xref: /llvm-project/llvm/lib/Support/Parallel.cpp (revision 06b617064a997574df409c7d846b6f6b492f5124)
1 //===- llvm/Support/Parallel.cpp - Parallel algorithms --------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "llvm/Support/Parallel.h"
10 #include "llvm/Config/llvm-config.h"
11 #include "llvm/Support/ManagedStatic.h"
12 #include "llvm/Support/Threading.h"
13 
14 #include <atomic>
15 #include <deque>
16 #include <future>
17 #include <thread>
18 #include <vector>
19 
20 llvm::ThreadPoolStrategy llvm::parallel::strategy;
21 
22 namespace llvm {
23 namespace parallel {
24 #if LLVM_ENABLE_THREADS
25 
26 #ifdef _WIN32
27 static thread_local unsigned threadIndex = UINT_MAX;
28 
29 unsigned getThreadIndex() { GET_THREAD_INDEX_IMPL; }
30 #else
31 thread_local unsigned threadIndex = UINT_MAX;
32 #endif
33 
34 namespace detail {
35 
36 namespace {
37 
38 /// An abstract class that takes closures and runs them asynchronously.
39 class Executor {
40 public:
41   virtual ~Executor() = default;
42   virtual void add(std::function<void()> func, bool Sequential = false) = 0;
43 
44   static Executor *getDefaultExecutor();
45 };
46 
47 /// An implementation of an Executor that runs closures on a thread pool
48 ///   in filo order.
49 class ThreadPoolExecutor : public Executor {
50 public:
51   explicit ThreadPoolExecutor(ThreadPoolStrategy S = hardware_concurrency()) {
52     unsigned ThreadCount = S.compute_thread_count();
53     // Spawn all but one of the threads in another thread as spawning threads
54     // can take a while.
55     Threads.reserve(ThreadCount);
56     Threads.resize(1);
57     std::lock_guard<std::mutex> Lock(Mutex);
58     // Use operator[] before creating the thread to avoid data race in .size()
59     // in “safe libc++” mode.
60     auto &Thread0 = Threads[0];
61     Thread0 = std::thread([this, ThreadCount, S] {
62       for (unsigned I = 1; I < ThreadCount; ++I) {
63         Threads.emplace_back([=] { work(S, I); });
64         if (Stop)
65           break;
66       }
67       ThreadsCreated.set_value();
68       work(S, 0);
69     });
70   }
71 
72   void stop() {
73     {
74       std::lock_guard<std::mutex> Lock(Mutex);
75       if (Stop)
76         return;
77       Stop = true;
78     }
79     Cond.notify_all();
80     ThreadsCreated.get_future().wait();
81   }
82 
83   ~ThreadPoolExecutor() override {
84     stop();
85     std::thread::id CurrentThreadId = std::this_thread::get_id();
86     for (std::thread &T : Threads)
87       if (T.get_id() == CurrentThreadId)
88         T.detach();
89       else
90         T.join();
91   }
92 
93   struct Creator {
94     static void *call() { return new ThreadPoolExecutor(strategy); }
95   };
96   struct Deleter {
97     static void call(void *Ptr) { ((ThreadPoolExecutor *)Ptr)->stop(); }
98   };
99 
100   void add(std::function<void()> F, bool Sequential = false) override {
101     {
102       std::lock_guard<std::mutex> Lock(Mutex);
103       if (Sequential)
104         WorkQueueSequential.emplace_front(std::move(F));
105       else
106         WorkQueue.emplace_back(std::move(F));
107     }
108     Cond.notify_one();
109   }
110 
111 private:
112   bool hasSequentialTasks() const {
113     return !WorkQueueSequential.empty() && !SequentialQueueIsLocked;
114   }
115 
116   bool hasGeneralTasks() const { return !WorkQueue.empty(); }
117 
118   void work(ThreadPoolStrategy S, unsigned ThreadID) {
119     threadIndex = ThreadID;
120     S.apply_thread_strategy(ThreadID);
121     while (true) {
122       std::unique_lock<std::mutex> Lock(Mutex);
123       Cond.wait(Lock, [&] {
124         return Stop || hasGeneralTasks() || hasSequentialTasks();
125       });
126       if (Stop)
127         break;
128       bool Sequential = hasSequentialTasks();
129       if (Sequential)
130         SequentialQueueIsLocked = true;
131       else
132         assert(hasGeneralTasks());
133 
134       auto &Queue = Sequential ? WorkQueueSequential : WorkQueue;
135       auto Task = std::move(Queue.back());
136       Queue.pop_back();
137       Lock.unlock();
138       Task();
139       if (Sequential)
140         SequentialQueueIsLocked = false;
141     }
142   }
143 
144   std::atomic<bool> Stop{false};
145   std::atomic<bool> SequentialQueueIsLocked{false};
146   std::deque<std::function<void()>> WorkQueue;
147   std::deque<std::function<void()>> WorkQueueSequential;
148   std::mutex Mutex;
149   std::condition_variable Cond;
150   std::promise<void> ThreadsCreated;
151   std::vector<std::thread> Threads;
152 };
153 
154 Executor *Executor::getDefaultExecutor() {
155   // The ManagedStatic enables the ThreadPoolExecutor to be stopped via
156   // llvm_shutdown() which allows a "clean" fast exit, e.g. via _exit(). This
157   // stops the thread pool and waits for any worker thread creation to complete
158   // but does not wait for the threads to finish. The wait for worker thread
159   // creation to complete is important as it prevents intermittent crashes on
160   // Windows due to a race condition between thread creation and process exit.
161   //
162   // The ThreadPoolExecutor will only be destroyed when the static unique_ptr to
163   // it is destroyed, i.e. in a normal full exit. The ThreadPoolExecutor
164   // destructor ensures it has been stopped and waits for worker threads to
165   // finish. The wait is important as it prevents intermittent crashes on
166   // Windows when the process is doing a full exit.
167   //
168   // The Windows crashes appear to only occur with the MSVC static runtimes and
169   // are more frequent with the debug static runtime.
170   //
171   // This also prevents intermittent deadlocks on exit with the MinGW runtime.
172 
173   static ManagedStatic<ThreadPoolExecutor, ThreadPoolExecutor::Creator,
174                        ThreadPoolExecutor::Deleter>
175       ManagedExec;
176   static std::unique_ptr<ThreadPoolExecutor> Exec(&(*ManagedExec));
177   return Exec.get();
178 }
179 } // namespace
180 } // namespace detail
181 #endif
182 
183 // Latch::sync() called by the dtor may cause one thread to block. If is a dead
184 // lock if all threads in the default executor are blocked. To prevent the dead
185 // lock, only allow the root TaskGroup to run tasks parallelly. In the scenario
186 // of nested parallel_for_each(), only the outermost one runs parallelly.
187 TaskGroup::TaskGroup()
188     : Parallel((parallel::strategy.ThreadsRequested != 1) &&
189                (threadIndex == UINT_MAX)) {}
190 TaskGroup::~TaskGroup() {
191   // We must ensure that all the workloads have finished before decrementing the
192   // instances count.
193   L.sync();
194 }
195 
196 void TaskGroup::spawn(std::function<void()> F, bool Sequential) {
197 #if LLVM_ENABLE_THREADS
198   if (Parallel) {
199     L.inc();
200     detail::Executor::getDefaultExecutor()->add(
201         [&, F = std::move(F)] {
202           F();
203           L.dec();
204         },
205         Sequential);
206     return;
207   }
208 #endif
209   F();
210 }
211 
212 } // namespace parallel
213 } // namespace llvm
214 
215 void llvm::parallelFor(size_t Begin, size_t End,
216                        llvm::function_ref<void(size_t)> Fn) {
217 #if LLVM_ENABLE_THREADS
218   if (parallel::strategy.ThreadsRequested != 1) {
219     auto NumItems = End - Begin;
220     // Limit the number of tasks to MaxTasksPerGroup to limit job scheduling
221     // overhead on large inputs.
222     auto TaskSize = NumItems / parallel::detail::MaxTasksPerGroup;
223     if (TaskSize == 0)
224       TaskSize = 1;
225 
226     parallel::TaskGroup TG;
227     for (; Begin + TaskSize < End; Begin += TaskSize) {
228       TG.spawn([=, &Fn] {
229         for (size_t I = Begin, E = Begin + TaskSize; I != E; ++I)
230           Fn(I);
231       });
232     }
233     if (Begin != End) {
234       TG.spawn([=, &Fn] {
235         for (size_t I = Begin; I != End; ++I)
236           Fn(I);
237       });
238     }
239     return;
240   }
241 #endif
242 
243   for (; Begin != End; ++Begin)
244     Fn(Begin);
245 }
246