xref: /llvm-project/llvm/lib/Support/StringRef.cpp (revision 1b97645e56bf321b06d1353024339958b64fd242)
1 //===-- StringRef.cpp - Lightweight String References ---------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "llvm/ADT/StringRef.h"
10 #include "llvm/ADT/APFloat.h"
11 #include "llvm/ADT/APInt.h"
12 #include "llvm/ADT/Hashing.h"
13 #include "llvm/ADT/StringExtras.h"
14 #include "llvm/ADT/edit_distance.h"
15 #include "llvm/Support/Error.h"
16 #include <bitset>
17 
18 using namespace llvm;
19 
20 // MSVC emits references to this into the translation units which reference it.
21 #ifndef _MSC_VER
22 constexpr size_t StringRef::npos;
23 #endif
24 
25 // strncasecmp() is not available on non-POSIX systems, so define an
26 // alternative function here.
27 static int ascii_strncasecmp(const char *LHS, const char *RHS, size_t Length) {
28   for (size_t I = 0; I < Length; ++I) {
29     unsigned char LHC = toLower(LHS[I]);
30     unsigned char RHC = toLower(RHS[I]);
31     if (LHC != RHC)
32       return LHC < RHC ? -1 : 1;
33   }
34   return 0;
35 }
36 
37 int StringRef::compare_insensitive(StringRef RHS) const {
38   if (int Res = ascii_strncasecmp(Data, RHS.Data, std::min(Length, RHS.Length)))
39     return Res;
40   if (Length == RHS.Length)
41     return 0;
42   return Length < RHS.Length ? -1 : 1;
43 }
44 
45 bool StringRef::starts_with_insensitive(StringRef Prefix) const {
46   return Length >= Prefix.Length &&
47       ascii_strncasecmp(Data, Prefix.Data, Prefix.Length) == 0;
48 }
49 
50 bool StringRef::ends_with_insensitive(StringRef Suffix) const {
51   return Length >= Suffix.Length &&
52       ascii_strncasecmp(end() - Suffix.Length, Suffix.Data, Suffix.Length) == 0;
53 }
54 
55 size_t StringRef::find_insensitive(char C, size_t From) const {
56   char L = toLower(C);
57   return find_if([L](char D) { return toLower(D) == L; }, From);
58 }
59 
60 /// compare_numeric - Compare strings, handle embedded numbers.
61 int StringRef::compare_numeric(StringRef RHS) const {
62   for (size_t I = 0, E = std::min(Length, RHS.Length); I != E; ++I) {
63     // Check for sequences of digits.
64     if (isDigit(Data[I]) && isDigit(RHS.Data[I])) {
65       // The longer sequence of numbers is considered larger.
66       // This doesn't really handle prefixed zeros well.
67       size_t J;
68       for (J = I + 1; J != E + 1; ++J) {
69         bool ld = J < Length && isDigit(Data[J]);
70         bool rd = J < RHS.Length && isDigit(RHS.Data[J]);
71         if (ld != rd)
72           return rd ? -1 : 1;
73         if (!rd)
74           break;
75       }
76       // The two number sequences have the same length (J-I), just memcmp them.
77       if (int Res = compareMemory(Data + I, RHS.Data + I, J - I))
78         return Res < 0 ? -1 : 1;
79       // Identical number sequences, continue search after the numbers.
80       I = J - 1;
81       continue;
82     }
83     if (Data[I] != RHS.Data[I])
84       return (unsigned char)Data[I] < (unsigned char)RHS.Data[I] ? -1 : 1;
85   }
86   if (Length == RHS.Length)
87     return 0;
88   return Length < RHS.Length ? -1 : 1;
89 }
90 
91 // Compute the edit distance between the two given strings.
92 unsigned StringRef::edit_distance(llvm::StringRef Other,
93                                   bool AllowReplacements,
94                                   unsigned MaxEditDistance) const {
95   return llvm::ComputeEditDistance(
96       makeArrayRef(data(), size()),
97       makeArrayRef(Other.data(), Other.size()),
98       AllowReplacements, MaxEditDistance);
99 }
100 
101 unsigned llvm::StringRef::edit_distance_insensitive(
102     StringRef Other, bool AllowReplacements, unsigned MaxEditDistance) const {
103   return llvm::ComputeMappedEditDistance(
104       makeArrayRef(data(), size()), makeArrayRef(Other.data(), Other.size()),
105       llvm::toLower, AllowReplacements, MaxEditDistance);
106 }
107 
108 //===----------------------------------------------------------------------===//
109 // String Operations
110 //===----------------------------------------------------------------------===//
111 
112 std::string StringRef::lower() const {
113   return std::string(map_iterator(begin(), toLower),
114                      map_iterator(end(), toLower));
115 }
116 
117 std::string StringRef::upper() const {
118   return std::string(map_iterator(begin(), toUpper),
119                      map_iterator(end(), toUpper));
120 }
121 
122 //===----------------------------------------------------------------------===//
123 // String Searching
124 //===----------------------------------------------------------------------===//
125 
126 
127 /// find - Search for the first string \arg Str in the string.
128 ///
129 /// \return - The index of the first occurrence of \arg Str, or npos if not
130 /// found.
131 size_t StringRef::find(StringRef Str, size_t From) const {
132   if (From > Length)
133     return npos;
134 
135   const char *Start = Data + From;
136   size_t Size = Length - From;
137 
138   const char *Needle = Str.data();
139   size_t N = Str.size();
140   if (N == 0)
141     return From;
142   if (Size < N)
143     return npos;
144   if (N == 1) {
145     const char *Ptr = (const char *)::memchr(Start, Needle[0], Size);
146     return Ptr == nullptr ? npos : Ptr - Data;
147   }
148 
149   const char *Stop = Start + (Size - N + 1);
150 
151   if (N == 2) {
152     // Provide a fast path for newline finding (CRLF case) in InclusionRewriter.
153     // Not the most optimized strategy, but getting memcmp inlined should be
154     // good enough.
155     do {
156       if (std::memcmp(Start, Needle, 2) == 0)
157         return Start - Data;
158       ++Start;
159     } while (Start < Stop);
160     return npos;
161   }
162 
163   // For short haystacks or unsupported needles fall back to the naive algorithm
164   if (Size < 16 || N > 255) {
165     do {
166       if (std::memcmp(Start, Needle, N) == 0)
167         return Start - Data;
168       ++Start;
169     } while (Start < Stop);
170     return npos;
171   }
172 
173   // Build the bad char heuristic table, with uint8_t to reduce cache thrashing.
174   uint8_t BadCharSkip[256];
175   std::memset(BadCharSkip, N, 256);
176   for (unsigned i = 0; i != N-1; ++i)
177     BadCharSkip[(uint8_t)Str[i]] = N-1-i;
178 
179   do {
180     uint8_t Last = Start[N - 1];
181     if (LLVM_UNLIKELY(Last == (uint8_t)Needle[N - 1]))
182       if (std::memcmp(Start, Needle, N - 1) == 0)
183         return Start - Data;
184 
185     // Otherwise skip the appropriate number of bytes.
186     Start += BadCharSkip[Last];
187   } while (Start < Stop);
188 
189   return npos;
190 }
191 
192 size_t StringRef::find_insensitive(StringRef Str, size_t From) const {
193   StringRef This = substr(From);
194   while (This.size() >= Str.size()) {
195     if (This.startswith_insensitive(Str))
196       return From;
197     This = This.drop_front();
198     ++From;
199   }
200   return npos;
201 }
202 
203 size_t StringRef::rfind_insensitive(char C, size_t From) const {
204   From = std::min(From, Length);
205   size_t i = From;
206   while (i != 0) {
207     --i;
208     if (toLower(Data[i]) == toLower(C))
209       return i;
210   }
211   return npos;
212 }
213 
214 /// rfind - Search for the last string \arg Str in the string.
215 ///
216 /// \return - The index of the last occurrence of \arg Str, or npos if not
217 /// found.
218 size_t StringRef::rfind(StringRef Str) const {
219   size_t N = Str.size();
220   if (N > Length)
221     return npos;
222   for (size_t i = Length - N + 1, e = 0; i != e;) {
223     --i;
224     if (substr(i, N).equals(Str))
225       return i;
226   }
227   return npos;
228 }
229 
230 size_t StringRef::rfind_insensitive(StringRef Str) const {
231   size_t N = Str.size();
232   if (N > Length)
233     return npos;
234   for (size_t i = Length - N + 1, e = 0; i != e;) {
235     --i;
236     if (substr(i, N).equals_insensitive(Str))
237       return i;
238   }
239   return npos;
240 }
241 
242 /// find_first_of - Find the first character in the string that is in \arg
243 /// Chars, or npos if not found.
244 ///
245 /// Note: O(size() + Chars.size())
246 StringRef::size_type StringRef::find_first_of(StringRef Chars,
247                                               size_t From) const {
248   std::bitset<1 << CHAR_BIT> CharBits;
249   for (char C : Chars)
250     CharBits.set((unsigned char)C);
251 
252   for (size_type i = std::min(From, Length), e = Length; i != e; ++i)
253     if (CharBits.test((unsigned char)Data[i]))
254       return i;
255   return npos;
256 }
257 
258 /// find_first_not_of - Find the first character in the string that is not
259 /// \arg C or npos if not found.
260 StringRef::size_type StringRef::find_first_not_of(char C, size_t From) const {
261   for (size_type i = std::min(From, Length), e = Length; i != e; ++i)
262     if (Data[i] != C)
263       return i;
264   return npos;
265 }
266 
267 /// find_first_not_of - Find the first character in the string that is not
268 /// in the string \arg Chars, or npos if not found.
269 ///
270 /// Note: O(size() + Chars.size())
271 StringRef::size_type StringRef::find_first_not_of(StringRef Chars,
272                                                   size_t From) const {
273   std::bitset<1 << CHAR_BIT> CharBits;
274   for (char C : Chars)
275     CharBits.set((unsigned char)C);
276 
277   for (size_type i = std::min(From, Length), e = Length; i != e; ++i)
278     if (!CharBits.test((unsigned char)Data[i]))
279       return i;
280   return npos;
281 }
282 
283 /// find_last_of - Find the last character in the string that is in \arg C,
284 /// or npos if not found.
285 ///
286 /// Note: O(size() + Chars.size())
287 StringRef::size_type StringRef::find_last_of(StringRef Chars,
288                                              size_t From) const {
289   std::bitset<1 << CHAR_BIT> CharBits;
290   for (char C : Chars)
291     CharBits.set((unsigned char)C);
292 
293   for (size_type i = std::min(From, Length) - 1, e = -1; i != e; --i)
294     if (CharBits.test((unsigned char)Data[i]))
295       return i;
296   return npos;
297 }
298 
299 /// find_last_not_of - Find the last character in the string that is not
300 /// \arg C, or npos if not found.
301 StringRef::size_type StringRef::find_last_not_of(char C, size_t From) const {
302   for (size_type i = std::min(From, Length) - 1, e = -1; i != e; --i)
303     if (Data[i] != C)
304       return i;
305   return npos;
306 }
307 
308 /// find_last_not_of - Find the last character in the string that is not in
309 /// \arg Chars, or npos if not found.
310 ///
311 /// Note: O(size() + Chars.size())
312 StringRef::size_type StringRef::find_last_not_of(StringRef Chars,
313                                                  size_t From) const {
314   std::bitset<1 << CHAR_BIT> CharBits;
315   for (char C : Chars)
316     CharBits.set((unsigned char)C);
317 
318   for (size_type i = std::min(From, Length) - 1, e = -1; i != e; --i)
319     if (!CharBits.test((unsigned char)Data[i]))
320       return i;
321   return npos;
322 }
323 
324 void StringRef::split(SmallVectorImpl<StringRef> &A,
325                       StringRef Separator, int MaxSplit,
326                       bool KeepEmpty) const {
327   StringRef S = *this;
328 
329   // Count down from MaxSplit. When MaxSplit is -1, this will just split
330   // "forever". This doesn't support splitting more than 2^31 times
331   // intentionally; if we ever want that we can make MaxSplit a 64-bit integer
332   // but that seems unlikely to be useful.
333   while (MaxSplit-- != 0) {
334     size_t Idx = S.find(Separator);
335     if (Idx == npos)
336       break;
337 
338     // Push this split.
339     if (KeepEmpty || Idx > 0)
340       A.push_back(S.slice(0, Idx));
341 
342     // Jump forward.
343     S = S.slice(Idx + Separator.size(), npos);
344   }
345 
346   // Push the tail.
347   if (KeepEmpty || !S.empty())
348     A.push_back(S);
349 }
350 
351 void StringRef::split(SmallVectorImpl<StringRef> &A, char Separator,
352                       int MaxSplit, bool KeepEmpty) const {
353   StringRef S = *this;
354 
355   // Count down from MaxSplit. When MaxSplit is -1, this will just split
356   // "forever". This doesn't support splitting more than 2^31 times
357   // intentionally; if we ever want that we can make MaxSplit a 64-bit integer
358   // but that seems unlikely to be useful.
359   while (MaxSplit-- != 0) {
360     size_t Idx = S.find(Separator);
361     if (Idx == npos)
362       break;
363 
364     // Push this split.
365     if (KeepEmpty || Idx > 0)
366       A.push_back(S.slice(0, Idx));
367 
368     // Jump forward.
369     S = S.slice(Idx + 1, npos);
370   }
371 
372   // Push the tail.
373   if (KeepEmpty || !S.empty())
374     A.push_back(S);
375 }
376 
377 //===----------------------------------------------------------------------===//
378 // Helpful Algorithms
379 //===----------------------------------------------------------------------===//
380 
381 /// count - Return the number of non-overlapped occurrences of \arg Str in
382 /// the string.
383 size_t StringRef::count(StringRef Str) const {
384   size_t Count = 0;
385   size_t N = Str.size();
386   if (!N || N > Length)
387     return 0;
388   for (size_t i = 0, e = Length - N + 1; i < e;) {
389     if (substr(i, N).equals(Str)) {
390       ++Count;
391       i += N;
392     }
393     else
394       ++i;
395   }
396   return Count;
397 }
398 
399 static unsigned GetAutoSenseRadix(StringRef &Str) {
400   if (Str.empty())
401     return 10;
402 
403   if (Str.startswith("0x") || Str.startswith("0X")) {
404     Str = Str.substr(2);
405     return 16;
406   }
407 
408   if (Str.startswith("0b") || Str.startswith("0B")) {
409     Str = Str.substr(2);
410     return 2;
411   }
412 
413   if (Str.startswith("0o")) {
414     Str = Str.substr(2);
415     return 8;
416   }
417 
418   if (Str[0] == '0' && Str.size() > 1 && isDigit(Str[1])) {
419     Str = Str.substr(1);
420     return 8;
421   }
422 
423   return 10;
424 }
425 
426 bool llvm::consumeUnsignedInteger(StringRef &Str, unsigned Radix,
427                                   unsigned long long &Result) {
428   // Autosense radix if not specified.
429   if (Radix == 0)
430     Radix = GetAutoSenseRadix(Str);
431 
432   // Empty strings (after the radix autosense) are invalid.
433   if (Str.empty()) return true;
434 
435   // Parse all the bytes of the string given this radix.  Watch for overflow.
436   StringRef Str2 = Str;
437   Result = 0;
438   while (!Str2.empty()) {
439     unsigned CharVal;
440     if (Str2[0] >= '0' && Str2[0] <= '9')
441       CharVal = Str2[0] - '0';
442     else if (Str2[0] >= 'a' && Str2[0] <= 'z')
443       CharVal = Str2[0] - 'a' + 10;
444     else if (Str2[0] >= 'A' && Str2[0] <= 'Z')
445       CharVal = Str2[0] - 'A' + 10;
446     else
447       break;
448 
449     // If the parsed value is larger than the integer radix, we cannot
450     // consume any more characters.
451     if (CharVal >= Radix)
452       break;
453 
454     // Add in this character.
455     unsigned long long PrevResult = Result;
456     Result = Result * Radix + CharVal;
457 
458     // Check for overflow by shifting back and seeing if bits were lost.
459     if (Result / Radix < PrevResult)
460       return true;
461 
462     Str2 = Str2.substr(1);
463   }
464 
465   // We consider the operation a failure if no characters were consumed
466   // successfully.
467   if (Str.size() == Str2.size())
468     return true;
469 
470   Str = Str2;
471   return false;
472 }
473 
474 bool llvm::consumeSignedInteger(StringRef &Str, unsigned Radix,
475                                 long long &Result) {
476   unsigned long long ULLVal;
477 
478   // Handle positive strings first.
479   if (Str.empty() || Str.front() != '-') {
480     if (consumeUnsignedInteger(Str, Radix, ULLVal) ||
481         // Check for value so large it overflows a signed value.
482         (long long)ULLVal < 0)
483       return true;
484     Result = ULLVal;
485     return false;
486   }
487 
488   // Get the positive part of the value.
489   StringRef Str2 = Str.drop_front(1);
490   if (consumeUnsignedInteger(Str2, Radix, ULLVal) ||
491       // Reject values so large they'd overflow as negative signed, but allow
492       // "-0".  This negates the unsigned so that the negative isn't undefined
493       // on signed overflow.
494       (long long)-ULLVal > 0)
495     return true;
496 
497   Str = Str2;
498   Result = -ULLVal;
499   return false;
500 }
501 
502 /// GetAsUnsignedInteger - Workhorse method that converts a integer character
503 /// sequence of radix up to 36 to an unsigned long long value.
504 bool llvm::getAsUnsignedInteger(StringRef Str, unsigned Radix,
505                                 unsigned long long &Result) {
506   if (consumeUnsignedInteger(Str, Radix, Result))
507     return true;
508 
509   // For getAsUnsignedInteger, we require the whole string to be consumed or
510   // else we consider it a failure.
511   return !Str.empty();
512 }
513 
514 bool llvm::getAsSignedInteger(StringRef Str, unsigned Radix,
515                               long long &Result) {
516   if (consumeSignedInteger(Str, Radix, Result))
517     return true;
518 
519   // For getAsSignedInteger, we require the whole string to be consumed or else
520   // we consider it a failure.
521   return !Str.empty();
522 }
523 
524 bool StringRef::getAsInteger(unsigned Radix, APInt &Result) const {
525   StringRef Str = *this;
526 
527   // Autosense radix if not specified.
528   if (Radix == 0)
529     Radix = GetAutoSenseRadix(Str);
530 
531   assert(Radix > 1 && Radix <= 36);
532 
533   // Empty strings (after the radix autosense) are invalid.
534   if (Str.empty()) return true;
535 
536   // Skip leading zeroes.  This can be a significant improvement if
537   // it means we don't need > 64 bits.
538   while (!Str.empty() && Str.front() == '0')
539     Str = Str.substr(1);
540 
541   // If it was nothing but zeroes....
542   if (Str.empty()) {
543     Result = APInt(64, 0);
544     return false;
545   }
546 
547   // (Over-)estimate the required number of bits.
548   unsigned Log2Radix = 0;
549   while ((1U << Log2Radix) < Radix) Log2Radix++;
550   bool IsPowerOf2Radix = ((1U << Log2Radix) == Radix);
551 
552   unsigned BitWidth = Log2Radix * Str.size();
553   if (BitWidth < Result.getBitWidth())
554     BitWidth = Result.getBitWidth(); // don't shrink the result
555   else if (BitWidth > Result.getBitWidth())
556     Result = Result.zext(BitWidth);
557 
558   APInt RadixAP, CharAP; // unused unless !IsPowerOf2Radix
559   if (!IsPowerOf2Radix) {
560     // These must have the same bit-width as Result.
561     RadixAP = APInt(BitWidth, Radix);
562     CharAP = APInt(BitWidth, 0);
563   }
564 
565   // Parse all the bytes of the string given this radix.
566   Result = 0;
567   while (!Str.empty()) {
568     unsigned CharVal;
569     if (Str[0] >= '0' && Str[0] <= '9')
570       CharVal = Str[0]-'0';
571     else if (Str[0] >= 'a' && Str[0] <= 'z')
572       CharVal = Str[0]-'a'+10;
573     else if (Str[0] >= 'A' && Str[0] <= 'Z')
574       CharVal = Str[0]-'A'+10;
575     else
576       return true;
577 
578     // If the parsed value is larger than the integer radix, the string is
579     // invalid.
580     if (CharVal >= Radix)
581       return true;
582 
583     // Add in this character.
584     if (IsPowerOf2Radix) {
585       Result <<= Log2Radix;
586       Result |= CharVal;
587     } else {
588       Result *= RadixAP;
589       CharAP = CharVal;
590       Result += CharAP;
591     }
592 
593     Str = Str.substr(1);
594   }
595 
596   return false;
597 }
598 
599 bool StringRef::getAsDouble(double &Result, bool AllowInexact) const {
600   APFloat F(0.0);
601   auto StatusOrErr = F.convertFromString(*this, APFloat::rmNearestTiesToEven);
602   if (errorToBool(StatusOrErr.takeError()))
603     return true;
604 
605   APFloat::opStatus Status = *StatusOrErr;
606   if (Status != APFloat::opOK) {
607     if (!AllowInexact || !(Status & APFloat::opInexact))
608       return true;
609   }
610 
611   Result = F.convertToDouble();
612   return false;
613 }
614 
615 // Implementation of StringRef hashing.
616 hash_code llvm::hash_value(StringRef S) {
617   return hash_combine_range(S.begin(), S.end());
618 }
619 
620 unsigned DenseMapInfo<StringRef, void>::getHashValue(StringRef Val) {
621   assert(Val.data() != getEmptyKey().data() &&
622          "Cannot hash the empty key!");
623   assert(Val.data() != getTombstoneKey().data() &&
624          "Cannot hash the tombstone key!");
625   return (unsigned)(hash_value(Val));
626 }
627