xref: /llvm-project/llvm/lib/Support/BalancedPartitioning.cpp (revision c1d935ece34679679bf0f5f52eb20cf3683949ae)
1 //===- BalancedPartitioning.cpp -------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements BalancedPartitioning, a recursive balanced graph
10 // partitioning algorithm.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Support/BalancedPartitioning.h"
15 #include "llvm/ADT/SetVector.h"
16 #include "llvm/Support/Debug.h"
17 #include "llvm/Support/Format.h"
18 #include "llvm/Support/FormatVariadic.h"
19 
20 using namespace llvm;
21 #define DEBUG_TYPE "balanced-partitioning"
22 
23 void BPFunctionNode::dump(raw_ostream &OS) const {
24   OS << formatv("{{ID={0} Utilities={{{1:$[,]}} Bucket={2}}", Id,
25                 make_range(UtilityNodes.begin(), UtilityNodes.end()), Bucket);
26 }
27 
28 template <typename Func>
29 void BalancedPartitioning::BPThreadPool::async(Func &&F) {
30 #if LLVM_ENABLE_THREADS
31   // This new thread could spawn more threads, so mark it as active
32   ++NumActiveThreads;
33   TheThreadPool.async([=]() {
34     // Run the task
35     F();
36 
37     // This thread will no longer spawn new threads, so mark it as inactive
38     if (--NumActiveThreads == 0) {
39       // There are no more active threads, so mark as finished and notify
40       {
41         std::unique_lock<std::mutex> lock(mtx);
42         assert(!IsFinishedSpawning);
43         IsFinishedSpawning = true;
44       }
45       cv.notify_one();
46     }
47   });
48 #else
49   llvm_unreachable("threads are disabled");
50 #endif
51 }
52 
53 void BalancedPartitioning::BPThreadPool::wait() {
54 #if LLVM_ENABLE_THREADS
55   // TODO: We could remove the mutex and condition variable and use
56   // std::atomic::wait() instead, but that isn't available until C++20
57   {
58     std::unique_lock<std::mutex> lock(mtx);
59     cv.wait(lock, [&]() { return IsFinishedSpawning; });
60     assert(IsFinishedSpawning && NumActiveThreads == 0);
61   }
62   // Now we can call ThreadPool::wait() since all tasks have been submitted
63   TheThreadPool.wait();
64 #else
65   llvm_unreachable("threads are disabled");
66 #endif
67 }
68 
69 BalancedPartitioning::BalancedPartitioning(
70     const BalancedPartitioningConfig &Config)
71     : Config(Config) {
72   // Pre-computing log2 values
73   Log2Cache[0] = 0.0;
74   for (unsigned I = 1; I < LOG_CACHE_SIZE; I++)
75     Log2Cache[I] = std::log2(I);
76 }
77 
78 void BalancedPartitioning::run(std::vector<BPFunctionNode> &Nodes) const {
79   LLVM_DEBUG(
80       dbgs() << format(
81           "Partitioning %d nodes using depth %d and %d iterations per split\n",
82           Nodes.size(), Config.SplitDepth, Config.IterationsPerSplit));
83   std::optional<BPThreadPool> TP;
84 #if LLVM_ENABLE_THREADS
85   if (Config.TaskSplitDepth > 1)
86     TP.emplace();
87 #endif
88 
89   // Record the input order
90   for (unsigned I = 0; I < Nodes.size(); I++)
91     Nodes[I].InputOrderIndex = I;
92 
93   auto NodesRange = llvm::make_range(Nodes.begin(), Nodes.end());
94   auto BisectTask = [=, &TP]() {
95     bisect(NodesRange, /*RecDepth=*/0, /*RootBucket=*/1, /*Offset=*/0, TP);
96   };
97   if (TP) {
98     TP->async(std::move(BisectTask));
99     TP->wait();
100   } else {
101     BisectTask();
102   }
103 
104   llvm::stable_sort(NodesRange, [](const auto &L, const auto &R) {
105     return L.Bucket < R.Bucket;
106   });
107 
108   LLVM_DEBUG(dbgs() << "Balanced partitioning completed\n");
109 }
110 
111 void BalancedPartitioning::bisect(const FunctionNodeRange Nodes,
112                                   unsigned RecDepth, unsigned RootBucket,
113                                   unsigned Offset,
114                                   std::optional<BPThreadPool> &TP) const {
115   unsigned NumNodes = std::distance(Nodes.begin(), Nodes.end());
116   if (NumNodes <= 1 || RecDepth >= Config.SplitDepth) {
117     // We've reach the lowest level of the recursion tree. Fall back to the
118     // original order and assign to buckets.
119     llvm::stable_sort(Nodes, [](const auto &L, const auto &R) {
120       return L.InputOrderIndex < R.InputOrderIndex;
121     });
122     for (auto &N : Nodes)
123       N.Bucket = Offset++;
124     return;
125   }
126 
127   LLVM_DEBUG(dbgs() << format("Bisect with %d nodes and root bucket %d\n",
128                               NumNodes, RootBucket));
129 
130   std::mt19937 RNG(RootBucket);
131 
132   unsigned LeftBucket = 2 * RootBucket;
133   unsigned RightBucket = 2 * RootBucket + 1;
134 
135   // Split into two and assign to the left and right buckets
136   split(Nodes, LeftBucket);
137 
138   runIterations(Nodes, RecDepth, LeftBucket, RightBucket, RNG);
139 
140   // Split nodes wrt the resulting buckets
141   auto NodesMid =
142       llvm::partition(Nodes, [&](auto &N) { return N.Bucket == LeftBucket; });
143   unsigned MidOffset = Offset + std::distance(Nodes.begin(), NodesMid);
144 
145   auto LeftNodes = llvm::make_range(Nodes.begin(), NodesMid);
146   auto RightNodes = llvm::make_range(NodesMid, Nodes.end());
147 
148   auto LeftRecTask = [=, &TP]() {
149     bisect(LeftNodes, RecDepth + 1, LeftBucket, Offset, TP);
150   };
151   auto RightRecTask = [=, &TP]() {
152     bisect(RightNodes, RecDepth + 1, RightBucket, MidOffset, TP);
153   };
154 
155   if (TP && RecDepth < Config.TaskSplitDepth && NumNodes >= 4) {
156     TP->async(std::move(LeftRecTask));
157     TP->async(std::move(RightRecTask));
158   } else {
159     LeftRecTask();
160     RightRecTask();
161   }
162 }
163 
164 void BalancedPartitioning::runIterations(const FunctionNodeRange Nodes,
165                                          unsigned RecDepth, unsigned LeftBucket,
166                                          unsigned RightBucket,
167                                          std::mt19937 &RNG) const {
168   unsigned NumNodes = std::distance(Nodes.begin(), Nodes.end());
169   DenseMap<BPFunctionNode::UtilityNodeT, unsigned> UtilityNodeDegree;
170   for (auto &N : Nodes)
171     for (auto &UN : N.UtilityNodes)
172       ++UtilityNodeDegree[UN];
173   // Remove utility nodes if they have just one edge or are connected to all
174   // functions
175   for (auto &N : Nodes)
176     llvm::erase_if(N.UtilityNodes, [&](auto &UN) {
177       return UtilityNodeDegree[UN] <= 1 || UtilityNodeDegree[UN] >= NumNodes;
178     });
179 
180   // Renumber utility nodes so they can be used to index into Signatures
181   DenseMap<BPFunctionNode::UtilityNodeT, unsigned> UtilityNodeIndex;
182   for (auto &N : Nodes)
183     for (auto &UN : N.UtilityNodes)
184       if (!UtilityNodeIndex.count(UN))
185         UtilityNodeIndex[UN] = UtilityNodeIndex.size();
186   for (auto &N : Nodes)
187     for (auto &UN : N.UtilityNodes)
188       UN = UtilityNodeIndex[UN];
189 
190   // Initialize signatures
191   SignaturesT Signatures(/*Size=*/UtilityNodeIndex.size());
192   for (auto &N : Nodes) {
193     for (auto &UN : N.UtilityNodes) {
194       assert(UN < Signatures.size());
195       if (N.Bucket == LeftBucket) {
196         Signatures[UN].LeftCount++;
197       } else {
198         Signatures[UN].RightCount++;
199       }
200     }
201   }
202 
203   for (unsigned I = 0; I < Config.IterationsPerSplit; I++) {
204     unsigned NumMovedNodes =
205         runIteration(Nodes, LeftBucket, RightBucket, Signatures, RNG);
206     if (NumMovedNodes == 0)
207       break;
208   }
209 }
210 
211 unsigned BalancedPartitioning::runIteration(const FunctionNodeRange Nodes,
212                                             unsigned LeftBucket,
213                                             unsigned RightBucket,
214                                             SignaturesT &Signatures,
215                                             std::mt19937 &RNG) const {
216   // Init signature cost caches
217   for (auto &Signature : Signatures) {
218     if (Signature.CachedGainIsValid)
219       continue;
220     unsigned L = Signature.LeftCount;
221     unsigned R = Signature.RightCount;
222     assert((L > 0 || R > 0) && "incorrect signature");
223     float Cost = logCost(L, R);
224     Signature.CachedGainLR = 0.f;
225     Signature.CachedGainRL = 0.f;
226     if (L > 0)
227       Signature.CachedGainLR = Cost - logCost(L - 1, R + 1);
228     if (R > 0)
229       Signature.CachedGainRL = Cost - logCost(L + 1, R - 1);
230     Signature.CachedGainIsValid = true;
231   }
232 
233   // Compute move gains
234   typedef std::pair<float, BPFunctionNode *> GainPair;
235   std::vector<GainPair> Gains;
236   for (auto &N : Nodes) {
237     bool FromLeftToRight = (N.Bucket == LeftBucket);
238     float Gain = moveGain(N, FromLeftToRight, Signatures);
239     Gains.push_back(std::make_pair(Gain, &N));
240   }
241 
242   // Collect left and right gains
243   auto LeftEnd = llvm::partition(
244       Gains, [&](const auto &GP) { return GP.second->Bucket == LeftBucket; });
245   auto LeftRange = llvm::make_range(Gains.begin(), LeftEnd);
246   auto RightRange = llvm::make_range(LeftEnd, Gains.end());
247 
248   // Sort gains in descending order
249   auto LargerGain = [](const auto &L, const auto &R) {
250     return L.first > R.first;
251   };
252   llvm::stable_sort(LeftRange, LargerGain);
253   llvm::stable_sort(RightRange, LargerGain);
254 
255   unsigned NumMovedDataVertices = 0;
256   for (auto [LeftPair, RightPair] : llvm::zip(LeftRange, RightRange)) {
257     auto &[LeftGain, LeftNode] = LeftPair;
258     auto &[RightGain, RightNode] = RightPair;
259     // Stop when the gain is no longer beneficial
260     if (LeftGain + RightGain <= 0.f)
261       break;
262     // Try to exchange the nodes between buckets
263     if (moveFunctionNode(*LeftNode, LeftBucket, RightBucket, Signatures, RNG))
264       ++NumMovedDataVertices;
265     if (moveFunctionNode(*RightNode, LeftBucket, RightBucket, Signatures, RNG))
266       ++NumMovedDataVertices;
267   }
268   return NumMovedDataVertices;
269 }
270 
271 bool BalancedPartitioning::moveFunctionNode(BPFunctionNode &N,
272                                             unsigned LeftBucket,
273                                             unsigned RightBucket,
274                                             SignaturesT &Signatures,
275                                             std::mt19937 &RNG) const {
276   // Sometimes we skip the move. This helps to escape local optima
277   if (std::uniform_real_distribution<float>(0.f, 1.f)(RNG) <=
278       Config.SkipProbability)
279     return false;
280 
281   bool FromLeftToRight = (N.Bucket == LeftBucket);
282   // Update the current bucket
283   N.Bucket = (FromLeftToRight ? RightBucket : LeftBucket);
284 
285   // Update signatures and invalidate gain cache
286   if (FromLeftToRight) {
287     for (auto &UN : N.UtilityNodes) {
288       auto &Signature = Signatures[UN];
289       Signature.LeftCount--;
290       Signature.RightCount++;
291       Signature.CachedGainIsValid = false;
292     }
293   } else {
294     for (auto &UN : N.UtilityNodes) {
295       auto &Signature = Signatures[UN];
296       Signature.LeftCount++;
297       Signature.RightCount--;
298       Signature.CachedGainIsValid = false;
299     }
300   }
301   return true;
302 }
303 
304 void BalancedPartitioning::split(const FunctionNodeRange Nodes,
305                                  unsigned StartBucket) const {
306   unsigned NumNodes = std::distance(Nodes.begin(), Nodes.end());
307   auto NodesMid = Nodes.begin() + (NumNodes + 1) / 2;
308 
309   std::nth_element(Nodes.begin(), NodesMid, Nodes.end(), [](auto &L, auto &R) {
310     return L.InputOrderIndex < R.InputOrderIndex;
311   });
312 
313   for (auto &N : llvm::make_range(Nodes.begin(), NodesMid))
314     N.Bucket = StartBucket;
315   for (auto &N : llvm::make_range(NodesMid, Nodes.end()))
316     N.Bucket = StartBucket + 1;
317 }
318 
319 float BalancedPartitioning::moveGain(const BPFunctionNode &N,
320                                      bool FromLeftToRight,
321                                      const SignaturesT &Signatures) {
322   float Gain = 0.f;
323   for (auto &UN : N.UtilityNodes)
324     Gain += (FromLeftToRight ? Signatures[UN].CachedGainLR
325                              : Signatures[UN].CachedGainRL);
326   return Gain;
327 }
328 
329 float BalancedPartitioning::logCost(unsigned X, unsigned Y) const {
330   return -(X * log2Cached(X + 1) + Y * log2Cached(Y + 1));
331 }
332 
333 float BalancedPartitioning::log2Cached(unsigned i) const {
334   return (i < LOG_CACHE_SIZE) ? Log2Cache[i] : std::log2(i);
335 }
336