xref: /llvm-project/llvm/lib/Support/APInt.cpp (revision 42e98c6ae875e952ee852f78234c0f8ed311472b)
1 //===-- APInt.cpp - Implement APInt class ---------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements a class to represent arbitrary precision integer
10 // constant values and provide a variety of arithmetic operations on them.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/ADT/APInt.h"
15 #include "llvm/ADT/ArrayRef.h"
16 #include "llvm/ADT/FoldingSet.h"
17 #include "llvm/ADT/Hashing.h"
18 #include "llvm/ADT/SmallString.h"
19 #include "llvm/ADT/StringRef.h"
20 #include "llvm/ADT/bit.h"
21 #include "llvm/Config/llvm-config.h"
22 #include "llvm/Support/Debug.h"
23 #include "llvm/Support/ErrorHandling.h"
24 #include "llvm/Support/MathExtras.h"
25 #include "llvm/Support/raw_ostream.h"
26 #include <cmath>
27 #include <optional>
28 
29 using namespace llvm;
30 
31 #define DEBUG_TYPE "apint"
32 
33 /// A utility function for allocating memory, checking for allocation failures,
34 /// and ensuring the contents are zeroed.
35 inline static uint64_t* getClearedMemory(unsigned numWords) {
36   uint64_t *result = new uint64_t[numWords];
37   memset(result, 0, numWords * sizeof(uint64_t));
38   return result;
39 }
40 
41 /// A utility function for allocating memory and checking for allocation
42 /// failure.  The content is not zeroed.
43 inline static uint64_t* getMemory(unsigned numWords) {
44   return new uint64_t[numWords];
45 }
46 
47 /// A utility function that converts a character to a digit.
48 inline static unsigned getDigit(char cdigit, uint8_t radix) {
49   unsigned r;
50 
51   if (radix == 16 || radix == 36) {
52     r = cdigit - '0';
53     if (r <= 9)
54       return r;
55 
56     r = cdigit - 'A';
57     if (r <= radix - 11U)
58       return r + 10;
59 
60     r = cdigit - 'a';
61     if (r <= radix - 11U)
62       return r + 10;
63 
64     radix = 10;
65   }
66 
67   r = cdigit - '0';
68   if (r < radix)
69     return r;
70 
71   return UINT_MAX;
72 }
73 
74 
75 void APInt::initSlowCase(uint64_t val, bool isSigned) {
76   U.pVal = getClearedMemory(getNumWords());
77   U.pVal[0] = val;
78   if (isSigned && int64_t(val) < 0)
79     for (unsigned i = 1; i < getNumWords(); ++i)
80       U.pVal[i] = WORDTYPE_MAX;
81   clearUnusedBits();
82 }
83 
84 void APInt::initSlowCase(const APInt& that) {
85   U.pVal = getMemory(getNumWords());
86   memcpy(U.pVal, that.U.pVal, getNumWords() * APINT_WORD_SIZE);
87 }
88 
89 void APInt::initFromArray(ArrayRef<uint64_t> bigVal) {
90   assert(bigVal.data() && "Null pointer detected!");
91   if (isSingleWord())
92     U.VAL = bigVal[0];
93   else {
94     // Get memory, cleared to 0
95     U.pVal = getClearedMemory(getNumWords());
96     // Calculate the number of words to copy
97     unsigned words = std::min<unsigned>(bigVal.size(), getNumWords());
98     // Copy the words from bigVal to pVal
99     memcpy(U.pVal, bigVal.data(), words * APINT_WORD_SIZE);
100   }
101   // Make sure unused high bits are cleared
102   clearUnusedBits();
103 }
104 
105 APInt::APInt(unsigned numBits, ArrayRef<uint64_t> bigVal) : BitWidth(numBits) {
106   initFromArray(bigVal);
107 }
108 
109 APInt::APInt(unsigned numBits, unsigned numWords, const uint64_t bigVal[])
110     : BitWidth(numBits) {
111   initFromArray(ArrayRef(bigVal, numWords));
112 }
113 
114 APInt::APInt(unsigned numbits, StringRef Str, uint8_t radix)
115     : BitWidth(numbits) {
116   fromString(numbits, Str, radix);
117 }
118 
119 void APInt::reallocate(unsigned NewBitWidth) {
120   // If the number of words is the same we can just change the width and stop.
121   if (getNumWords() == getNumWords(NewBitWidth)) {
122     BitWidth = NewBitWidth;
123     return;
124   }
125 
126   // If we have an allocation, delete it.
127   if (!isSingleWord())
128     delete [] U.pVal;
129 
130   // Update BitWidth.
131   BitWidth = NewBitWidth;
132 
133   // If we are supposed to have an allocation, create it.
134   if (!isSingleWord())
135     U.pVal = getMemory(getNumWords());
136 }
137 
138 void APInt::assignSlowCase(const APInt &RHS) {
139   // Don't do anything for X = X
140   if (this == &RHS)
141     return;
142 
143   // Adjust the bit width and handle allocations as necessary.
144   reallocate(RHS.getBitWidth());
145 
146   // Copy the data.
147   if (isSingleWord())
148     U.VAL = RHS.U.VAL;
149   else
150     memcpy(U.pVal, RHS.U.pVal, getNumWords() * APINT_WORD_SIZE);
151 }
152 
153 /// This method 'profiles' an APInt for use with FoldingSet.
154 void APInt::Profile(FoldingSetNodeID& ID) const {
155   ID.AddInteger(BitWidth);
156 
157   if (isSingleWord()) {
158     ID.AddInteger(U.VAL);
159     return;
160   }
161 
162   unsigned NumWords = getNumWords();
163   for (unsigned i = 0; i < NumWords; ++i)
164     ID.AddInteger(U.pVal[i]);
165 }
166 
167 /// Prefix increment operator. Increments the APInt by one.
168 APInt& APInt::operator++() {
169   if (isSingleWord())
170     ++U.VAL;
171   else
172     tcIncrement(U.pVal, getNumWords());
173   return clearUnusedBits();
174 }
175 
176 /// Prefix decrement operator. Decrements the APInt by one.
177 APInt& APInt::operator--() {
178   if (isSingleWord())
179     --U.VAL;
180   else
181     tcDecrement(U.pVal, getNumWords());
182   return clearUnusedBits();
183 }
184 
185 /// Adds the RHS APInt to this APInt.
186 /// @returns this, after addition of RHS.
187 /// Addition assignment operator.
188 APInt& APInt::operator+=(const APInt& RHS) {
189   assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
190   if (isSingleWord())
191     U.VAL += RHS.U.VAL;
192   else
193     tcAdd(U.pVal, RHS.U.pVal, 0, getNumWords());
194   return clearUnusedBits();
195 }
196 
197 APInt& APInt::operator+=(uint64_t RHS) {
198   if (isSingleWord())
199     U.VAL += RHS;
200   else
201     tcAddPart(U.pVal, RHS, getNumWords());
202   return clearUnusedBits();
203 }
204 
205 /// Subtracts the RHS APInt from this APInt
206 /// @returns this, after subtraction
207 /// Subtraction assignment operator.
208 APInt& APInt::operator-=(const APInt& RHS) {
209   assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
210   if (isSingleWord())
211     U.VAL -= RHS.U.VAL;
212   else
213     tcSubtract(U.pVal, RHS.U.pVal, 0, getNumWords());
214   return clearUnusedBits();
215 }
216 
217 APInt& APInt::operator-=(uint64_t RHS) {
218   if (isSingleWord())
219     U.VAL -= RHS;
220   else
221     tcSubtractPart(U.pVal, RHS, getNumWords());
222   return clearUnusedBits();
223 }
224 
225 APInt APInt::operator*(const APInt& RHS) const {
226   assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
227   if (isSingleWord())
228     return APInt(BitWidth, U.VAL * RHS.U.VAL);
229 
230   APInt Result(getMemory(getNumWords()), getBitWidth());
231   tcMultiply(Result.U.pVal, U.pVal, RHS.U.pVal, getNumWords());
232   Result.clearUnusedBits();
233   return Result;
234 }
235 
236 void APInt::andAssignSlowCase(const APInt &RHS) {
237   WordType *dst = U.pVal, *rhs = RHS.U.pVal;
238   for (size_t i = 0, e = getNumWords(); i != e; ++i)
239     dst[i] &= rhs[i];
240 }
241 
242 void APInt::orAssignSlowCase(const APInt &RHS) {
243   WordType *dst = U.pVal, *rhs = RHS.U.pVal;
244   for (size_t i = 0, e = getNumWords(); i != e; ++i)
245     dst[i] |= rhs[i];
246 }
247 
248 void APInt::xorAssignSlowCase(const APInt &RHS) {
249   WordType *dst = U.pVal, *rhs = RHS.U.pVal;
250   for (size_t i = 0, e = getNumWords(); i != e; ++i)
251     dst[i] ^= rhs[i];
252 }
253 
254 APInt &APInt::operator*=(const APInt &RHS) {
255   *this = *this * RHS;
256   return *this;
257 }
258 
259 APInt& APInt::operator*=(uint64_t RHS) {
260   if (isSingleWord()) {
261     U.VAL *= RHS;
262   } else {
263     unsigned NumWords = getNumWords();
264     tcMultiplyPart(U.pVal, U.pVal, RHS, 0, NumWords, NumWords, false);
265   }
266   return clearUnusedBits();
267 }
268 
269 bool APInt::equalSlowCase(const APInt &RHS) const {
270   return std::equal(U.pVal, U.pVal + getNumWords(), RHS.U.pVal);
271 }
272 
273 int APInt::compare(const APInt& RHS) const {
274   assert(BitWidth == RHS.BitWidth && "Bit widths must be same for comparison");
275   if (isSingleWord())
276     return U.VAL < RHS.U.VAL ? -1 : U.VAL > RHS.U.VAL;
277 
278   return tcCompare(U.pVal, RHS.U.pVal, getNumWords());
279 }
280 
281 int APInt::compareSigned(const APInt& RHS) const {
282   assert(BitWidth == RHS.BitWidth && "Bit widths must be same for comparison");
283   if (isSingleWord()) {
284     int64_t lhsSext = SignExtend64(U.VAL, BitWidth);
285     int64_t rhsSext = SignExtend64(RHS.U.VAL, BitWidth);
286     return lhsSext < rhsSext ? -1 : lhsSext > rhsSext;
287   }
288 
289   bool lhsNeg = isNegative();
290   bool rhsNeg = RHS.isNegative();
291 
292   // If the sign bits don't match, then (LHS < RHS) if LHS is negative
293   if (lhsNeg != rhsNeg)
294     return lhsNeg ? -1 : 1;
295 
296   // Otherwise we can just use an unsigned comparison, because even negative
297   // numbers compare correctly this way if both have the same signed-ness.
298   return tcCompare(U.pVal, RHS.U.pVal, getNumWords());
299 }
300 
301 void APInt::setBitsSlowCase(unsigned loBit, unsigned hiBit) {
302   unsigned loWord = whichWord(loBit);
303   unsigned hiWord = whichWord(hiBit);
304 
305   // Create an initial mask for the low word with zeros below loBit.
306   uint64_t loMask = WORDTYPE_MAX << whichBit(loBit);
307 
308   // If hiBit is not aligned, we need a high mask.
309   unsigned hiShiftAmt = whichBit(hiBit);
310   if (hiShiftAmt != 0) {
311     // Create a high mask with zeros above hiBit.
312     uint64_t hiMask = WORDTYPE_MAX >> (APINT_BITS_PER_WORD - hiShiftAmt);
313     // If loWord and hiWord are equal, then we combine the masks. Otherwise,
314     // set the bits in hiWord.
315     if (hiWord == loWord)
316       loMask &= hiMask;
317     else
318       U.pVal[hiWord] |= hiMask;
319   }
320   // Apply the mask to the low word.
321   U.pVal[loWord] |= loMask;
322 
323   // Fill any words between loWord and hiWord with all ones.
324   for (unsigned word = loWord + 1; word < hiWord; ++word)
325     U.pVal[word] = WORDTYPE_MAX;
326 }
327 
328 // Complement a bignum in-place.
329 static void tcComplement(APInt::WordType *dst, unsigned parts) {
330   for (unsigned i = 0; i < parts; i++)
331     dst[i] = ~dst[i];
332 }
333 
334 /// Toggle every bit to its opposite value.
335 void APInt::flipAllBitsSlowCase() {
336   tcComplement(U.pVal, getNumWords());
337   clearUnusedBits();
338 }
339 
340 /// Concatenate the bits from "NewLSB" onto the bottom of *this.  This is
341 /// equivalent to:
342 ///   (this->zext(NewWidth) << NewLSB.getBitWidth()) | NewLSB.zext(NewWidth)
343 /// In the slow case, we know the result is large.
344 APInt APInt::concatSlowCase(const APInt &NewLSB) const {
345   unsigned NewWidth = getBitWidth() + NewLSB.getBitWidth();
346   APInt Result = NewLSB.zext(NewWidth);
347   Result.insertBits(*this, NewLSB.getBitWidth());
348   return Result;
349 }
350 
351 /// Toggle a given bit to its opposite value whose position is given
352 /// as "bitPosition".
353 /// Toggles a given bit to its opposite value.
354 void APInt::flipBit(unsigned bitPosition) {
355   assert(bitPosition < BitWidth && "Out of the bit-width range!");
356   setBitVal(bitPosition, !(*this)[bitPosition]);
357 }
358 
359 void APInt::insertBits(const APInt &subBits, unsigned bitPosition) {
360   unsigned subBitWidth = subBits.getBitWidth();
361   assert((subBitWidth + bitPosition) <= BitWidth && "Illegal bit insertion");
362 
363   // inserting no bits is a noop.
364   if (subBitWidth == 0)
365     return;
366 
367   // Insertion is a direct copy.
368   if (subBitWidth == BitWidth) {
369     *this = subBits;
370     return;
371   }
372 
373   // Single word result can be done as a direct bitmask.
374   if (isSingleWord()) {
375     uint64_t mask = WORDTYPE_MAX >> (APINT_BITS_PER_WORD - subBitWidth);
376     U.VAL &= ~(mask << bitPosition);
377     U.VAL |= (subBits.U.VAL << bitPosition);
378     return;
379   }
380 
381   unsigned loBit = whichBit(bitPosition);
382   unsigned loWord = whichWord(bitPosition);
383   unsigned hi1Word = whichWord(bitPosition + subBitWidth - 1);
384 
385   // Insertion within a single word can be done as a direct bitmask.
386   if (loWord == hi1Word) {
387     uint64_t mask = WORDTYPE_MAX >> (APINT_BITS_PER_WORD - subBitWidth);
388     U.pVal[loWord] &= ~(mask << loBit);
389     U.pVal[loWord] |= (subBits.U.VAL << loBit);
390     return;
391   }
392 
393   // Insert on word boundaries.
394   if (loBit == 0) {
395     // Direct copy whole words.
396     unsigned numWholeSubWords = subBitWidth / APINT_BITS_PER_WORD;
397     memcpy(U.pVal + loWord, subBits.getRawData(),
398            numWholeSubWords * APINT_WORD_SIZE);
399 
400     // Mask+insert remaining bits.
401     unsigned remainingBits = subBitWidth % APINT_BITS_PER_WORD;
402     if (remainingBits != 0) {
403       uint64_t mask = WORDTYPE_MAX >> (APINT_BITS_PER_WORD - remainingBits);
404       U.pVal[hi1Word] &= ~mask;
405       U.pVal[hi1Word] |= subBits.getWord(subBitWidth - 1);
406     }
407     return;
408   }
409 
410   // General case - set/clear individual bits in dst based on src.
411   // TODO - there is scope for optimization here, but at the moment this code
412   // path is barely used so prefer readability over performance.
413   for (unsigned i = 0; i != subBitWidth; ++i)
414     setBitVal(bitPosition + i, subBits[i]);
415 }
416 
417 void APInt::insertBits(uint64_t subBits, unsigned bitPosition, unsigned numBits) {
418   uint64_t maskBits = maskTrailingOnes<uint64_t>(numBits);
419   subBits &= maskBits;
420   if (isSingleWord()) {
421     U.VAL &= ~(maskBits << bitPosition);
422     U.VAL |= subBits << bitPosition;
423     return;
424   }
425 
426   unsigned loBit = whichBit(bitPosition);
427   unsigned loWord = whichWord(bitPosition);
428   unsigned hiWord = whichWord(bitPosition + numBits - 1);
429   if (loWord == hiWord) {
430     U.pVal[loWord] &= ~(maskBits << loBit);
431     U.pVal[loWord] |= subBits << loBit;
432     return;
433   }
434 
435   static_assert(8 * sizeof(WordType) <= 64, "This code assumes only two words affected");
436   unsigned wordBits = 8 * sizeof(WordType);
437   U.pVal[loWord] &= ~(maskBits << loBit);
438   U.pVal[loWord] |= subBits << loBit;
439 
440   U.pVal[hiWord] &= ~(maskBits >> (wordBits - loBit));
441   U.pVal[hiWord] |= subBits >> (wordBits - loBit);
442 }
443 
444 APInt APInt::extractBits(unsigned numBits, unsigned bitPosition) const {
445   assert(bitPosition < BitWidth && (numBits + bitPosition) <= BitWidth &&
446          "Illegal bit extraction");
447 
448   if (isSingleWord())
449     return APInt(numBits, U.VAL >> bitPosition);
450 
451   unsigned loBit = whichBit(bitPosition);
452   unsigned loWord = whichWord(bitPosition);
453   unsigned hiWord = whichWord(bitPosition + numBits - 1);
454 
455   // Single word result extracting bits from a single word source.
456   if (loWord == hiWord)
457     return APInt(numBits, U.pVal[loWord] >> loBit);
458 
459   // Extracting bits that start on a source word boundary can be done
460   // as a fast memory copy.
461   if (loBit == 0)
462     return APInt(numBits, ArrayRef(U.pVal + loWord, 1 + hiWord - loWord));
463 
464   // General case - shift + copy source words directly into place.
465   APInt Result(numBits, 0);
466   unsigned NumSrcWords = getNumWords();
467   unsigned NumDstWords = Result.getNumWords();
468 
469   uint64_t *DestPtr = Result.isSingleWord() ? &Result.U.VAL : Result.U.pVal;
470   for (unsigned word = 0; word < NumDstWords; ++word) {
471     uint64_t w0 = U.pVal[loWord + word];
472     uint64_t w1 =
473         (loWord + word + 1) < NumSrcWords ? U.pVal[loWord + word + 1] : 0;
474     DestPtr[word] = (w0 >> loBit) | (w1 << (APINT_BITS_PER_WORD - loBit));
475   }
476 
477   return Result.clearUnusedBits();
478 }
479 
480 uint64_t APInt::extractBitsAsZExtValue(unsigned numBits,
481                                        unsigned bitPosition) const {
482   assert(bitPosition < BitWidth && (numBits + bitPosition) <= BitWidth &&
483          "Illegal bit extraction");
484   assert(numBits <= 64 && "Illegal bit extraction");
485 
486   uint64_t maskBits = maskTrailingOnes<uint64_t>(numBits);
487   if (isSingleWord())
488     return (U.VAL >> bitPosition) & maskBits;
489 
490   unsigned loBit = whichBit(bitPosition);
491   unsigned loWord = whichWord(bitPosition);
492   unsigned hiWord = whichWord(bitPosition + numBits - 1);
493   if (loWord == hiWord)
494     return (U.pVal[loWord] >> loBit) & maskBits;
495 
496   static_assert(8 * sizeof(WordType) <= 64, "This code assumes only two words affected");
497   unsigned wordBits = 8 * sizeof(WordType);
498   uint64_t retBits = U.pVal[loWord] >> loBit;
499   retBits |= U.pVal[hiWord] << (wordBits - loBit);
500   retBits &= maskBits;
501   return retBits;
502 }
503 
504 unsigned APInt::getSufficientBitsNeeded(StringRef Str, uint8_t Radix) {
505   assert(!Str.empty() && "Invalid string length");
506   size_t StrLen = Str.size();
507 
508   // Each computation below needs to know if it's negative.
509   unsigned IsNegative = false;
510   if (Str[0] == '-' || Str[0] == '+') {
511     IsNegative = Str[0] == '-';
512     StrLen--;
513     assert(StrLen && "String is only a sign, needs a value.");
514   }
515 
516   // For radixes of power-of-two values, the bits required is accurately and
517   // easily computed.
518   if (Radix == 2)
519     return StrLen + IsNegative;
520   if (Radix == 8)
521     return StrLen * 3 + IsNegative;
522   if (Radix == 16)
523     return StrLen * 4 + IsNegative;
524 
525   // Compute a sufficient number of bits that is always large enough but might
526   // be too large. This avoids the assertion in the constructor. This
527   // calculation doesn't work appropriately for the numbers 0-9, so just use 4
528   // bits in that case.
529   if (Radix == 10)
530     return (StrLen == 1 ? 4 : StrLen * 64 / 18) + IsNegative;
531 
532   assert(Radix == 36);
533   return (StrLen == 1 ? 7 : StrLen * 16 / 3) + IsNegative;
534 }
535 
536 unsigned APInt::getBitsNeeded(StringRef str, uint8_t radix) {
537   // Compute a sufficient number of bits that is always large enough but might
538   // be too large.
539   unsigned sufficient = getSufficientBitsNeeded(str, radix);
540 
541   // For bases 2, 8, and 16, the sufficient number of bits is exact and we can
542   // return the value directly. For bases 10 and 36, we need to do extra work.
543   if (radix == 2 || radix == 8 || radix == 16)
544     return sufficient;
545 
546   // This is grossly inefficient but accurate. We could probably do something
547   // with a computation of roughly slen*64/20 and then adjust by the value of
548   // the first few digits. But, I'm not sure how accurate that could be.
549   size_t slen = str.size();
550 
551   // Each computation below needs to know if it's negative.
552   StringRef::iterator p = str.begin();
553   unsigned isNegative = *p == '-';
554   if (*p == '-' || *p == '+') {
555     p++;
556     slen--;
557     assert(slen && "String is only a sign, needs a value.");
558   }
559 
560 
561   // Convert to the actual binary value.
562   APInt tmp(sufficient, StringRef(p, slen), radix);
563 
564   // Compute how many bits are required. If the log is infinite, assume we need
565   // just bit. If the log is exact and value is negative, then the value is
566   // MinSignedValue with (log + 1) bits.
567   unsigned log = tmp.logBase2();
568   if (log == (unsigned)-1) {
569     return isNegative + 1;
570   } else if (isNegative && tmp.isPowerOf2()) {
571     return isNegative + log;
572   } else {
573     return isNegative + log + 1;
574   }
575 }
576 
577 hash_code llvm::hash_value(const APInt &Arg) {
578   if (Arg.isSingleWord())
579     return hash_combine(Arg.BitWidth, Arg.U.VAL);
580 
581   return hash_combine(
582       Arg.BitWidth,
583       hash_combine_range(Arg.U.pVal, Arg.U.pVal + Arg.getNumWords()));
584 }
585 
586 unsigned DenseMapInfo<APInt, void>::getHashValue(const APInt &Key) {
587   return static_cast<unsigned>(hash_value(Key));
588 }
589 
590 bool APInt::isSplat(unsigned SplatSizeInBits) const {
591   assert(getBitWidth() % SplatSizeInBits == 0 &&
592          "SplatSizeInBits must divide width!");
593   // We can check that all parts of an integer are equal by making use of a
594   // little trick: rotate and check if it's still the same value.
595   return *this == rotl(SplatSizeInBits);
596 }
597 
598 /// This function returns the high "numBits" bits of this APInt.
599 APInt APInt::getHiBits(unsigned numBits) const {
600   return this->lshr(BitWidth - numBits);
601 }
602 
603 /// This function returns the low "numBits" bits of this APInt.
604 APInt APInt::getLoBits(unsigned numBits) const {
605   APInt Result(getLowBitsSet(BitWidth, numBits));
606   Result &= *this;
607   return Result;
608 }
609 
610 /// Return a value containing V broadcasted over NewLen bits.
611 APInt APInt::getSplat(unsigned NewLen, const APInt &V) {
612   assert(NewLen >= V.getBitWidth() && "Can't splat to smaller bit width!");
613 
614   APInt Val = V.zext(NewLen);
615   for (unsigned I = V.getBitWidth(); I < NewLen; I <<= 1)
616     Val |= Val << I;
617 
618   return Val;
619 }
620 
621 unsigned APInt::countLeadingZerosSlowCase() const {
622   unsigned Count = 0;
623   for (int i = getNumWords()-1; i >= 0; --i) {
624     uint64_t V = U.pVal[i];
625     if (V == 0)
626       Count += APINT_BITS_PER_WORD;
627     else {
628       Count += llvm::countl_zero(V);
629       break;
630     }
631   }
632   // Adjust for unused bits in the most significant word (they are zero).
633   unsigned Mod = BitWidth % APINT_BITS_PER_WORD;
634   Count -= Mod > 0 ? APINT_BITS_PER_WORD - Mod : 0;
635   return Count;
636 }
637 
638 unsigned APInt::countLeadingOnesSlowCase() const {
639   unsigned highWordBits = BitWidth % APINT_BITS_PER_WORD;
640   unsigned shift;
641   if (!highWordBits) {
642     highWordBits = APINT_BITS_PER_WORD;
643     shift = 0;
644   } else {
645     shift = APINT_BITS_PER_WORD - highWordBits;
646   }
647   int i = getNumWords() - 1;
648   unsigned Count = llvm::countl_one(U.pVal[i] << shift);
649   if (Count == highWordBits) {
650     for (i--; i >= 0; --i) {
651       if (U.pVal[i] == WORDTYPE_MAX)
652         Count += APINT_BITS_PER_WORD;
653       else {
654         Count += llvm::countl_one(U.pVal[i]);
655         break;
656       }
657     }
658   }
659   return Count;
660 }
661 
662 unsigned APInt::countTrailingZerosSlowCase() const {
663   unsigned Count = 0;
664   unsigned i = 0;
665   for (; i < getNumWords() && U.pVal[i] == 0; ++i)
666     Count += APINT_BITS_PER_WORD;
667   if (i < getNumWords())
668     Count += llvm::countr_zero(U.pVal[i]);
669   return std::min(Count, BitWidth);
670 }
671 
672 unsigned APInt::countTrailingOnesSlowCase() const {
673   unsigned Count = 0;
674   unsigned i = 0;
675   for (; i < getNumWords() && U.pVal[i] == WORDTYPE_MAX; ++i)
676     Count += APINT_BITS_PER_WORD;
677   if (i < getNumWords())
678     Count += llvm::countr_one(U.pVal[i]);
679   assert(Count <= BitWidth);
680   return Count;
681 }
682 
683 unsigned APInt::countPopulationSlowCase() const {
684   unsigned Count = 0;
685   for (unsigned i = 0; i < getNumWords(); ++i)
686     Count += llvm::popcount(U.pVal[i]);
687   return Count;
688 }
689 
690 bool APInt::intersectsSlowCase(const APInt &RHS) const {
691   for (unsigned i = 0, e = getNumWords(); i != e; ++i)
692     if ((U.pVal[i] & RHS.U.pVal[i]) != 0)
693       return true;
694 
695   return false;
696 }
697 
698 bool APInt::isSubsetOfSlowCase(const APInt &RHS) const {
699   for (unsigned i = 0, e = getNumWords(); i != e; ++i)
700     if ((U.pVal[i] & ~RHS.U.pVal[i]) != 0)
701       return false;
702 
703   return true;
704 }
705 
706 APInt APInt::byteSwap() const {
707   assert(BitWidth >= 16 && BitWidth % 8 == 0 && "Cannot byteswap!");
708   if (BitWidth == 16)
709     return APInt(BitWidth, llvm::byteswap<uint16_t>(U.VAL));
710   if (BitWidth == 32)
711     return APInt(BitWidth, llvm::byteswap<uint32_t>(U.VAL));
712   if (BitWidth <= 64) {
713     uint64_t Tmp1 = llvm::byteswap<uint64_t>(U.VAL);
714     Tmp1 >>= (64 - BitWidth);
715     return APInt(BitWidth, Tmp1);
716   }
717 
718   APInt Result(getNumWords() * APINT_BITS_PER_WORD, 0);
719   for (unsigned I = 0, N = getNumWords(); I != N; ++I)
720     Result.U.pVal[I] = llvm::byteswap<uint64_t>(U.pVal[N - I - 1]);
721   if (Result.BitWidth != BitWidth) {
722     Result.lshrInPlace(Result.BitWidth - BitWidth);
723     Result.BitWidth = BitWidth;
724   }
725   return Result;
726 }
727 
728 APInt APInt::reverseBits() const {
729   switch (BitWidth) {
730   case 64:
731     return APInt(BitWidth, llvm::reverseBits<uint64_t>(U.VAL));
732   case 32:
733     return APInt(BitWidth, llvm::reverseBits<uint32_t>(U.VAL));
734   case 16:
735     return APInt(BitWidth, llvm::reverseBits<uint16_t>(U.VAL));
736   case 8:
737     return APInt(BitWidth, llvm::reverseBits<uint8_t>(U.VAL));
738   case 0:
739     return *this;
740   default:
741     break;
742   }
743 
744   APInt Val(*this);
745   APInt Reversed(BitWidth, 0);
746   unsigned S = BitWidth;
747 
748   for (; Val != 0; Val.lshrInPlace(1)) {
749     Reversed <<= 1;
750     Reversed |= Val[0];
751     --S;
752   }
753 
754   Reversed <<= S;
755   return Reversed;
756 }
757 
758 APInt llvm::APIntOps::GreatestCommonDivisor(APInt A, APInt B) {
759   // Fast-path a common case.
760   if (A == B) return A;
761 
762   // Corner cases: if either operand is zero, the other is the gcd.
763   if (!A) return B;
764   if (!B) return A;
765 
766   // Count common powers of 2 and remove all other powers of 2.
767   unsigned Pow2;
768   {
769     unsigned Pow2_A = A.countr_zero();
770     unsigned Pow2_B = B.countr_zero();
771     if (Pow2_A > Pow2_B) {
772       A.lshrInPlace(Pow2_A - Pow2_B);
773       Pow2 = Pow2_B;
774     } else if (Pow2_B > Pow2_A) {
775       B.lshrInPlace(Pow2_B - Pow2_A);
776       Pow2 = Pow2_A;
777     } else {
778       Pow2 = Pow2_A;
779     }
780   }
781 
782   // Both operands are odd multiples of 2^Pow_2:
783   //
784   //   gcd(a, b) = gcd(|a - b| / 2^i, min(a, b))
785   //
786   // This is a modified version of Stein's algorithm, taking advantage of
787   // efficient countTrailingZeros().
788   while (A != B) {
789     if (A.ugt(B)) {
790       A -= B;
791       A.lshrInPlace(A.countr_zero() - Pow2);
792     } else {
793       B -= A;
794       B.lshrInPlace(B.countr_zero() - Pow2);
795     }
796   }
797 
798   return A;
799 }
800 
801 APInt llvm::APIntOps::RoundDoubleToAPInt(double Double, unsigned width) {
802   uint64_t I = bit_cast<uint64_t>(Double);
803 
804   // Get the sign bit from the highest order bit
805   bool isNeg = I >> 63;
806 
807   // Get the 11-bit exponent and adjust for the 1023 bit bias
808   int64_t exp = ((I >> 52) & 0x7ff) - 1023;
809 
810   // If the exponent is negative, the value is < 0 so just return 0.
811   if (exp < 0)
812     return APInt(width, 0u);
813 
814   // Extract the mantissa by clearing the top 12 bits (sign + exponent).
815   uint64_t mantissa = (I & (~0ULL >> 12)) | 1ULL << 52;
816 
817   // If the exponent doesn't shift all bits out of the mantissa
818   if (exp < 52)
819     return isNeg ? -APInt(width, mantissa >> (52 - exp)) :
820                     APInt(width, mantissa >> (52 - exp));
821 
822   // If the client didn't provide enough bits for us to shift the mantissa into
823   // then the result is undefined, just return 0
824   if (width <= exp - 52)
825     return APInt(width, 0);
826 
827   // Otherwise, we have to shift the mantissa bits up to the right location
828   APInt Tmp(width, mantissa);
829   Tmp <<= (unsigned)exp - 52;
830   return isNeg ? -Tmp : Tmp;
831 }
832 
833 /// This function converts this APInt to a double.
834 /// The layout for double is as following (IEEE Standard 754):
835 ///  --------------------------------------
836 /// |  Sign    Exponent    Fraction    Bias |
837 /// |-------------------------------------- |
838 /// |  1[63]   11[62-52]   52[51-00]   1023 |
839 ///  --------------------------------------
840 double APInt::roundToDouble(bool isSigned) const {
841 
842   // Handle the simple case where the value is contained in one uint64_t.
843   // It is wrong to optimize getWord(0) to VAL; there might be more than one word.
844   if (isSingleWord() || getActiveBits() <= APINT_BITS_PER_WORD) {
845     if (isSigned) {
846       int64_t sext = SignExtend64(getWord(0), BitWidth);
847       return double(sext);
848     } else
849       return double(getWord(0));
850   }
851 
852   // Determine if the value is negative.
853   bool isNeg = isSigned ? (*this)[BitWidth-1] : false;
854 
855   // Construct the absolute value if we're negative.
856   APInt Tmp(isNeg ? -(*this) : (*this));
857 
858   // Figure out how many bits we're using.
859   unsigned n = Tmp.getActiveBits();
860 
861   // The exponent (without bias normalization) is just the number of bits
862   // we are using. Note that the sign bit is gone since we constructed the
863   // absolute value.
864   uint64_t exp = n;
865 
866   // Return infinity for exponent overflow
867   if (exp > 1023) {
868     if (!isSigned || !isNeg)
869       return std::numeric_limits<double>::infinity();
870     else
871       return -std::numeric_limits<double>::infinity();
872   }
873   exp += 1023; // Increment for 1023 bias
874 
875   // Number of bits in mantissa is 52. To obtain the mantissa value, we must
876   // extract the high 52 bits from the correct words in pVal.
877   uint64_t mantissa;
878   unsigned hiWord = whichWord(n-1);
879   if (hiWord == 0) {
880     mantissa = Tmp.U.pVal[0];
881     if (n > 52)
882       mantissa >>= n - 52; // shift down, we want the top 52 bits.
883   } else {
884     assert(hiWord > 0 && "huh?");
885     uint64_t hibits = Tmp.U.pVal[hiWord] << (52 - n % APINT_BITS_PER_WORD);
886     uint64_t lobits = Tmp.U.pVal[hiWord-1] >> (11 + n % APINT_BITS_PER_WORD);
887     mantissa = hibits | lobits;
888   }
889 
890   // The leading bit of mantissa is implicit, so get rid of it.
891   uint64_t sign = isNeg ? (1ULL << (APINT_BITS_PER_WORD - 1)) : 0;
892   uint64_t I = sign | (exp << 52) | mantissa;
893   return bit_cast<double>(I);
894 }
895 
896 // Truncate to new width.
897 APInt APInt::trunc(unsigned width) const {
898   assert(width <= BitWidth && "Invalid APInt Truncate request");
899 
900   if (width <= APINT_BITS_PER_WORD)
901     return APInt(width, getRawData()[0]);
902 
903   if (width == BitWidth)
904     return *this;
905 
906   APInt Result(getMemory(getNumWords(width)), width);
907 
908   // Copy full words.
909   unsigned i;
910   for (i = 0; i != width / APINT_BITS_PER_WORD; i++)
911     Result.U.pVal[i] = U.pVal[i];
912 
913   // Truncate and copy any partial word.
914   unsigned bits = (0 - width) % APINT_BITS_PER_WORD;
915   if (bits != 0)
916     Result.U.pVal[i] = U.pVal[i] << bits >> bits;
917 
918   return Result;
919 }
920 
921 // Truncate to new width with unsigned saturation.
922 APInt APInt::truncUSat(unsigned width) const {
923   assert(width <= BitWidth && "Invalid APInt Truncate request");
924 
925   // Can we just losslessly truncate it?
926   if (isIntN(width))
927     return trunc(width);
928   // If not, then just return the new limit.
929   return APInt::getMaxValue(width);
930 }
931 
932 // Truncate to new width with signed saturation.
933 APInt APInt::truncSSat(unsigned width) const {
934   assert(width <= BitWidth && "Invalid APInt Truncate request");
935 
936   // Can we just losslessly truncate it?
937   if (isSignedIntN(width))
938     return trunc(width);
939   // If not, then just return the new limits.
940   return isNegative() ? APInt::getSignedMinValue(width)
941                       : APInt::getSignedMaxValue(width);
942 }
943 
944 // Sign extend to a new width.
945 APInt APInt::sext(unsigned Width) const {
946   assert(Width >= BitWidth && "Invalid APInt SignExtend request");
947 
948   if (Width <= APINT_BITS_PER_WORD)
949     return APInt(Width, SignExtend64(U.VAL, BitWidth));
950 
951   if (Width == BitWidth)
952     return *this;
953 
954   APInt Result(getMemory(getNumWords(Width)), Width);
955 
956   // Copy words.
957   std::memcpy(Result.U.pVal, getRawData(), getNumWords() * APINT_WORD_SIZE);
958 
959   // Sign extend the last word since there may be unused bits in the input.
960   Result.U.pVal[getNumWords() - 1] =
961       SignExtend64(Result.U.pVal[getNumWords() - 1],
962                    ((BitWidth - 1) % APINT_BITS_PER_WORD) + 1);
963 
964   // Fill with sign bits.
965   std::memset(Result.U.pVal + getNumWords(), isNegative() ? -1 : 0,
966               (Result.getNumWords() - getNumWords()) * APINT_WORD_SIZE);
967   Result.clearUnusedBits();
968   return Result;
969 }
970 
971 //  Zero extend to a new width.
972 APInt APInt::zext(unsigned width) const {
973   assert(width >= BitWidth && "Invalid APInt ZeroExtend request");
974 
975   if (width <= APINT_BITS_PER_WORD)
976     return APInt(width, U.VAL);
977 
978   if (width == BitWidth)
979     return *this;
980 
981   APInt Result(getMemory(getNumWords(width)), width);
982 
983   // Copy words.
984   std::memcpy(Result.U.pVal, getRawData(), getNumWords() * APINT_WORD_SIZE);
985 
986   // Zero remaining words.
987   std::memset(Result.U.pVal + getNumWords(), 0,
988               (Result.getNumWords() - getNumWords()) * APINT_WORD_SIZE);
989 
990   return Result;
991 }
992 
993 APInt APInt::zextOrTrunc(unsigned width) const {
994   if (BitWidth < width)
995     return zext(width);
996   if (BitWidth > width)
997     return trunc(width);
998   return *this;
999 }
1000 
1001 APInt APInt::sextOrTrunc(unsigned width) const {
1002   if (BitWidth < width)
1003     return sext(width);
1004   if (BitWidth > width)
1005     return trunc(width);
1006   return *this;
1007 }
1008 
1009 /// Arithmetic right-shift this APInt by shiftAmt.
1010 /// Arithmetic right-shift function.
1011 void APInt::ashrInPlace(const APInt &shiftAmt) {
1012   ashrInPlace((unsigned)shiftAmt.getLimitedValue(BitWidth));
1013 }
1014 
1015 /// Arithmetic right-shift this APInt by shiftAmt.
1016 /// Arithmetic right-shift function.
1017 void APInt::ashrSlowCase(unsigned ShiftAmt) {
1018   // Don't bother performing a no-op shift.
1019   if (!ShiftAmt)
1020     return;
1021 
1022   // Save the original sign bit for later.
1023   bool Negative = isNegative();
1024 
1025   // WordShift is the inter-part shift; BitShift is intra-part shift.
1026   unsigned WordShift = ShiftAmt / APINT_BITS_PER_WORD;
1027   unsigned BitShift = ShiftAmt % APINT_BITS_PER_WORD;
1028 
1029   unsigned WordsToMove = getNumWords() - WordShift;
1030   if (WordsToMove != 0) {
1031     // Sign extend the last word to fill in the unused bits.
1032     U.pVal[getNumWords() - 1] = SignExtend64(
1033         U.pVal[getNumWords() - 1], ((BitWidth - 1) % APINT_BITS_PER_WORD) + 1);
1034 
1035     // Fastpath for moving by whole words.
1036     if (BitShift == 0) {
1037       std::memmove(U.pVal, U.pVal + WordShift, WordsToMove * APINT_WORD_SIZE);
1038     } else {
1039       // Move the words containing significant bits.
1040       for (unsigned i = 0; i != WordsToMove - 1; ++i)
1041         U.pVal[i] = (U.pVal[i + WordShift] >> BitShift) |
1042                     (U.pVal[i + WordShift + 1] << (APINT_BITS_PER_WORD - BitShift));
1043 
1044       // Handle the last word which has no high bits to copy.
1045       U.pVal[WordsToMove - 1] = U.pVal[WordShift + WordsToMove - 1] >> BitShift;
1046       // Sign extend one more time.
1047       U.pVal[WordsToMove - 1] =
1048           SignExtend64(U.pVal[WordsToMove - 1], APINT_BITS_PER_WORD - BitShift);
1049     }
1050   }
1051 
1052   // Fill in the remainder based on the original sign.
1053   std::memset(U.pVal + WordsToMove, Negative ? -1 : 0,
1054               WordShift * APINT_WORD_SIZE);
1055   clearUnusedBits();
1056 }
1057 
1058 /// Logical right-shift this APInt by shiftAmt.
1059 /// Logical right-shift function.
1060 void APInt::lshrInPlace(const APInt &shiftAmt) {
1061   lshrInPlace((unsigned)shiftAmt.getLimitedValue(BitWidth));
1062 }
1063 
1064 /// Logical right-shift this APInt by shiftAmt.
1065 /// Logical right-shift function.
1066 void APInt::lshrSlowCase(unsigned ShiftAmt) {
1067   tcShiftRight(U.pVal, getNumWords(), ShiftAmt);
1068 }
1069 
1070 /// Left-shift this APInt by shiftAmt.
1071 /// Left-shift function.
1072 APInt &APInt::operator<<=(const APInt &shiftAmt) {
1073   // It's undefined behavior in C to shift by BitWidth or greater.
1074   *this <<= (unsigned)shiftAmt.getLimitedValue(BitWidth);
1075   return *this;
1076 }
1077 
1078 void APInt::shlSlowCase(unsigned ShiftAmt) {
1079   tcShiftLeft(U.pVal, getNumWords(), ShiftAmt);
1080   clearUnusedBits();
1081 }
1082 
1083 // Calculate the rotate amount modulo the bit width.
1084 static unsigned rotateModulo(unsigned BitWidth, const APInt &rotateAmt) {
1085   if (LLVM_UNLIKELY(BitWidth == 0))
1086     return 0;
1087   unsigned rotBitWidth = rotateAmt.getBitWidth();
1088   APInt rot = rotateAmt;
1089   if (rotBitWidth < BitWidth) {
1090     // Extend the rotate APInt, so that the urem doesn't divide by 0.
1091     // e.g. APInt(1, 32) would give APInt(1, 0).
1092     rot = rotateAmt.zext(BitWidth);
1093   }
1094   rot = rot.urem(APInt(rot.getBitWidth(), BitWidth));
1095   return rot.getLimitedValue(BitWidth);
1096 }
1097 
1098 APInt APInt::rotl(const APInt &rotateAmt) const {
1099   return rotl(rotateModulo(BitWidth, rotateAmt));
1100 }
1101 
1102 APInt APInt::rotl(unsigned rotateAmt) const {
1103   if (LLVM_UNLIKELY(BitWidth == 0))
1104     return *this;
1105   rotateAmt %= BitWidth;
1106   if (rotateAmt == 0)
1107     return *this;
1108   return shl(rotateAmt) | lshr(BitWidth - rotateAmt);
1109 }
1110 
1111 APInt APInt::rotr(const APInt &rotateAmt) const {
1112   return rotr(rotateModulo(BitWidth, rotateAmt));
1113 }
1114 
1115 APInt APInt::rotr(unsigned rotateAmt) const {
1116   if (BitWidth == 0)
1117     return *this;
1118   rotateAmt %= BitWidth;
1119   if (rotateAmt == 0)
1120     return *this;
1121   return lshr(rotateAmt) | shl(BitWidth - rotateAmt);
1122 }
1123 
1124 /// \returns the nearest log base 2 of this APInt. Ties round up.
1125 ///
1126 /// NOTE: When we have a BitWidth of 1, we define:
1127 ///
1128 ///   log2(0) = UINT32_MAX
1129 ///   log2(1) = 0
1130 ///
1131 /// to get around any mathematical concerns resulting from
1132 /// referencing 2 in a space where 2 does no exist.
1133 unsigned APInt::nearestLogBase2() const {
1134   // Special case when we have a bitwidth of 1. If VAL is 1, then we
1135   // get 0. If VAL is 0, we get WORDTYPE_MAX which gets truncated to
1136   // UINT32_MAX.
1137   if (BitWidth == 1)
1138     return U.VAL - 1;
1139 
1140   // Handle the zero case.
1141   if (isZero())
1142     return UINT32_MAX;
1143 
1144   // The non-zero case is handled by computing:
1145   //
1146   //   nearestLogBase2(x) = logBase2(x) + x[logBase2(x)-1].
1147   //
1148   // where x[i] is referring to the value of the ith bit of x.
1149   unsigned lg = logBase2();
1150   return lg + unsigned((*this)[lg - 1]);
1151 }
1152 
1153 // Square Root - this method computes and returns the square root of "this".
1154 // Three mechanisms are used for computation. For small values (<= 5 bits),
1155 // a table lookup is done. This gets some performance for common cases. For
1156 // values using less than 52 bits, the value is converted to double and then
1157 // the libc sqrt function is called. The result is rounded and then converted
1158 // back to a uint64_t which is then used to construct the result. Finally,
1159 // the Babylonian method for computing square roots is used.
1160 APInt APInt::sqrt() const {
1161 
1162   // Determine the magnitude of the value.
1163   unsigned magnitude = getActiveBits();
1164 
1165   // Use a fast table for some small values. This also gets rid of some
1166   // rounding errors in libc sqrt for small values.
1167   if (magnitude <= 5) {
1168     static const uint8_t results[32] = {
1169       /*     0 */ 0,
1170       /*  1- 2 */ 1, 1,
1171       /*  3- 6 */ 2, 2, 2, 2,
1172       /*  7-12 */ 3, 3, 3, 3, 3, 3,
1173       /* 13-20 */ 4, 4, 4, 4, 4, 4, 4, 4,
1174       /* 21-30 */ 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
1175       /*    31 */ 6
1176     };
1177     return APInt(BitWidth, results[ (isSingleWord() ? U.VAL : U.pVal[0]) ]);
1178   }
1179 
1180   // If the magnitude of the value fits in less than 52 bits (the precision of
1181   // an IEEE double precision floating point value), then we can use the
1182   // libc sqrt function which will probably use a hardware sqrt computation.
1183   // This should be faster than the algorithm below.
1184   if (magnitude < 52) {
1185     return APInt(BitWidth,
1186                  uint64_t(::round(::sqrt(double(isSingleWord() ? U.VAL
1187                                                                : U.pVal[0])))));
1188   }
1189 
1190   // Okay, all the short cuts are exhausted. We must compute it. The following
1191   // is a classical Babylonian method for computing the square root. This code
1192   // was adapted to APInt from a wikipedia article on such computations.
1193   // See http://www.wikipedia.org/ and go to the page named
1194   // Calculate_an_integer_square_root.
1195   unsigned nbits = BitWidth, i = 4;
1196   APInt testy(BitWidth, 16);
1197   APInt x_old(BitWidth, 1);
1198   APInt x_new(BitWidth, 0);
1199   APInt two(BitWidth, 2);
1200 
1201   // Select a good starting value using binary logarithms.
1202   for (;; i += 2, testy = testy.shl(2))
1203     if (i >= nbits || this->ule(testy)) {
1204       x_old = x_old.shl(i / 2);
1205       break;
1206     }
1207 
1208   // Use the Babylonian method to arrive at the integer square root:
1209   for (;;) {
1210     x_new = (this->udiv(x_old) + x_old).udiv(two);
1211     if (x_old.ule(x_new))
1212       break;
1213     x_old = x_new;
1214   }
1215 
1216   // Make sure we return the closest approximation
1217   // NOTE: The rounding calculation below is correct. It will produce an
1218   // off-by-one discrepancy with results from pari/gp. That discrepancy has been
1219   // determined to be a rounding issue with pari/gp as it begins to use a
1220   // floating point representation after 192 bits. There are no discrepancies
1221   // between this algorithm and pari/gp for bit widths < 192 bits.
1222   APInt square(x_old * x_old);
1223   APInt nextSquare((x_old + 1) * (x_old +1));
1224   if (this->ult(square))
1225     return x_old;
1226   assert(this->ule(nextSquare) && "Error in APInt::sqrt computation");
1227   APInt midpoint((nextSquare - square).udiv(two));
1228   APInt offset(*this - square);
1229   if (offset.ult(midpoint))
1230     return x_old;
1231   return x_old + 1;
1232 }
1233 
1234 /// Computes the multiplicative inverse of this APInt for a given modulo. The
1235 /// iterative extended Euclidean algorithm is used to solve for this value,
1236 /// however we simplify it to speed up calculating only the inverse, and take
1237 /// advantage of div+rem calculations. We also use some tricks to avoid copying
1238 /// (potentially large) APInts around.
1239 /// WARNING: a value of '0' may be returned,
1240 ///          signifying that no multiplicative inverse exists!
1241 APInt APInt::multiplicativeInverse(const APInt& modulo) const {
1242   assert(ult(modulo) && "This APInt must be smaller than the modulo");
1243 
1244   // Using the properties listed at the following web page (accessed 06/21/08):
1245   //   http://www.numbertheory.org/php/euclid.html
1246   // (especially the properties numbered 3, 4 and 9) it can be proved that
1247   // BitWidth bits suffice for all the computations in the algorithm implemented
1248   // below. More precisely, this number of bits suffice if the multiplicative
1249   // inverse exists, but may not suffice for the general extended Euclidean
1250   // algorithm.
1251 
1252   APInt r[2] = { modulo, *this };
1253   APInt t[2] = { APInt(BitWidth, 0), APInt(BitWidth, 1) };
1254   APInt q(BitWidth, 0);
1255 
1256   unsigned i;
1257   for (i = 0; r[i^1] != 0; i ^= 1) {
1258     // An overview of the math without the confusing bit-flipping:
1259     // q = r[i-2] / r[i-1]
1260     // r[i] = r[i-2] % r[i-1]
1261     // t[i] = t[i-2] - t[i-1] * q
1262     udivrem(r[i], r[i^1], q, r[i]);
1263     t[i] -= t[i^1] * q;
1264   }
1265 
1266   // If this APInt and the modulo are not coprime, there is no multiplicative
1267   // inverse, so return 0. We check this by looking at the next-to-last
1268   // remainder, which is the gcd(*this,modulo) as calculated by the Euclidean
1269   // algorithm.
1270   if (r[i] != 1)
1271     return APInt(BitWidth, 0);
1272 
1273   // The next-to-last t is the multiplicative inverse.  However, we are
1274   // interested in a positive inverse. Calculate a positive one from a negative
1275   // one if necessary. A simple addition of the modulo suffices because
1276   // abs(t[i]) is known to be less than *this/2 (see the link above).
1277   if (t[i].isNegative())
1278     t[i] += modulo;
1279 
1280   return std::move(t[i]);
1281 }
1282 
1283 /// Implementation of Knuth's Algorithm D (Division of nonnegative integers)
1284 /// from "Art of Computer Programming, Volume 2", section 4.3.1, p. 272. The
1285 /// variables here have the same names as in the algorithm. Comments explain
1286 /// the algorithm and any deviation from it.
1287 static void KnuthDiv(uint32_t *u, uint32_t *v, uint32_t *q, uint32_t* r,
1288                      unsigned m, unsigned n) {
1289   assert(u && "Must provide dividend");
1290   assert(v && "Must provide divisor");
1291   assert(q && "Must provide quotient");
1292   assert(u != v && u != q && v != q && "Must use different memory");
1293   assert(n>1 && "n must be > 1");
1294 
1295   // b denotes the base of the number system. In our case b is 2^32.
1296   const uint64_t b = uint64_t(1) << 32;
1297 
1298 // The DEBUG macros here tend to be spam in the debug output if you're not
1299 // debugging this code. Disable them unless KNUTH_DEBUG is defined.
1300 #ifdef KNUTH_DEBUG
1301 #define DEBUG_KNUTH(X) LLVM_DEBUG(X)
1302 #else
1303 #define DEBUG_KNUTH(X) do {} while(false)
1304 #endif
1305 
1306   DEBUG_KNUTH(dbgs() << "KnuthDiv: m=" << m << " n=" << n << '\n');
1307   DEBUG_KNUTH(dbgs() << "KnuthDiv: original:");
1308   DEBUG_KNUTH(for (int i = m + n; i >= 0; i--) dbgs() << " " << u[i]);
1309   DEBUG_KNUTH(dbgs() << " by");
1310   DEBUG_KNUTH(for (int i = n; i > 0; i--) dbgs() << " " << v[i - 1]);
1311   DEBUG_KNUTH(dbgs() << '\n');
1312   // D1. [Normalize.] Set d = b / (v[n-1] + 1) and multiply all the digits of
1313   // u and v by d. Note that we have taken Knuth's advice here to use a power
1314   // of 2 value for d such that d * v[n-1] >= b/2 (b is the base). A power of
1315   // 2 allows us to shift instead of multiply and it is easy to determine the
1316   // shift amount from the leading zeros.  We are basically normalizing the u
1317   // and v so that its high bits are shifted to the top of v's range without
1318   // overflow. Note that this can require an extra word in u so that u must
1319   // be of length m+n+1.
1320   unsigned shift = llvm::countl_zero(v[n - 1]);
1321   uint32_t v_carry = 0;
1322   uint32_t u_carry = 0;
1323   if (shift) {
1324     for (unsigned i = 0; i < m+n; ++i) {
1325       uint32_t u_tmp = u[i] >> (32 - shift);
1326       u[i] = (u[i] << shift) | u_carry;
1327       u_carry = u_tmp;
1328     }
1329     for (unsigned i = 0; i < n; ++i) {
1330       uint32_t v_tmp = v[i] >> (32 - shift);
1331       v[i] = (v[i] << shift) | v_carry;
1332       v_carry = v_tmp;
1333     }
1334   }
1335   u[m+n] = u_carry;
1336 
1337   DEBUG_KNUTH(dbgs() << "KnuthDiv:   normal:");
1338   DEBUG_KNUTH(for (int i = m + n; i >= 0; i--) dbgs() << " " << u[i]);
1339   DEBUG_KNUTH(dbgs() << " by");
1340   DEBUG_KNUTH(for (int i = n; i > 0; i--) dbgs() << " " << v[i - 1]);
1341   DEBUG_KNUTH(dbgs() << '\n');
1342 
1343   // D2. [Initialize j.]  Set j to m. This is the loop counter over the places.
1344   int j = m;
1345   do {
1346     DEBUG_KNUTH(dbgs() << "KnuthDiv: quotient digit #" << j << '\n');
1347     // D3. [Calculate q'.].
1348     //     Set qp = (u[j+n]*b + u[j+n-1]) / v[n-1]. (qp=qprime=q')
1349     //     Set rp = (u[j+n]*b + u[j+n-1]) % v[n-1]. (rp=rprime=r')
1350     // Now test if qp == b or qp*v[n-2] > b*rp + u[j+n-2]; if so, decrease
1351     // qp by 1, increase rp by v[n-1], and repeat this test if rp < b. The test
1352     // on v[n-2] determines at high speed most of the cases in which the trial
1353     // value qp is one too large, and it eliminates all cases where qp is two
1354     // too large.
1355     uint64_t dividend = Make_64(u[j+n], u[j+n-1]);
1356     DEBUG_KNUTH(dbgs() << "KnuthDiv: dividend == " << dividend << '\n');
1357     uint64_t qp = dividend / v[n-1];
1358     uint64_t rp = dividend % v[n-1];
1359     if (qp == b || qp*v[n-2] > b*rp + u[j+n-2]) {
1360       qp--;
1361       rp += v[n-1];
1362       if (rp < b && (qp == b || qp*v[n-2] > b*rp + u[j+n-2]))
1363         qp--;
1364     }
1365     DEBUG_KNUTH(dbgs() << "KnuthDiv: qp == " << qp << ", rp == " << rp << '\n');
1366 
1367     // D4. [Multiply and subtract.] Replace (u[j+n]u[j+n-1]...u[j]) with
1368     // (u[j+n]u[j+n-1]..u[j]) - qp * (v[n-1]...v[1]v[0]). This computation
1369     // consists of a simple multiplication by a one-place number, combined with
1370     // a subtraction.
1371     // The digits (u[j+n]...u[j]) should be kept positive; if the result of
1372     // this step is actually negative, (u[j+n]...u[j]) should be left as the
1373     // true value plus b**(n+1), namely as the b's complement of
1374     // the true value, and a "borrow" to the left should be remembered.
1375     int64_t borrow = 0;
1376     for (unsigned i = 0; i < n; ++i) {
1377       uint64_t p = uint64_t(qp) * uint64_t(v[i]);
1378       int64_t subres = int64_t(u[j+i]) - borrow - Lo_32(p);
1379       u[j+i] = Lo_32(subres);
1380       borrow = Hi_32(p) - Hi_32(subres);
1381       DEBUG_KNUTH(dbgs() << "KnuthDiv: u[j+i] = " << u[j + i]
1382                         << ", borrow = " << borrow << '\n');
1383     }
1384     bool isNeg = u[j+n] < borrow;
1385     u[j+n] -= Lo_32(borrow);
1386 
1387     DEBUG_KNUTH(dbgs() << "KnuthDiv: after subtraction:");
1388     DEBUG_KNUTH(for (int i = m + n; i >= 0; i--) dbgs() << " " << u[i]);
1389     DEBUG_KNUTH(dbgs() << '\n');
1390 
1391     // D5. [Test remainder.] Set q[j] = qp. If the result of step D4 was
1392     // negative, go to step D6; otherwise go on to step D7.
1393     q[j] = Lo_32(qp);
1394     if (isNeg) {
1395       // D6. [Add back]. The probability that this step is necessary is very
1396       // small, on the order of only 2/b. Make sure that test data accounts for
1397       // this possibility. Decrease q[j] by 1
1398       q[j]--;
1399       // and add (0v[n-1]...v[1]v[0]) to (u[j+n]u[j+n-1]...u[j+1]u[j]).
1400       // A carry will occur to the left of u[j+n], and it should be ignored
1401       // since it cancels with the borrow that occurred in D4.
1402       bool carry = false;
1403       for (unsigned i = 0; i < n; i++) {
1404         uint32_t limit = std::min(u[j+i],v[i]);
1405         u[j+i] += v[i] + carry;
1406         carry = u[j+i] < limit || (carry && u[j+i] == limit);
1407       }
1408       u[j+n] += carry;
1409     }
1410     DEBUG_KNUTH(dbgs() << "KnuthDiv: after correction:");
1411     DEBUG_KNUTH(for (int i = m + n; i >= 0; i--) dbgs() << " " << u[i]);
1412     DEBUG_KNUTH(dbgs() << "\nKnuthDiv: digit result = " << q[j] << '\n');
1413 
1414     // D7. [Loop on j.]  Decrease j by one. Now if j >= 0, go back to D3.
1415   } while (--j >= 0);
1416 
1417   DEBUG_KNUTH(dbgs() << "KnuthDiv: quotient:");
1418   DEBUG_KNUTH(for (int i = m; i >= 0; i--) dbgs() << " " << q[i]);
1419   DEBUG_KNUTH(dbgs() << '\n');
1420 
1421   // D8. [Unnormalize]. Now q[...] is the desired quotient, and the desired
1422   // remainder may be obtained by dividing u[...] by d. If r is non-null we
1423   // compute the remainder (urem uses this).
1424   if (r) {
1425     // The value d is expressed by the "shift" value above since we avoided
1426     // multiplication by d by using a shift left. So, all we have to do is
1427     // shift right here.
1428     if (shift) {
1429       uint32_t carry = 0;
1430       DEBUG_KNUTH(dbgs() << "KnuthDiv: remainder:");
1431       for (int i = n-1; i >= 0; i--) {
1432         r[i] = (u[i] >> shift) | carry;
1433         carry = u[i] << (32 - shift);
1434         DEBUG_KNUTH(dbgs() << " " << r[i]);
1435       }
1436     } else {
1437       for (int i = n-1; i >= 0; i--) {
1438         r[i] = u[i];
1439         DEBUG_KNUTH(dbgs() << " " << r[i]);
1440       }
1441     }
1442     DEBUG_KNUTH(dbgs() << '\n');
1443   }
1444   DEBUG_KNUTH(dbgs() << '\n');
1445 }
1446 
1447 void APInt::divide(const WordType *LHS, unsigned lhsWords, const WordType *RHS,
1448                    unsigned rhsWords, WordType *Quotient, WordType *Remainder) {
1449   assert(lhsWords >= rhsWords && "Fractional result");
1450 
1451   // First, compose the values into an array of 32-bit words instead of
1452   // 64-bit words. This is a necessity of both the "short division" algorithm
1453   // and the Knuth "classical algorithm" which requires there to be native
1454   // operations for +, -, and * on an m bit value with an m*2 bit result. We
1455   // can't use 64-bit operands here because we don't have native results of
1456   // 128-bits. Furthermore, casting the 64-bit values to 32-bit values won't
1457   // work on large-endian machines.
1458   unsigned n = rhsWords * 2;
1459   unsigned m = (lhsWords * 2) - n;
1460 
1461   // Allocate space for the temporary values we need either on the stack, if
1462   // it will fit, or on the heap if it won't.
1463   uint32_t SPACE[128];
1464   uint32_t *U = nullptr;
1465   uint32_t *V = nullptr;
1466   uint32_t *Q = nullptr;
1467   uint32_t *R = nullptr;
1468   if ((Remainder?4:3)*n+2*m+1 <= 128) {
1469     U = &SPACE[0];
1470     V = &SPACE[m+n+1];
1471     Q = &SPACE[(m+n+1) + n];
1472     if (Remainder)
1473       R = &SPACE[(m+n+1) + n + (m+n)];
1474   } else {
1475     U = new uint32_t[m + n + 1];
1476     V = new uint32_t[n];
1477     Q = new uint32_t[m+n];
1478     if (Remainder)
1479       R = new uint32_t[n];
1480   }
1481 
1482   // Initialize the dividend
1483   memset(U, 0, (m+n+1)*sizeof(uint32_t));
1484   for (unsigned i = 0; i < lhsWords; ++i) {
1485     uint64_t tmp = LHS[i];
1486     U[i * 2] = Lo_32(tmp);
1487     U[i * 2 + 1] = Hi_32(tmp);
1488   }
1489   U[m+n] = 0; // this extra word is for "spill" in the Knuth algorithm.
1490 
1491   // Initialize the divisor
1492   memset(V, 0, (n)*sizeof(uint32_t));
1493   for (unsigned i = 0; i < rhsWords; ++i) {
1494     uint64_t tmp = RHS[i];
1495     V[i * 2] = Lo_32(tmp);
1496     V[i * 2 + 1] = Hi_32(tmp);
1497   }
1498 
1499   // initialize the quotient and remainder
1500   memset(Q, 0, (m+n) * sizeof(uint32_t));
1501   if (Remainder)
1502     memset(R, 0, n * sizeof(uint32_t));
1503 
1504   // Now, adjust m and n for the Knuth division. n is the number of words in
1505   // the divisor. m is the number of words by which the dividend exceeds the
1506   // divisor (i.e. m+n is the length of the dividend). These sizes must not
1507   // contain any zero words or the Knuth algorithm fails.
1508   for (unsigned i = n; i > 0 && V[i-1] == 0; i--) {
1509     n--;
1510     m++;
1511   }
1512   for (unsigned i = m+n; i > 0 && U[i-1] == 0; i--)
1513     m--;
1514 
1515   // If we're left with only a single word for the divisor, Knuth doesn't work
1516   // so we implement the short division algorithm here. This is much simpler
1517   // and faster because we are certain that we can divide a 64-bit quantity
1518   // by a 32-bit quantity at hardware speed and short division is simply a
1519   // series of such operations. This is just like doing short division but we
1520   // are using base 2^32 instead of base 10.
1521   assert(n != 0 && "Divide by zero?");
1522   if (n == 1) {
1523     uint32_t divisor = V[0];
1524     uint32_t remainder = 0;
1525     for (int i = m; i >= 0; i--) {
1526       uint64_t partial_dividend = Make_64(remainder, U[i]);
1527       if (partial_dividend == 0) {
1528         Q[i] = 0;
1529         remainder = 0;
1530       } else if (partial_dividend < divisor) {
1531         Q[i] = 0;
1532         remainder = Lo_32(partial_dividend);
1533       } else if (partial_dividend == divisor) {
1534         Q[i] = 1;
1535         remainder = 0;
1536       } else {
1537         Q[i] = Lo_32(partial_dividend / divisor);
1538         remainder = Lo_32(partial_dividend - (Q[i] * divisor));
1539       }
1540     }
1541     if (R)
1542       R[0] = remainder;
1543   } else {
1544     // Now we're ready to invoke the Knuth classical divide algorithm. In this
1545     // case n > 1.
1546     KnuthDiv(U, V, Q, R, m, n);
1547   }
1548 
1549   // If the caller wants the quotient
1550   if (Quotient) {
1551     for (unsigned i = 0; i < lhsWords; ++i)
1552       Quotient[i] = Make_64(Q[i*2+1], Q[i*2]);
1553   }
1554 
1555   // If the caller wants the remainder
1556   if (Remainder) {
1557     for (unsigned i = 0; i < rhsWords; ++i)
1558       Remainder[i] = Make_64(R[i*2+1], R[i*2]);
1559   }
1560 
1561   // Clean up the memory we allocated.
1562   if (U != &SPACE[0]) {
1563     delete [] U;
1564     delete [] V;
1565     delete [] Q;
1566     delete [] R;
1567   }
1568 }
1569 
1570 APInt APInt::udiv(const APInt &RHS) const {
1571   assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
1572 
1573   // First, deal with the easy case
1574   if (isSingleWord()) {
1575     assert(RHS.U.VAL != 0 && "Divide by zero?");
1576     return APInt(BitWidth, U.VAL / RHS.U.VAL);
1577   }
1578 
1579   // Get some facts about the LHS and RHS number of bits and words
1580   unsigned lhsWords = getNumWords(getActiveBits());
1581   unsigned rhsBits  = RHS.getActiveBits();
1582   unsigned rhsWords = getNumWords(rhsBits);
1583   assert(rhsWords && "Divided by zero???");
1584 
1585   // Deal with some degenerate cases
1586   if (!lhsWords)
1587     // 0 / X ===> 0
1588     return APInt(BitWidth, 0);
1589   if (rhsBits == 1)
1590     // X / 1 ===> X
1591     return *this;
1592   if (lhsWords < rhsWords || this->ult(RHS))
1593     // X / Y ===> 0, iff X < Y
1594     return APInt(BitWidth, 0);
1595   if (*this == RHS)
1596     // X / X ===> 1
1597     return APInt(BitWidth, 1);
1598   if (lhsWords == 1) // rhsWords is 1 if lhsWords is 1.
1599     // All high words are zero, just use native divide
1600     return APInt(BitWidth, this->U.pVal[0] / RHS.U.pVal[0]);
1601 
1602   // We have to compute it the hard way. Invoke the Knuth divide algorithm.
1603   APInt Quotient(BitWidth, 0); // to hold result.
1604   divide(U.pVal, lhsWords, RHS.U.pVal, rhsWords, Quotient.U.pVal, nullptr);
1605   return Quotient;
1606 }
1607 
1608 APInt APInt::udiv(uint64_t RHS) const {
1609   assert(RHS != 0 && "Divide by zero?");
1610 
1611   // First, deal with the easy case
1612   if (isSingleWord())
1613     return APInt(BitWidth, U.VAL / RHS);
1614 
1615   // Get some facts about the LHS words.
1616   unsigned lhsWords = getNumWords(getActiveBits());
1617 
1618   // Deal with some degenerate cases
1619   if (!lhsWords)
1620     // 0 / X ===> 0
1621     return APInt(BitWidth, 0);
1622   if (RHS == 1)
1623     // X / 1 ===> X
1624     return *this;
1625   if (this->ult(RHS))
1626     // X / Y ===> 0, iff X < Y
1627     return APInt(BitWidth, 0);
1628   if (*this == RHS)
1629     // X / X ===> 1
1630     return APInt(BitWidth, 1);
1631   if (lhsWords == 1) // rhsWords is 1 if lhsWords is 1.
1632     // All high words are zero, just use native divide
1633     return APInt(BitWidth, this->U.pVal[0] / RHS);
1634 
1635   // We have to compute it the hard way. Invoke the Knuth divide algorithm.
1636   APInt Quotient(BitWidth, 0); // to hold result.
1637   divide(U.pVal, lhsWords, &RHS, 1, Quotient.U.pVal, nullptr);
1638   return Quotient;
1639 }
1640 
1641 APInt APInt::sdiv(const APInt &RHS) const {
1642   if (isNegative()) {
1643     if (RHS.isNegative())
1644       return (-(*this)).udiv(-RHS);
1645     return -((-(*this)).udiv(RHS));
1646   }
1647   if (RHS.isNegative())
1648     return -(this->udiv(-RHS));
1649   return this->udiv(RHS);
1650 }
1651 
1652 APInt APInt::sdiv(int64_t RHS) const {
1653   if (isNegative()) {
1654     if (RHS < 0)
1655       return (-(*this)).udiv(-RHS);
1656     return -((-(*this)).udiv(RHS));
1657   }
1658   if (RHS < 0)
1659     return -(this->udiv(-RHS));
1660   return this->udiv(RHS);
1661 }
1662 
1663 APInt APInt::urem(const APInt &RHS) const {
1664   assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
1665   if (isSingleWord()) {
1666     assert(RHS.U.VAL != 0 && "Remainder by zero?");
1667     return APInt(BitWidth, U.VAL % RHS.U.VAL);
1668   }
1669 
1670   // Get some facts about the LHS
1671   unsigned lhsWords = getNumWords(getActiveBits());
1672 
1673   // Get some facts about the RHS
1674   unsigned rhsBits = RHS.getActiveBits();
1675   unsigned rhsWords = getNumWords(rhsBits);
1676   assert(rhsWords && "Performing remainder operation by zero ???");
1677 
1678   // Check the degenerate cases
1679   if (lhsWords == 0)
1680     // 0 % Y ===> 0
1681     return APInt(BitWidth, 0);
1682   if (rhsBits == 1)
1683     // X % 1 ===> 0
1684     return APInt(BitWidth, 0);
1685   if (lhsWords < rhsWords || this->ult(RHS))
1686     // X % Y ===> X, iff X < Y
1687     return *this;
1688   if (*this == RHS)
1689     // X % X == 0;
1690     return APInt(BitWidth, 0);
1691   if (lhsWords == 1)
1692     // All high words are zero, just use native remainder
1693     return APInt(BitWidth, U.pVal[0] % RHS.U.pVal[0]);
1694 
1695   // We have to compute it the hard way. Invoke the Knuth divide algorithm.
1696   APInt Remainder(BitWidth, 0);
1697   divide(U.pVal, lhsWords, RHS.U.pVal, rhsWords, nullptr, Remainder.U.pVal);
1698   return Remainder;
1699 }
1700 
1701 uint64_t APInt::urem(uint64_t RHS) const {
1702   assert(RHS != 0 && "Remainder by zero?");
1703 
1704   if (isSingleWord())
1705     return U.VAL % RHS;
1706 
1707   // Get some facts about the LHS
1708   unsigned lhsWords = getNumWords(getActiveBits());
1709 
1710   // Check the degenerate cases
1711   if (lhsWords == 0)
1712     // 0 % Y ===> 0
1713     return 0;
1714   if (RHS == 1)
1715     // X % 1 ===> 0
1716     return 0;
1717   if (this->ult(RHS))
1718     // X % Y ===> X, iff X < Y
1719     return getZExtValue();
1720   if (*this == RHS)
1721     // X % X == 0;
1722     return 0;
1723   if (lhsWords == 1)
1724     // All high words are zero, just use native remainder
1725     return U.pVal[0] % RHS;
1726 
1727   // We have to compute it the hard way. Invoke the Knuth divide algorithm.
1728   uint64_t Remainder;
1729   divide(U.pVal, lhsWords, &RHS, 1, nullptr, &Remainder);
1730   return Remainder;
1731 }
1732 
1733 APInt APInt::srem(const APInt &RHS) const {
1734   if (isNegative()) {
1735     if (RHS.isNegative())
1736       return -((-(*this)).urem(-RHS));
1737     return -((-(*this)).urem(RHS));
1738   }
1739   if (RHS.isNegative())
1740     return this->urem(-RHS);
1741   return this->urem(RHS);
1742 }
1743 
1744 int64_t APInt::srem(int64_t RHS) const {
1745   if (isNegative()) {
1746     if (RHS < 0)
1747       return -((-(*this)).urem(-RHS));
1748     return -((-(*this)).urem(RHS));
1749   }
1750   if (RHS < 0)
1751     return this->urem(-RHS);
1752   return this->urem(RHS);
1753 }
1754 
1755 void APInt::udivrem(const APInt &LHS, const APInt &RHS,
1756                     APInt &Quotient, APInt &Remainder) {
1757   assert(LHS.BitWidth == RHS.BitWidth && "Bit widths must be the same");
1758   unsigned BitWidth = LHS.BitWidth;
1759 
1760   // First, deal with the easy case
1761   if (LHS.isSingleWord()) {
1762     assert(RHS.U.VAL != 0 && "Divide by zero?");
1763     uint64_t QuotVal = LHS.U.VAL / RHS.U.VAL;
1764     uint64_t RemVal = LHS.U.VAL % RHS.U.VAL;
1765     Quotient = APInt(BitWidth, QuotVal);
1766     Remainder = APInt(BitWidth, RemVal);
1767     return;
1768   }
1769 
1770   // Get some size facts about the dividend and divisor
1771   unsigned lhsWords = getNumWords(LHS.getActiveBits());
1772   unsigned rhsBits  = RHS.getActiveBits();
1773   unsigned rhsWords = getNumWords(rhsBits);
1774   assert(rhsWords && "Performing divrem operation by zero ???");
1775 
1776   // Check the degenerate cases
1777   if (lhsWords == 0) {
1778     Quotient = APInt(BitWidth, 0);    // 0 / Y ===> 0
1779     Remainder = APInt(BitWidth, 0);   // 0 % Y ===> 0
1780     return;
1781   }
1782 
1783   if (rhsBits == 1) {
1784     Quotient = LHS;                   // X / 1 ===> X
1785     Remainder = APInt(BitWidth, 0);   // X % 1 ===> 0
1786   }
1787 
1788   if (lhsWords < rhsWords || LHS.ult(RHS)) {
1789     Remainder = LHS;                  // X % Y ===> X, iff X < Y
1790     Quotient = APInt(BitWidth, 0);    // X / Y ===> 0, iff X < Y
1791     return;
1792   }
1793 
1794   if (LHS == RHS) {
1795     Quotient  = APInt(BitWidth, 1);   // X / X ===> 1
1796     Remainder = APInt(BitWidth, 0);   // X % X ===> 0;
1797     return;
1798   }
1799 
1800   // Make sure there is enough space to hold the results.
1801   // NOTE: This assumes that reallocate won't affect any bits if it doesn't
1802   // change the size. This is necessary if Quotient or Remainder is aliased
1803   // with LHS or RHS.
1804   Quotient.reallocate(BitWidth);
1805   Remainder.reallocate(BitWidth);
1806 
1807   if (lhsWords == 1) { // rhsWords is 1 if lhsWords is 1.
1808     // There is only one word to consider so use the native versions.
1809     uint64_t lhsValue = LHS.U.pVal[0];
1810     uint64_t rhsValue = RHS.U.pVal[0];
1811     Quotient = lhsValue / rhsValue;
1812     Remainder = lhsValue % rhsValue;
1813     return;
1814   }
1815 
1816   // Okay, lets do it the long way
1817   divide(LHS.U.pVal, lhsWords, RHS.U.pVal, rhsWords, Quotient.U.pVal,
1818          Remainder.U.pVal);
1819   // Clear the rest of the Quotient and Remainder.
1820   std::memset(Quotient.U.pVal + lhsWords, 0,
1821               (getNumWords(BitWidth) - lhsWords) * APINT_WORD_SIZE);
1822   std::memset(Remainder.U.pVal + rhsWords, 0,
1823               (getNumWords(BitWidth) - rhsWords) * APINT_WORD_SIZE);
1824 }
1825 
1826 void APInt::udivrem(const APInt &LHS, uint64_t RHS, APInt &Quotient,
1827                     uint64_t &Remainder) {
1828   assert(RHS != 0 && "Divide by zero?");
1829   unsigned BitWidth = LHS.BitWidth;
1830 
1831   // First, deal with the easy case
1832   if (LHS.isSingleWord()) {
1833     uint64_t QuotVal = LHS.U.VAL / RHS;
1834     Remainder = LHS.U.VAL % RHS;
1835     Quotient = APInt(BitWidth, QuotVal);
1836     return;
1837   }
1838 
1839   // Get some size facts about the dividend and divisor
1840   unsigned lhsWords = getNumWords(LHS.getActiveBits());
1841 
1842   // Check the degenerate cases
1843   if (lhsWords == 0) {
1844     Quotient = APInt(BitWidth, 0);    // 0 / Y ===> 0
1845     Remainder = 0;                    // 0 % Y ===> 0
1846     return;
1847   }
1848 
1849   if (RHS == 1) {
1850     Quotient = LHS;                   // X / 1 ===> X
1851     Remainder = 0;                    // X % 1 ===> 0
1852     return;
1853   }
1854 
1855   if (LHS.ult(RHS)) {
1856     Remainder = LHS.getZExtValue();   // X % Y ===> X, iff X < Y
1857     Quotient = APInt(BitWidth, 0);    // X / Y ===> 0, iff X < Y
1858     return;
1859   }
1860 
1861   if (LHS == RHS) {
1862     Quotient  = APInt(BitWidth, 1);   // X / X ===> 1
1863     Remainder = 0;                    // X % X ===> 0;
1864     return;
1865   }
1866 
1867   // Make sure there is enough space to hold the results.
1868   // NOTE: This assumes that reallocate won't affect any bits if it doesn't
1869   // change the size. This is necessary if Quotient is aliased with LHS.
1870   Quotient.reallocate(BitWidth);
1871 
1872   if (lhsWords == 1) { // rhsWords is 1 if lhsWords is 1.
1873     // There is only one word to consider so use the native versions.
1874     uint64_t lhsValue = LHS.U.pVal[0];
1875     Quotient = lhsValue / RHS;
1876     Remainder = lhsValue % RHS;
1877     return;
1878   }
1879 
1880   // Okay, lets do it the long way
1881   divide(LHS.U.pVal, lhsWords, &RHS, 1, Quotient.U.pVal, &Remainder);
1882   // Clear the rest of the Quotient.
1883   std::memset(Quotient.U.pVal + lhsWords, 0,
1884               (getNumWords(BitWidth) - lhsWords) * APINT_WORD_SIZE);
1885 }
1886 
1887 void APInt::sdivrem(const APInt &LHS, const APInt &RHS,
1888                     APInt &Quotient, APInt &Remainder) {
1889   if (LHS.isNegative()) {
1890     if (RHS.isNegative())
1891       APInt::udivrem(-LHS, -RHS, Quotient, Remainder);
1892     else {
1893       APInt::udivrem(-LHS, RHS, Quotient, Remainder);
1894       Quotient.negate();
1895     }
1896     Remainder.negate();
1897   } else if (RHS.isNegative()) {
1898     APInt::udivrem(LHS, -RHS, Quotient, Remainder);
1899     Quotient.negate();
1900   } else {
1901     APInt::udivrem(LHS, RHS, Quotient, Remainder);
1902   }
1903 }
1904 
1905 void APInt::sdivrem(const APInt &LHS, int64_t RHS,
1906                     APInt &Quotient, int64_t &Remainder) {
1907   uint64_t R = Remainder;
1908   if (LHS.isNegative()) {
1909     if (RHS < 0)
1910       APInt::udivrem(-LHS, -RHS, Quotient, R);
1911     else {
1912       APInt::udivrem(-LHS, RHS, Quotient, R);
1913       Quotient.negate();
1914     }
1915     R = -R;
1916   } else if (RHS < 0) {
1917     APInt::udivrem(LHS, -RHS, Quotient, R);
1918     Quotient.negate();
1919   } else {
1920     APInt::udivrem(LHS, RHS, Quotient, R);
1921   }
1922   Remainder = R;
1923 }
1924 
1925 APInt APInt::sadd_ov(const APInt &RHS, bool &Overflow) const {
1926   APInt Res = *this+RHS;
1927   Overflow = isNonNegative() == RHS.isNonNegative() &&
1928              Res.isNonNegative() != isNonNegative();
1929   return Res;
1930 }
1931 
1932 APInt APInt::uadd_ov(const APInt &RHS, bool &Overflow) const {
1933   APInt Res = *this+RHS;
1934   Overflow = Res.ult(RHS);
1935   return Res;
1936 }
1937 
1938 APInt APInt::ssub_ov(const APInt &RHS, bool &Overflow) const {
1939   APInt Res = *this - RHS;
1940   Overflow = isNonNegative() != RHS.isNonNegative() &&
1941              Res.isNonNegative() != isNonNegative();
1942   return Res;
1943 }
1944 
1945 APInt APInt::usub_ov(const APInt &RHS, bool &Overflow) const {
1946   APInt Res = *this-RHS;
1947   Overflow = Res.ugt(*this);
1948   return Res;
1949 }
1950 
1951 APInt APInt::sdiv_ov(const APInt &RHS, bool &Overflow) const {
1952   // MININT/-1  -->  overflow.
1953   Overflow = isMinSignedValue() && RHS.isAllOnes();
1954   return sdiv(RHS);
1955 }
1956 
1957 APInt APInt::smul_ov(const APInt &RHS, bool &Overflow) const {
1958   APInt Res = *this * RHS;
1959 
1960   if (RHS != 0)
1961     Overflow = Res.sdiv(RHS) != *this ||
1962                (isMinSignedValue() && RHS.isAllOnes());
1963   else
1964     Overflow = false;
1965   return Res;
1966 }
1967 
1968 APInt APInt::umul_ov(const APInt &RHS, bool &Overflow) const {
1969   if (countl_zero() + RHS.countl_zero() + 2 <= BitWidth) {
1970     Overflow = true;
1971     return *this * RHS;
1972   }
1973 
1974   APInt Res = lshr(1) * RHS;
1975   Overflow = Res.isNegative();
1976   Res <<= 1;
1977   if ((*this)[0]) {
1978     Res += RHS;
1979     if (Res.ult(RHS))
1980       Overflow = true;
1981   }
1982   return Res;
1983 }
1984 
1985 APInt APInt::sshl_ov(const APInt &ShAmt, bool &Overflow) const {
1986   return sshl_ov(ShAmt.getLimitedValue(getBitWidth()), Overflow);
1987 }
1988 
1989 APInt APInt::sshl_ov(unsigned ShAmt, bool &Overflow) const {
1990   Overflow = ShAmt >= getBitWidth();
1991   if (Overflow)
1992     return APInt(BitWidth, 0);
1993 
1994   if (isNonNegative()) // Don't allow sign change.
1995     Overflow = ShAmt >= countl_zero();
1996   else
1997     Overflow = ShAmt >= countl_one();
1998 
1999   return *this << ShAmt;
2000 }
2001 
2002 APInt APInt::ushl_ov(const APInt &ShAmt, bool &Overflow) const {
2003   return ushl_ov(ShAmt.getLimitedValue(getBitWidth()), Overflow);
2004 }
2005 
2006 APInt APInt::ushl_ov(unsigned ShAmt, bool &Overflow) const {
2007   Overflow = ShAmt >= getBitWidth();
2008   if (Overflow)
2009     return APInt(BitWidth, 0);
2010 
2011   Overflow = ShAmt > countl_zero();
2012 
2013   return *this << ShAmt;
2014 }
2015 
2016 APInt APInt::sadd_sat(const APInt &RHS) const {
2017   bool Overflow;
2018   APInt Res = sadd_ov(RHS, Overflow);
2019   if (!Overflow)
2020     return Res;
2021 
2022   return isNegative() ? APInt::getSignedMinValue(BitWidth)
2023                       : APInt::getSignedMaxValue(BitWidth);
2024 }
2025 
2026 APInt APInt::uadd_sat(const APInt &RHS) const {
2027   bool Overflow;
2028   APInt Res = uadd_ov(RHS, Overflow);
2029   if (!Overflow)
2030     return Res;
2031 
2032   return APInt::getMaxValue(BitWidth);
2033 }
2034 
2035 APInt APInt::ssub_sat(const APInt &RHS) const {
2036   bool Overflow;
2037   APInt Res = ssub_ov(RHS, Overflow);
2038   if (!Overflow)
2039     return Res;
2040 
2041   return isNegative() ? APInt::getSignedMinValue(BitWidth)
2042                       : APInt::getSignedMaxValue(BitWidth);
2043 }
2044 
2045 APInt APInt::usub_sat(const APInt &RHS) const {
2046   bool Overflow;
2047   APInt Res = usub_ov(RHS, Overflow);
2048   if (!Overflow)
2049     return Res;
2050 
2051   return APInt(BitWidth, 0);
2052 }
2053 
2054 APInt APInt::smul_sat(const APInt &RHS) const {
2055   bool Overflow;
2056   APInt Res = smul_ov(RHS, Overflow);
2057   if (!Overflow)
2058     return Res;
2059 
2060   // The result is negative if one and only one of inputs is negative.
2061   bool ResIsNegative = isNegative() ^ RHS.isNegative();
2062 
2063   return ResIsNegative ? APInt::getSignedMinValue(BitWidth)
2064                        : APInt::getSignedMaxValue(BitWidth);
2065 }
2066 
2067 APInt APInt::umul_sat(const APInt &RHS) const {
2068   bool Overflow;
2069   APInt Res = umul_ov(RHS, Overflow);
2070   if (!Overflow)
2071     return Res;
2072 
2073   return APInt::getMaxValue(BitWidth);
2074 }
2075 
2076 APInt APInt::sshl_sat(const APInt &RHS) const {
2077   return sshl_sat(RHS.getLimitedValue(getBitWidth()));
2078 }
2079 
2080 APInt APInt::sshl_sat(unsigned RHS) const {
2081   bool Overflow;
2082   APInt Res = sshl_ov(RHS, Overflow);
2083   if (!Overflow)
2084     return Res;
2085 
2086   return isNegative() ? APInt::getSignedMinValue(BitWidth)
2087                       : APInt::getSignedMaxValue(BitWidth);
2088 }
2089 
2090 APInt APInt::ushl_sat(const APInt &RHS) const {
2091   return ushl_sat(RHS.getLimitedValue(getBitWidth()));
2092 }
2093 
2094 APInt APInt::ushl_sat(unsigned RHS) const {
2095   bool Overflow;
2096   APInt Res = ushl_ov(RHS, Overflow);
2097   if (!Overflow)
2098     return Res;
2099 
2100   return APInt::getMaxValue(BitWidth);
2101 }
2102 
2103 void APInt::fromString(unsigned numbits, StringRef str, uint8_t radix) {
2104   // Check our assumptions here
2105   assert(!str.empty() && "Invalid string length");
2106   assert((radix == 10 || radix == 8 || radix == 16 || radix == 2 ||
2107           radix == 36) &&
2108          "Radix should be 2, 8, 10, 16, or 36!");
2109 
2110   StringRef::iterator p = str.begin();
2111   size_t slen = str.size();
2112   bool isNeg = *p == '-';
2113   if (*p == '-' || *p == '+') {
2114     p++;
2115     slen--;
2116     assert(slen && "String is only a sign, needs a value.");
2117   }
2118   assert((slen <= numbits || radix != 2) && "Insufficient bit width");
2119   assert(((slen-1)*3 <= numbits || radix != 8) && "Insufficient bit width");
2120   assert(((slen-1)*4 <= numbits || radix != 16) && "Insufficient bit width");
2121   assert((((slen-1)*64)/22 <= numbits || radix != 10) &&
2122          "Insufficient bit width");
2123 
2124   // Allocate memory if needed
2125   if (isSingleWord())
2126     U.VAL = 0;
2127   else
2128     U.pVal = getClearedMemory(getNumWords());
2129 
2130   // Figure out if we can shift instead of multiply
2131   unsigned shift = (radix == 16 ? 4 : radix == 8 ? 3 : radix == 2 ? 1 : 0);
2132 
2133   // Enter digit traversal loop
2134   for (StringRef::iterator e = str.end(); p != e; ++p) {
2135     unsigned digit = getDigit(*p, radix);
2136     assert(digit < radix && "Invalid character in digit string");
2137 
2138     // Shift or multiply the value by the radix
2139     if (slen > 1) {
2140       if (shift)
2141         *this <<= shift;
2142       else
2143         *this *= radix;
2144     }
2145 
2146     // Add in the digit we just interpreted
2147     *this += digit;
2148   }
2149   // If its negative, put it in two's complement form
2150   if (isNeg)
2151     this->negate();
2152 }
2153 
2154 void APInt::toString(SmallVectorImpl<char> &Str, unsigned Radix, bool Signed,
2155                      bool formatAsCLiteral, bool UpperCase) const {
2156   assert((Radix == 10 || Radix == 8 || Radix == 16 || Radix == 2 ||
2157           Radix == 36) &&
2158          "Radix should be 2, 8, 10, 16, or 36!");
2159 
2160   const char *Prefix = "";
2161   if (formatAsCLiteral) {
2162     switch (Radix) {
2163       case 2:
2164         // Binary literals are a non-standard extension added in gcc 4.3:
2165         // http://gcc.gnu.org/onlinedocs/gcc-4.3.0/gcc/Binary-constants.html
2166         Prefix = "0b";
2167         break;
2168       case 8:
2169         Prefix = "0";
2170         break;
2171       case 10:
2172         break; // No prefix
2173       case 16:
2174         Prefix = "0x";
2175         break;
2176       default:
2177         llvm_unreachable("Invalid radix!");
2178     }
2179   }
2180 
2181   // First, check for a zero value and just short circuit the logic below.
2182   if (isZero()) {
2183     while (*Prefix) {
2184       Str.push_back(*Prefix);
2185       ++Prefix;
2186     };
2187     Str.push_back('0');
2188     return;
2189   }
2190 
2191   static const char BothDigits[] = "0123456789abcdefghijklmnopqrstuvwxyz"
2192                                    "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ";
2193   const char *Digits = BothDigits + (UpperCase ? 36 : 0);
2194 
2195   if (isSingleWord()) {
2196     char Buffer[65];
2197     char *BufPtr = std::end(Buffer);
2198 
2199     uint64_t N;
2200     if (!Signed) {
2201       N = getZExtValue();
2202     } else {
2203       int64_t I = getSExtValue();
2204       if (I >= 0) {
2205         N = I;
2206       } else {
2207         Str.push_back('-');
2208         N = -(uint64_t)I;
2209       }
2210     }
2211 
2212     while (*Prefix) {
2213       Str.push_back(*Prefix);
2214       ++Prefix;
2215     };
2216 
2217     while (N) {
2218       *--BufPtr = Digits[N % Radix];
2219       N /= Radix;
2220     }
2221     Str.append(BufPtr, std::end(Buffer));
2222     return;
2223   }
2224 
2225   APInt Tmp(*this);
2226 
2227   if (Signed && isNegative()) {
2228     // They want to print the signed version and it is a negative value
2229     // Flip the bits and add one to turn it into the equivalent positive
2230     // value and put a '-' in the result.
2231     Tmp.negate();
2232     Str.push_back('-');
2233   }
2234 
2235   while (*Prefix) {
2236     Str.push_back(*Prefix);
2237     ++Prefix;
2238   };
2239 
2240   // We insert the digits backward, then reverse them to get the right order.
2241   unsigned StartDig = Str.size();
2242 
2243   // For the 2, 8 and 16 bit cases, we can just shift instead of divide
2244   // because the number of bits per digit (1, 3 and 4 respectively) divides
2245   // equally.  We just shift until the value is zero.
2246   if (Radix == 2 || Radix == 8 || Radix == 16) {
2247     // Just shift tmp right for each digit width until it becomes zero
2248     unsigned ShiftAmt = (Radix == 16 ? 4 : (Radix == 8 ? 3 : 1));
2249     unsigned MaskAmt = Radix - 1;
2250 
2251     while (Tmp.getBoolValue()) {
2252       unsigned Digit = unsigned(Tmp.getRawData()[0]) & MaskAmt;
2253       Str.push_back(Digits[Digit]);
2254       Tmp.lshrInPlace(ShiftAmt);
2255     }
2256   } else {
2257     while (Tmp.getBoolValue()) {
2258       uint64_t Digit;
2259       udivrem(Tmp, Radix, Tmp, Digit);
2260       assert(Digit < Radix && "divide failed");
2261       Str.push_back(Digits[Digit]);
2262     }
2263   }
2264 
2265   // Reverse the digits before returning.
2266   std::reverse(Str.begin()+StartDig, Str.end());
2267 }
2268 
2269 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2270 LLVM_DUMP_METHOD void APInt::dump() const {
2271   SmallString<40> S, U;
2272   this->toStringUnsigned(U);
2273   this->toStringSigned(S);
2274   dbgs() << "APInt(" << BitWidth << "b, "
2275          << U << "u " << S << "s)\n";
2276 }
2277 #endif
2278 
2279 void APInt::print(raw_ostream &OS, bool isSigned) const {
2280   SmallString<40> S;
2281   this->toString(S, 10, isSigned, /* formatAsCLiteral = */false);
2282   OS << S;
2283 }
2284 
2285 // This implements a variety of operations on a representation of
2286 // arbitrary precision, two's-complement, bignum integer values.
2287 
2288 // Assumed by lowHalf, highHalf, partMSB and partLSB.  A fairly safe
2289 // and unrestricting assumption.
2290 static_assert(APInt::APINT_BITS_PER_WORD % 2 == 0,
2291               "Part width must be divisible by 2!");
2292 
2293 // Returns the integer part with the least significant BITS set.
2294 // BITS cannot be zero.
2295 static inline APInt::WordType lowBitMask(unsigned bits) {
2296   assert(bits != 0 && bits <= APInt::APINT_BITS_PER_WORD);
2297   return ~(APInt::WordType) 0 >> (APInt::APINT_BITS_PER_WORD - bits);
2298 }
2299 
2300 /// Returns the value of the lower half of PART.
2301 static inline APInt::WordType lowHalf(APInt::WordType part) {
2302   return part & lowBitMask(APInt::APINT_BITS_PER_WORD / 2);
2303 }
2304 
2305 /// Returns the value of the upper half of PART.
2306 static inline APInt::WordType highHalf(APInt::WordType part) {
2307   return part >> (APInt::APINT_BITS_PER_WORD / 2);
2308 }
2309 
2310 /// Sets the least significant part of a bignum to the input value, and zeroes
2311 /// out higher parts.
2312 void APInt::tcSet(WordType *dst, WordType part, unsigned parts) {
2313   assert(parts > 0);
2314   dst[0] = part;
2315   for (unsigned i = 1; i < parts; i++)
2316     dst[i] = 0;
2317 }
2318 
2319 /// Assign one bignum to another.
2320 void APInt::tcAssign(WordType *dst, const WordType *src, unsigned parts) {
2321   for (unsigned i = 0; i < parts; i++)
2322     dst[i] = src[i];
2323 }
2324 
2325 /// Returns true if a bignum is zero, false otherwise.
2326 bool APInt::tcIsZero(const WordType *src, unsigned parts) {
2327   for (unsigned i = 0; i < parts; i++)
2328     if (src[i])
2329       return false;
2330 
2331   return true;
2332 }
2333 
2334 /// Extract the given bit of a bignum; returns 0 or 1.
2335 int APInt::tcExtractBit(const WordType *parts, unsigned bit) {
2336   return (parts[whichWord(bit)] & maskBit(bit)) != 0;
2337 }
2338 
2339 /// Set the given bit of a bignum.
2340 void APInt::tcSetBit(WordType *parts, unsigned bit) {
2341   parts[whichWord(bit)] |= maskBit(bit);
2342 }
2343 
2344 /// Clears the given bit of a bignum.
2345 void APInt::tcClearBit(WordType *parts, unsigned bit) {
2346   parts[whichWord(bit)] &= ~maskBit(bit);
2347 }
2348 
2349 /// Returns the bit number of the least significant set bit of a number.  If the
2350 /// input number has no bits set UINT_MAX is returned.
2351 unsigned APInt::tcLSB(const WordType *parts, unsigned n) {
2352   for (unsigned i = 0; i < n; i++) {
2353     if (parts[i] != 0) {
2354       unsigned lsb = llvm::countr_zero(parts[i]);
2355       return lsb + i * APINT_BITS_PER_WORD;
2356     }
2357   }
2358 
2359   return UINT_MAX;
2360 }
2361 
2362 /// Returns the bit number of the most significant set bit of a number.
2363 /// If the input number has no bits set UINT_MAX is returned.
2364 unsigned APInt::tcMSB(const WordType *parts, unsigned n) {
2365   do {
2366     --n;
2367 
2368     if (parts[n] != 0) {
2369       static_assert(sizeof(parts[n]) <= sizeof(uint64_t));
2370       unsigned msb = llvm::Log2_64(parts[n]);
2371 
2372       return msb + n * APINT_BITS_PER_WORD;
2373     }
2374   } while (n);
2375 
2376   return UINT_MAX;
2377 }
2378 
2379 /// Copy the bit vector of width srcBITS from SRC, starting at bit srcLSB, to
2380 /// DST, of dstCOUNT parts, such that the bit srcLSB becomes the least
2381 /// significant bit of DST.  All high bits above srcBITS in DST are zero-filled.
2382 /// */
2383 void
2384 APInt::tcExtract(WordType *dst, unsigned dstCount, const WordType *src,
2385                  unsigned srcBits, unsigned srcLSB) {
2386   unsigned dstParts = (srcBits + APINT_BITS_PER_WORD - 1) / APINT_BITS_PER_WORD;
2387   assert(dstParts <= dstCount);
2388 
2389   unsigned firstSrcPart = srcLSB / APINT_BITS_PER_WORD;
2390   tcAssign(dst, src + firstSrcPart, dstParts);
2391 
2392   unsigned shift = srcLSB % APINT_BITS_PER_WORD;
2393   tcShiftRight(dst, dstParts, shift);
2394 
2395   // We now have (dstParts * APINT_BITS_PER_WORD - shift) bits from SRC
2396   // in DST.  If this is less that srcBits, append the rest, else
2397   // clear the high bits.
2398   unsigned n = dstParts * APINT_BITS_PER_WORD - shift;
2399   if (n < srcBits) {
2400     WordType mask = lowBitMask (srcBits - n);
2401     dst[dstParts - 1] |= ((src[firstSrcPart + dstParts] & mask)
2402                           << n % APINT_BITS_PER_WORD);
2403   } else if (n > srcBits) {
2404     if (srcBits % APINT_BITS_PER_WORD)
2405       dst[dstParts - 1] &= lowBitMask (srcBits % APINT_BITS_PER_WORD);
2406   }
2407 
2408   // Clear high parts.
2409   while (dstParts < dstCount)
2410     dst[dstParts++] = 0;
2411 }
2412 
2413 //// DST += RHS + C where C is zero or one.  Returns the carry flag.
2414 APInt::WordType APInt::tcAdd(WordType *dst, const WordType *rhs,
2415                              WordType c, unsigned parts) {
2416   assert(c <= 1);
2417 
2418   for (unsigned i = 0; i < parts; i++) {
2419     WordType l = dst[i];
2420     if (c) {
2421       dst[i] += rhs[i] + 1;
2422       c = (dst[i] <= l);
2423     } else {
2424       dst[i] += rhs[i];
2425       c = (dst[i] < l);
2426     }
2427   }
2428 
2429   return c;
2430 }
2431 
2432 /// This function adds a single "word" integer, src, to the multiple
2433 /// "word" integer array, dst[]. dst[] is modified to reflect the addition and
2434 /// 1 is returned if there is a carry out, otherwise 0 is returned.
2435 /// @returns the carry of the addition.
2436 APInt::WordType APInt::tcAddPart(WordType *dst, WordType src,
2437                                  unsigned parts) {
2438   for (unsigned i = 0; i < parts; ++i) {
2439     dst[i] += src;
2440     if (dst[i] >= src)
2441       return 0; // No need to carry so exit early.
2442     src = 1; // Carry one to next digit.
2443   }
2444 
2445   return 1;
2446 }
2447 
2448 /// DST -= RHS + C where C is zero or one.  Returns the carry flag.
2449 APInt::WordType APInt::tcSubtract(WordType *dst, const WordType *rhs,
2450                                   WordType c, unsigned parts) {
2451   assert(c <= 1);
2452 
2453   for (unsigned i = 0; i < parts; i++) {
2454     WordType l = dst[i];
2455     if (c) {
2456       dst[i] -= rhs[i] + 1;
2457       c = (dst[i] >= l);
2458     } else {
2459       dst[i] -= rhs[i];
2460       c = (dst[i] > l);
2461     }
2462   }
2463 
2464   return c;
2465 }
2466 
2467 /// This function subtracts a single "word" (64-bit word), src, from
2468 /// the multi-word integer array, dst[], propagating the borrowed 1 value until
2469 /// no further borrowing is needed or it runs out of "words" in dst.  The result
2470 /// is 1 if "borrowing" exhausted the digits in dst, or 0 if dst was not
2471 /// exhausted. In other words, if src > dst then this function returns 1,
2472 /// otherwise 0.
2473 /// @returns the borrow out of the subtraction
2474 APInt::WordType APInt::tcSubtractPart(WordType *dst, WordType src,
2475                                       unsigned parts) {
2476   for (unsigned i = 0; i < parts; ++i) {
2477     WordType Dst = dst[i];
2478     dst[i] -= src;
2479     if (src <= Dst)
2480       return 0; // No need to borrow so exit early.
2481     src = 1; // We have to "borrow 1" from next "word"
2482   }
2483 
2484   return 1;
2485 }
2486 
2487 /// Negate a bignum in-place.
2488 void APInt::tcNegate(WordType *dst, unsigned parts) {
2489   tcComplement(dst, parts);
2490   tcIncrement(dst, parts);
2491 }
2492 
2493 /// DST += SRC * MULTIPLIER + CARRY   if add is true
2494 /// DST  = SRC * MULTIPLIER + CARRY   if add is false
2495 /// Requires 0 <= DSTPARTS <= SRCPARTS + 1.  If DST overlaps SRC
2496 /// they must start at the same point, i.e. DST == SRC.
2497 /// If DSTPARTS == SRCPARTS + 1 no overflow occurs and zero is
2498 /// returned.  Otherwise DST is filled with the least significant
2499 /// DSTPARTS parts of the result, and if all of the omitted higher
2500 /// parts were zero return zero, otherwise overflow occurred and
2501 /// return one.
2502 int APInt::tcMultiplyPart(WordType *dst, const WordType *src,
2503                           WordType multiplier, WordType carry,
2504                           unsigned srcParts, unsigned dstParts,
2505                           bool add) {
2506   // Otherwise our writes of DST kill our later reads of SRC.
2507   assert(dst <= src || dst >= src + srcParts);
2508   assert(dstParts <= srcParts + 1);
2509 
2510   // N loops; minimum of dstParts and srcParts.
2511   unsigned n = std::min(dstParts, srcParts);
2512 
2513   for (unsigned i = 0; i < n; i++) {
2514     // [LOW, HIGH] = MULTIPLIER * SRC[i] + DST[i] + CARRY.
2515     // This cannot overflow, because:
2516     //   (n - 1) * (n - 1) + 2 (n - 1) = (n - 1) * (n + 1)
2517     // which is less than n^2.
2518     WordType srcPart = src[i];
2519     WordType low, mid, high;
2520     if (multiplier == 0 || srcPart == 0) {
2521       low = carry;
2522       high = 0;
2523     } else {
2524       low = lowHalf(srcPart) * lowHalf(multiplier);
2525       high = highHalf(srcPart) * highHalf(multiplier);
2526 
2527       mid = lowHalf(srcPart) * highHalf(multiplier);
2528       high += highHalf(mid);
2529       mid <<= APINT_BITS_PER_WORD / 2;
2530       if (low + mid < low)
2531         high++;
2532       low += mid;
2533 
2534       mid = highHalf(srcPart) * lowHalf(multiplier);
2535       high += highHalf(mid);
2536       mid <<= APINT_BITS_PER_WORD / 2;
2537       if (low + mid < low)
2538         high++;
2539       low += mid;
2540 
2541       // Now add carry.
2542       if (low + carry < low)
2543         high++;
2544       low += carry;
2545     }
2546 
2547     if (add) {
2548       // And now DST[i], and store the new low part there.
2549       if (low + dst[i] < low)
2550         high++;
2551       dst[i] += low;
2552     } else
2553       dst[i] = low;
2554 
2555     carry = high;
2556   }
2557 
2558   if (srcParts < dstParts) {
2559     // Full multiplication, there is no overflow.
2560     assert(srcParts + 1 == dstParts);
2561     dst[srcParts] = carry;
2562     return 0;
2563   }
2564 
2565   // We overflowed if there is carry.
2566   if (carry)
2567     return 1;
2568 
2569   // We would overflow if any significant unwritten parts would be
2570   // non-zero.  This is true if any remaining src parts are non-zero
2571   // and the multiplier is non-zero.
2572   if (multiplier)
2573     for (unsigned i = dstParts; i < srcParts; i++)
2574       if (src[i])
2575         return 1;
2576 
2577   // We fitted in the narrow destination.
2578   return 0;
2579 }
2580 
2581 /// DST = LHS * RHS, where DST has the same width as the operands and
2582 /// is filled with the least significant parts of the result.  Returns
2583 /// one if overflow occurred, otherwise zero.  DST must be disjoint
2584 /// from both operands.
2585 int APInt::tcMultiply(WordType *dst, const WordType *lhs,
2586                       const WordType *rhs, unsigned parts) {
2587   assert(dst != lhs && dst != rhs);
2588 
2589   int overflow = 0;
2590   tcSet(dst, 0, parts);
2591 
2592   for (unsigned i = 0; i < parts; i++)
2593     overflow |= tcMultiplyPart(&dst[i], lhs, rhs[i], 0, parts,
2594                                parts - i, true);
2595 
2596   return overflow;
2597 }
2598 
2599 /// DST = LHS * RHS, where DST has width the sum of the widths of the
2600 /// operands. No overflow occurs. DST must be disjoint from both operands.
2601 void APInt::tcFullMultiply(WordType *dst, const WordType *lhs,
2602                            const WordType *rhs, unsigned lhsParts,
2603                            unsigned rhsParts) {
2604   // Put the narrower number on the LHS for less loops below.
2605   if (lhsParts > rhsParts)
2606     return tcFullMultiply (dst, rhs, lhs, rhsParts, lhsParts);
2607 
2608   assert(dst != lhs && dst != rhs);
2609 
2610   tcSet(dst, 0, rhsParts);
2611 
2612   for (unsigned i = 0; i < lhsParts; i++)
2613     tcMultiplyPart(&dst[i], rhs, lhs[i], 0, rhsParts, rhsParts + 1, true);
2614 }
2615 
2616 // If RHS is zero LHS and REMAINDER are left unchanged, return one.
2617 // Otherwise set LHS to LHS / RHS with the fractional part discarded,
2618 // set REMAINDER to the remainder, return zero.  i.e.
2619 //
2620 //   OLD_LHS = RHS * LHS + REMAINDER
2621 //
2622 // SCRATCH is a bignum of the same size as the operands and result for
2623 // use by the routine; its contents need not be initialized and are
2624 // destroyed.  LHS, REMAINDER and SCRATCH must be distinct.
2625 int APInt::tcDivide(WordType *lhs, const WordType *rhs,
2626                     WordType *remainder, WordType *srhs,
2627                     unsigned parts) {
2628   assert(lhs != remainder && lhs != srhs && remainder != srhs);
2629 
2630   unsigned shiftCount = tcMSB(rhs, parts) + 1;
2631   if (shiftCount == 0)
2632     return true;
2633 
2634   shiftCount = parts * APINT_BITS_PER_WORD - shiftCount;
2635   unsigned n = shiftCount / APINT_BITS_PER_WORD;
2636   WordType mask = (WordType) 1 << (shiftCount % APINT_BITS_PER_WORD);
2637 
2638   tcAssign(srhs, rhs, parts);
2639   tcShiftLeft(srhs, parts, shiftCount);
2640   tcAssign(remainder, lhs, parts);
2641   tcSet(lhs, 0, parts);
2642 
2643   // Loop, subtracting SRHS if REMAINDER is greater and adding that to the
2644   // total.
2645   for (;;) {
2646     int compare = tcCompare(remainder, srhs, parts);
2647     if (compare >= 0) {
2648       tcSubtract(remainder, srhs, 0, parts);
2649       lhs[n] |= mask;
2650     }
2651 
2652     if (shiftCount == 0)
2653       break;
2654     shiftCount--;
2655     tcShiftRight(srhs, parts, 1);
2656     if ((mask >>= 1) == 0) {
2657       mask = (WordType) 1 << (APINT_BITS_PER_WORD - 1);
2658       n--;
2659     }
2660   }
2661 
2662   return false;
2663 }
2664 
2665 /// Shift a bignum left Cound bits in-place. Shifted in bits are zero. There are
2666 /// no restrictions on Count.
2667 void APInt::tcShiftLeft(WordType *Dst, unsigned Words, unsigned Count) {
2668   // Don't bother performing a no-op shift.
2669   if (!Count)
2670     return;
2671 
2672   // WordShift is the inter-part shift; BitShift is the intra-part shift.
2673   unsigned WordShift = std::min(Count / APINT_BITS_PER_WORD, Words);
2674   unsigned BitShift = Count % APINT_BITS_PER_WORD;
2675 
2676   // Fastpath for moving by whole words.
2677   if (BitShift == 0) {
2678     std::memmove(Dst + WordShift, Dst, (Words - WordShift) * APINT_WORD_SIZE);
2679   } else {
2680     while (Words-- > WordShift) {
2681       Dst[Words] = Dst[Words - WordShift] << BitShift;
2682       if (Words > WordShift)
2683         Dst[Words] |=
2684           Dst[Words - WordShift - 1] >> (APINT_BITS_PER_WORD - BitShift);
2685     }
2686   }
2687 
2688   // Fill in the remainder with 0s.
2689   std::memset(Dst, 0, WordShift * APINT_WORD_SIZE);
2690 }
2691 
2692 /// Shift a bignum right Count bits in-place. Shifted in bits are zero. There
2693 /// are no restrictions on Count.
2694 void APInt::tcShiftRight(WordType *Dst, unsigned Words, unsigned Count) {
2695   // Don't bother performing a no-op shift.
2696   if (!Count)
2697     return;
2698 
2699   // WordShift is the inter-part shift; BitShift is the intra-part shift.
2700   unsigned WordShift = std::min(Count / APINT_BITS_PER_WORD, Words);
2701   unsigned BitShift = Count % APINT_BITS_PER_WORD;
2702 
2703   unsigned WordsToMove = Words - WordShift;
2704   // Fastpath for moving by whole words.
2705   if (BitShift == 0) {
2706     std::memmove(Dst, Dst + WordShift, WordsToMove * APINT_WORD_SIZE);
2707   } else {
2708     for (unsigned i = 0; i != WordsToMove; ++i) {
2709       Dst[i] = Dst[i + WordShift] >> BitShift;
2710       if (i + 1 != WordsToMove)
2711         Dst[i] |= Dst[i + WordShift + 1] << (APINT_BITS_PER_WORD - BitShift);
2712     }
2713   }
2714 
2715   // Fill in the remainder with 0s.
2716   std::memset(Dst + WordsToMove, 0, WordShift * APINT_WORD_SIZE);
2717 }
2718 
2719 // Comparison (unsigned) of two bignums.
2720 int APInt::tcCompare(const WordType *lhs, const WordType *rhs,
2721                      unsigned parts) {
2722   while (parts) {
2723     parts--;
2724     if (lhs[parts] != rhs[parts])
2725       return (lhs[parts] > rhs[parts]) ? 1 : -1;
2726   }
2727 
2728   return 0;
2729 }
2730 
2731 APInt llvm::APIntOps::RoundingUDiv(const APInt &A, const APInt &B,
2732                                    APInt::Rounding RM) {
2733   // Currently udivrem always rounds down.
2734   switch (RM) {
2735   case APInt::Rounding::DOWN:
2736   case APInt::Rounding::TOWARD_ZERO:
2737     return A.udiv(B);
2738   case APInt::Rounding::UP: {
2739     APInt Quo, Rem;
2740     APInt::udivrem(A, B, Quo, Rem);
2741     if (Rem.isZero())
2742       return Quo;
2743     return Quo + 1;
2744   }
2745   }
2746   llvm_unreachable("Unknown APInt::Rounding enum");
2747 }
2748 
2749 APInt llvm::APIntOps::RoundingSDiv(const APInt &A, const APInt &B,
2750                                    APInt::Rounding RM) {
2751   switch (RM) {
2752   case APInt::Rounding::DOWN:
2753   case APInt::Rounding::UP: {
2754     APInt Quo, Rem;
2755     APInt::sdivrem(A, B, Quo, Rem);
2756     if (Rem.isZero())
2757       return Quo;
2758     // This algorithm deals with arbitrary rounding mode used by sdivrem.
2759     // We want to check whether the non-integer part of the mathematical value
2760     // is negative or not. If the non-integer part is negative, we need to round
2761     // down from Quo; otherwise, if it's positive or 0, we return Quo, as it's
2762     // already rounded down.
2763     if (RM == APInt::Rounding::DOWN) {
2764       if (Rem.isNegative() != B.isNegative())
2765         return Quo - 1;
2766       return Quo;
2767     }
2768     if (Rem.isNegative() != B.isNegative())
2769       return Quo;
2770     return Quo + 1;
2771   }
2772   // Currently sdiv rounds towards zero.
2773   case APInt::Rounding::TOWARD_ZERO:
2774     return A.sdiv(B);
2775   }
2776   llvm_unreachable("Unknown APInt::Rounding enum");
2777 }
2778 
2779 std::optional<APInt>
2780 llvm::APIntOps::SolveQuadraticEquationWrap(APInt A, APInt B, APInt C,
2781                                            unsigned RangeWidth) {
2782   unsigned CoeffWidth = A.getBitWidth();
2783   assert(CoeffWidth == B.getBitWidth() && CoeffWidth == C.getBitWidth());
2784   assert(RangeWidth <= CoeffWidth &&
2785          "Value range width should be less than coefficient width");
2786   assert(RangeWidth > 1 && "Value range bit width should be > 1");
2787 
2788   LLVM_DEBUG(dbgs() << __func__ << ": solving " << A << "x^2 + " << B
2789                     << "x + " << C << ", rw:" << RangeWidth << '\n');
2790 
2791   // Identify 0 as a (non)solution immediately.
2792   if (C.sextOrTrunc(RangeWidth).isZero()) {
2793     LLVM_DEBUG(dbgs() << __func__ << ": zero solution\n");
2794     return APInt(CoeffWidth, 0);
2795   }
2796 
2797   // The result of APInt arithmetic has the same bit width as the operands,
2798   // so it can actually lose high bits. A product of two n-bit integers needs
2799   // 2n-1 bits to represent the full value.
2800   // The operation done below (on quadratic coefficients) that can produce
2801   // the largest value is the evaluation of the equation during bisection,
2802   // which needs 3 times the bitwidth of the coefficient, so the total number
2803   // of required bits is 3n.
2804   //
2805   // The purpose of this extension is to simulate the set Z of all integers,
2806   // where n+1 > n for all n in Z. In Z it makes sense to talk about positive
2807   // and negative numbers (not so much in a modulo arithmetic). The method
2808   // used to solve the equation is based on the standard formula for real
2809   // numbers, and uses the concepts of "positive" and "negative" with their
2810   // usual meanings.
2811   CoeffWidth *= 3;
2812   A = A.sext(CoeffWidth);
2813   B = B.sext(CoeffWidth);
2814   C = C.sext(CoeffWidth);
2815 
2816   // Make A > 0 for simplicity. Negate cannot overflow at this point because
2817   // the bit width has increased.
2818   if (A.isNegative()) {
2819     A.negate();
2820     B.negate();
2821     C.negate();
2822   }
2823 
2824   // Solving an equation q(x) = 0 with coefficients in modular arithmetic
2825   // is really solving a set of equations q(x) = kR for k = 0, 1, 2, ...,
2826   // and R = 2^BitWidth.
2827   // Since we're trying not only to find exact solutions, but also values
2828   // that "wrap around", such a set will always have a solution, i.e. an x
2829   // that satisfies at least one of the equations, or such that |q(x)|
2830   // exceeds kR, while |q(x-1)| for the same k does not.
2831   //
2832   // We need to find a value k, such that Ax^2 + Bx + C = kR will have a
2833   // positive solution n (in the above sense), and also such that the n
2834   // will be the least among all solutions corresponding to k = 0, 1, ...
2835   // (more precisely, the least element in the set
2836   //   { n(k) | k is such that a solution n(k) exists }).
2837   //
2838   // Consider the parabola (over real numbers) that corresponds to the
2839   // quadratic equation. Since A > 0, the arms of the parabola will point
2840   // up. Picking different values of k will shift it up and down by R.
2841   //
2842   // We want to shift the parabola in such a way as to reduce the problem
2843   // of solving q(x) = kR to solving shifted_q(x) = 0.
2844   // (The interesting solutions are the ceilings of the real number
2845   // solutions.)
2846   APInt R = APInt::getOneBitSet(CoeffWidth, RangeWidth);
2847   APInt TwoA = 2 * A;
2848   APInt SqrB = B * B;
2849   bool PickLow;
2850 
2851   auto RoundUp = [] (const APInt &V, const APInt &A) -> APInt {
2852     assert(A.isStrictlyPositive());
2853     APInt T = V.abs().urem(A);
2854     if (T.isZero())
2855       return V;
2856     return V.isNegative() ? V+T : V+(A-T);
2857   };
2858 
2859   // The vertex of the parabola is at -B/2A, but since A > 0, it's negative
2860   // iff B is positive.
2861   if (B.isNonNegative()) {
2862     // If B >= 0, the vertex it at a negative location (or at 0), so in
2863     // order to have a non-negative solution we need to pick k that makes
2864     // C-kR negative. To satisfy all the requirements for the solution
2865     // that we are looking for, it needs to be closest to 0 of all k.
2866     C = C.srem(R);
2867     if (C.isStrictlyPositive())
2868       C -= R;
2869     // Pick the greater solution.
2870     PickLow = false;
2871   } else {
2872     // If B < 0, the vertex is at a positive location. For any solution
2873     // to exist, the discriminant must be non-negative. This means that
2874     // C-kR <= B^2/4A is a necessary condition for k, i.e. there is a
2875     // lower bound on values of k: kR >= C - B^2/4A.
2876     APInt LowkR = C - SqrB.udiv(2*TwoA); // udiv because all values > 0.
2877     // Round LowkR up (towards +inf) to the nearest kR.
2878     LowkR = RoundUp(LowkR, R);
2879 
2880     // If there exists k meeting the condition above, and such that
2881     // C-kR > 0, there will be two positive real number solutions of
2882     // q(x) = kR. Out of all such values of k, pick the one that makes
2883     // C-kR closest to 0, (i.e. pick maximum k such that C-kR > 0).
2884     // In other words, find maximum k such that LowkR <= kR < C.
2885     if (C.sgt(LowkR)) {
2886       // If LowkR < C, then such a k is guaranteed to exist because
2887       // LowkR itself is a multiple of R.
2888       C -= -RoundUp(-C, R);      // C = C - RoundDown(C, R)
2889       // Pick the smaller solution.
2890       PickLow = true;
2891     } else {
2892       // If C-kR < 0 for all potential k's, it means that one solution
2893       // will be negative, while the other will be positive. The positive
2894       // solution will shift towards 0 if the parabola is moved up.
2895       // Pick the kR closest to the lower bound (i.e. make C-kR closest
2896       // to 0, or in other words, out of all parabolas that have solutions,
2897       // pick the one that is the farthest "up").
2898       // Since LowkR is itself a multiple of R, simply take C-LowkR.
2899       C -= LowkR;
2900       // Pick the greater solution.
2901       PickLow = false;
2902     }
2903   }
2904 
2905   LLVM_DEBUG(dbgs() << __func__ << ": updated coefficients " << A << "x^2 + "
2906                     << B << "x + " << C << ", rw:" << RangeWidth << '\n');
2907 
2908   APInt D = SqrB - 4*A*C;
2909   assert(D.isNonNegative() && "Negative discriminant");
2910   APInt SQ = D.sqrt();
2911 
2912   APInt Q = SQ * SQ;
2913   bool InexactSQ = Q != D;
2914   // The calculated SQ may actually be greater than the exact (non-integer)
2915   // value. If that's the case, decrement SQ to get a value that is lower.
2916   if (Q.sgt(D))
2917     SQ -= 1;
2918 
2919   APInt X;
2920   APInt Rem;
2921 
2922   // SQ is rounded down (i.e SQ * SQ <= D), so the roots may be inexact.
2923   // When using the quadratic formula directly, the calculated low root
2924   // may be greater than the exact one, since we would be subtracting SQ.
2925   // To make sure that the calculated root is not greater than the exact
2926   // one, subtract SQ+1 when calculating the low root (for inexact value
2927   // of SQ).
2928   if (PickLow)
2929     APInt::sdivrem(-B - (SQ+InexactSQ), TwoA, X, Rem);
2930   else
2931     APInt::sdivrem(-B + SQ, TwoA, X, Rem);
2932 
2933   // The updated coefficients should be such that the (exact) solution is
2934   // positive. Since APInt division rounds towards 0, the calculated one
2935   // can be 0, but cannot be negative.
2936   assert(X.isNonNegative() && "Solution should be non-negative");
2937 
2938   if (!InexactSQ && Rem.isZero()) {
2939     LLVM_DEBUG(dbgs() << __func__ << ": solution (root): " << X << '\n');
2940     return X;
2941   }
2942 
2943   assert((SQ*SQ).sle(D) && "SQ = |_sqrt(D)_|, so SQ*SQ <= D");
2944   // The exact value of the square root of D should be between SQ and SQ+1.
2945   // This implies that the solution should be between that corresponding to
2946   // SQ (i.e. X) and that corresponding to SQ+1.
2947   //
2948   // The calculated X cannot be greater than the exact (real) solution.
2949   // Actually it must be strictly less than the exact solution, while
2950   // X+1 will be greater than or equal to it.
2951 
2952   APInt VX = (A*X + B)*X + C;
2953   APInt VY = VX + TwoA*X + A + B;
2954   bool SignChange =
2955       VX.isNegative() != VY.isNegative() || VX.isZero() != VY.isZero();
2956   // If the sign did not change between X and X+1, X is not a valid solution.
2957   // This could happen when the actual (exact) roots don't have an integer
2958   // between them, so they would both be contained between X and X+1.
2959   if (!SignChange) {
2960     LLVM_DEBUG(dbgs() << __func__ << ": no valid solution\n");
2961     return std::nullopt;
2962   }
2963 
2964   X += 1;
2965   LLVM_DEBUG(dbgs() << __func__ << ": solution (wrap): " << X << '\n');
2966   return X;
2967 }
2968 
2969 std::optional<unsigned>
2970 llvm::APIntOps::GetMostSignificantDifferentBit(const APInt &A, const APInt &B) {
2971   assert(A.getBitWidth() == B.getBitWidth() && "Must have the same bitwidth");
2972   if (A == B)
2973     return std::nullopt;
2974   return A.getBitWidth() - ((A ^ B).countl_zero() + 1);
2975 }
2976 
2977 APInt llvm::APIntOps::ScaleBitMask(const APInt &A, unsigned NewBitWidth,
2978                                    bool MatchAllBits) {
2979   unsigned OldBitWidth = A.getBitWidth();
2980   assert((((OldBitWidth % NewBitWidth) == 0) ||
2981           ((NewBitWidth % OldBitWidth) == 0)) &&
2982          "One size should be a multiple of the other one. "
2983          "Can't do fractional scaling.");
2984 
2985   // Check for matching bitwidths.
2986   if (OldBitWidth == NewBitWidth)
2987     return A;
2988 
2989   APInt NewA = APInt::getZero(NewBitWidth);
2990 
2991   // Check for null input.
2992   if (A.isZero())
2993     return NewA;
2994 
2995   if (NewBitWidth > OldBitWidth) {
2996     // Repeat bits.
2997     unsigned Scale = NewBitWidth / OldBitWidth;
2998     for (unsigned i = 0; i != OldBitWidth; ++i)
2999       if (A[i])
3000         NewA.setBits(i * Scale, (i + 1) * Scale);
3001   } else {
3002     unsigned Scale = OldBitWidth / NewBitWidth;
3003     for (unsigned i = 0; i != NewBitWidth; ++i) {
3004       if (MatchAllBits) {
3005         if (A.extractBits(Scale, i * Scale).isAllOnes())
3006           NewA.setBit(i);
3007       } else {
3008         if (!A.extractBits(Scale, i * Scale).isZero())
3009           NewA.setBit(i);
3010       }
3011     }
3012   }
3013 
3014   return NewA;
3015 }
3016 
3017 /// StoreIntToMemory - Fills the StoreBytes bytes of memory starting from Dst
3018 /// with the integer held in IntVal.
3019 void llvm::StoreIntToMemory(const APInt &IntVal, uint8_t *Dst,
3020                             unsigned StoreBytes) {
3021   assert((IntVal.getBitWidth()+7)/8 >= StoreBytes && "Integer too small!");
3022   const uint8_t *Src = (const uint8_t *)IntVal.getRawData();
3023 
3024   if (sys::IsLittleEndianHost) {
3025     // Little-endian host - the source is ordered from LSB to MSB.  Order the
3026     // destination from LSB to MSB: Do a straight copy.
3027     memcpy(Dst, Src, StoreBytes);
3028   } else {
3029     // Big-endian host - the source is an array of 64 bit words ordered from
3030     // LSW to MSW.  Each word is ordered from MSB to LSB.  Order the destination
3031     // from MSB to LSB: Reverse the word order, but not the bytes in a word.
3032     while (StoreBytes > sizeof(uint64_t)) {
3033       StoreBytes -= sizeof(uint64_t);
3034       // May not be aligned so use memcpy.
3035       memcpy(Dst + StoreBytes, Src, sizeof(uint64_t));
3036       Src += sizeof(uint64_t);
3037     }
3038 
3039     memcpy(Dst, Src + sizeof(uint64_t) - StoreBytes, StoreBytes);
3040   }
3041 }
3042 
3043 /// LoadIntFromMemory - Loads the integer stored in the LoadBytes bytes starting
3044 /// from Src into IntVal, which is assumed to be wide enough and to hold zero.
3045 void llvm::LoadIntFromMemory(APInt &IntVal, const uint8_t *Src,
3046                              unsigned LoadBytes) {
3047   assert((IntVal.getBitWidth()+7)/8 >= LoadBytes && "Integer too small!");
3048   uint8_t *Dst = reinterpret_cast<uint8_t *>(
3049                    const_cast<uint64_t *>(IntVal.getRawData()));
3050 
3051   if (sys::IsLittleEndianHost)
3052     // Little-endian host - the destination must be ordered from LSB to MSB.
3053     // The source is ordered from LSB to MSB: Do a straight copy.
3054     memcpy(Dst, Src, LoadBytes);
3055   else {
3056     // Big-endian - the destination is an array of 64 bit words ordered from
3057     // LSW to MSW.  Each word must be ordered from MSB to LSB.  The source is
3058     // ordered from MSB to LSB: Reverse the word order, but not the bytes in
3059     // a word.
3060     while (LoadBytes > sizeof(uint64_t)) {
3061       LoadBytes -= sizeof(uint64_t);
3062       // May not be aligned so use memcpy.
3063       memcpy(Dst, Src + LoadBytes, sizeof(uint64_t));
3064       Dst += sizeof(uint64_t);
3065     }
3066 
3067     memcpy(Dst + sizeof(uint64_t) - LoadBytes, Src, LoadBytes);
3068   }
3069 }
3070