xref: /llvm-project/llvm/lib/Support/DeltaTree.cpp (revision 0d150db214e2aa13a825b563c7238e1243d61db1)
1*0d150db2SJacques Pienaar //===- DeltaTree.cpp - B-Tree for Rewrite Delta tracking ------------------===//
2*0d150db2SJacques Pienaar //
3*0d150db2SJacques Pienaar // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4*0d150db2SJacques Pienaar // See https://llvm.org/LICENSE.txt for license information.
5*0d150db2SJacques Pienaar // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6*0d150db2SJacques Pienaar //
7*0d150db2SJacques Pienaar //===----------------------------------------------------------------------===//
8*0d150db2SJacques Pienaar //
9*0d150db2SJacques Pienaar // This file implements the DeltaTree and related classes.
10*0d150db2SJacques Pienaar //
11*0d150db2SJacques Pienaar //===----------------------------------------------------------------------===//
12*0d150db2SJacques Pienaar 
13*0d150db2SJacques Pienaar #include "llvm/ADT/DeltaTree.h"
14*0d150db2SJacques Pienaar #include "llvm/Support/Casting.h"
15*0d150db2SJacques Pienaar #include <cassert>
16*0d150db2SJacques Pienaar #include <cstring>
17*0d150db2SJacques Pienaar 
18*0d150db2SJacques Pienaar using namespace llvm;
19*0d150db2SJacques Pienaar 
20*0d150db2SJacques Pienaar /// The DeltaTree class is a multiway search tree (BTree) structure with some
21*0d150db2SJacques Pienaar /// fancy features.  B-Trees are generally more memory and cache efficient
22*0d150db2SJacques Pienaar /// than binary trees, because they store multiple keys/values in each node.
23*0d150db2SJacques Pienaar ///
24*0d150db2SJacques Pienaar /// DeltaTree implements a key/value mapping from FileIndex to Delta, allowing
25*0d150db2SJacques Pienaar /// fast lookup by FileIndex.  However, an added (important) bonus is that it
26*0d150db2SJacques Pienaar /// can also efficiently tell us the full accumulated delta for a specific
27*0d150db2SJacques Pienaar /// file offset as well, without traversing the whole tree.
28*0d150db2SJacques Pienaar ///
29*0d150db2SJacques Pienaar /// The nodes of the tree are made up of instances of two classes:
30*0d150db2SJacques Pienaar /// DeltaTreeNode and DeltaTreeInteriorNode.  The later subclasses the
31*0d150db2SJacques Pienaar /// former and adds children pointers.  Each node knows the full delta of all
32*0d150db2SJacques Pienaar /// entries (recursively) contained inside of it, which allows us to get the
33*0d150db2SJacques Pienaar /// full delta implied by a whole subtree in constant time.
34*0d150db2SJacques Pienaar 
35*0d150db2SJacques Pienaar namespace {
36*0d150db2SJacques Pienaar 
37*0d150db2SJacques Pienaar /// SourceDelta - As code in the original input buffer is added and deleted,
38*0d150db2SJacques Pienaar /// SourceDelta records are used to keep track of how the input SourceLocation
39*0d150db2SJacques Pienaar /// object is mapped into the output buffer.
40*0d150db2SJacques Pienaar struct SourceDelta {
41*0d150db2SJacques Pienaar   unsigned FileLoc;
42*0d150db2SJacques Pienaar   int Delta;
43*0d150db2SJacques Pienaar 
44*0d150db2SJacques Pienaar   static SourceDelta get(unsigned Loc, int D) {
45*0d150db2SJacques Pienaar     SourceDelta Delta;
46*0d150db2SJacques Pienaar     Delta.FileLoc = Loc;
47*0d150db2SJacques Pienaar     Delta.Delta = D;
48*0d150db2SJacques Pienaar     return Delta;
49*0d150db2SJacques Pienaar   }
50*0d150db2SJacques Pienaar };
51*0d150db2SJacques Pienaar 
52*0d150db2SJacques Pienaar /// DeltaTreeNode - The common part of all nodes.
53*0d150db2SJacques Pienaar ///
54*0d150db2SJacques Pienaar class DeltaTreeNode {
55*0d150db2SJacques Pienaar public:
56*0d150db2SJacques Pienaar   struct InsertResult {
57*0d150db2SJacques Pienaar     DeltaTreeNode *LHS, *RHS;
58*0d150db2SJacques Pienaar     SourceDelta Split;
59*0d150db2SJacques Pienaar   };
60*0d150db2SJacques Pienaar 
61*0d150db2SJacques Pienaar private:
62*0d150db2SJacques Pienaar   friend class DeltaTreeInteriorNode;
63*0d150db2SJacques Pienaar 
64*0d150db2SJacques Pienaar   /// WidthFactor - This controls the number of K/V slots held in the BTree:
65*0d150db2SJacques Pienaar   /// how wide it is.  Each level of the BTree is guaranteed to have at least
66*0d150db2SJacques Pienaar   /// WidthFactor-1 K/V pairs (except the root) and may have at most
67*0d150db2SJacques Pienaar   /// 2*WidthFactor-1 K/V pairs.
68*0d150db2SJacques Pienaar   enum { WidthFactor = 8 };
69*0d150db2SJacques Pienaar 
70*0d150db2SJacques Pienaar   /// Values - This tracks the SourceDelta's currently in this node.
71*0d150db2SJacques Pienaar   SourceDelta Values[2 * WidthFactor - 1];
72*0d150db2SJacques Pienaar 
73*0d150db2SJacques Pienaar   /// NumValuesUsed - This tracks the number of values this node currently
74*0d150db2SJacques Pienaar   /// holds.
75*0d150db2SJacques Pienaar   unsigned char NumValuesUsed = 0;
76*0d150db2SJacques Pienaar 
77*0d150db2SJacques Pienaar   /// IsLeaf - This is true if this is a leaf of the btree.  If false, this is
78*0d150db2SJacques Pienaar   /// an interior node, and is actually an instance of DeltaTreeInteriorNode.
79*0d150db2SJacques Pienaar   bool IsLeaf;
80*0d150db2SJacques Pienaar 
81*0d150db2SJacques Pienaar   /// FullDelta - This is the full delta of all the values in this node and
82*0d150db2SJacques Pienaar   /// all children nodes.
83*0d150db2SJacques Pienaar   int FullDelta = 0;
84*0d150db2SJacques Pienaar 
85*0d150db2SJacques Pienaar public:
86*0d150db2SJacques Pienaar   DeltaTreeNode(bool isLeaf = true) : IsLeaf(isLeaf) {}
87*0d150db2SJacques Pienaar 
88*0d150db2SJacques Pienaar   bool isLeaf() const { return IsLeaf; }
89*0d150db2SJacques Pienaar   int getFullDelta() const { return FullDelta; }
90*0d150db2SJacques Pienaar   bool isFull() const { return NumValuesUsed == 2 * WidthFactor - 1; }
91*0d150db2SJacques Pienaar 
92*0d150db2SJacques Pienaar   unsigned getNumValuesUsed() const { return NumValuesUsed; }
93*0d150db2SJacques Pienaar 
94*0d150db2SJacques Pienaar   const SourceDelta &getValue(unsigned i) const {
95*0d150db2SJacques Pienaar     assert(i < NumValuesUsed && "Invalid value #");
96*0d150db2SJacques Pienaar     return Values[i];
97*0d150db2SJacques Pienaar   }
98*0d150db2SJacques Pienaar 
99*0d150db2SJacques Pienaar   SourceDelta &getValue(unsigned i) {
100*0d150db2SJacques Pienaar     assert(i < NumValuesUsed && "Invalid value #");
101*0d150db2SJacques Pienaar     return Values[i];
102*0d150db2SJacques Pienaar   }
103*0d150db2SJacques Pienaar 
104*0d150db2SJacques Pienaar   /// DoInsertion - Do an insertion of the specified FileIndex/Delta pair into
105*0d150db2SJacques Pienaar   /// this node.  If insertion is easy, do it and return false.  Otherwise,
106*0d150db2SJacques Pienaar   /// split the node, populate InsertRes with info about the split, and return
107*0d150db2SJacques Pienaar   /// true.
108*0d150db2SJacques Pienaar   bool DoInsertion(unsigned FileIndex, int Delta, InsertResult *InsertRes);
109*0d150db2SJacques Pienaar 
110*0d150db2SJacques Pienaar   void DoSplit(InsertResult &InsertRes);
111*0d150db2SJacques Pienaar 
112*0d150db2SJacques Pienaar   /// RecomputeFullDeltaLocally - Recompute the FullDelta field by doing a
113*0d150db2SJacques Pienaar   /// local walk over our contained deltas.
114*0d150db2SJacques Pienaar   void RecomputeFullDeltaLocally();
115*0d150db2SJacques Pienaar 
116*0d150db2SJacques Pienaar   void Destroy();
117*0d150db2SJacques Pienaar };
118*0d150db2SJacques Pienaar 
119*0d150db2SJacques Pienaar /// DeltaTreeInteriorNode - When isLeaf = false, a node has child pointers.
120*0d150db2SJacques Pienaar /// This class tracks them.
121*0d150db2SJacques Pienaar class DeltaTreeInteriorNode : public DeltaTreeNode {
122*0d150db2SJacques Pienaar   friend class DeltaTreeNode;
123*0d150db2SJacques Pienaar 
124*0d150db2SJacques Pienaar   DeltaTreeNode *Children[2 * WidthFactor];
125*0d150db2SJacques Pienaar 
126*0d150db2SJacques Pienaar   ~DeltaTreeInteriorNode() {
127*0d150db2SJacques Pienaar     for (unsigned i = 0, e = NumValuesUsed + 1; i != e; ++i)
128*0d150db2SJacques Pienaar       Children[i]->Destroy();
129*0d150db2SJacques Pienaar   }
130*0d150db2SJacques Pienaar 
131*0d150db2SJacques Pienaar public:
132*0d150db2SJacques Pienaar   DeltaTreeInteriorNode() : DeltaTreeNode(false /*nonleaf*/) {}
133*0d150db2SJacques Pienaar 
134*0d150db2SJacques Pienaar   DeltaTreeInteriorNode(const InsertResult &IR)
135*0d150db2SJacques Pienaar       : DeltaTreeNode(false /*nonleaf*/) {
136*0d150db2SJacques Pienaar     Children[0] = IR.LHS;
137*0d150db2SJacques Pienaar     Children[1] = IR.RHS;
138*0d150db2SJacques Pienaar     Values[0] = IR.Split;
139*0d150db2SJacques Pienaar     FullDelta =
140*0d150db2SJacques Pienaar         IR.LHS->getFullDelta() + IR.RHS->getFullDelta() + IR.Split.Delta;
141*0d150db2SJacques Pienaar     NumValuesUsed = 1;
142*0d150db2SJacques Pienaar   }
143*0d150db2SJacques Pienaar 
144*0d150db2SJacques Pienaar   const DeltaTreeNode *getChild(unsigned i) const {
145*0d150db2SJacques Pienaar     assert(i < getNumValuesUsed() + 1 && "Invalid child");
146*0d150db2SJacques Pienaar     return Children[i];
147*0d150db2SJacques Pienaar   }
148*0d150db2SJacques Pienaar 
149*0d150db2SJacques Pienaar   DeltaTreeNode *getChild(unsigned i) {
150*0d150db2SJacques Pienaar     assert(i < getNumValuesUsed() + 1 && "Invalid child");
151*0d150db2SJacques Pienaar     return Children[i];
152*0d150db2SJacques Pienaar   }
153*0d150db2SJacques Pienaar 
154*0d150db2SJacques Pienaar   static bool classof(const DeltaTreeNode *N) { return !N->isLeaf(); }
155*0d150db2SJacques Pienaar };
156*0d150db2SJacques Pienaar 
157*0d150db2SJacques Pienaar } // namespace
158*0d150db2SJacques Pienaar 
159*0d150db2SJacques Pienaar /// Destroy - A 'virtual' destructor.
160*0d150db2SJacques Pienaar void DeltaTreeNode::Destroy() {
161*0d150db2SJacques Pienaar   if (isLeaf())
162*0d150db2SJacques Pienaar     delete this;
163*0d150db2SJacques Pienaar   else
164*0d150db2SJacques Pienaar     delete cast<DeltaTreeInteriorNode>(this);
165*0d150db2SJacques Pienaar }
166*0d150db2SJacques Pienaar 
167*0d150db2SJacques Pienaar /// RecomputeFullDeltaLocally - Recompute the FullDelta field by doing a
168*0d150db2SJacques Pienaar /// local walk over our contained deltas.
169*0d150db2SJacques Pienaar void DeltaTreeNode::RecomputeFullDeltaLocally() {
170*0d150db2SJacques Pienaar   int NewFullDelta = 0;
171*0d150db2SJacques Pienaar   for (unsigned i = 0, e = getNumValuesUsed(); i != e; ++i)
172*0d150db2SJacques Pienaar     NewFullDelta += Values[i].Delta;
173*0d150db2SJacques Pienaar   if (auto *IN = dyn_cast<DeltaTreeInteriorNode>(this))
174*0d150db2SJacques Pienaar     for (unsigned i = 0, e = getNumValuesUsed() + 1; i != e; ++i)
175*0d150db2SJacques Pienaar       NewFullDelta += IN->getChild(i)->getFullDelta();
176*0d150db2SJacques Pienaar   FullDelta = NewFullDelta;
177*0d150db2SJacques Pienaar }
178*0d150db2SJacques Pienaar 
179*0d150db2SJacques Pienaar /// DoInsertion - Do an insertion of the specified FileIndex/Delta pair into
180*0d150db2SJacques Pienaar /// this node.  If insertion is easy, do it and return false.  Otherwise,
181*0d150db2SJacques Pienaar /// split the node, populate InsertRes with info about the split, and return
182*0d150db2SJacques Pienaar /// true.
183*0d150db2SJacques Pienaar bool DeltaTreeNode::DoInsertion(unsigned FileIndex, int Delta,
184*0d150db2SJacques Pienaar                                 InsertResult *InsertRes) {
185*0d150db2SJacques Pienaar   // Maintain full delta for this node.
186*0d150db2SJacques Pienaar   FullDelta += Delta;
187*0d150db2SJacques Pienaar 
188*0d150db2SJacques Pienaar   // Find the insertion point, the first delta whose index is >= FileIndex.
189*0d150db2SJacques Pienaar   unsigned i = 0, e = getNumValuesUsed();
190*0d150db2SJacques Pienaar   while (i != e && FileIndex > getValue(i).FileLoc)
191*0d150db2SJacques Pienaar     ++i;
192*0d150db2SJacques Pienaar 
193*0d150db2SJacques Pienaar   // If we found an a record for exactly this file index, just merge this
194*0d150db2SJacques Pienaar   // value into the pre-existing record and finish early.
195*0d150db2SJacques Pienaar   if (i != e && getValue(i).FileLoc == FileIndex) {
196*0d150db2SJacques Pienaar     // NOTE: Delta could drop to zero here.  This means that the delta entry is
197*0d150db2SJacques Pienaar     // useless and could be removed.  Supporting erases is more complex than
198*0d150db2SJacques Pienaar     // leaving an entry with Delta=0, so we just leave an entry with Delta=0 in
199*0d150db2SJacques Pienaar     // the tree.
200*0d150db2SJacques Pienaar     Values[i].Delta += Delta;
201*0d150db2SJacques Pienaar     return false;
202*0d150db2SJacques Pienaar   }
203*0d150db2SJacques Pienaar 
204*0d150db2SJacques Pienaar   // Otherwise, we found an insertion point, and we know that the value at the
205*0d150db2SJacques Pienaar   // specified index is > FileIndex.  Handle the leaf case first.
206*0d150db2SJacques Pienaar   if (isLeaf()) {
207*0d150db2SJacques Pienaar     if (!isFull()) {
208*0d150db2SJacques Pienaar       // For an insertion into a non-full leaf node, just insert the value in
209*0d150db2SJacques Pienaar       // its sorted position.  This requires moving later values over.
210*0d150db2SJacques Pienaar       if (i != e)
211*0d150db2SJacques Pienaar         memmove(&Values[i + 1], &Values[i], sizeof(Values[0]) * (e - i));
212*0d150db2SJacques Pienaar       Values[i] = SourceDelta::get(FileIndex, Delta);
213*0d150db2SJacques Pienaar       ++NumValuesUsed;
214*0d150db2SJacques Pienaar       return false;
215*0d150db2SJacques Pienaar     }
216*0d150db2SJacques Pienaar 
217*0d150db2SJacques Pienaar     // Otherwise, if this is leaf is full, split the node at its median, insert
218*0d150db2SJacques Pienaar     // the value into one of the children, and return the result.
219*0d150db2SJacques Pienaar     assert(InsertRes && "No result location specified");
220*0d150db2SJacques Pienaar     DoSplit(*InsertRes);
221*0d150db2SJacques Pienaar 
222*0d150db2SJacques Pienaar     if (InsertRes->Split.FileLoc > FileIndex)
223*0d150db2SJacques Pienaar       InsertRes->LHS->DoInsertion(FileIndex, Delta, nullptr /*can't fail*/);
224*0d150db2SJacques Pienaar     else
225*0d150db2SJacques Pienaar       InsertRes->RHS->DoInsertion(FileIndex, Delta, nullptr /*can't fail*/);
226*0d150db2SJacques Pienaar     return true;
227*0d150db2SJacques Pienaar   }
228*0d150db2SJacques Pienaar 
229*0d150db2SJacques Pienaar   // Otherwise, this is an interior node.  Send the request down the tree.
230*0d150db2SJacques Pienaar   auto *IN = cast<DeltaTreeInteriorNode>(this);
231*0d150db2SJacques Pienaar   if (!IN->Children[i]->DoInsertion(FileIndex, Delta, InsertRes))
232*0d150db2SJacques Pienaar     return false; // If there was space in the child, just return.
233*0d150db2SJacques Pienaar 
234*0d150db2SJacques Pienaar   // Okay, this split the subtree, producing a new value and two children to
235*0d150db2SJacques Pienaar   // insert here.  If this node is non-full, we can just insert it directly.
236*0d150db2SJacques Pienaar   if (!isFull()) {
237*0d150db2SJacques Pienaar     // Now that we have two nodes and a new element, insert the perclated value
238*0d150db2SJacques Pienaar     // into ourself by moving all the later values/children down, then inserting
239*0d150db2SJacques Pienaar     // the new one.
240*0d150db2SJacques Pienaar     if (i != e)
241*0d150db2SJacques Pienaar       memmove(&IN->Children[i + 2], &IN->Children[i + 1],
242*0d150db2SJacques Pienaar               (e - i) * sizeof(IN->Children[0]));
243*0d150db2SJacques Pienaar     IN->Children[i] = InsertRes->LHS;
244*0d150db2SJacques Pienaar     IN->Children[i + 1] = InsertRes->RHS;
245*0d150db2SJacques Pienaar 
246*0d150db2SJacques Pienaar     if (e != i)
247*0d150db2SJacques Pienaar       memmove(&Values[i + 1], &Values[i], (e - i) * sizeof(Values[0]));
248*0d150db2SJacques Pienaar     Values[i] = InsertRes->Split;
249*0d150db2SJacques Pienaar     ++NumValuesUsed;
250*0d150db2SJacques Pienaar     return false;
251*0d150db2SJacques Pienaar   }
252*0d150db2SJacques Pienaar 
253*0d150db2SJacques Pienaar   // Finally, if this interior node was full and a node is percolated up, split
254*0d150db2SJacques Pienaar   // ourself and return that up the chain.  Start by saving all our info to
255*0d150db2SJacques Pienaar   // avoid having the split clobber it.
256*0d150db2SJacques Pienaar   IN->Children[i] = InsertRes->LHS;
257*0d150db2SJacques Pienaar   DeltaTreeNode *SubRHS = InsertRes->RHS;
258*0d150db2SJacques Pienaar   SourceDelta SubSplit = InsertRes->Split;
259*0d150db2SJacques Pienaar 
260*0d150db2SJacques Pienaar   // Do the split.
261*0d150db2SJacques Pienaar   DoSplit(*InsertRes);
262*0d150db2SJacques Pienaar 
263*0d150db2SJacques Pienaar   // Figure out where to insert SubRHS/NewSplit.
264*0d150db2SJacques Pienaar   DeltaTreeInteriorNode *InsertSide;
265*0d150db2SJacques Pienaar   if (SubSplit.FileLoc < InsertRes->Split.FileLoc)
266*0d150db2SJacques Pienaar     InsertSide = cast<DeltaTreeInteriorNode>(InsertRes->LHS);
267*0d150db2SJacques Pienaar   else
268*0d150db2SJacques Pienaar     InsertSide = cast<DeltaTreeInteriorNode>(InsertRes->RHS);
269*0d150db2SJacques Pienaar 
270*0d150db2SJacques Pienaar   // We now have a non-empty interior node 'InsertSide' to insert
271*0d150db2SJacques Pienaar   // SubRHS/SubSplit into.  Find out where to insert SubSplit.
272*0d150db2SJacques Pienaar 
273*0d150db2SJacques Pienaar   // Find the insertion point, the first delta whose index is >SubSplit.FileLoc.
274*0d150db2SJacques Pienaar   i = 0;
275*0d150db2SJacques Pienaar   e = InsertSide->getNumValuesUsed();
276*0d150db2SJacques Pienaar   while (i != e && SubSplit.FileLoc > InsertSide->getValue(i).FileLoc)
277*0d150db2SJacques Pienaar     ++i;
278*0d150db2SJacques Pienaar 
279*0d150db2SJacques Pienaar   // Now we know that i is the place to insert the split value into.  Insert it
280*0d150db2SJacques Pienaar   // and the child right after it.
281*0d150db2SJacques Pienaar   if (i != e)
282*0d150db2SJacques Pienaar     memmove(&InsertSide->Children[i + 2], &InsertSide->Children[i + 1],
283*0d150db2SJacques Pienaar             (e - i) * sizeof(IN->Children[0]));
284*0d150db2SJacques Pienaar   InsertSide->Children[i + 1] = SubRHS;
285*0d150db2SJacques Pienaar 
286*0d150db2SJacques Pienaar   if (e != i)
287*0d150db2SJacques Pienaar     memmove(&InsertSide->Values[i + 1], &InsertSide->Values[i],
288*0d150db2SJacques Pienaar             (e - i) * sizeof(Values[0]));
289*0d150db2SJacques Pienaar   InsertSide->Values[i] = SubSplit;
290*0d150db2SJacques Pienaar   ++InsertSide->NumValuesUsed;
291*0d150db2SJacques Pienaar   InsertSide->FullDelta += SubSplit.Delta + SubRHS->getFullDelta();
292*0d150db2SJacques Pienaar   return true;
293*0d150db2SJacques Pienaar }
294*0d150db2SJacques Pienaar 
295*0d150db2SJacques Pienaar /// DoSplit - Split the currently full node (which has 2*WidthFactor-1 values)
296*0d150db2SJacques Pienaar /// into two subtrees each with "WidthFactor-1" values and a pivot value.
297*0d150db2SJacques Pienaar /// Return the pieces in InsertRes.
298*0d150db2SJacques Pienaar void DeltaTreeNode::DoSplit(InsertResult &InsertRes) {
299*0d150db2SJacques Pienaar   assert(isFull() && "Why split a non-full node?");
300*0d150db2SJacques Pienaar 
301*0d150db2SJacques Pienaar   // Since this node is full, it contains 2*WidthFactor-1 values.  We move
302*0d150db2SJacques Pienaar   // the first 'WidthFactor-1' values to the LHS child (which we leave in this
303*0d150db2SJacques Pienaar   // node), propagate one value up, and move the last 'WidthFactor-1' values
304*0d150db2SJacques Pienaar   // into the RHS child.
305*0d150db2SJacques Pienaar 
306*0d150db2SJacques Pienaar   // Create the new child node.
307*0d150db2SJacques Pienaar   DeltaTreeNode *NewNode;
308*0d150db2SJacques Pienaar   if (auto *IN = dyn_cast<DeltaTreeInteriorNode>(this)) {
309*0d150db2SJacques Pienaar     // If this is an interior node, also move over 'WidthFactor' children
310*0d150db2SJacques Pienaar     // into the new node.
311*0d150db2SJacques Pienaar     DeltaTreeInteriorNode *New = new DeltaTreeInteriorNode();
312*0d150db2SJacques Pienaar     memcpy(&New->Children[0], &IN->Children[WidthFactor],
313*0d150db2SJacques Pienaar            WidthFactor * sizeof(IN->Children[0]));
314*0d150db2SJacques Pienaar     NewNode = New;
315*0d150db2SJacques Pienaar   } else {
316*0d150db2SJacques Pienaar     // Just create the new leaf node.
317*0d150db2SJacques Pienaar     NewNode = new DeltaTreeNode();
318*0d150db2SJacques Pienaar   }
319*0d150db2SJacques Pienaar 
320*0d150db2SJacques Pienaar   // Move over the last 'WidthFactor-1' values from here to NewNode.
321*0d150db2SJacques Pienaar   memcpy(&NewNode->Values[0], &Values[WidthFactor],
322*0d150db2SJacques Pienaar          (WidthFactor - 1) * sizeof(Values[0]));
323*0d150db2SJacques Pienaar 
324*0d150db2SJacques Pienaar   // Decrease the number of values in the two nodes.
325*0d150db2SJacques Pienaar   NewNode->NumValuesUsed = NumValuesUsed = WidthFactor - 1;
326*0d150db2SJacques Pienaar 
327*0d150db2SJacques Pienaar   // Recompute the two nodes' full delta.
328*0d150db2SJacques Pienaar   NewNode->RecomputeFullDeltaLocally();
329*0d150db2SJacques Pienaar   RecomputeFullDeltaLocally();
330*0d150db2SJacques Pienaar 
331*0d150db2SJacques Pienaar   InsertRes.LHS = this;
332*0d150db2SJacques Pienaar   InsertRes.RHS = NewNode;
333*0d150db2SJacques Pienaar   InsertRes.Split = Values[WidthFactor - 1];
334*0d150db2SJacques Pienaar }
335*0d150db2SJacques Pienaar 
336*0d150db2SJacques Pienaar //===----------------------------------------------------------------------===//
337*0d150db2SJacques Pienaar //                        DeltaTree Implementation
338*0d150db2SJacques Pienaar //===----------------------------------------------------------------------===//
339*0d150db2SJacques Pienaar 
340*0d150db2SJacques Pienaar // #define VERIFY_TREE
341*0d150db2SJacques Pienaar 
342*0d150db2SJacques Pienaar #ifdef VERIFY_TREE
343*0d150db2SJacques Pienaar /// VerifyTree - Walk the btree performing assertions on various properties to
344*0d150db2SJacques Pienaar /// verify consistency.  This is useful for debugging new changes to the tree.
345*0d150db2SJacques Pienaar static void VerifyTree(const DeltaTreeNode *N) {
346*0d150db2SJacques Pienaar   const auto *IN = dyn_cast<DeltaTreeInteriorNode>(N);
347*0d150db2SJacques Pienaar   if (IN == 0) {
348*0d150db2SJacques Pienaar     // Verify leaves, just ensure that FullDelta matches up and the elements
349*0d150db2SJacques Pienaar     // are in proper order.
350*0d150db2SJacques Pienaar     int FullDelta = 0;
351*0d150db2SJacques Pienaar     for (unsigned i = 0, e = N->getNumValuesUsed(); i != e; ++i) {
352*0d150db2SJacques Pienaar       if (i)
353*0d150db2SJacques Pienaar         assert(N->getValue(i - 1).FileLoc < N->getValue(i).FileLoc);
354*0d150db2SJacques Pienaar       FullDelta += N->getValue(i).Delta;
355*0d150db2SJacques Pienaar     }
356*0d150db2SJacques Pienaar     assert(FullDelta == N->getFullDelta());
357*0d150db2SJacques Pienaar     return;
358*0d150db2SJacques Pienaar   }
359*0d150db2SJacques Pienaar 
360*0d150db2SJacques Pienaar   // Verify interior nodes: Ensure that FullDelta matches up and the
361*0d150db2SJacques Pienaar   // elements are in proper order and the children are in proper order.
362*0d150db2SJacques Pienaar   int FullDelta = 0;
363*0d150db2SJacques Pienaar   for (unsigned i = 0, e = IN->getNumValuesUsed(); i != e; ++i) {
364*0d150db2SJacques Pienaar     const SourceDelta &IVal = N->getValue(i);
365*0d150db2SJacques Pienaar     const DeltaTreeNode *IChild = IN->getChild(i);
366*0d150db2SJacques Pienaar     if (i)
367*0d150db2SJacques Pienaar       assert(IN->getValue(i - 1).FileLoc < IVal.FileLoc);
368*0d150db2SJacques Pienaar     FullDelta += IVal.Delta;
369*0d150db2SJacques Pienaar     FullDelta += IChild->getFullDelta();
370*0d150db2SJacques Pienaar 
371*0d150db2SJacques Pienaar     // The largest value in child #i should be smaller than FileLoc.
372*0d150db2SJacques Pienaar     assert(IChild->getValue(IChild->getNumValuesUsed() - 1).FileLoc <
373*0d150db2SJacques Pienaar            IVal.FileLoc);
374*0d150db2SJacques Pienaar 
375*0d150db2SJacques Pienaar     // The smallest value in child #i+1 should be larger than FileLoc.
376*0d150db2SJacques Pienaar     assert(IN->getChild(i + 1)->getValue(0).FileLoc > IVal.FileLoc);
377*0d150db2SJacques Pienaar     VerifyTree(IChild);
378*0d150db2SJacques Pienaar   }
379*0d150db2SJacques Pienaar 
380*0d150db2SJacques Pienaar   FullDelta += IN->getChild(IN->getNumValuesUsed())->getFullDelta();
381*0d150db2SJacques Pienaar 
382*0d150db2SJacques Pienaar   assert(FullDelta == N->getFullDelta());
383*0d150db2SJacques Pienaar }
384*0d150db2SJacques Pienaar #endif // VERIFY_TREE
385*0d150db2SJacques Pienaar 
386*0d150db2SJacques Pienaar static DeltaTreeNode *getRoot(void *Root) { return (DeltaTreeNode *)Root; }
387*0d150db2SJacques Pienaar 
388*0d150db2SJacques Pienaar DeltaTree::DeltaTree() { Root = new DeltaTreeNode(); }
389*0d150db2SJacques Pienaar 
390*0d150db2SJacques Pienaar DeltaTree::DeltaTree(const DeltaTree &RHS) {
391*0d150db2SJacques Pienaar   // Currently we only support copying when the RHS is empty.
392*0d150db2SJacques Pienaar   assert(getRoot(RHS.Root)->getNumValuesUsed() == 0 &&
393*0d150db2SJacques Pienaar          "Can only copy empty tree");
394*0d150db2SJacques Pienaar   Root = new DeltaTreeNode();
395*0d150db2SJacques Pienaar }
396*0d150db2SJacques Pienaar 
397*0d150db2SJacques Pienaar DeltaTree::~DeltaTree() { getRoot(Root)->Destroy(); }
398*0d150db2SJacques Pienaar 
399*0d150db2SJacques Pienaar /// getDeltaAt - Return the accumulated delta at the specified file offset.
400*0d150db2SJacques Pienaar /// This includes all insertions or delections that occurred *before* the
401*0d150db2SJacques Pienaar /// specified file index.
402*0d150db2SJacques Pienaar int DeltaTree::getDeltaAt(unsigned FileIndex) const {
403*0d150db2SJacques Pienaar   const DeltaTreeNode *Node = getRoot(Root);
404*0d150db2SJacques Pienaar 
405*0d150db2SJacques Pienaar   int Result = 0;
406*0d150db2SJacques Pienaar 
407*0d150db2SJacques Pienaar   // Walk down the tree.
408*0d150db2SJacques Pienaar   while (true) {
409*0d150db2SJacques Pienaar     // For all nodes, include any local deltas before the specified file
410*0d150db2SJacques Pienaar     // index by summing them up directly.  Keep track of how many were
411*0d150db2SJacques Pienaar     // included.
412*0d150db2SJacques Pienaar     unsigned NumValsGreater = 0;
413*0d150db2SJacques Pienaar     for (unsigned e = Node->getNumValuesUsed(); NumValsGreater != e;
414*0d150db2SJacques Pienaar          ++NumValsGreater) {
415*0d150db2SJacques Pienaar       const SourceDelta &Val = Node->getValue(NumValsGreater);
416*0d150db2SJacques Pienaar 
417*0d150db2SJacques Pienaar       if (Val.FileLoc >= FileIndex)
418*0d150db2SJacques Pienaar         break;
419*0d150db2SJacques Pienaar       Result += Val.Delta;
420*0d150db2SJacques Pienaar     }
421*0d150db2SJacques Pienaar 
422*0d150db2SJacques Pienaar     // If we have an interior node, include information about children and
423*0d150db2SJacques Pienaar     // recurse.  Otherwise, if we have a leaf, we're done.
424*0d150db2SJacques Pienaar     const auto *IN = dyn_cast<DeltaTreeInteriorNode>(Node);
425*0d150db2SJacques Pienaar     if (!IN)
426*0d150db2SJacques Pienaar       return Result;
427*0d150db2SJacques Pienaar 
428*0d150db2SJacques Pienaar     // Include any children to the left of the values we skipped, all of
429*0d150db2SJacques Pienaar     // their deltas should be included as well.
430*0d150db2SJacques Pienaar     for (unsigned i = 0; i != NumValsGreater; ++i)
431*0d150db2SJacques Pienaar       Result += IN->getChild(i)->getFullDelta();
432*0d150db2SJacques Pienaar 
433*0d150db2SJacques Pienaar     // If we found exactly the value we were looking for, break off the
434*0d150db2SJacques Pienaar     // search early.  There is no need to search the RHS of the value for
435*0d150db2SJacques Pienaar     // partial results.
436*0d150db2SJacques Pienaar     if (NumValsGreater != Node->getNumValuesUsed() &&
437*0d150db2SJacques Pienaar         Node->getValue(NumValsGreater).FileLoc == FileIndex)
438*0d150db2SJacques Pienaar       return Result + IN->getChild(NumValsGreater)->getFullDelta();
439*0d150db2SJacques Pienaar 
440*0d150db2SJacques Pienaar     // Otherwise, traverse down the tree.  The selected subtree may be
441*0d150db2SJacques Pienaar     // partially included in the range.
442*0d150db2SJacques Pienaar     Node = IN->getChild(NumValsGreater);
443*0d150db2SJacques Pienaar   }
444*0d150db2SJacques Pienaar   // NOT REACHED.
445*0d150db2SJacques Pienaar }
446*0d150db2SJacques Pienaar 
447*0d150db2SJacques Pienaar /// AddDelta - When a change is made that shifts around the text buffer,
448*0d150db2SJacques Pienaar /// this method is used to record that info.  It inserts a delta of 'Delta'
449*0d150db2SJacques Pienaar /// into the current DeltaTree at offset FileIndex.
450*0d150db2SJacques Pienaar void DeltaTree::AddDelta(unsigned FileIndex, int Delta) {
451*0d150db2SJacques Pienaar   assert(Delta && "Adding a noop?");
452*0d150db2SJacques Pienaar   DeltaTreeNode *MyRoot = getRoot(Root);
453*0d150db2SJacques Pienaar 
454*0d150db2SJacques Pienaar   DeltaTreeNode::InsertResult InsertRes;
455*0d150db2SJacques Pienaar   if (MyRoot->DoInsertion(FileIndex, Delta, &InsertRes)) {
456*0d150db2SJacques Pienaar     Root = new DeltaTreeInteriorNode(InsertRes);
457*0d150db2SJacques Pienaar #ifdef VERIFY_TREE
458*0d150db2SJacques Pienaar     MyRoot = Root;
459*0d150db2SJacques Pienaar #endif
460*0d150db2SJacques Pienaar   }
461*0d150db2SJacques Pienaar 
462*0d150db2SJacques Pienaar #ifdef VERIFY_TREE
463*0d150db2SJacques Pienaar   VerifyTree(MyRoot);
464*0d150db2SJacques Pienaar #endif
465*0d150db2SJacques Pienaar }
466