xref: /llvm-project/llvm/lib/Support/DivisionByConstantInfo.cpp (revision 1cc48a76eaf1b6b9f59f60e937a9360fff3076bd)
1 //===----- DivisionByConstantInfo.cpp - division by constant -*- C++ -*----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// This file implements support for optimizing divisions by a constant
10 ///
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/Support/DivisionByConstantInfo.h"
14 
15 using namespace llvm;
16 
17 /// Calculate the magic numbers required to implement a signed integer division
18 /// by a constant as a sequence of multiplies, adds and shifts.  Requires that
19 /// the divisor not be 0, 1, or -1.  Taken from "Hacker's Delight", Henry S.
20 /// Warren, Jr., Chapter 10.
21 SignedDivisionByConstantInfo SignedDivisionByConstantInfo::get(const APInt &D) {
22   APInt Delta;
23   APInt SignedMin = APInt::getSignedMinValue(D.getBitWidth());
24   struct SignedDivisionByConstantInfo Retval;
25 
26   APInt AD = D.abs();
27   APInt T = SignedMin + (D.lshr(D.getBitWidth() - 1));
28   APInt ANC = T - 1 - T.urem(AD);   // absolute value of NC
29   unsigned P = D.getBitWidth() - 1; // initialize P
30   APInt Q1 = SignedMin.udiv(ANC);   // initialize Q1 = 2P/abs(NC)
31   APInt R1 = SignedMin - Q1 * ANC;  // initialize R1 = rem(2P,abs(NC))
32   APInt Q2 = SignedMin.udiv(AD);    // initialize Q2 = 2P/abs(D)
33   APInt R2 = SignedMin - Q2 * AD;   // initialize R2 = rem(2P,abs(D))
34   do {
35     P = P + 1;
36     Q1 <<= 1;      // update Q1 = 2P/abs(NC)
37     R1 <<= 1;      // update R1 = rem(2P/abs(NC))
38     if (R1.uge(ANC)) { // must be unsigned comparison
39       ++Q1;
40       R1 -= ANC;
41     }
42     Q2 <<= 1;     // update Q2 = 2P/abs(D)
43     R2 <<= 1;     // update R2 = rem(2P/abs(D))
44     if (R2.uge(AD)) { // must be unsigned comparison
45       ++Q2;
46       R2 -= AD;
47     }
48     // Delta = AD - R2
49     Delta = AD;
50     Delta -= R2;
51   } while (Q1.ult(Delta) || (Q1 == Delta && R1.isZero()));
52 
53   Retval.Magic = std::move(Q2);
54   ++Retval.Magic;
55   if (D.isNegative())
56     Retval.Magic.negate();                  // resulting magic number
57   Retval.ShiftAmount = P - D.getBitWidth(); // resulting shift
58   return Retval;
59 }
60 
61 /// Calculate the magic numbers required to implement an unsigned integer
62 /// division by a constant as a sequence of multiplies, adds and shifts.
63 /// Requires that the divisor not be 0.  Taken from "Hacker's Delight", Henry
64 /// S. Warren, Jr., chapter 10.
65 /// LeadingZeros can be used to simplify the calculation if the upper bits
66 /// of the divided value are known zero.
67 UnsignedDivisionByConstantInfo
68 UnsignedDivisionByConstantInfo::get(const APInt &D, unsigned LeadingZeros) {
69   APInt Delta;
70   struct UnsignedDivisionByConstantInfo Retval;
71   Retval.IsAdd = false; // initialize "add" indicator
72   APInt AllOnes = APInt::getAllOnes(D.getBitWidth()).lshr(LeadingZeros);
73   APInt SignedMin = APInt::getSignedMinValue(D.getBitWidth());
74   APInt SignedMax = APInt::getSignedMaxValue(D.getBitWidth());
75 
76   APInt NC = AllOnes - (AllOnes - D).urem(D);
77   unsigned P = D.getBitWidth() - 1; // initialize P
78   APInt Q1 = SignedMin.udiv(NC);    // initialize Q1 = 2P/NC
79   APInt R1 = SignedMin - Q1 * NC;   // initialize R1 = rem(2P,NC)
80   APInt Q2 = SignedMax.udiv(D);     // initialize Q2 = (2P-1)/D
81   APInt R2 = SignedMax - Q2 * D;    // initialize R2 = rem((2P-1),D)
82   do {
83     P = P + 1;
84     if (R1.uge(NC - R1)) {
85       // update Q1
86       Q1 <<= 1;
87       ++Q1;
88       // update R1
89       R1 <<= 1;
90       R1 -= NC;
91     } else {
92       Q1 <<= 1; // update Q1
93       R1 <<= 1; // update R1
94     }
95     if ((R2 + 1).uge(D - R2)) {
96       if (Q2.uge(SignedMax))
97         Retval.IsAdd = true;
98       // update Q2
99       Q2 <<= 1;
100       ++Q2;
101       // update R2
102       R2 <<= 1;
103       ++R2;
104       R2 -= D;
105     } else {
106       if (Q2.uge(SignedMin))
107         Retval.IsAdd = true;
108       // update Q2
109       Q2 <<= 1;
110       // update R2
111       R2 <<= 1;
112       ++R2;
113     }
114     // Delta = D - 1 - R2
115     Delta = D;
116     --Delta;
117     Delta -= R2;
118   } while (P < D.getBitWidth() * 2 &&
119            (Q1.ult(Delta) || (Q1 == Delta && R1.isZero())));
120   Retval.Magic = std::move(Q2);             // resulting magic number
121   ++Retval.Magic;
122   Retval.ShiftAmount = P - D.getBitWidth(); // resulting shift
123   return Retval;
124 }
125