xref: /llvm-project/llvm/lib/Support/DivisionByConstantInfo.cpp (revision e3774304a2ead0ff2b6478fc30bf47d8e80de66d)
1 //===----- DivisionByConstantInfo.cpp - division by constant -*- C++ -*----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// This file implements support for optimizing divisions by a constant
10 ///
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/Support/DivisionByConstantInfo.h"
14 
15 using namespace llvm;
16 
17 /// Calculate the magic numbers required to implement a signed integer division
18 /// by a constant as a sequence of multiplies, adds and shifts.  Requires that
19 /// the divisor not be 0, 1, or -1.  Taken from "Hacker's Delight", Henry S.
20 /// Warren, Jr., Chapter 10.
21 SignedDivisionByConstantInfo SignedDivisionByConstantInfo::get(const APInt &D) {
22   APInt Delta;
23   APInt SignedMin = APInt::getSignedMinValue(D.getBitWidth());
24   struct SignedDivisionByConstantInfo Retval;
25 
26   APInt AD = D.abs();
27   APInt T = SignedMin + (D.lshr(D.getBitWidth() - 1));
28   APInt ANC = T - 1 - T.urem(AD);   // absolute value of NC
29   unsigned P = D.getBitWidth() - 1; // initialize P
30   APInt Q1, R1, Q2, R2;
31   // initialize Q1 = 2P/abs(NC); R1 = rem(2P,abs(NC))
32   APInt::udivrem(SignedMin, ANC, Q1, R1);
33   // initialize Q2 = 2P/abs(D); R2 = rem(2P,abs(D))
34   APInt::udivrem(SignedMin, AD, Q2, R2);
35   do {
36     P = P + 1;
37     Q1 <<= 1;      // update Q1 = 2P/abs(NC)
38     R1 <<= 1;      // update R1 = rem(2P/abs(NC))
39     if (R1.uge(ANC)) { // must be unsigned comparison
40       ++Q1;
41       R1 -= ANC;
42     }
43     Q2 <<= 1;     // update Q2 = 2P/abs(D)
44     R2 <<= 1;     // update R2 = rem(2P/abs(D))
45     if (R2.uge(AD)) { // must be unsigned comparison
46       ++Q2;
47       R2 -= AD;
48     }
49     // Delta = AD - R2
50     Delta = AD;
51     Delta -= R2;
52   } while (Q1.ult(Delta) || (Q1 == Delta && R1.isZero()));
53 
54   Retval.Magic = std::move(Q2);
55   ++Retval.Magic;
56   if (D.isNegative())
57     Retval.Magic.negate();                  // resulting magic number
58   Retval.ShiftAmount = P - D.getBitWidth(); // resulting shift
59   return Retval;
60 }
61 
62 /// Calculate the magic numbers required to implement an unsigned integer
63 /// division by a constant as a sequence of multiplies, adds and shifts.
64 /// Requires that the divisor not be 0.  Taken from "Hacker's Delight", Henry
65 /// S. Warren, Jr., chapter 10.
66 /// LeadingZeros can be used to simplify the calculation if the upper bits
67 /// of the divided value are known zero.
68 UnsignedDivisionByConstantInfo
69 UnsignedDivisionByConstantInfo::get(const APInt &D, unsigned LeadingZeros) {
70   APInt Delta;
71   struct UnsignedDivisionByConstantInfo Retval;
72   Retval.IsAdd = false; // initialize "add" indicator
73   APInt AllOnes = APInt::getAllOnes(D.getBitWidth()).lshr(LeadingZeros);
74   APInt SignedMin = APInt::getSignedMinValue(D.getBitWidth());
75   APInt SignedMax = APInt::getSignedMaxValue(D.getBitWidth());
76 
77   APInt NC = AllOnes - (AllOnes - D).urem(D);
78   unsigned P = D.getBitWidth() - 1; // initialize P
79   APInt Q1, R1, Q2, R2;
80   // initialize Q1 = 2P/NC; R1 = rem(2P,NC)
81   APInt::udivrem(SignedMin, NC, Q1, R1);
82   // initialize Q2 = (2P-1)/D; R2 = rem((2P-1),D)
83   APInt::udivrem(SignedMax, D, Q2, R2);
84   do {
85     P = P + 1;
86     if (R1.uge(NC - R1)) {
87       // update Q1
88       Q1 <<= 1;
89       ++Q1;
90       // update R1
91       R1 <<= 1;
92       R1 -= NC;
93     } else {
94       Q1 <<= 1; // update Q1
95       R1 <<= 1; // update R1
96     }
97     if ((R2 + 1).uge(D - R2)) {
98       if (Q2.uge(SignedMax))
99         Retval.IsAdd = true;
100       // update Q2
101       Q2 <<= 1;
102       ++Q2;
103       // update R2
104       R2 <<= 1;
105       ++R2;
106       R2 -= D;
107     } else {
108       if (Q2.uge(SignedMin))
109         Retval.IsAdd = true;
110       // update Q2
111       Q2 <<= 1;
112       // update R2
113       R2 <<= 1;
114       ++R2;
115     }
116     // Delta = D - 1 - R2
117     Delta = D;
118     --Delta;
119     Delta -= R2;
120   } while (P < D.getBitWidth() * 2 &&
121            (Q1.ult(Delta) || (Q1 == Delta && R1.isZero())));
122   Retval.Magic = std::move(Q2);             // resulting magic number
123   ++Retval.Magic;
124   Retval.ShiftAmount = P - D.getBitWidth(); // resulting shift
125   return Retval;
126 }
127