeedResult && ST->hasPermLaneX16()) {
746         // On GFX10 the permlanex16 instruction helps us build a reduction
747         // without too many readlanes and writelanes, which are generally bad
748         // for performance.
749         NewV = buildReduction(B, ScanOp, NewV, Identity);
750       } else {
751         NewV = buildScan(B, ScanOp, NewV, Identity);
752         if (NeedResult)
753           ExclScan = buildShiftRight(B, NewV, Identity);
754         // Read the value from the last lane, which has accumulated the values
755         // of each active lane in the wavefront. This will be our new value
756         // which we will provide to the atomic operation.
757         Value *const LastLaneIdx = B.getInt32(ST->getWavefrontSize() - 1);
758         assert(TyBitWidth == 32);
759         NewV = B.CreateIntrinsic(Ty, Intrinsic::amdgcn_readlane,
760                                  {NewV, LastLaneIdx});
761       }
762       // Finally mark the readlanes in the WWM section.
763       NewV = B.CreateIntrinsic(Intrinsic::amdgcn_strict_wwm, Ty, NewV);
764     } else if (ScanImpl == ScanOptions::Iterative) {
765       // Alternative implementation for scan
766       ComputeLoop = BasicBlock::Create(C, "ComputeLoop", F);
767       ComputeEnd = BasicBlock::Create(C, "ComputeEnd", F);
768       std::tie(ExclScan, NewV) = buildScanIteratively(B, ScanOp, Identity, V, I,
769                                                       ComputeLoop, ComputeEnd);
770     } else {
771       llvm_unreachable("Atomic Optimzer is disabled for None strategy");
772     }
773   } else {
774     switch (Op) {
775     default:
776       llvm_unreachable("Unhandled atomic op");
777 
778     case AtomicRMWInst::Add:
779     case AtomicRMWInst::Sub: {
780       // The new value we will be contributing to the atomic operation is the
781       // old value times the number of active lanes.
782       Value *const Ctpop = B.CreateIntCast(
783           B.CreateUnaryIntrinsic(Intrinsic::ctpop, Ballot), Ty, false);
784       NewV = buildMul(B, V, Ctpop);
785       break;
786     }
787     case AtomicRMWInst::FAdd:
788     case AtomicRMWInst::FSub: {
789       Value *const Ctpop = B.CreateIntCast(
790           B.CreateUnaryIntrinsic(Intrinsic::ctpop, Ballot), Int32Ty, false);
791       Value *const CtpopFP = B.CreateUIToFP(Ctpop, Ty);
792       NewV = B.CreateFMul(V, CtpopFP);
793       break;
794     }
795     case AtomicRMWInst::And:
796     case AtomicRMWInst::Or:
797     case AtomicRMWInst::Max:
798     case AtomicRMWInst::Min:
799     case AtomicRMWInst::UMax:
800     case AtomicRMWInst::UMin:
801     case AtomicRMWInst::FMin:
802     case AtomicRMWInst::FMax:
803       // These operations with a uniform value are idempotent: doing the atomic
804       // operation multiple times has the same effect as doing it once.
805       NewV = V;
806       break;
807 
808     case AtomicRMWInst::Xor:
809       // The new value we will be contributing to the atomic operation is the
810       // old value times the parity of the number of active lanes.
811       Value *const Ctpop = B.CreateIntCast(
812           B.CreateUnaryIntrinsic(Intrinsic::ctpop, Ballot), Ty, false);
813       NewV = buildMul(B, V, B.CreateAnd(Ctpop, 1));
814       break;
815     }
816   }
817 
818   // We only want a single lane to enter our new control flow, and we do this
819   // by checking if there are any active lanes below us. Only one lane will
820   // have 0 active lanes below us, so that will be the only one to progress.
821   Value *const Cond = B.CreateICmpEQ(Mbcnt, B.getInt32(0));
822 
823   // Store I's original basic block before we split the block.
824   BasicBlock *const OriginalBB = I.getParent();
825 
826   // We need to introduce some new control flow to force a single lane to be
827   // active. We do this by splitting I's basic block at I, and introducing the
828   // new block such that:
829   // entry --> single_lane -\
830   //       \------------------> exit
831   Instruction *const SingleLaneTerminator =
832       SplitBlockAndInsertIfThen(Cond, &I, false, nullptr, &DTU, nullptr);
833 
834   // At this point, we have split the I's block to allow one lane in wavefront
835   // to update the precomputed reduced value. Also, completed the codegen for
836   // new control flow i.e. iterative loop which perform reduction and scan using
837   // ComputeLoop and ComputeEnd.
838   // For the new control flow, we need to move branch instruction i.e.
839   // terminator created during SplitBlockAndInsertIfThen from I's block to
840   // ComputeEnd block. We also need to set up predecessor to next block when
841   // single lane done updating the final reduced value.
842   BasicBlock *Predecessor = nullptr;
843   if (ValDivergent && ScanImpl == ScanOptions::Iterative) {
844     // Move terminator from I's block to ComputeEnd block.
845     //
846     // OriginalBB is known to have a branch as terminator because
847     // SplitBlockAndInsertIfThen will have inserted one.
848     BranchInst *Terminator = cast<BranchInst>(OriginalBB->getTerminator());
849     B.SetInsertPoint(ComputeEnd);
850     Terminator->removeFromParent();
851     B.Insert(Terminator);
852 
853     // Branch to ComputeLoop Block unconditionally from the I's block for
854     // iterative approach.
855     B.SetInsertPoint(OriginalBB);
856     B.CreateBr(ComputeLoop);
857 
858     // Update the dominator tree for new control flow.
859     SmallVector<DominatorTree::UpdateType, 6> DomTreeUpdates(
860         {{DominatorTree::Insert, OriginalBB, ComputeLoop},
861          {DominatorTree::Insert, ComputeLoop, ComputeEnd}});
862 
863     // We're moving the terminator from EntryBB to ComputeEnd, make sure we move
864     // the DT edges as well.
865     for (auto *Succ : Terminator->successors()) {
866       DomTreeUpdates.push_back({DominatorTree::Insert, ComputeEnd, Succ});
867       DomTreeUpdates.push_back({DominatorTree::Delete, OriginalBB, Succ});
868     }
869 
870     DTU.applyUpdates(DomTreeUpdates);
871 
872     Predecessor = ComputeEnd;
873   } else {
874     Predecessor = OriginalBB;
875   }
876   // Move the IR builder into single_lane next.
877   B.SetInsertPoint(SingleLaneTerminator);
878 
879   // Clone the original atomic operation into single lane, replacing the
880   // original value with our newly created one.
881   Instruction *const NewI = I.clone();
882   B.Insert(NewI);
883   NewI->setOperand(ValIdx, NewV);
884 
885   // Move the IR builder into exit next, and start inserting just before the
886   // original instruction.
887   B.SetInsertPoint(&I);
888 
889   if (NeedResult) {
890     // Create a PHI node to get our new atomic result into the exit block.
891     PHINode *const PHI = B.CreatePHI(Ty, 2);
892     PHI->addIncoming(PoisonValue::get(Ty), Predecessor);
893     PHI->addIncoming(NewI, SingleLaneTerminator->getParent());
894 
895     // We need to broadcast the value who was the lowest active lane (the first
896     // lane) to all other lanes in the wavefront. We use an intrinsic for this,
897     // but have to handle 64-bit broadcasts with two calls to this intrinsic.
898     Value *BroadcastI = nullptr;
899     BroadcastI = B.CreateIntrinsic(Ty, Intrinsic::amdgcn_readfirstlane, PHI);
900 
901     // Now that we have the result of our single atomic operation, we need to
902     // get our individual lane's slice into the result. We use the lane offset
903     // we previously calculated combined with the atomic result value we got
904     // from the first lane, to get our lane's index into the atomic result.
905     Value *LaneOffset = nullptr;
906     if (ValDivergent) {
907       if (ScanImpl == ScanOptions::DPP) {
908         LaneOffset =
909             B.CreateIntrinsic(Intrinsic::amdgcn_strict_wwm, Ty, ExclScan);
910       } else if (ScanImpl == ScanOptions::Iterative) {
911         LaneOffset = ExclScan;
912       } else {
913         llvm_unreachable("Atomic Optimzer is disabled for None strategy");
914       }
915     } else {
916       Mbcnt = isAtomicFloatingPointTy ? B.CreateUIToFP(Mbcnt, Ty)
917                                       : B.CreateIntCast(Mbcnt, Ty, false);
918       switch (Op) {
919       default:
920         llvm_unreachable("Unhandled atomic op");
921       case AtomicRMWInst::Add:
922       case AtomicRMWInst::Sub:
923         LaneOffset = buildMul(B, V, Mbcnt);
924         break;
925       case AtomicRMWInst::And:
926       case AtomicRMWInst::Or:
927       case AtomicRMWInst::Max:
928       case AtomicRMWInst::Min:
929       case AtomicRMWInst::UMax:
930       case AtomicRMWInst::UMin:
931       case AtomicRMWInst::FMin:
932       case AtomicRMWInst::FMax:
933         LaneOffset = B.CreateSelect(Cond, Identity, V);
934         break;
935       case AtomicRMWInst::Xor:
936         LaneOffset = buildMul(B, V, B.CreateAnd(Mbcnt, 1));
937         break;
938       case AtomicRMWInst::FAdd:
939       case AtomicRMWInst::FSub: {
940         // FIXME: This path is currently disabled in visitAtomicRMWInst because
941         // of problems calculating the first active lane of the result (where
942         // Mbcnt is 0):
943         // - If V is infinity or NaN we will return NaN instead of BroadcastI.
944         // - If BroadcastI is -0.0 and V is positive we will return +0.0 instead
945         //   of -0.0.
946         LaneOffset = B.CreateFMul(V, Mbcnt);
947         break;
948       }
949       }
950     }
951     Value *const Result = buildNonAtomicBinOp(B, Op, BroadcastI, LaneOffset);
952 
953     if (IsPixelShader) {
954       // Need a final PHI to reconverge to above the helper lane branch mask.
955       B.SetInsertPoint(PixelExitBB, PixelExitBB->getFirstNonPHIIt());
956 
957       PHINode *const PHI = B.CreatePHI(Ty, 2);
958       PHI->addIncoming(PoisonValue::get(Ty), PixelEntryBB);
959       PHI->addIncoming(Result, I.getParent());
960       I.replaceAllUsesWith(PHI);
961     } else {
962       // Replace the original atomic instruction with the new one.
963       I.replaceAllUsesWith(Result);
964     }
965   }
966 
967   // And delete the original.
968   I.eraseFromParent();
969 }
970 
971 INITIALIZE_PASS_BEGIN(AMDGPUAtomicOptimizer, DEBUG_TYPE,
972                       "AMDGPU atomic optimizations", false, false)
973 INITIALIZE_PASS_DEPENDENCY(UniformityInfoWrapperPass)
974 INITIALIZE_PASS_DEPENDENCY(TargetPassConfig)
975 INITIALIZE_PASS_END(AMDGPUAtomicOptimizer, DEBUG_TYPE,
976                     "AMDGPU atomic optimizations", false, false)
977 
978 FunctionPass *llvm::createAMDGPUAtomicOptimizerPass(ScanOptions ScanStrategy) {
979   return new AMDGPUAtomicOptimizer(ScanStrategy);
980 }
981