1 //===- llvm/Support/Parallel.cpp - Parallel algorithms --------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "llvm/Support/Parallel.h" 10 #include "llvm/Config/llvm-config.h" 11 #include "llvm/Support/ManagedStatic.h" 12 #include "llvm/Support/Threading.h" 13 14 #include <atomic> 15 #include <future> 16 #include <stack> 17 #include <thread> 18 #include <vector> 19 20 llvm::ThreadPoolStrategy llvm::parallel::strategy; 21 22 namespace llvm { 23 namespace parallel { 24 #if LLVM_ENABLE_THREADS 25 26 #ifdef _WIN32 27 static thread_local unsigned threadIndex; 28 29 unsigned getThreadIndex() { return threadIndex; } 30 #else 31 thread_local unsigned threadIndex; 32 #endif 33 34 namespace detail { 35 36 namespace { 37 38 /// An abstract class that takes closures and runs them asynchronously. 39 class Executor { 40 public: 41 virtual ~Executor() = default; 42 virtual void add(std::function<void()> func) = 0; 43 44 static Executor *getDefaultExecutor(); 45 }; 46 47 /// An implementation of an Executor that runs closures on a thread pool 48 /// in filo order. 49 class ThreadPoolExecutor : public Executor { 50 public: 51 explicit ThreadPoolExecutor(ThreadPoolStrategy S = hardware_concurrency()) { 52 unsigned ThreadCount = S.compute_thread_count(); 53 // Spawn all but one of the threads in another thread as spawning threads 54 // can take a while. 55 Threads.reserve(ThreadCount); 56 Threads.resize(1); 57 std::lock_guard<std::mutex> Lock(Mutex); 58 // Use operator[] before creating the thread to avoid data race in .size() 59 // in “safe libc++” mode. 60 auto& Thread0 = Threads[0]; 61 Thread0 = std::thread([this, ThreadCount, S] { 62 for (unsigned I = 1; I < ThreadCount; ++I) { 63 Threads.emplace_back([=] { work(S, I); }); 64 if (Stop) 65 break; 66 } 67 ThreadsCreated.set_value(); 68 work(S, 0); 69 }); 70 } 71 72 void stop() { 73 { 74 std::lock_guard<std::mutex> Lock(Mutex); 75 if (Stop) 76 return; 77 Stop = true; 78 } 79 Cond.notify_all(); 80 ThreadsCreated.get_future().wait(); 81 } 82 83 ~ThreadPoolExecutor() override { 84 stop(); 85 std::thread::id CurrentThreadId = std::this_thread::get_id(); 86 for (std::thread &T : Threads) 87 if (T.get_id() == CurrentThreadId) 88 T.detach(); 89 else 90 T.join(); 91 } 92 93 struct Creator { 94 static void *call() { return new ThreadPoolExecutor(strategy); } 95 }; 96 struct Deleter { 97 static void call(void *Ptr) { ((ThreadPoolExecutor *)Ptr)->stop(); } 98 }; 99 100 void add(std::function<void()> F) override { 101 { 102 std::lock_guard<std::mutex> Lock(Mutex); 103 WorkStack.push(std::move(F)); 104 } 105 Cond.notify_one(); 106 } 107 108 private: 109 void work(ThreadPoolStrategy S, unsigned ThreadID) { 110 threadIndex = ThreadID; 111 S.apply_thread_strategy(ThreadID); 112 while (true) { 113 std::unique_lock<std::mutex> Lock(Mutex); 114 Cond.wait(Lock, [&] { return Stop || !WorkStack.empty(); }); 115 if (Stop) 116 break; 117 auto Task = std::move(WorkStack.top()); 118 WorkStack.pop(); 119 Lock.unlock(); 120 Task(); 121 } 122 } 123 124 std::atomic<bool> Stop{false}; 125 std::stack<std::function<void()>> WorkStack; 126 std::mutex Mutex; 127 std::condition_variable Cond; 128 std::promise<void> ThreadsCreated; 129 std::vector<std::thread> Threads; 130 }; 131 132 Executor *Executor::getDefaultExecutor() { 133 // The ManagedStatic enables the ThreadPoolExecutor to be stopped via 134 // llvm_shutdown() which allows a "clean" fast exit, e.g. via _exit(). This 135 // stops the thread pool and waits for any worker thread creation to complete 136 // but does not wait for the threads to finish. The wait for worker thread 137 // creation to complete is important as it prevents intermittent crashes on 138 // Windows due to a race condition between thread creation and process exit. 139 // 140 // The ThreadPoolExecutor will only be destroyed when the static unique_ptr to 141 // it is destroyed, i.e. in a normal full exit. The ThreadPoolExecutor 142 // destructor ensures it has been stopped and waits for worker threads to 143 // finish. The wait is important as it prevents intermittent crashes on 144 // Windows when the process is doing a full exit. 145 // 146 // The Windows crashes appear to only occur with the MSVC static runtimes and 147 // are more frequent with the debug static runtime. 148 // 149 // This also prevents intermittent deadlocks on exit with the MinGW runtime. 150 151 static ManagedStatic<ThreadPoolExecutor, ThreadPoolExecutor::Creator, 152 ThreadPoolExecutor::Deleter> 153 ManagedExec; 154 static std::unique_ptr<ThreadPoolExecutor> Exec(&(*ManagedExec)); 155 return Exec.get(); 156 } 157 } // namespace 158 } // namespace detail 159 #endif 160 161 static std::atomic<int> TaskGroupInstances; 162 163 // Latch::sync() called by the dtor may cause one thread to block. If is a dead 164 // lock if all threads in the default executor are blocked. To prevent the dead 165 // lock, only allow the first TaskGroup to run tasks parallelly. In the scenario 166 // of nested parallel_for_each(), only the outermost one runs parallelly. 167 TaskGroup::TaskGroup() : Parallel(TaskGroupInstances++ == 0) {} 168 TaskGroup::~TaskGroup() { 169 // We must ensure that all the workloads have finished before decrementing the 170 // instances count. 171 L.sync(); 172 --TaskGroupInstances; 173 } 174 175 void TaskGroup::spawn(std::function<void()> F) { 176 #if LLVM_ENABLE_THREADS 177 if (Parallel) { 178 L.inc(); 179 detail::Executor::getDefaultExecutor()->add([&, F = std::move(F)] { 180 F(); 181 L.dec(); 182 }); 183 return; 184 } 185 #endif 186 F(); 187 } 188 189 void TaskGroup::execute(std::function<void()> F) { 190 if (parallel::strategy.ThreadsRequested == 1) 191 F(); 192 else 193 spawn(F); 194 } 195 } // namespace parallel 196 } // namespace llvm 197 198 void llvm::parallelFor(size_t Begin, size_t End, 199 llvm::function_ref<void(size_t)> Fn) { 200 // If we have zero or one items, then do not incur the overhead of spinning up 201 // a task group. They are surprisingly expensive, and because they do not 202 // support nested parallelism, a single entry task group can block parallel 203 // execution underneath them. 204 #if LLVM_ENABLE_THREADS 205 auto NumItems = End - Begin; 206 if (NumItems > 1 && parallel::strategy.ThreadsRequested != 1) { 207 // Limit the number of tasks to MaxTasksPerGroup to limit job scheduling 208 // overhead on large inputs. 209 auto TaskSize = NumItems / parallel::detail::MaxTasksPerGroup; 210 if (TaskSize == 0) 211 TaskSize = 1; 212 213 parallel::TaskGroup TG; 214 for (; Begin + TaskSize < End; Begin += TaskSize) { 215 TG.spawn([=, &Fn] { 216 for (size_t I = Begin, E = Begin + TaskSize; I != E; ++I) 217 Fn(I); 218 }); 219 } 220 if (Begin != End) { 221 TG.spawn([=, &Fn] { 222 for (size_t I = Begin; I != End; ++I) 223 Fn(I); 224 }); 225 } 226 return; 227 } 228 #endif 229 230 for (; Begin != End; ++Begin) 231 Fn(Begin); 232 } 233