1 //===-- Support/FoldingSet.cpp - Uniquing Hash Set --------------*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements a hash set that can be used to remove duplication of 10 // nodes in a graph. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/ADT/FoldingSet.h" 15 #include "llvm/ADT/Hashing.h" 16 #include "llvm/ADT/StringRef.h" 17 #include "llvm/Support/Allocator.h" 18 #include "llvm/Support/ErrorHandling.h" 19 #include "llvm/Support/Host.h" 20 #include "llvm/Support/MathExtras.h" 21 #include <cassert> 22 #include <cstring> 23 using namespace llvm; 24 25 //===----------------------------------------------------------------------===// 26 // FoldingSetNodeIDRef Implementation 27 28 /// ComputeHash - Compute a strong hash value for this FoldingSetNodeIDRef, 29 /// used to lookup the node in the FoldingSetBase. 30 unsigned FoldingSetNodeIDRef::ComputeHash() const { 31 return static_cast<unsigned>(hash_combine_range(Data, Data+Size)); 32 } 33 34 bool FoldingSetNodeIDRef::operator==(FoldingSetNodeIDRef RHS) const { 35 if (Size != RHS.Size) return false; 36 return memcmp(Data, RHS.Data, Size*sizeof(*Data)) == 0; 37 } 38 39 /// Used to compare the "ordering" of two nodes as defined by the 40 /// profiled bits and their ordering defined by memcmp(). 41 bool FoldingSetNodeIDRef::operator<(FoldingSetNodeIDRef RHS) const { 42 if (Size != RHS.Size) 43 return Size < RHS.Size; 44 return memcmp(Data, RHS.Data, Size*sizeof(*Data)) < 0; 45 } 46 47 //===----------------------------------------------------------------------===// 48 // FoldingSetNodeID Implementation 49 50 /// Add* - Add various data types to Bit data. 51 /// 52 void FoldingSetNodeID::AddPointer(const void *Ptr) { 53 // Note: this adds pointers to the hash using sizes and endianness that 54 // depend on the host. It doesn't matter, however, because hashing on 55 // pointer values is inherently unstable. Nothing should depend on the 56 // ordering of nodes in the folding set. 57 static_assert(sizeof(uintptr_t) <= sizeof(unsigned long long), 58 "unexpected pointer size"); 59 AddInteger(reinterpret_cast<uintptr_t>(Ptr)); 60 } 61 void FoldingSetNodeID::AddInteger(signed I) { 62 Bits.push_back(I); 63 } 64 void FoldingSetNodeID::AddInteger(unsigned I) { 65 Bits.push_back(I); 66 } 67 void FoldingSetNodeID::AddInteger(long I) { 68 AddInteger((unsigned long)I); 69 } 70 void FoldingSetNodeID::AddInteger(unsigned long I) { 71 if (sizeof(long) == sizeof(int)) 72 AddInteger(unsigned(I)); 73 else if (sizeof(long) == sizeof(long long)) { 74 AddInteger((unsigned long long)I); 75 } else { 76 llvm_unreachable("unexpected sizeof(long)"); 77 } 78 } 79 void FoldingSetNodeID::AddInteger(long long I) { 80 AddInteger((unsigned long long)I); 81 } 82 void FoldingSetNodeID::AddInteger(unsigned long long I) { 83 AddInteger(unsigned(I)); 84 AddInteger(unsigned(I >> 32)); 85 } 86 87 void FoldingSetNodeID::AddString(StringRef String) { 88 unsigned Size = String.size(); 89 Bits.push_back(Size); 90 if (!Size) return; 91 92 unsigned Units = Size / 4; 93 unsigned Pos = 0; 94 const unsigned *Base = (const unsigned*) String.data(); 95 96 // If the string is aligned do a bulk transfer. 97 if (!((intptr_t)Base & 3)) { 98 Bits.append(Base, Base + Units); 99 Pos = (Units + 1) * 4; 100 } else { 101 // Otherwise do it the hard way. 102 // To be compatible with above bulk transfer, we need to take endianness 103 // into account. 104 static_assert(sys::IsBigEndianHost || sys::IsLittleEndianHost, 105 "Unexpected host endianness"); 106 if (sys::IsBigEndianHost) { 107 for (Pos += 4; Pos <= Size; Pos += 4) { 108 unsigned V = ((unsigned char)String[Pos - 4] << 24) | 109 ((unsigned char)String[Pos - 3] << 16) | 110 ((unsigned char)String[Pos - 2] << 8) | 111 (unsigned char)String[Pos - 1]; 112 Bits.push_back(V); 113 } 114 } else { // Little-endian host 115 for (Pos += 4; Pos <= Size; Pos += 4) { 116 unsigned V = ((unsigned char)String[Pos - 1] << 24) | 117 ((unsigned char)String[Pos - 2] << 16) | 118 ((unsigned char)String[Pos - 3] << 8) | 119 (unsigned char)String[Pos - 4]; 120 Bits.push_back(V); 121 } 122 } 123 } 124 125 // With the leftover bits. 126 unsigned V = 0; 127 // Pos will have overshot size by 4 - #bytes left over. 128 // No need to take endianness into account here - this is always executed. 129 switch (Pos - Size) { 130 case 1: V = (V << 8) | (unsigned char)String[Size - 3]; LLVM_FALLTHROUGH; 131 case 2: V = (V << 8) | (unsigned char)String[Size - 2]; LLVM_FALLTHROUGH; 132 case 3: V = (V << 8) | (unsigned char)String[Size - 1]; break; 133 default: return; // Nothing left. 134 } 135 136 Bits.push_back(V); 137 } 138 139 // AddNodeID - Adds the Bit data of another ID to *this. 140 void FoldingSetNodeID::AddNodeID(const FoldingSetNodeID &ID) { 141 Bits.append(ID.Bits.begin(), ID.Bits.end()); 142 } 143 144 /// ComputeHash - Compute a strong hash value for this FoldingSetNodeID, used to 145 /// lookup the node in the FoldingSetBase. 146 unsigned FoldingSetNodeID::ComputeHash() const { 147 return FoldingSetNodeIDRef(Bits.data(), Bits.size()).ComputeHash(); 148 } 149 150 /// operator== - Used to compare two nodes to each other. 151 /// 152 bool FoldingSetNodeID::operator==(const FoldingSetNodeID &RHS) const { 153 return *this == FoldingSetNodeIDRef(RHS.Bits.data(), RHS.Bits.size()); 154 } 155 156 /// operator== - Used to compare two nodes to each other. 157 /// 158 bool FoldingSetNodeID::operator==(FoldingSetNodeIDRef RHS) const { 159 return FoldingSetNodeIDRef(Bits.data(), Bits.size()) == RHS; 160 } 161 162 /// Used to compare the "ordering" of two nodes as defined by the 163 /// profiled bits and their ordering defined by memcmp(). 164 bool FoldingSetNodeID::operator<(const FoldingSetNodeID &RHS) const { 165 return *this < FoldingSetNodeIDRef(RHS.Bits.data(), RHS.Bits.size()); 166 } 167 168 bool FoldingSetNodeID::operator<(FoldingSetNodeIDRef RHS) const { 169 return FoldingSetNodeIDRef(Bits.data(), Bits.size()) < RHS; 170 } 171 172 /// Intern - Copy this node's data to a memory region allocated from the 173 /// given allocator and return a FoldingSetNodeIDRef describing the 174 /// interned data. 175 FoldingSetNodeIDRef 176 FoldingSetNodeID::Intern(BumpPtrAllocator &Allocator) const { 177 unsigned *New = Allocator.Allocate<unsigned>(Bits.size()); 178 std::uninitialized_copy(Bits.begin(), Bits.end(), New); 179 return FoldingSetNodeIDRef(New, Bits.size()); 180 } 181 182 //===----------------------------------------------------------------------===// 183 /// Helper functions for FoldingSetBase. 184 185 /// GetNextPtr - In order to save space, each bucket is a 186 /// singly-linked-list. In order to make deletion more efficient, we make 187 /// the list circular, so we can delete a node without computing its hash. 188 /// The problem with this is that the start of the hash buckets are not 189 /// Nodes. If NextInBucketPtr is a bucket pointer, this method returns null: 190 /// use GetBucketPtr when this happens. 191 static FoldingSetBase::Node *GetNextPtr(void *NextInBucketPtr) { 192 // The low bit is set if this is the pointer back to the bucket. 193 if (reinterpret_cast<intptr_t>(NextInBucketPtr) & 1) 194 return nullptr; 195 196 return static_cast<FoldingSetBase::Node*>(NextInBucketPtr); 197 } 198 199 200 /// testing. 201 static void **GetBucketPtr(void *NextInBucketPtr) { 202 intptr_t Ptr = reinterpret_cast<intptr_t>(NextInBucketPtr); 203 assert((Ptr & 1) && "Not a bucket pointer"); 204 return reinterpret_cast<void**>(Ptr & ~intptr_t(1)); 205 } 206 207 /// GetBucketFor - Hash the specified node ID and return the hash bucket for 208 /// the specified ID. 209 static void **GetBucketFor(unsigned Hash, void **Buckets, unsigned NumBuckets) { 210 // NumBuckets is always a power of 2. 211 unsigned BucketNum = Hash & (NumBuckets-1); 212 return Buckets + BucketNum; 213 } 214 215 /// AllocateBuckets - Allocated initialized bucket memory. 216 static void **AllocateBuckets(unsigned NumBuckets) { 217 void **Buckets = static_cast<void**>(safe_calloc(NumBuckets + 1, 218 sizeof(void*))); 219 // Set the very last bucket to be a non-null "pointer". 220 Buckets[NumBuckets] = reinterpret_cast<void*>(-1); 221 return Buckets; 222 } 223 224 //===----------------------------------------------------------------------===// 225 // FoldingSetBase Implementation 226 227 FoldingSetBase::FoldingSetBase(unsigned Log2InitSize) { 228 assert(5 < Log2InitSize && Log2InitSize < 32 && 229 "Initial hash table size out of range"); 230 NumBuckets = 1 << Log2InitSize; 231 Buckets = AllocateBuckets(NumBuckets); 232 NumNodes = 0; 233 } 234 235 FoldingSetBase::FoldingSetBase(FoldingSetBase &&Arg) 236 : Buckets(Arg.Buckets), NumBuckets(Arg.NumBuckets), NumNodes(Arg.NumNodes) { 237 Arg.Buckets = nullptr; 238 Arg.NumBuckets = 0; 239 Arg.NumNodes = 0; 240 } 241 242 FoldingSetBase &FoldingSetBase::operator=(FoldingSetBase &&RHS) { 243 free(Buckets); // This may be null if the set is in a moved-from state. 244 Buckets = RHS.Buckets; 245 NumBuckets = RHS.NumBuckets; 246 NumNodes = RHS.NumNodes; 247 RHS.Buckets = nullptr; 248 RHS.NumBuckets = 0; 249 RHS.NumNodes = 0; 250 return *this; 251 } 252 253 FoldingSetBase::~FoldingSetBase() { 254 free(Buckets); 255 } 256 257 void FoldingSetBase::clear() { 258 // Set all but the last bucket to null pointers. 259 memset(Buckets, 0, NumBuckets*sizeof(void*)); 260 261 // Set the very last bucket to be a non-null "pointer". 262 Buckets[NumBuckets] = reinterpret_cast<void*>(-1); 263 264 // Reset the node count to zero. 265 NumNodes = 0; 266 } 267 268 void FoldingSetBase::GrowBucketCount(unsigned NewBucketCount, 269 const FoldingSetInfo &Info) { 270 assert((NewBucketCount > NumBuckets) && 271 "Can't shrink a folding set with GrowBucketCount"); 272 assert(isPowerOf2_32(NewBucketCount) && "Bad bucket count!"); 273 void **OldBuckets = Buckets; 274 unsigned OldNumBuckets = NumBuckets; 275 276 // Clear out new buckets. 277 Buckets = AllocateBuckets(NewBucketCount); 278 // Set NumBuckets only if allocation of new buckets was successful. 279 NumBuckets = NewBucketCount; 280 NumNodes = 0; 281 282 // Walk the old buckets, rehashing nodes into their new place. 283 FoldingSetNodeID TempID; 284 for (unsigned i = 0; i != OldNumBuckets; ++i) { 285 void *Probe = OldBuckets[i]; 286 if (!Probe) continue; 287 while (Node *NodeInBucket = GetNextPtr(Probe)) { 288 // Figure out the next link, remove NodeInBucket from the old link. 289 Probe = NodeInBucket->getNextInBucket(); 290 NodeInBucket->SetNextInBucket(nullptr); 291 292 // Insert the node into the new bucket, after recomputing the hash. 293 InsertNode(NodeInBucket, 294 GetBucketFor(Info.ComputeNodeHash(this, NodeInBucket, TempID), 295 Buckets, NumBuckets), 296 Info); 297 TempID.clear(); 298 } 299 } 300 301 free(OldBuckets); 302 } 303 304 /// GrowHashTable - Double the size of the hash table and rehash everything. 305 /// 306 void FoldingSetBase::GrowHashTable(const FoldingSetInfo &Info) { 307 GrowBucketCount(NumBuckets * 2, Info); 308 } 309 310 void FoldingSetBase::reserve(unsigned EltCount, const FoldingSetInfo &Info) { 311 // This will give us somewhere between EltCount / 2 and 312 // EltCount buckets. This puts us in the load factor 313 // range of 1.0 - 2.0. 314 if(EltCount < capacity()) 315 return; 316 GrowBucketCount(PowerOf2Floor(EltCount), Info); 317 } 318 319 /// FindNodeOrInsertPos - Look up the node specified by ID. If it exists, 320 /// return it. If not, return the insertion token that will make insertion 321 /// faster. 322 FoldingSetBase::Node *FoldingSetBase::FindNodeOrInsertPos( 323 const FoldingSetNodeID &ID, void *&InsertPos, const FoldingSetInfo &Info) { 324 unsigned IDHash = ID.ComputeHash(); 325 void **Bucket = GetBucketFor(IDHash, Buckets, NumBuckets); 326 void *Probe = *Bucket; 327 328 InsertPos = nullptr; 329 330 FoldingSetNodeID TempID; 331 while (Node *NodeInBucket = GetNextPtr(Probe)) { 332 if (Info.NodeEquals(this, NodeInBucket, ID, IDHash, TempID)) 333 return NodeInBucket; 334 TempID.clear(); 335 336 Probe = NodeInBucket->getNextInBucket(); 337 } 338 339 // Didn't find the node, return null with the bucket as the InsertPos. 340 InsertPos = Bucket; 341 return nullptr; 342 } 343 344 /// InsertNode - Insert the specified node into the folding set, knowing that it 345 /// is not already in the map. InsertPos must be obtained from 346 /// FindNodeOrInsertPos. 347 void FoldingSetBase::InsertNode(Node *N, void *InsertPos, 348 const FoldingSetInfo &Info) { 349 assert(!N->getNextInBucket()); 350 // Do we need to grow the hashtable? 351 if (NumNodes+1 > capacity()) { 352 GrowHashTable(Info); 353 FoldingSetNodeID TempID; 354 InsertPos = GetBucketFor(Info.ComputeNodeHash(this, N, TempID), Buckets, 355 NumBuckets); 356 } 357 358 ++NumNodes; 359 360 /// The insert position is actually a bucket pointer. 361 void **Bucket = static_cast<void**>(InsertPos); 362 363 void *Next = *Bucket; 364 365 // If this is the first insertion into this bucket, its next pointer will be 366 // null. Pretend as if it pointed to itself, setting the low bit to indicate 367 // that it is a pointer to the bucket. 368 if (!Next) 369 Next = reinterpret_cast<void*>(reinterpret_cast<intptr_t>(Bucket)|1); 370 371 // Set the node's next pointer, and make the bucket point to the node. 372 N->SetNextInBucket(Next); 373 *Bucket = N; 374 } 375 376 /// RemoveNode - Remove a node from the folding set, returning true if one was 377 /// removed or false if the node was not in the folding set. 378 bool FoldingSetBase::RemoveNode(Node *N) { 379 // Because each bucket is a circular list, we don't need to compute N's hash 380 // to remove it. 381 void *Ptr = N->getNextInBucket(); 382 if (!Ptr) return false; // Not in folding set. 383 384 --NumNodes; 385 N->SetNextInBucket(nullptr); 386 387 // Remember what N originally pointed to, either a bucket or another node. 388 void *NodeNextPtr = Ptr; 389 390 // Chase around the list until we find the node (or bucket) which points to N. 391 while (true) { 392 if (Node *NodeInBucket = GetNextPtr(Ptr)) { 393 // Advance pointer. 394 Ptr = NodeInBucket->getNextInBucket(); 395 396 // We found a node that points to N, change it to point to N's next node, 397 // removing N from the list. 398 if (Ptr == N) { 399 NodeInBucket->SetNextInBucket(NodeNextPtr); 400 return true; 401 } 402 } else { 403 void **Bucket = GetBucketPtr(Ptr); 404 Ptr = *Bucket; 405 406 // If we found that the bucket points to N, update the bucket to point to 407 // whatever is next. 408 if (Ptr == N) { 409 *Bucket = NodeNextPtr; 410 return true; 411 } 412 } 413 } 414 } 415 416 /// GetOrInsertNode - If there is an existing simple Node exactly 417 /// equal to the specified node, return it. Otherwise, insert 'N' and it 418 /// instead. 419 FoldingSetBase::Node * 420 FoldingSetBase::GetOrInsertNode(FoldingSetBase::Node *N, 421 const FoldingSetInfo &Info) { 422 FoldingSetNodeID ID; 423 Info.GetNodeProfile(this, N, ID); 424 void *IP; 425 if (Node *E = FindNodeOrInsertPos(ID, IP, Info)) 426 return E; 427 InsertNode(N, IP, Info); 428 return N; 429 } 430 431 //===----------------------------------------------------------------------===// 432 // FoldingSetIteratorImpl Implementation 433 434 FoldingSetIteratorImpl::FoldingSetIteratorImpl(void **Bucket) { 435 // Skip to the first non-null non-self-cycle bucket. 436 while (*Bucket != reinterpret_cast<void*>(-1) && 437 (!*Bucket || !GetNextPtr(*Bucket))) 438 ++Bucket; 439 440 NodePtr = static_cast<FoldingSetNode*>(*Bucket); 441 } 442 443 void FoldingSetIteratorImpl::advance() { 444 // If there is another link within this bucket, go to it. 445 void *Probe = NodePtr->getNextInBucket(); 446 447 if (FoldingSetNode *NextNodeInBucket = GetNextPtr(Probe)) 448 NodePtr = NextNodeInBucket; 449 else { 450 // Otherwise, this is the last link in this bucket. 451 void **Bucket = GetBucketPtr(Probe); 452 453 // Skip to the next non-null non-self-cycle bucket. 454 do { 455 ++Bucket; 456 } while (*Bucket != reinterpret_cast<void*>(-1) && 457 (!*Bucket || !GetNextPtr(*Bucket))); 458 459 NodePtr = static_cast<FoldingSetNode*>(*Bucket); 460 } 461 } 462 463 //===----------------------------------------------------------------------===// 464 // FoldingSetBucketIteratorImpl Implementation 465 466 FoldingSetBucketIteratorImpl::FoldingSetBucketIteratorImpl(void **Bucket) { 467 Ptr = (!*Bucket || !GetNextPtr(*Bucket)) ? (void*) Bucket : *Bucket; 468 } 469