xref: /llvm-project/llvm/lib/Support/APInt.cpp (revision 1b761205f2686516cebadbcbc37f798197d9c482)
1 //===-- APInt.cpp - Implement APInt class ---------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements a class to represent arbitrary precision integer
10 // constant values and provide a variety of arithmetic operations on them.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/ADT/APInt.h"
15 #include "llvm/ADT/ArrayRef.h"
16 #include "llvm/ADT/FoldingSet.h"
17 #include "llvm/ADT/Hashing.h"
18 #include "llvm/ADT/SmallString.h"
19 #include "llvm/ADT/StringRef.h"
20 #include "llvm/ADT/bit.h"
21 #include "llvm/Config/llvm-config.h"
22 #include "llvm/Support/Alignment.h"
23 #include "llvm/Support/Debug.h"
24 #include "llvm/Support/ErrorHandling.h"
25 #include "llvm/Support/MathExtras.h"
26 #include "llvm/Support/raw_ostream.h"
27 #include <cmath>
28 #include <optional>
29 
30 using namespace llvm;
31 
32 #define DEBUG_TYPE "apint"
33 
34 /// A utility function for allocating memory, checking for allocation failures,
35 /// and ensuring the contents are zeroed.
36 inline static uint64_t* getClearedMemory(unsigned numWords) {
37   uint64_t *result = new uint64_t[numWords];
38   memset(result, 0, numWords * sizeof(uint64_t));
39   return result;
40 }
41 
42 /// A utility function for allocating memory and checking for allocation
43 /// failure.  The content is not zeroed.
44 inline static uint64_t* getMemory(unsigned numWords) {
45   return new uint64_t[numWords];
46 }
47 
48 /// A utility function that converts a character to a digit.
49 inline static unsigned getDigit(char cdigit, uint8_t radix) {
50   unsigned r;
51 
52   if (radix == 16 || radix == 36) {
53     r = cdigit - '0';
54     if (r <= 9)
55       return r;
56 
57     r = cdigit - 'A';
58     if (r <= radix - 11U)
59       return r + 10;
60 
61     r = cdigit - 'a';
62     if (r <= radix - 11U)
63       return r + 10;
64 
65     radix = 10;
66   }
67 
68   r = cdigit - '0';
69   if (r < radix)
70     return r;
71 
72   return UINT_MAX;
73 }
74 
75 
76 void APInt::initSlowCase(uint64_t val, bool isSigned) {
77   U.pVal = getClearedMemory(getNumWords());
78   U.pVal[0] = val;
79   if (isSigned && int64_t(val) < 0)
80     for (unsigned i = 1; i < getNumWords(); ++i)
81       U.pVal[i] = WORDTYPE_MAX;
82   clearUnusedBits();
83 }
84 
85 void APInt::initSlowCase(const APInt& that) {
86   U.pVal = getMemory(getNumWords());
87   memcpy(U.pVal, that.U.pVal, getNumWords() * APINT_WORD_SIZE);
88 }
89 
90 void APInt::initFromArray(ArrayRef<uint64_t> bigVal) {
91   assert(bigVal.data() && "Null pointer detected!");
92   if (isSingleWord())
93     U.VAL = bigVal[0];
94   else {
95     // Get memory, cleared to 0
96     U.pVal = getClearedMemory(getNumWords());
97     // Calculate the number of words to copy
98     unsigned words = std::min<unsigned>(bigVal.size(), getNumWords());
99     // Copy the words from bigVal to pVal
100     memcpy(U.pVal, bigVal.data(), words * APINT_WORD_SIZE);
101   }
102   // Make sure unused high bits are cleared
103   clearUnusedBits();
104 }
105 
106 APInt::APInt(unsigned numBits, ArrayRef<uint64_t> bigVal) : BitWidth(numBits) {
107   initFromArray(bigVal);
108 }
109 
110 APInt::APInt(unsigned numBits, unsigned numWords, const uint64_t bigVal[])
111     : BitWidth(numBits) {
112   initFromArray(ArrayRef(bigVal, numWords));
113 }
114 
115 APInt::APInt(unsigned numbits, StringRef Str, uint8_t radix)
116     : BitWidth(numbits) {
117   fromString(numbits, Str, radix);
118 }
119 
120 void APInt::reallocate(unsigned NewBitWidth) {
121   // If the number of words is the same we can just change the width and stop.
122   if (getNumWords() == getNumWords(NewBitWidth)) {
123     BitWidth = NewBitWidth;
124     return;
125   }
126 
127   // If we have an allocation, delete it.
128   if (!isSingleWord())
129     delete [] U.pVal;
130 
131   // Update BitWidth.
132   BitWidth = NewBitWidth;
133 
134   // If we are supposed to have an allocation, create it.
135   if (!isSingleWord())
136     U.pVal = getMemory(getNumWords());
137 }
138 
139 void APInt::assignSlowCase(const APInt &RHS) {
140   // Don't do anything for X = X
141   if (this == &RHS)
142     return;
143 
144   // Adjust the bit width and handle allocations as necessary.
145   reallocate(RHS.getBitWidth());
146 
147   // Copy the data.
148   if (isSingleWord())
149     U.VAL = RHS.U.VAL;
150   else
151     memcpy(U.pVal, RHS.U.pVal, getNumWords() * APINT_WORD_SIZE);
152 }
153 
154 /// This method 'profiles' an APInt for use with FoldingSet.
155 void APInt::Profile(FoldingSetNodeID& ID) const {
156   ID.AddInteger(BitWidth);
157 
158   if (isSingleWord()) {
159     ID.AddInteger(U.VAL);
160     return;
161   }
162 
163   unsigned NumWords = getNumWords();
164   for (unsigned i = 0; i < NumWords; ++i)
165     ID.AddInteger(U.pVal[i]);
166 }
167 
168 bool APInt::isAligned(Align A) const {
169   if (isZero())
170     return true;
171   const unsigned TrailingZeroes = countr_zero();
172   const unsigned MinimumTrailingZeroes = Log2(A);
173   return TrailingZeroes >= MinimumTrailingZeroes;
174 }
175 
176 /// Prefix increment operator. Increments the APInt by one.
177 APInt& APInt::operator++() {
178   if (isSingleWord())
179     ++U.VAL;
180   else
181     tcIncrement(U.pVal, getNumWords());
182   return clearUnusedBits();
183 }
184 
185 /// Prefix decrement operator. Decrements the APInt by one.
186 APInt& APInt::operator--() {
187   if (isSingleWord())
188     --U.VAL;
189   else
190     tcDecrement(U.pVal, getNumWords());
191   return clearUnusedBits();
192 }
193 
194 /// Adds the RHS APInt to this APInt.
195 /// @returns this, after addition of RHS.
196 /// Addition assignment operator.
197 APInt& APInt::operator+=(const APInt& RHS) {
198   assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
199   if (isSingleWord())
200     U.VAL += RHS.U.VAL;
201   else
202     tcAdd(U.pVal, RHS.U.pVal, 0, getNumWords());
203   return clearUnusedBits();
204 }
205 
206 APInt& APInt::operator+=(uint64_t RHS) {
207   if (isSingleWord())
208     U.VAL += RHS;
209   else
210     tcAddPart(U.pVal, RHS, getNumWords());
211   return clearUnusedBits();
212 }
213 
214 /// Subtracts the RHS APInt from this APInt
215 /// @returns this, after subtraction
216 /// Subtraction assignment operator.
217 APInt& APInt::operator-=(const APInt& RHS) {
218   assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
219   if (isSingleWord())
220     U.VAL -= RHS.U.VAL;
221   else
222     tcSubtract(U.pVal, RHS.U.pVal, 0, getNumWords());
223   return clearUnusedBits();
224 }
225 
226 APInt& APInt::operator-=(uint64_t RHS) {
227   if (isSingleWord())
228     U.VAL -= RHS;
229   else
230     tcSubtractPart(U.pVal, RHS, getNumWords());
231   return clearUnusedBits();
232 }
233 
234 APInt APInt::operator*(const APInt& RHS) const {
235   assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
236   if (isSingleWord())
237     return APInt(BitWidth, U.VAL * RHS.U.VAL);
238 
239   APInt Result(getMemory(getNumWords()), getBitWidth());
240   tcMultiply(Result.U.pVal, U.pVal, RHS.U.pVal, getNumWords());
241   Result.clearUnusedBits();
242   return Result;
243 }
244 
245 void APInt::andAssignSlowCase(const APInt &RHS) {
246   WordType *dst = U.pVal, *rhs = RHS.U.pVal;
247   for (size_t i = 0, e = getNumWords(); i != e; ++i)
248     dst[i] &= rhs[i];
249 }
250 
251 void APInt::orAssignSlowCase(const APInt &RHS) {
252   WordType *dst = U.pVal, *rhs = RHS.U.pVal;
253   for (size_t i = 0, e = getNumWords(); i != e; ++i)
254     dst[i] |= rhs[i];
255 }
256 
257 void APInt::xorAssignSlowCase(const APInt &RHS) {
258   WordType *dst = U.pVal, *rhs = RHS.U.pVal;
259   for (size_t i = 0, e = getNumWords(); i != e; ++i)
260     dst[i] ^= rhs[i];
261 }
262 
263 APInt &APInt::operator*=(const APInt &RHS) {
264   *this = *this * RHS;
265   return *this;
266 }
267 
268 APInt& APInt::operator*=(uint64_t RHS) {
269   if (isSingleWord()) {
270     U.VAL *= RHS;
271   } else {
272     unsigned NumWords = getNumWords();
273     tcMultiplyPart(U.pVal, U.pVal, RHS, 0, NumWords, NumWords, false);
274   }
275   return clearUnusedBits();
276 }
277 
278 bool APInt::equalSlowCase(const APInt &RHS) const {
279   return std::equal(U.pVal, U.pVal + getNumWords(), RHS.U.pVal);
280 }
281 
282 int APInt::compare(const APInt& RHS) const {
283   assert(BitWidth == RHS.BitWidth && "Bit widths must be same for comparison");
284   if (isSingleWord())
285     return U.VAL < RHS.U.VAL ? -1 : U.VAL > RHS.U.VAL;
286 
287   return tcCompare(U.pVal, RHS.U.pVal, getNumWords());
288 }
289 
290 int APInt::compareSigned(const APInt& RHS) const {
291   assert(BitWidth == RHS.BitWidth && "Bit widths must be same for comparison");
292   if (isSingleWord()) {
293     int64_t lhsSext = SignExtend64(U.VAL, BitWidth);
294     int64_t rhsSext = SignExtend64(RHS.U.VAL, BitWidth);
295     return lhsSext < rhsSext ? -1 : lhsSext > rhsSext;
296   }
297 
298   bool lhsNeg = isNegative();
299   bool rhsNeg = RHS.isNegative();
300 
301   // If the sign bits don't match, then (LHS < RHS) if LHS is negative
302   if (lhsNeg != rhsNeg)
303     return lhsNeg ? -1 : 1;
304 
305   // Otherwise we can just use an unsigned comparison, because even negative
306   // numbers compare correctly this way if both have the same signed-ness.
307   return tcCompare(U.pVal, RHS.U.pVal, getNumWords());
308 }
309 
310 void APInt::setBitsSlowCase(unsigned loBit, unsigned hiBit) {
311   unsigned loWord = whichWord(loBit);
312   unsigned hiWord = whichWord(hiBit);
313 
314   // Create an initial mask for the low word with zeros below loBit.
315   uint64_t loMask = WORDTYPE_MAX << whichBit(loBit);
316 
317   // If hiBit is not aligned, we need a high mask.
318   unsigned hiShiftAmt = whichBit(hiBit);
319   if (hiShiftAmt != 0) {
320     // Create a high mask with zeros above hiBit.
321     uint64_t hiMask = WORDTYPE_MAX >> (APINT_BITS_PER_WORD - hiShiftAmt);
322     // If loWord and hiWord are equal, then we combine the masks. Otherwise,
323     // set the bits in hiWord.
324     if (hiWord == loWord)
325       loMask &= hiMask;
326     else
327       U.pVal[hiWord] |= hiMask;
328   }
329   // Apply the mask to the low word.
330   U.pVal[loWord] |= loMask;
331 
332   // Fill any words between loWord and hiWord with all ones.
333   for (unsigned word = loWord + 1; word < hiWord; ++word)
334     U.pVal[word] = WORDTYPE_MAX;
335 }
336 
337 // Complement a bignum in-place.
338 static void tcComplement(APInt::WordType *dst, unsigned parts) {
339   for (unsigned i = 0; i < parts; i++)
340     dst[i] = ~dst[i];
341 }
342 
343 /// Toggle every bit to its opposite value.
344 void APInt::flipAllBitsSlowCase() {
345   tcComplement(U.pVal, getNumWords());
346   clearUnusedBits();
347 }
348 
349 /// Concatenate the bits from "NewLSB" onto the bottom of *this.  This is
350 /// equivalent to:
351 ///   (this->zext(NewWidth) << NewLSB.getBitWidth()) | NewLSB.zext(NewWidth)
352 /// In the slow case, we know the result is large.
353 APInt APInt::concatSlowCase(const APInt &NewLSB) const {
354   unsigned NewWidth = getBitWidth() + NewLSB.getBitWidth();
355   APInt Result = NewLSB.zext(NewWidth);
356   Result.insertBits(*this, NewLSB.getBitWidth());
357   return Result;
358 }
359 
360 /// Toggle a given bit to its opposite value whose position is given
361 /// as "bitPosition".
362 /// Toggles a given bit to its opposite value.
363 void APInt::flipBit(unsigned bitPosition) {
364   assert(bitPosition < BitWidth && "Out of the bit-width range!");
365   setBitVal(bitPosition, !(*this)[bitPosition]);
366 }
367 
368 void APInt::insertBits(const APInt &subBits, unsigned bitPosition) {
369   unsigned subBitWidth = subBits.getBitWidth();
370   assert((subBitWidth + bitPosition) <= BitWidth && "Illegal bit insertion");
371 
372   // inserting no bits is a noop.
373   if (subBitWidth == 0)
374     return;
375 
376   // Insertion is a direct copy.
377   if (subBitWidth == BitWidth) {
378     *this = subBits;
379     return;
380   }
381 
382   // Single word result can be done as a direct bitmask.
383   if (isSingleWord()) {
384     uint64_t mask = WORDTYPE_MAX >> (APINT_BITS_PER_WORD - subBitWidth);
385     U.VAL &= ~(mask << bitPosition);
386     U.VAL |= (subBits.U.VAL << bitPosition);
387     return;
388   }
389 
390   unsigned loBit = whichBit(bitPosition);
391   unsigned loWord = whichWord(bitPosition);
392   unsigned hi1Word = whichWord(bitPosition + subBitWidth - 1);
393 
394   // Insertion within a single word can be done as a direct bitmask.
395   if (loWord == hi1Word) {
396     uint64_t mask = WORDTYPE_MAX >> (APINT_BITS_PER_WORD - subBitWidth);
397     U.pVal[loWord] &= ~(mask << loBit);
398     U.pVal[loWord] |= (subBits.U.VAL << loBit);
399     return;
400   }
401 
402   // Insert on word boundaries.
403   if (loBit == 0) {
404     // Direct copy whole words.
405     unsigned numWholeSubWords = subBitWidth / APINT_BITS_PER_WORD;
406     memcpy(U.pVal + loWord, subBits.getRawData(),
407            numWholeSubWords * APINT_WORD_SIZE);
408 
409     // Mask+insert remaining bits.
410     unsigned remainingBits = subBitWidth % APINT_BITS_PER_WORD;
411     if (remainingBits != 0) {
412       uint64_t mask = WORDTYPE_MAX >> (APINT_BITS_PER_WORD - remainingBits);
413       U.pVal[hi1Word] &= ~mask;
414       U.pVal[hi1Word] |= subBits.getWord(subBitWidth - 1);
415     }
416     return;
417   }
418 
419   // General case - set/clear individual bits in dst based on src.
420   // TODO - there is scope for optimization here, but at the moment this code
421   // path is barely used so prefer readability over performance.
422   for (unsigned i = 0; i != subBitWidth; ++i)
423     setBitVal(bitPosition + i, subBits[i]);
424 }
425 
426 void APInt::insertBits(uint64_t subBits, unsigned bitPosition, unsigned numBits) {
427   uint64_t maskBits = maskTrailingOnes<uint64_t>(numBits);
428   subBits &= maskBits;
429   if (isSingleWord()) {
430     U.VAL &= ~(maskBits << bitPosition);
431     U.VAL |= subBits << bitPosition;
432     return;
433   }
434 
435   unsigned loBit = whichBit(bitPosition);
436   unsigned loWord = whichWord(bitPosition);
437   unsigned hiWord = whichWord(bitPosition + numBits - 1);
438   if (loWord == hiWord) {
439     U.pVal[loWord] &= ~(maskBits << loBit);
440     U.pVal[loWord] |= subBits << loBit;
441     return;
442   }
443 
444   static_assert(8 * sizeof(WordType) <= 64, "This code assumes only two words affected");
445   unsigned wordBits = 8 * sizeof(WordType);
446   U.pVal[loWord] &= ~(maskBits << loBit);
447   U.pVal[loWord] |= subBits << loBit;
448 
449   U.pVal[hiWord] &= ~(maskBits >> (wordBits - loBit));
450   U.pVal[hiWord] |= subBits >> (wordBits - loBit);
451 }
452 
453 APInt APInt::extractBits(unsigned numBits, unsigned bitPosition) const {
454   assert(bitPosition < BitWidth && (numBits + bitPosition) <= BitWidth &&
455          "Illegal bit extraction");
456 
457   if (isSingleWord())
458     return APInt(numBits, U.VAL >> bitPosition);
459 
460   unsigned loBit = whichBit(bitPosition);
461   unsigned loWord = whichWord(bitPosition);
462   unsigned hiWord = whichWord(bitPosition + numBits - 1);
463 
464   // Single word result extracting bits from a single word source.
465   if (loWord == hiWord)
466     return APInt(numBits, U.pVal[loWord] >> loBit);
467 
468   // Extracting bits that start on a source word boundary can be done
469   // as a fast memory copy.
470   if (loBit == 0)
471     return APInt(numBits, ArrayRef(U.pVal + loWord, 1 + hiWord - loWord));
472 
473   // General case - shift + copy source words directly into place.
474   APInt Result(numBits, 0);
475   unsigned NumSrcWords = getNumWords();
476   unsigned NumDstWords = Result.getNumWords();
477 
478   uint64_t *DestPtr = Result.isSingleWord() ? &Result.U.VAL : Result.U.pVal;
479   for (unsigned word = 0; word < NumDstWords; ++word) {
480     uint64_t w0 = U.pVal[loWord + word];
481     uint64_t w1 =
482         (loWord + word + 1) < NumSrcWords ? U.pVal[loWord + word + 1] : 0;
483     DestPtr[word] = (w0 >> loBit) | (w1 << (APINT_BITS_PER_WORD - loBit));
484   }
485 
486   return Result.clearUnusedBits();
487 }
488 
489 uint64_t APInt::extractBitsAsZExtValue(unsigned numBits,
490                                        unsigned bitPosition) const {
491   assert(bitPosition < BitWidth && (numBits + bitPosition) <= BitWidth &&
492          "Illegal bit extraction");
493   assert(numBits <= 64 && "Illegal bit extraction");
494 
495   uint64_t maskBits = maskTrailingOnes<uint64_t>(numBits);
496   if (isSingleWord())
497     return (U.VAL >> bitPosition) & maskBits;
498 
499   unsigned loBit = whichBit(bitPosition);
500   unsigned loWord = whichWord(bitPosition);
501   unsigned hiWord = whichWord(bitPosition + numBits - 1);
502   if (loWord == hiWord)
503     return (U.pVal[loWord] >> loBit) & maskBits;
504 
505   static_assert(8 * sizeof(WordType) <= 64, "This code assumes only two words affected");
506   unsigned wordBits = 8 * sizeof(WordType);
507   uint64_t retBits = U.pVal[loWord] >> loBit;
508   retBits |= U.pVal[hiWord] << (wordBits - loBit);
509   retBits &= maskBits;
510   return retBits;
511 }
512 
513 unsigned APInt::getSufficientBitsNeeded(StringRef Str, uint8_t Radix) {
514   assert(!Str.empty() && "Invalid string length");
515   size_t StrLen = Str.size();
516 
517   // Each computation below needs to know if it's negative.
518   unsigned IsNegative = false;
519   if (Str[0] == '-' || Str[0] == '+') {
520     IsNegative = Str[0] == '-';
521     StrLen--;
522     assert(StrLen && "String is only a sign, needs a value.");
523   }
524 
525   // For radixes of power-of-two values, the bits required is accurately and
526   // easily computed.
527   if (Radix == 2)
528     return StrLen + IsNegative;
529   if (Radix == 8)
530     return StrLen * 3 + IsNegative;
531   if (Radix == 16)
532     return StrLen * 4 + IsNegative;
533 
534   // Compute a sufficient number of bits that is always large enough but might
535   // be too large. This avoids the assertion in the constructor. This
536   // calculation doesn't work appropriately for the numbers 0-9, so just use 4
537   // bits in that case.
538   if (Radix == 10)
539     return (StrLen == 1 ? 4 : StrLen * 64 / 18) + IsNegative;
540 
541   assert(Radix == 36);
542   return (StrLen == 1 ? 7 : StrLen * 16 / 3) + IsNegative;
543 }
544 
545 unsigned APInt::getBitsNeeded(StringRef str, uint8_t radix) {
546   // Compute a sufficient number of bits that is always large enough but might
547   // be too large.
548   unsigned sufficient = getSufficientBitsNeeded(str, radix);
549 
550   // For bases 2, 8, and 16, the sufficient number of bits is exact and we can
551   // return the value directly. For bases 10 and 36, we need to do extra work.
552   if (radix == 2 || radix == 8 || radix == 16)
553     return sufficient;
554 
555   // This is grossly inefficient but accurate. We could probably do something
556   // with a computation of roughly slen*64/20 and then adjust by the value of
557   // the first few digits. But, I'm not sure how accurate that could be.
558   size_t slen = str.size();
559 
560   // Each computation below needs to know if it's negative.
561   StringRef::iterator p = str.begin();
562   unsigned isNegative = *p == '-';
563   if (*p == '-' || *p == '+') {
564     p++;
565     slen--;
566     assert(slen && "String is only a sign, needs a value.");
567   }
568 
569 
570   // Convert to the actual binary value.
571   APInt tmp(sufficient, StringRef(p, slen), radix);
572 
573   // Compute how many bits are required. If the log is infinite, assume we need
574   // just bit. If the log is exact and value is negative, then the value is
575   // MinSignedValue with (log + 1) bits.
576   unsigned log = tmp.logBase2();
577   if (log == (unsigned)-1) {
578     return isNegative + 1;
579   } else if (isNegative && tmp.isPowerOf2()) {
580     return isNegative + log;
581   } else {
582     return isNegative + log + 1;
583   }
584 }
585 
586 hash_code llvm::hash_value(const APInt &Arg) {
587   if (Arg.isSingleWord())
588     return hash_combine(Arg.BitWidth, Arg.U.VAL);
589 
590   return hash_combine(
591       Arg.BitWidth,
592       hash_combine_range(Arg.U.pVal, Arg.U.pVal + Arg.getNumWords()));
593 }
594 
595 unsigned DenseMapInfo<APInt, void>::getHashValue(const APInt &Key) {
596   return static_cast<unsigned>(hash_value(Key));
597 }
598 
599 bool APInt::isSplat(unsigned SplatSizeInBits) const {
600   assert(getBitWidth() % SplatSizeInBits == 0 &&
601          "SplatSizeInBits must divide width!");
602   // We can check that all parts of an integer are equal by making use of a
603   // little trick: rotate and check if it's still the same value.
604   return *this == rotl(SplatSizeInBits);
605 }
606 
607 /// This function returns the high "numBits" bits of this APInt.
608 APInt APInt::getHiBits(unsigned numBits) const {
609   return this->lshr(BitWidth - numBits);
610 }
611 
612 /// This function returns the low "numBits" bits of this APInt.
613 APInt APInt::getLoBits(unsigned numBits) const {
614   APInt Result(getLowBitsSet(BitWidth, numBits));
615   Result &= *this;
616   return Result;
617 }
618 
619 /// Return a value containing V broadcasted over NewLen bits.
620 APInt APInt::getSplat(unsigned NewLen, const APInt &V) {
621   assert(NewLen >= V.getBitWidth() && "Can't splat to smaller bit width!");
622 
623   APInt Val = V.zext(NewLen);
624   for (unsigned I = V.getBitWidth(); I < NewLen; I <<= 1)
625     Val |= Val << I;
626 
627   return Val;
628 }
629 
630 unsigned APInt::countLeadingZerosSlowCase() const {
631   unsigned Count = 0;
632   for (int i = getNumWords()-1; i >= 0; --i) {
633     uint64_t V = U.pVal[i];
634     if (V == 0)
635       Count += APINT_BITS_PER_WORD;
636     else {
637       Count += llvm::countl_zero(V);
638       break;
639     }
640   }
641   // Adjust for unused bits in the most significant word (they are zero).
642   unsigned Mod = BitWidth % APINT_BITS_PER_WORD;
643   Count -= Mod > 0 ? APINT_BITS_PER_WORD - Mod : 0;
644   return Count;
645 }
646 
647 unsigned APInt::countLeadingOnesSlowCase() const {
648   unsigned highWordBits = BitWidth % APINT_BITS_PER_WORD;
649   unsigned shift;
650   if (!highWordBits) {
651     highWordBits = APINT_BITS_PER_WORD;
652     shift = 0;
653   } else {
654     shift = APINT_BITS_PER_WORD - highWordBits;
655   }
656   int i = getNumWords() - 1;
657   unsigned Count = llvm::countl_one(U.pVal[i] << shift);
658   if (Count == highWordBits) {
659     for (i--; i >= 0; --i) {
660       if (U.pVal[i] == WORDTYPE_MAX)
661         Count += APINT_BITS_PER_WORD;
662       else {
663         Count += llvm::countl_one(U.pVal[i]);
664         break;
665       }
666     }
667   }
668   return Count;
669 }
670 
671 unsigned APInt::countTrailingZerosSlowCase() const {
672   unsigned Count = 0;
673   unsigned i = 0;
674   for (; i < getNumWords() && U.pVal[i] == 0; ++i)
675     Count += APINT_BITS_PER_WORD;
676   if (i < getNumWords())
677     Count += llvm::countr_zero(U.pVal[i]);
678   return std::min(Count, BitWidth);
679 }
680 
681 unsigned APInt::countTrailingOnesSlowCase() const {
682   unsigned Count = 0;
683   unsigned i = 0;
684   for (; i < getNumWords() && U.pVal[i] == WORDTYPE_MAX; ++i)
685     Count += APINT_BITS_PER_WORD;
686   if (i < getNumWords())
687     Count += llvm::countr_one(U.pVal[i]);
688   assert(Count <= BitWidth);
689   return Count;
690 }
691 
692 unsigned APInt::countPopulationSlowCase() const {
693   unsigned Count = 0;
694   for (unsigned i = 0; i < getNumWords(); ++i)
695     Count += llvm::popcount(U.pVal[i]);
696   return Count;
697 }
698 
699 bool APInt::intersectsSlowCase(const APInt &RHS) const {
700   for (unsigned i = 0, e = getNumWords(); i != e; ++i)
701     if ((U.pVal[i] & RHS.U.pVal[i]) != 0)
702       return true;
703 
704   return false;
705 }
706 
707 bool APInt::isSubsetOfSlowCase(const APInt &RHS) const {
708   for (unsigned i = 0, e = getNumWords(); i != e; ++i)
709     if ((U.pVal[i] & ~RHS.U.pVal[i]) != 0)
710       return false;
711 
712   return true;
713 }
714 
715 APInt APInt::byteSwap() const {
716   assert(BitWidth >= 16 && BitWidth % 8 == 0 && "Cannot byteswap!");
717   if (BitWidth == 16)
718     return APInt(BitWidth, llvm::byteswap<uint16_t>(U.VAL));
719   if (BitWidth == 32)
720     return APInt(BitWidth, llvm::byteswap<uint32_t>(U.VAL));
721   if (BitWidth <= 64) {
722     uint64_t Tmp1 = llvm::byteswap<uint64_t>(U.VAL);
723     Tmp1 >>= (64 - BitWidth);
724     return APInt(BitWidth, Tmp1);
725   }
726 
727   APInt Result(getNumWords() * APINT_BITS_PER_WORD, 0);
728   for (unsigned I = 0, N = getNumWords(); I != N; ++I)
729     Result.U.pVal[I] = llvm::byteswap<uint64_t>(U.pVal[N - I - 1]);
730   if (Result.BitWidth != BitWidth) {
731     Result.lshrInPlace(Result.BitWidth - BitWidth);
732     Result.BitWidth = BitWidth;
733   }
734   return Result;
735 }
736 
737 APInt APInt::reverseBits() const {
738   switch (BitWidth) {
739   case 64:
740     return APInt(BitWidth, llvm::reverseBits<uint64_t>(U.VAL));
741   case 32:
742     return APInt(BitWidth, llvm::reverseBits<uint32_t>(U.VAL));
743   case 16:
744     return APInt(BitWidth, llvm::reverseBits<uint16_t>(U.VAL));
745   case 8:
746     return APInt(BitWidth, llvm::reverseBits<uint8_t>(U.VAL));
747   case 0:
748     return *this;
749   default:
750     break;
751   }
752 
753   APInt Val(*this);
754   APInt Reversed(BitWidth, 0);
755   unsigned S = BitWidth;
756 
757   for (; Val != 0; Val.lshrInPlace(1)) {
758     Reversed <<= 1;
759     Reversed |= Val[0];
760     --S;
761   }
762 
763   Reversed <<= S;
764   return Reversed;
765 }
766 
767 APInt llvm::APIntOps::GreatestCommonDivisor(APInt A, APInt B) {
768   // Fast-path a common case.
769   if (A == B) return A;
770 
771   // Corner cases: if either operand is zero, the other is the gcd.
772   if (!A) return B;
773   if (!B) return A;
774 
775   // Count common powers of 2 and remove all other powers of 2.
776   unsigned Pow2;
777   {
778     unsigned Pow2_A = A.countr_zero();
779     unsigned Pow2_B = B.countr_zero();
780     if (Pow2_A > Pow2_B) {
781       A.lshrInPlace(Pow2_A - Pow2_B);
782       Pow2 = Pow2_B;
783     } else if (Pow2_B > Pow2_A) {
784       B.lshrInPlace(Pow2_B - Pow2_A);
785       Pow2 = Pow2_A;
786     } else {
787       Pow2 = Pow2_A;
788     }
789   }
790 
791   // Both operands are odd multiples of 2^Pow_2:
792   //
793   //   gcd(a, b) = gcd(|a - b| / 2^i, min(a, b))
794   //
795   // This is a modified version of Stein's algorithm, taking advantage of
796   // efficient countTrailingZeros().
797   while (A != B) {
798     if (A.ugt(B)) {
799       A -= B;
800       A.lshrInPlace(A.countr_zero() - Pow2);
801     } else {
802       B -= A;
803       B.lshrInPlace(B.countr_zero() - Pow2);
804     }
805   }
806 
807   return A;
808 }
809 
810 APInt llvm::APIntOps::RoundDoubleToAPInt(double Double, unsigned width) {
811   uint64_t I = bit_cast<uint64_t>(Double);
812 
813   // Get the sign bit from the highest order bit
814   bool isNeg = I >> 63;
815 
816   // Get the 11-bit exponent and adjust for the 1023 bit bias
817   int64_t exp = ((I >> 52) & 0x7ff) - 1023;
818 
819   // If the exponent is negative, the value is < 0 so just return 0.
820   if (exp < 0)
821     return APInt(width, 0u);
822 
823   // Extract the mantissa by clearing the top 12 bits (sign + exponent).
824   uint64_t mantissa = (I & (~0ULL >> 12)) | 1ULL << 52;
825 
826   // If the exponent doesn't shift all bits out of the mantissa
827   if (exp < 52)
828     return isNeg ? -APInt(width, mantissa >> (52 - exp)) :
829                     APInt(width, mantissa >> (52 - exp));
830 
831   // If the client didn't provide enough bits for us to shift the mantissa into
832   // then the result is undefined, just return 0
833   if (width <= exp - 52)
834     return APInt(width, 0);
835 
836   // Otherwise, we have to shift the mantissa bits up to the right location
837   APInt Tmp(width, mantissa);
838   Tmp <<= (unsigned)exp - 52;
839   return isNeg ? -Tmp : Tmp;
840 }
841 
842 /// This function converts this APInt to a double.
843 /// The layout for double is as following (IEEE Standard 754):
844 ///  --------------------------------------
845 /// |  Sign    Exponent    Fraction    Bias |
846 /// |-------------------------------------- |
847 /// |  1[63]   11[62-52]   52[51-00]   1023 |
848 ///  --------------------------------------
849 double APInt::roundToDouble(bool isSigned) const {
850 
851   // Handle the simple case where the value is contained in one uint64_t.
852   // It is wrong to optimize getWord(0) to VAL; there might be more than one word.
853   if (isSingleWord() || getActiveBits() <= APINT_BITS_PER_WORD) {
854     if (isSigned) {
855       int64_t sext = SignExtend64(getWord(0), BitWidth);
856       return double(sext);
857     } else
858       return double(getWord(0));
859   }
860 
861   // Determine if the value is negative.
862   bool isNeg = isSigned ? (*this)[BitWidth-1] : false;
863 
864   // Construct the absolute value if we're negative.
865   APInt Tmp(isNeg ? -(*this) : (*this));
866 
867   // Figure out how many bits we're using.
868   unsigned n = Tmp.getActiveBits();
869 
870   // The exponent (without bias normalization) is just the number of bits
871   // we are using. Note that the sign bit is gone since we constructed the
872   // absolute value.
873   uint64_t exp = n;
874 
875   // Return infinity for exponent overflow
876   if (exp > 1023) {
877     if (!isSigned || !isNeg)
878       return std::numeric_limits<double>::infinity();
879     else
880       return -std::numeric_limits<double>::infinity();
881   }
882   exp += 1023; // Increment for 1023 bias
883 
884   // Number of bits in mantissa is 52. To obtain the mantissa value, we must
885   // extract the high 52 bits from the correct words in pVal.
886   uint64_t mantissa;
887   unsigned hiWord = whichWord(n-1);
888   if (hiWord == 0) {
889     mantissa = Tmp.U.pVal[0];
890     if (n > 52)
891       mantissa >>= n - 52; // shift down, we want the top 52 bits.
892   } else {
893     assert(hiWord > 0 && "huh?");
894     uint64_t hibits = Tmp.U.pVal[hiWord] << (52 - n % APINT_BITS_PER_WORD);
895     uint64_t lobits = Tmp.U.pVal[hiWord-1] >> (11 + n % APINT_BITS_PER_WORD);
896     mantissa = hibits | lobits;
897   }
898 
899   // The leading bit of mantissa is implicit, so get rid of it.
900   uint64_t sign = isNeg ? (1ULL << (APINT_BITS_PER_WORD - 1)) : 0;
901   uint64_t I = sign | (exp << 52) | mantissa;
902   return bit_cast<double>(I);
903 }
904 
905 // Truncate to new width.
906 APInt APInt::trunc(unsigned width) const {
907   assert(width <= BitWidth && "Invalid APInt Truncate request");
908 
909   if (width <= APINT_BITS_PER_WORD)
910     return APInt(width, getRawData()[0]);
911 
912   if (width == BitWidth)
913     return *this;
914 
915   APInt Result(getMemory(getNumWords(width)), width);
916 
917   // Copy full words.
918   unsigned i;
919   for (i = 0; i != width / APINT_BITS_PER_WORD; i++)
920     Result.U.pVal[i] = U.pVal[i];
921 
922   // Truncate and copy any partial word.
923   unsigned bits = (0 - width) % APINT_BITS_PER_WORD;
924   if (bits != 0)
925     Result.U.pVal[i] = U.pVal[i] << bits >> bits;
926 
927   return Result;
928 }
929 
930 // Truncate to new width with unsigned saturation.
931 APInt APInt::truncUSat(unsigned width) const {
932   assert(width <= BitWidth && "Invalid APInt Truncate request");
933 
934   // Can we just losslessly truncate it?
935   if (isIntN(width))
936     return trunc(width);
937   // If not, then just return the new limit.
938   return APInt::getMaxValue(width);
939 }
940 
941 // Truncate to new width with signed saturation.
942 APInt APInt::truncSSat(unsigned width) const {
943   assert(width <= BitWidth && "Invalid APInt Truncate request");
944 
945   // Can we just losslessly truncate it?
946   if (isSignedIntN(width))
947     return trunc(width);
948   // If not, then just return the new limits.
949   return isNegative() ? APInt::getSignedMinValue(width)
950                       : APInt::getSignedMaxValue(width);
951 }
952 
953 // Sign extend to a new width.
954 APInt APInt::sext(unsigned Width) const {
955   assert(Width >= BitWidth && "Invalid APInt SignExtend request");
956 
957   if (Width <= APINT_BITS_PER_WORD)
958     return APInt(Width, SignExtend64(U.VAL, BitWidth));
959 
960   if (Width == BitWidth)
961     return *this;
962 
963   APInt Result(getMemory(getNumWords(Width)), Width);
964 
965   // Copy words.
966   std::memcpy(Result.U.pVal, getRawData(), getNumWords() * APINT_WORD_SIZE);
967 
968   // Sign extend the last word since there may be unused bits in the input.
969   Result.U.pVal[getNumWords() - 1] =
970       SignExtend64(Result.U.pVal[getNumWords() - 1],
971                    ((BitWidth - 1) % APINT_BITS_PER_WORD) + 1);
972 
973   // Fill with sign bits.
974   std::memset(Result.U.pVal + getNumWords(), isNegative() ? -1 : 0,
975               (Result.getNumWords() - getNumWords()) * APINT_WORD_SIZE);
976   Result.clearUnusedBits();
977   return Result;
978 }
979 
980 //  Zero extend to a new width.
981 APInt APInt::zext(unsigned width) const {
982   assert(width >= BitWidth && "Invalid APInt ZeroExtend request");
983 
984   if (width <= APINT_BITS_PER_WORD)
985     return APInt(width, U.VAL);
986 
987   if (width == BitWidth)
988     return *this;
989 
990   APInt Result(getMemory(getNumWords(width)), width);
991 
992   // Copy words.
993   std::memcpy(Result.U.pVal, getRawData(), getNumWords() * APINT_WORD_SIZE);
994 
995   // Zero remaining words.
996   std::memset(Result.U.pVal + getNumWords(), 0,
997               (Result.getNumWords() - getNumWords()) * APINT_WORD_SIZE);
998 
999   return Result;
1000 }
1001 
1002 APInt APInt::zextOrTrunc(unsigned width) const {
1003   if (BitWidth < width)
1004     return zext(width);
1005   if (BitWidth > width)
1006     return trunc(width);
1007   return *this;
1008 }
1009 
1010 APInt APInt::sextOrTrunc(unsigned width) const {
1011   if (BitWidth < width)
1012     return sext(width);
1013   if (BitWidth > width)
1014     return trunc(width);
1015   return *this;
1016 }
1017 
1018 /// Arithmetic right-shift this APInt by shiftAmt.
1019 /// Arithmetic right-shift function.
1020 void APInt::ashrInPlace(const APInt &shiftAmt) {
1021   ashrInPlace((unsigned)shiftAmt.getLimitedValue(BitWidth));
1022 }
1023 
1024 /// Arithmetic right-shift this APInt by shiftAmt.
1025 /// Arithmetic right-shift function.
1026 void APInt::ashrSlowCase(unsigned ShiftAmt) {
1027   // Don't bother performing a no-op shift.
1028   if (!ShiftAmt)
1029     return;
1030 
1031   // Save the original sign bit for later.
1032   bool Negative = isNegative();
1033 
1034   // WordShift is the inter-part shift; BitShift is intra-part shift.
1035   unsigned WordShift = ShiftAmt / APINT_BITS_PER_WORD;
1036   unsigned BitShift = ShiftAmt % APINT_BITS_PER_WORD;
1037 
1038   unsigned WordsToMove = getNumWords() - WordShift;
1039   if (WordsToMove != 0) {
1040     // Sign extend the last word to fill in the unused bits.
1041     U.pVal[getNumWords() - 1] = SignExtend64(
1042         U.pVal[getNumWords() - 1], ((BitWidth - 1) % APINT_BITS_PER_WORD) + 1);
1043 
1044     // Fastpath for moving by whole words.
1045     if (BitShift == 0) {
1046       std::memmove(U.pVal, U.pVal + WordShift, WordsToMove * APINT_WORD_SIZE);
1047     } else {
1048       // Move the words containing significant bits.
1049       for (unsigned i = 0; i != WordsToMove - 1; ++i)
1050         U.pVal[i] = (U.pVal[i + WordShift] >> BitShift) |
1051                     (U.pVal[i + WordShift + 1] << (APINT_BITS_PER_WORD - BitShift));
1052 
1053       // Handle the last word which has no high bits to copy.
1054       U.pVal[WordsToMove - 1] = U.pVal[WordShift + WordsToMove - 1] >> BitShift;
1055       // Sign extend one more time.
1056       U.pVal[WordsToMove - 1] =
1057           SignExtend64(U.pVal[WordsToMove - 1], APINT_BITS_PER_WORD - BitShift);
1058     }
1059   }
1060 
1061   // Fill in the remainder based on the original sign.
1062   std::memset(U.pVal + WordsToMove, Negative ? -1 : 0,
1063               WordShift * APINT_WORD_SIZE);
1064   clearUnusedBits();
1065 }
1066 
1067 /// Logical right-shift this APInt by shiftAmt.
1068 /// Logical right-shift function.
1069 void APInt::lshrInPlace(const APInt &shiftAmt) {
1070   lshrInPlace((unsigned)shiftAmt.getLimitedValue(BitWidth));
1071 }
1072 
1073 /// Logical right-shift this APInt by shiftAmt.
1074 /// Logical right-shift function.
1075 void APInt::lshrSlowCase(unsigned ShiftAmt) {
1076   tcShiftRight(U.pVal, getNumWords(), ShiftAmt);
1077 }
1078 
1079 /// Left-shift this APInt by shiftAmt.
1080 /// Left-shift function.
1081 APInt &APInt::operator<<=(const APInt &shiftAmt) {
1082   // It's undefined behavior in C to shift by BitWidth or greater.
1083   *this <<= (unsigned)shiftAmt.getLimitedValue(BitWidth);
1084   return *this;
1085 }
1086 
1087 void APInt::shlSlowCase(unsigned ShiftAmt) {
1088   tcShiftLeft(U.pVal, getNumWords(), ShiftAmt);
1089   clearUnusedBits();
1090 }
1091 
1092 // Calculate the rotate amount modulo the bit width.
1093 static unsigned rotateModulo(unsigned BitWidth, const APInt &rotateAmt) {
1094   if (LLVM_UNLIKELY(BitWidth == 0))
1095     return 0;
1096   unsigned rotBitWidth = rotateAmt.getBitWidth();
1097   APInt rot = rotateAmt;
1098   if (rotBitWidth < BitWidth) {
1099     // Extend the rotate APInt, so that the urem doesn't divide by 0.
1100     // e.g. APInt(1, 32) would give APInt(1, 0).
1101     rot = rotateAmt.zext(BitWidth);
1102   }
1103   rot = rot.urem(APInt(rot.getBitWidth(), BitWidth));
1104   return rot.getLimitedValue(BitWidth);
1105 }
1106 
1107 APInt APInt::rotl(const APInt &rotateAmt) const {
1108   return rotl(rotateModulo(BitWidth, rotateAmt));
1109 }
1110 
1111 APInt APInt::rotl(unsigned rotateAmt) const {
1112   if (LLVM_UNLIKELY(BitWidth == 0))
1113     return *this;
1114   rotateAmt %= BitWidth;
1115   if (rotateAmt == 0)
1116     return *this;
1117   return shl(rotateAmt) | lshr(BitWidth - rotateAmt);
1118 }
1119 
1120 APInt APInt::rotr(const APInt &rotateAmt) const {
1121   return rotr(rotateModulo(BitWidth, rotateAmt));
1122 }
1123 
1124 APInt APInt::rotr(unsigned rotateAmt) const {
1125   if (BitWidth == 0)
1126     return *this;
1127   rotateAmt %= BitWidth;
1128   if (rotateAmt == 0)
1129     return *this;
1130   return lshr(rotateAmt) | shl(BitWidth - rotateAmt);
1131 }
1132 
1133 /// \returns the nearest log base 2 of this APInt. Ties round up.
1134 ///
1135 /// NOTE: When we have a BitWidth of 1, we define:
1136 ///
1137 ///   log2(0) = UINT32_MAX
1138 ///   log2(1) = 0
1139 ///
1140 /// to get around any mathematical concerns resulting from
1141 /// referencing 2 in a space where 2 does no exist.
1142 unsigned APInt::nearestLogBase2() const {
1143   // Special case when we have a bitwidth of 1. If VAL is 1, then we
1144   // get 0. If VAL is 0, we get WORDTYPE_MAX which gets truncated to
1145   // UINT32_MAX.
1146   if (BitWidth == 1)
1147     return U.VAL - 1;
1148 
1149   // Handle the zero case.
1150   if (isZero())
1151     return UINT32_MAX;
1152 
1153   // The non-zero case is handled by computing:
1154   //
1155   //   nearestLogBase2(x) = logBase2(x) + x[logBase2(x)-1].
1156   //
1157   // where x[i] is referring to the value of the ith bit of x.
1158   unsigned lg = logBase2();
1159   return lg + unsigned((*this)[lg - 1]);
1160 }
1161 
1162 // Square Root - this method computes and returns the square root of "this".
1163 // Three mechanisms are used for computation. For small values (<= 5 bits),
1164 // a table lookup is done. This gets some performance for common cases. For
1165 // values using less than 52 bits, the value is converted to double and then
1166 // the libc sqrt function is called. The result is rounded and then converted
1167 // back to a uint64_t which is then used to construct the result. Finally,
1168 // the Babylonian method for computing square roots is used.
1169 APInt APInt::sqrt() const {
1170 
1171   // Determine the magnitude of the value.
1172   unsigned magnitude = getActiveBits();
1173 
1174   // Use a fast table for some small values. This also gets rid of some
1175   // rounding errors in libc sqrt for small values.
1176   if (magnitude <= 5) {
1177     static const uint8_t results[32] = {
1178       /*     0 */ 0,
1179       /*  1- 2 */ 1, 1,
1180       /*  3- 6 */ 2, 2, 2, 2,
1181       /*  7-12 */ 3, 3, 3, 3, 3, 3,
1182       /* 13-20 */ 4, 4, 4, 4, 4, 4, 4, 4,
1183       /* 21-30 */ 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
1184       /*    31 */ 6
1185     };
1186     return APInt(BitWidth, results[ (isSingleWord() ? U.VAL : U.pVal[0]) ]);
1187   }
1188 
1189   // If the magnitude of the value fits in less than 52 bits (the precision of
1190   // an IEEE double precision floating point value), then we can use the
1191   // libc sqrt function which will probably use a hardware sqrt computation.
1192   // This should be faster than the algorithm below.
1193   if (magnitude < 52) {
1194     return APInt(BitWidth,
1195                  uint64_t(::round(::sqrt(double(isSingleWord() ? U.VAL
1196                                                                : U.pVal[0])))));
1197   }
1198 
1199   // Okay, all the short cuts are exhausted. We must compute it. The following
1200   // is a classical Babylonian method for computing the square root. This code
1201   // was adapted to APInt from a wikipedia article on such computations.
1202   // See http://www.wikipedia.org/ and go to the page named
1203   // Calculate_an_integer_square_root.
1204   unsigned nbits = BitWidth, i = 4;
1205   APInt testy(BitWidth, 16);
1206   APInt x_old(BitWidth, 1);
1207   APInt x_new(BitWidth, 0);
1208   APInt two(BitWidth, 2);
1209 
1210   // Select a good starting value using binary logarithms.
1211   for (;; i += 2, testy = testy.shl(2))
1212     if (i >= nbits || this->ule(testy)) {
1213       x_old = x_old.shl(i / 2);
1214       break;
1215     }
1216 
1217   // Use the Babylonian method to arrive at the integer square root:
1218   for (;;) {
1219     x_new = (this->udiv(x_old) + x_old).udiv(two);
1220     if (x_old.ule(x_new))
1221       break;
1222     x_old = x_new;
1223   }
1224 
1225   // Make sure we return the closest approximation
1226   // NOTE: The rounding calculation below is correct. It will produce an
1227   // off-by-one discrepancy with results from pari/gp. That discrepancy has been
1228   // determined to be a rounding issue with pari/gp as it begins to use a
1229   // floating point representation after 192 bits. There are no discrepancies
1230   // between this algorithm and pari/gp for bit widths < 192 bits.
1231   APInt square(x_old * x_old);
1232   APInt nextSquare((x_old + 1) * (x_old +1));
1233   if (this->ult(square))
1234     return x_old;
1235   assert(this->ule(nextSquare) && "Error in APInt::sqrt computation");
1236   APInt midpoint((nextSquare - square).udiv(two));
1237   APInt offset(*this - square);
1238   if (offset.ult(midpoint))
1239     return x_old;
1240   return x_old + 1;
1241 }
1242 
1243 /// Computes the multiplicative inverse of this APInt for a given modulo. The
1244 /// iterative extended Euclidean algorithm is used to solve for this value,
1245 /// however we simplify it to speed up calculating only the inverse, and take
1246 /// advantage of div+rem calculations. We also use some tricks to avoid copying
1247 /// (potentially large) APInts around.
1248 /// WARNING: a value of '0' may be returned,
1249 ///          signifying that no multiplicative inverse exists!
1250 APInt APInt::multiplicativeInverse(const APInt& modulo) const {
1251   assert(ult(modulo) && "This APInt must be smaller than the modulo");
1252 
1253   // Using the properties listed at the following web page (accessed 06/21/08):
1254   //   http://www.numbertheory.org/php/euclid.html
1255   // (especially the properties numbered 3, 4 and 9) it can be proved that
1256   // BitWidth bits suffice for all the computations in the algorithm implemented
1257   // below. More precisely, this number of bits suffice if the multiplicative
1258   // inverse exists, but may not suffice for the general extended Euclidean
1259   // algorithm.
1260 
1261   APInt r[2] = { modulo, *this };
1262   APInt t[2] = { APInt(BitWidth, 0), APInt(BitWidth, 1) };
1263   APInt q(BitWidth, 0);
1264 
1265   unsigned i;
1266   for (i = 0; r[i^1] != 0; i ^= 1) {
1267     // An overview of the math without the confusing bit-flipping:
1268     // q = r[i-2] / r[i-1]
1269     // r[i] = r[i-2] % r[i-1]
1270     // t[i] = t[i-2] - t[i-1] * q
1271     udivrem(r[i], r[i^1], q, r[i]);
1272     t[i] -= t[i^1] * q;
1273   }
1274 
1275   // If this APInt and the modulo are not coprime, there is no multiplicative
1276   // inverse, so return 0. We check this by looking at the next-to-last
1277   // remainder, which is the gcd(*this,modulo) as calculated by the Euclidean
1278   // algorithm.
1279   if (r[i] != 1)
1280     return APInt(BitWidth, 0);
1281 
1282   // The next-to-last t is the multiplicative inverse.  However, we are
1283   // interested in a positive inverse. Calculate a positive one from a negative
1284   // one if necessary. A simple addition of the modulo suffices because
1285   // abs(t[i]) is known to be less than *this/2 (see the link above).
1286   if (t[i].isNegative())
1287     t[i] += modulo;
1288 
1289   return std::move(t[i]);
1290 }
1291 
1292 /// \returns the multiplicative inverse of an odd APInt modulo 2^BitWidth.
1293 APInt APInt::multiplicativeInverse() const {
1294   assert((*this)[0] &&
1295          "multiplicative inverse is only defined for odd numbers!");
1296 
1297   // Use Newton's method.
1298   APInt Factor = *this;
1299   APInt T;
1300   while (!(T = *this * Factor).isOne())
1301     Factor *= 2 - T;
1302   return Factor;
1303 }
1304 
1305 /// Implementation of Knuth's Algorithm D (Division of nonnegative integers)
1306 /// from "Art of Computer Programming, Volume 2", section 4.3.1, p. 272. The
1307 /// variables here have the same names as in the algorithm. Comments explain
1308 /// the algorithm and any deviation from it.
1309 static void KnuthDiv(uint32_t *u, uint32_t *v, uint32_t *q, uint32_t* r,
1310                      unsigned m, unsigned n) {
1311   assert(u && "Must provide dividend");
1312   assert(v && "Must provide divisor");
1313   assert(q && "Must provide quotient");
1314   assert(u != v && u != q && v != q && "Must use different memory");
1315   assert(n>1 && "n must be > 1");
1316 
1317   // b denotes the base of the number system. In our case b is 2^32.
1318   const uint64_t b = uint64_t(1) << 32;
1319 
1320 // The DEBUG macros here tend to be spam in the debug output if you're not
1321 // debugging this code. Disable them unless KNUTH_DEBUG is defined.
1322 #ifdef KNUTH_DEBUG
1323 #define DEBUG_KNUTH(X) LLVM_DEBUG(X)
1324 #else
1325 #define DEBUG_KNUTH(X) do {} while(false)
1326 #endif
1327 
1328   DEBUG_KNUTH(dbgs() << "KnuthDiv: m=" << m << " n=" << n << '\n');
1329   DEBUG_KNUTH(dbgs() << "KnuthDiv: original:");
1330   DEBUG_KNUTH(for (int i = m + n; i >= 0; i--) dbgs() << " " << u[i]);
1331   DEBUG_KNUTH(dbgs() << " by");
1332   DEBUG_KNUTH(for (int i = n; i > 0; i--) dbgs() << " " << v[i - 1]);
1333   DEBUG_KNUTH(dbgs() << '\n');
1334   // D1. [Normalize.] Set d = b / (v[n-1] + 1) and multiply all the digits of
1335   // u and v by d. Note that we have taken Knuth's advice here to use a power
1336   // of 2 value for d such that d * v[n-1] >= b/2 (b is the base). A power of
1337   // 2 allows us to shift instead of multiply and it is easy to determine the
1338   // shift amount from the leading zeros.  We are basically normalizing the u
1339   // and v so that its high bits are shifted to the top of v's range without
1340   // overflow. Note that this can require an extra word in u so that u must
1341   // be of length m+n+1.
1342   unsigned shift = llvm::countl_zero(v[n - 1]);
1343   uint32_t v_carry = 0;
1344   uint32_t u_carry = 0;
1345   if (shift) {
1346     for (unsigned i = 0; i < m+n; ++i) {
1347       uint32_t u_tmp = u[i] >> (32 - shift);
1348       u[i] = (u[i] << shift) | u_carry;
1349       u_carry = u_tmp;
1350     }
1351     for (unsigned i = 0; i < n; ++i) {
1352       uint32_t v_tmp = v[i] >> (32 - shift);
1353       v[i] = (v[i] << shift) | v_carry;
1354       v_carry = v_tmp;
1355     }
1356   }
1357   u[m+n] = u_carry;
1358 
1359   DEBUG_KNUTH(dbgs() << "KnuthDiv:   normal:");
1360   DEBUG_KNUTH(for (int i = m + n; i >= 0; i--) dbgs() << " " << u[i]);
1361   DEBUG_KNUTH(dbgs() << " by");
1362   DEBUG_KNUTH(for (int i = n; i > 0; i--) dbgs() << " " << v[i - 1]);
1363   DEBUG_KNUTH(dbgs() << '\n');
1364 
1365   // D2. [Initialize j.]  Set j to m. This is the loop counter over the places.
1366   int j = m;
1367   do {
1368     DEBUG_KNUTH(dbgs() << "KnuthDiv: quotient digit #" << j << '\n');
1369     // D3. [Calculate q'.].
1370     //     Set qp = (u[j+n]*b + u[j+n-1]) / v[n-1]. (qp=qprime=q')
1371     //     Set rp = (u[j+n]*b + u[j+n-1]) % v[n-1]. (rp=rprime=r')
1372     // Now test if qp == b or qp*v[n-2] > b*rp + u[j+n-2]; if so, decrease
1373     // qp by 1, increase rp by v[n-1], and repeat this test if rp < b. The test
1374     // on v[n-2] determines at high speed most of the cases in which the trial
1375     // value qp is one too large, and it eliminates all cases where qp is two
1376     // too large.
1377     uint64_t dividend = Make_64(u[j+n], u[j+n-1]);
1378     DEBUG_KNUTH(dbgs() << "KnuthDiv: dividend == " << dividend << '\n');
1379     uint64_t qp = dividend / v[n-1];
1380     uint64_t rp = dividend % v[n-1];
1381     if (qp == b || qp*v[n-2] > b*rp + u[j+n-2]) {
1382       qp--;
1383       rp += v[n-1];
1384       if (rp < b && (qp == b || qp*v[n-2] > b*rp + u[j+n-2]))
1385         qp--;
1386     }
1387     DEBUG_KNUTH(dbgs() << "KnuthDiv: qp == " << qp << ", rp == " << rp << '\n');
1388 
1389     // D4. [Multiply and subtract.] Replace (u[j+n]u[j+n-1]...u[j]) with
1390     // (u[j+n]u[j+n-1]..u[j]) - qp * (v[n-1]...v[1]v[0]). This computation
1391     // consists of a simple multiplication by a one-place number, combined with
1392     // a subtraction.
1393     // The digits (u[j+n]...u[j]) should be kept positive; if the result of
1394     // this step is actually negative, (u[j+n]...u[j]) should be left as the
1395     // true value plus b**(n+1), namely as the b's complement of
1396     // the true value, and a "borrow" to the left should be remembered.
1397     int64_t borrow = 0;
1398     for (unsigned i = 0; i < n; ++i) {
1399       uint64_t p = uint64_t(qp) * uint64_t(v[i]);
1400       int64_t subres = int64_t(u[j+i]) - borrow - Lo_32(p);
1401       u[j+i] = Lo_32(subres);
1402       borrow = Hi_32(p) - Hi_32(subres);
1403       DEBUG_KNUTH(dbgs() << "KnuthDiv: u[j+i] = " << u[j + i]
1404                         << ", borrow = " << borrow << '\n');
1405     }
1406     bool isNeg = u[j+n] < borrow;
1407     u[j+n] -= Lo_32(borrow);
1408 
1409     DEBUG_KNUTH(dbgs() << "KnuthDiv: after subtraction:");
1410     DEBUG_KNUTH(for (int i = m + n; i >= 0; i--) dbgs() << " " << u[i]);
1411     DEBUG_KNUTH(dbgs() << '\n');
1412 
1413     // D5. [Test remainder.] Set q[j] = qp. If the result of step D4 was
1414     // negative, go to step D6; otherwise go on to step D7.
1415     q[j] = Lo_32(qp);
1416     if (isNeg) {
1417       // D6. [Add back]. The probability that this step is necessary is very
1418       // small, on the order of only 2/b. Make sure that test data accounts for
1419       // this possibility. Decrease q[j] by 1
1420       q[j]--;
1421       // and add (0v[n-1]...v[1]v[0]) to (u[j+n]u[j+n-1]...u[j+1]u[j]).
1422       // A carry will occur to the left of u[j+n], and it should be ignored
1423       // since it cancels with the borrow that occurred in D4.
1424       bool carry = false;
1425       for (unsigned i = 0; i < n; i++) {
1426         uint32_t limit = std::min(u[j+i],v[i]);
1427         u[j+i] += v[i] + carry;
1428         carry = u[j+i] < limit || (carry && u[j+i] == limit);
1429       }
1430       u[j+n] += carry;
1431     }
1432     DEBUG_KNUTH(dbgs() << "KnuthDiv: after correction:");
1433     DEBUG_KNUTH(for (int i = m + n; i >= 0; i--) dbgs() << " " << u[i]);
1434     DEBUG_KNUTH(dbgs() << "\nKnuthDiv: digit result = " << q[j] << '\n');
1435 
1436     // D7. [Loop on j.]  Decrease j by one. Now if j >= 0, go back to D3.
1437   } while (--j >= 0);
1438 
1439   DEBUG_KNUTH(dbgs() << "KnuthDiv: quotient:");
1440   DEBUG_KNUTH(for (int i = m; i >= 0; i--) dbgs() << " " << q[i]);
1441   DEBUG_KNUTH(dbgs() << '\n');
1442 
1443   // D8. [Unnormalize]. Now q[...] is the desired quotient, and the desired
1444   // remainder may be obtained by dividing u[...] by d. If r is non-null we
1445   // compute the remainder (urem uses this).
1446   if (r) {
1447     // The value d is expressed by the "shift" value above since we avoided
1448     // multiplication by d by using a shift left. So, all we have to do is
1449     // shift right here.
1450     if (shift) {
1451       uint32_t carry = 0;
1452       DEBUG_KNUTH(dbgs() << "KnuthDiv: remainder:");
1453       for (int i = n-1; i >= 0; i--) {
1454         r[i] = (u[i] >> shift) | carry;
1455         carry = u[i] << (32 - shift);
1456         DEBUG_KNUTH(dbgs() << " " << r[i]);
1457       }
1458     } else {
1459       for (int i = n-1; i >= 0; i--) {
1460         r[i] = u[i];
1461         DEBUG_KNUTH(dbgs() << " " << r[i]);
1462       }
1463     }
1464     DEBUG_KNUTH(dbgs() << '\n');
1465   }
1466   DEBUG_KNUTH(dbgs() << '\n');
1467 }
1468 
1469 void APInt::divide(const WordType *LHS, unsigned lhsWords, const WordType *RHS,
1470                    unsigned rhsWords, WordType *Quotient, WordType *Remainder) {
1471   assert(lhsWords >= rhsWords && "Fractional result");
1472 
1473   // First, compose the values into an array of 32-bit words instead of
1474   // 64-bit words. This is a necessity of both the "short division" algorithm
1475   // and the Knuth "classical algorithm" which requires there to be native
1476   // operations for +, -, and * on an m bit value with an m*2 bit result. We
1477   // can't use 64-bit operands here because we don't have native results of
1478   // 128-bits. Furthermore, casting the 64-bit values to 32-bit values won't
1479   // work on large-endian machines.
1480   unsigned n = rhsWords * 2;
1481   unsigned m = (lhsWords * 2) - n;
1482 
1483   // Allocate space for the temporary values we need either on the stack, if
1484   // it will fit, or on the heap if it won't.
1485   uint32_t SPACE[128];
1486   uint32_t *U = nullptr;
1487   uint32_t *V = nullptr;
1488   uint32_t *Q = nullptr;
1489   uint32_t *R = nullptr;
1490   if ((Remainder?4:3)*n+2*m+1 <= 128) {
1491     U = &SPACE[0];
1492     V = &SPACE[m+n+1];
1493     Q = &SPACE[(m+n+1) + n];
1494     if (Remainder)
1495       R = &SPACE[(m+n+1) + n + (m+n)];
1496   } else {
1497     U = new uint32_t[m + n + 1];
1498     V = new uint32_t[n];
1499     Q = new uint32_t[m+n];
1500     if (Remainder)
1501       R = new uint32_t[n];
1502   }
1503 
1504   // Initialize the dividend
1505   memset(U, 0, (m+n+1)*sizeof(uint32_t));
1506   for (unsigned i = 0; i < lhsWords; ++i) {
1507     uint64_t tmp = LHS[i];
1508     U[i * 2] = Lo_32(tmp);
1509     U[i * 2 + 1] = Hi_32(tmp);
1510   }
1511   U[m+n] = 0; // this extra word is for "spill" in the Knuth algorithm.
1512 
1513   // Initialize the divisor
1514   memset(V, 0, (n)*sizeof(uint32_t));
1515   for (unsigned i = 0; i < rhsWords; ++i) {
1516     uint64_t tmp = RHS[i];
1517     V[i * 2] = Lo_32(tmp);
1518     V[i * 2 + 1] = Hi_32(tmp);
1519   }
1520 
1521   // initialize the quotient and remainder
1522   memset(Q, 0, (m+n) * sizeof(uint32_t));
1523   if (Remainder)
1524     memset(R, 0, n * sizeof(uint32_t));
1525 
1526   // Now, adjust m and n for the Knuth division. n is the number of words in
1527   // the divisor. m is the number of words by which the dividend exceeds the
1528   // divisor (i.e. m+n is the length of the dividend). These sizes must not
1529   // contain any zero words or the Knuth algorithm fails.
1530   for (unsigned i = n; i > 0 && V[i-1] == 0; i--) {
1531     n--;
1532     m++;
1533   }
1534   for (unsigned i = m+n; i > 0 && U[i-1] == 0; i--)
1535     m--;
1536 
1537   // If we're left with only a single word for the divisor, Knuth doesn't work
1538   // so we implement the short division algorithm here. This is much simpler
1539   // and faster because we are certain that we can divide a 64-bit quantity
1540   // by a 32-bit quantity at hardware speed and short division is simply a
1541   // series of such operations. This is just like doing short division but we
1542   // are using base 2^32 instead of base 10.
1543   assert(n != 0 && "Divide by zero?");
1544   if (n == 1) {
1545     uint32_t divisor = V[0];
1546     uint32_t remainder = 0;
1547     for (int i = m; i >= 0; i--) {
1548       uint64_t partial_dividend = Make_64(remainder, U[i]);
1549       if (partial_dividend == 0) {
1550         Q[i] = 0;
1551         remainder = 0;
1552       } else if (partial_dividend < divisor) {
1553         Q[i] = 0;
1554         remainder = Lo_32(partial_dividend);
1555       } else if (partial_dividend == divisor) {
1556         Q[i] = 1;
1557         remainder = 0;
1558       } else {
1559         Q[i] = Lo_32(partial_dividend / divisor);
1560         remainder = Lo_32(partial_dividend - (Q[i] * divisor));
1561       }
1562     }
1563     if (R)
1564       R[0] = remainder;
1565   } else {
1566     // Now we're ready to invoke the Knuth classical divide algorithm. In this
1567     // case n > 1.
1568     KnuthDiv(U, V, Q, R, m, n);
1569   }
1570 
1571   // If the caller wants the quotient
1572   if (Quotient) {
1573     for (unsigned i = 0; i < lhsWords; ++i)
1574       Quotient[i] = Make_64(Q[i*2+1], Q[i*2]);
1575   }
1576 
1577   // If the caller wants the remainder
1578   if (Remainder) {
1579     for (unsigned i = 0; i < rhsWords; ++i)
1580       Remainder[i] = Make_64(R[i*2+1], R[i*2]);
1581   }
1582 
1583   // Clean up the memory we allocated.
1584   if (U != &SPACE[0]) {
1585     delete [] U;
1586     delete [] V;
1587     delete [] Q;
1588     delete [] R;
1589   }
1590 }
1591 
1592 APInt APInt::udiv(const APInt &RHS) const {
1593   assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
1594 
1595   // First, deal with the easy case
1596   if (isSingleWord()) {
1597     assert(RHS.U.VAL != 0 && "Divide by zero?");
1598     return APInt(BitWidth, U.VAL / RHS.U.VAL);
1599   }
1600 
1601   // Get some facts about the LHS and RHS number of bits and words
1602   unsigned lhsWords = getNumWords(getActiveBits());
1603   unsigned rhsBits  = RHS.getActiveBits();
1604   unsigned rhsWords = getNumWords(rhsBits);
1605   assert(rhsWords && "Divided by zero???");
1606 
1607   // Deal with some degenerate cases
1608   if (!lhsWords)
1609     // 0 / X ===> 0
1610     return APInt(BitWidth, 0);
1611   if (rhsBits == 1)
1612     // X / 1 ===> X
1613     return *this;
1614   if (lhsWords < rhsWords || this->ult(RHS))
1615     // X / Y ===> 0, iff X < Y
1616     return APInt(BitWidth, 0);
1617   if (*this == RHS)
1618     // X / X ===> 1
1619     return APInt(BitWidth, 1);
1620   if (lhsWords == 1) // rhsWords is 1 if lhsWords is 1.
1621     // All high words are zero, just use native divide
1622     return APInt(BitWidth, this->U.pVal[0] / RHS.U.pVal[0]);
1623 
1624   // We have to compute it the hard way. Invoke the Knuth divide algorithm.
1625   APInt Quotient(BitWidth, 0); // to hold result.
1626   divide(U.pVal, lhsWords, RHS.U.pVal, rhsWords, Quotient.U.pVal, nullptr);
1627   return Quotient;
1628 }
1629 
1630 APInt APInt::udiv(uint64_t RHS) const {
1631   assert(RHS != 0 && "Divide by zero?");
1632 
1633   // First, deal with the easy case
1634   if (isSingleWord())
1635     return APInt(BitWidth, U.VAL / RHS);
1636 
1637   // Get some facts about the LHS words.
1638   unsigned lhsWords = getNumWords(getActiveBits());
1639 
1640   // Deal with some degenerate cases
1641   if (!lhsWords)
1642     // 0 / X ===> 0
1643     return APInt(BitWidth, 0);
1644   if (RHS == 1)
1645     // X / 1 ===> X
1646     return *this;
1647   if (this->ult(RHS))
1648     // X / Y ===> 0, iff X < Y
1649     return APInt(BitWidth, 0);
1650   if (*this == RHS)
1651     // X / X ===> 1
1652     return APInt(BitWidth, 1);
1653   if (lhsWords == 1) // rhsWords is 1 if lhsWords is 1.
1654     // All high words are zero, just use native divide
1655     return APInt(BitWidth, this->U.pVal[0] / RHS);
1656 
1657   // We have to compute it the hard way. Invoke the Knuth divide algorithm.
1658   APInt Quotient(BitWidth, 0); // to hold result.
1659   divide(U.pVal, lhsWords, &RHS, 1, Quotient.U.pVal, nullptr);
1660   return Quotient;
1661 }
1662 
1663 APInt APInt::sdiv(const APInt &RHS) const {
1664   if (isNegative()) {
1665     if (RHS.isNegative())
1666       return (-(*this)).udiv(-RHS);
1667     return -((-(*this)).udiv(RHS));
1668   }
1669   if (RHS.isNegative())
1670     return -(this->udiv(-RHS));
1671   return this->udiv(RHS);
1672 }
1673 
1674 APInt APInt::sdiv(int64_t RHS) const {
1675   if (isNegative()) {
1676     if (RHS < 0)
1677       return (-(*this)).udiv(-RHS);
1678     return -((-(*this)).udiv(RHS));
1679   }
1680   if (RHS < 0)
1681     return -(this->udiv(-RHS));
1682   return this->udiv(RHS);
1683 }
1684 
1685 APInt APInt::urem(const APInt &RHS) const {
1686   assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
1687   if (isSingleWord()) {
1688     assert(RHS.U.VAL != 0 && "Remainder by zero?");
1689     return APInt(BitWidth, U.VAL % RHS.U.VAL);
1690   }
1691 
1692   // Get some facts about the LHS
1693   unsigned lhsWords = getNumWords(getActiveBits());
1694 
1695   // Get some facts about the RHS
1696   unsigned rhsBits = RHS.getActiveBits();
1697   unsigned rhsWords = getNumWords(rhsBits);
1698   assert(rhsWords && "Performing remainder operation by zero ???");
1699 
1700   // Check the degenerate cases
1701   if (lhsWords == 0)
1702     // 0 % Y ===> 0
1703     return APInt(BitWidth, 0);
1704   if (rhsBits == 1)
1705     // X % 1 ===> 0
1706     return APInt(BitWidth, 0);
1707   if (lhsWords < rhsWords || this->ult(RHS))
1708     // X % Y ===> X, iff X < Y
1709     return *this;
1710   if (*this == RHS)
1711     // X % X == 0;
1712     return APInt(BitWidth, 0);
1713   if (lhsWords == 1)
1714     // All high words are zero, just use native remainder
1715     return APInt(BitWidth, U.pVal[0] % RHS.U.pVal[0]);
1716 
1717   // We have to compute it the hard way. Invoke the Knuth divide algorithm.
1718   APInt Remainder(BitWidth, 0);
1719   divide(U.pVal, lhsWords, RHS.U.pVal, rhsWords, nullptr, Remainder.U.pVal);
1720   return Remainder;
1721 }
1722 
1723 uint64_t APInt::urem(uint64_t RHS) const {
1724   assert(RHS != 0 && "Remainder by zero?");
1725 
1726   if (isSingleWord())
1727     return U.VAL % RHS;
1728 
1729   // Get some facts about the LHS
1730   unsigned lhsWords = getNumWords(getActiveBits());
1731 
1732   // Check the degenerate cases
1733   if (lhsWords == 0)
1734     // 0 % Y ===> 0
1735     return 0;
1736   if (RHS == 1)
1737     // X % 1 ===> 0
1738     return 0;
1739   if (this->ult(RHS))
1740     // X % Y ===> X, iff X < Y
1741     return getZExtValue();
1742   if (*this == RHS)
1743     // X % X == 0;
1744     return 0;
1745   if (lhsWords == 1)
1746     // All high words are zero, just use native remainder
1747     return U.pVal[0] % RHS;
1748 
1749   // We have to compute it the hard way. Invoke the Knuth divide algorithm.
1750   uint64_t Remainder;
1751   divide(U.pVal, lhsWords, &RHS, 1, nullptr, &Remainder);
1752   return Remainder;
1753 }
1754 
1755 APInt APInt::srem(const APInt &RHS) const {
1756   if (isNegative()) {
1757     if (RHS.isNegative())
1758       return -((-(*this)).urem(-RHS));
1759     return -((-(*this)).urem(RHS));
1760   }
1761   if (RHS.isNegative())
1762     return this->urem(-RHS);
1763   return this->urem(RHS);
1764 }
1765 
1766 int64_t APInt::srem(int64_t RHS) const {
1767   if (isNegative()) {
1768     if (RHS < 0)
1769       return -((-(*this)).urem(-RHS));
1770     return -((-(*this)).urem(RHS));
1771   }
1772   if (RHS < 0)
1773     return this->urem(-RHS);
1774   return this->urem(RHS);
1775 }
1776 
1777 void APInt::udivrem(const APInt &LHS, const APInt &RHS,
1778                     APInt &Quotient, APInt &Remainder) {
1779   assert(LHS.BitWidth == RHS.BitWidth && "Bit widths must be the same");
1780   unsigned BitWidth = LHS.BitWidth;
1781 
1782   // First, deal with the easy case
1783   if (LHS.isSingleWord()) {
1784     assert(RHS.U.VAL != 0 && "Divide by zero?");
1785     uint64_t QuotVal = LHS.U.VAL / RHS.U.VAL;
1786     uint64_t RemVal = LHS.U.VAL % RHS.U.VAL;
1787     Quotient = APInt(BitWidth, QuotVal);
1788     Remainder = APInt(BitWidth, RemVal);
1789     return;
1790   }
1791 
1792   // Get some size facts about the dividend and divisor
1793   unsigned lhsWords = getNumWords(LHS.getActiveBits());
1794   unsigned rhsBits  = RHS.getActiveBits();
1795   unsigned rhsWords = getNumWords(rhsBits);
1796   assert(rhsWords && "Performing divrem operation by zero ???");
1797 
1798   // Check the degenerate cases
1799   if (lhsWords == 0) {
1800     Quotient = APInt(BitWidth, 0);    // 0 / Y ===> 0
1801     Remainder = APInt(BitWidth, 0);   // 0 % Y ===> 0
1802     return;
1803   }
1804 
1805   if (rhsBits == 1) {
1806     Quotient = LHS;                   // X / 1 ===> X
1807     Remainder = APInt(BitWidth, 0);   // X % 1 ===> 0
1808   }
1809 
1810   if (lhsWords < rhsWords || LHS.ult(RHS)) {
1811     Remainder = LHS;                  // X % Y ===> X, iff X < Y
1812     Quotient = APInt(BitWidth, 0);    // X / Y ===> 0, iff X < Y
1813     return;
1814   }
1815 
1816   if (LHS == RHS) {
1817     Quotient  = APInt(BitWidth, 1);   // X / X ===> 1
1818     Remainder = APInt(BitWidth, 0);   // X % X ===> 0;
1819     return;
1820   }
1821 
1822   // Make sure there is enough space to hold the results.
1823   // NOTE: This assumes that reallocate won't affect any bits if it doesn't
1824   // change the size. This is necessary if Quotient or Remainder is aliased
1825   // with LHS or RHS.
1826   Quotient.reallocate(BitWidth);
1827   Remainder.reallocate(BitWidth);
1828 
1829   if (lhsWords == 1) { // rhsWords is 1 if lhsWords is 1.
1830     // There is only one word to consider so use the native versions.
1831     uint64_t lhsValue = LHS.U.pVal[0];
1832     uint64_t rhsValue = RHS.U.pVal[0];
1833     Quotient = lhsValue / rhsValue;
1834     Remainder = lhsValue % rhsValue;
1835     return;
1836   }
1837 
1838   // Okay, lets do it the long way
1839   divide(LHS.U.pVal, lhsWords, RHS.U.pVal, rhsWords, Quotient.U.pVal,
1840          Remainder.U.pVal);
1841   // Clear the rest of the Quotient and Remainder.
1842   std::memset(Quotient.U.pVal + lhsWords, 0,
1843               (getNumWords(BitWidth) - lhsWords) * APINT_WORD_SIZE);
1844   std::memset(Remainder.U.pVal + rhsWords, 0,
1845               (getNumWords(BitWidth) - rhsWords) * APINT_WORD_SIZE);
1846 }
1847 
1848 void APInt::udivrem(const APInt &LHS, uint64_t RHS, APInt &Quotient,
1849                     uint64_t &Remainder) {
1850   assert(RHS != 0 && "Divide by zero?");
1851   unsigned BitWidth = LHS.BitWidth;
1852 
1853   // First, deal with the easy case
1854   if (LHS.isSingleWord()) {
1855     uint64_t QuotVal = LHS.U.VAL / RHS;
1856     Remainder = LHS.U.VAL % RHS;
1857     Quotient = APInt(BitWidth, QuotVal);
1858     return;
1859   }
1860 
1861   // Get some size facts about the dividend and divisor
1862   unsigned lhsWords = getNumWords(LHS.getActiveBits());
1863 
1864   // Check the degenerate cases
1865   if (lhsWords == 0) {
1866     Quotient = APInt(BitWidth, 0);    // 0 / Y ===> 0
1867     Remainder = 0;                    // 0 % Y ===> 0
1868     return;
1869   }
1870 
1871   if (RHS == 1) {
1872     Quotient = LHS;                   // X / 1 ===> X
1873     Remainder = 0;                    // X % 1 ===> 0
1874     return;
1875   }
1876 
1877   if (LHS.ult(RHS)) {
1878     Remainder = LHS.getZExtValue();   // X % Y ===> X, iff X < Y
1879     Quotient = APInt(BitWidth, 0);    // X / Y ===> 0, iff X < Y
1880     return;
1881   }
1882 
1883   if (LHS == RHS) {
1884     Quotient  = APInt(BitWidth, 1);   // X / X ===> 1
1885     Remainder = 0;                    // X % X ===> 0;
1886     return;
1887   }
1888 
1889   // Make sure there is enough space to hold the results.
1890   // NOTE: This assumes that reallocate won't affect any bits if it doesn't
1891   // change the size. This is necessary if Quotient is aliased with LHS.
1892   Quotient.reallocate(BitWidth);
1893 
1894   if (lhsWords == 1) { // rhsWords is 1 if lhsWords is 1.
1895     // There is only one word to consider so use the native versions.
1896     uint64_t lhsValue = LHS.U.pVal[0];
1897     Quotient = lhsValue / RHS;
1898     Remainder = lhsValue % RHS;
1899     return;
1900   }
1901 
1902   // Okay, lets do it the long way
1903   divide(LHS.U.pVal, lhsWords, &RHS, 1, Quotient.U.pVal, &Remainder);
1904   // Clear the rest of the Quotient.
1905   std::memset(Quotient.U.pVal + lhsWords, 0,
1906               (getNumWords(BitWidth) - lhsWords) * APINT_WORD_SIZE);
1907 }
1908 
1909 void APInt::sdivrem(const APInt &LHS, const APInt &RHS,
1910                     APInt &Quotient, APInt &Remainder) {
1911   if (LHS.isNegative()) {
1912     if (RHS.isNegative())
1913       APInt::udivrem(-LHS, -RHS, Quotient, Remainder);
1914     else {
1915       APInt::udivrem(-LHS, RHS, Quotient, Remainder);
1916       Quotient.negate();
1917     }
1918     Remainder.negate();
1919   } else if (RHS.isNegative()) {
1920     APInt::udivrem(LHS, -RHS, Quotient, Remainder);
1921     Quotient.negate();
1922   } else {
1923     APInt::udivrem(LHS, RHS, Quotient, Remainder);
1924   }
1925 }
1926 
1927 void APInt::sdivrem(const APInt &LHS, int64_t RHS,
1928                     APInt &Quotient, int64_t &Remainder) {
1929   uint64_t R = Remainder;
1930   if (LHS.isNegative()) {
1931     if (RHS < 0)
1932       APInt::udivrem(-LHS, -RHS, Quotient, R);
1933     else {
1934       APInt::udivrem(-LHS, RHS, Quotient, R);
1935       Quotient.negate();
1936     }
1937     R = -R;
1938   } else if (RHS < 0) {
1939     APInt::udivrem(LHS, -RHS, Quotient, R);
1940     Quotient.negate();
1941   } else {
1942     APInt::udivrem(LHS, RHS, Quotient, R);
1943   }
1944   Remainder = R;
1945 }
1946 
1947 APInt APInt::sadd_ov(const APInt &RHS, bool &Overflow) const {
1948   APInt Res = *this+RHS;
1949   Overflow = isNonNegative() == RHS.isNonNegative() &&
1950              Res.isNonNegative() != isNonNegative();
1951   return Res;
1952 }
1953 
1954 APInt APInt::uadd_ov(const APInt &RHS, bool &Overflow) const {
1955   APInt Res = *this+RHS;
1956   Overflow = Res.ult(RHS);
1957   return Res;
1958 }
1959 
1960 APInt APInt::ssub_ov(const APInt &RHS, bool &Overflow) const {
1961   APInt Res = *this - RHS;
1962   Overflow = isNonNegative() != RHS.isNonNegative() &&
1963              Res.isNonNegative() != isNonNegative();
1964   return Res;
1965 }
1966 
1967 APInt APInt::usub_ov(const APInt &RHS, bool &Overflow) const {
1968   APInt Res = *this-RHS;
1969   Overflow = Res.ugt(*this);
1970   return Res;
1971 }
1972 
1973 APInt APInt::sdiv_ov(const APInt &RHS, bool &Overflow) const {
1974   // MININT/-1  -->  overflow.
1975   Overflow = isMinSignedValue() && RHS.isAllOnes();
1976   return sdiv(RHS);
1977 }
1978 
1979 APInt APInt::smul_ov(const APInt &RHS, bool &Overflow) const {
1980   APInt Res = *this * RHS;
1981 
1982   if (RHS != 0)
1983     Overflow = Res.sdiv(RHS) != *this ||
1984                (isMinSignedValue() && RHS.isAllOnes());
1985   else
1986     Overflow = false;
1987   return Res;
1988 }
1989 
1990 APInt APInt::umul_ov(const APInt &RHS, bool &Overflow) const {
1991   if (countl_zero() + RHS.countl_zero() + 2 <= BitWidth) {
1992     Overflow = true;
1993     return *this * RHS;
1994   }
1995 
1996   APInt Res = lshr(1) * RHS;
1997   Overflow = Res.isNegative();
1998   Res <<= 1;
1999   if ((*this)[0]) {
2000     Res += RHS;
2001     if (Res.ult(RHS))
2002       Overflow = true;
2003   }
2004   return Res;
2005 }
2006 
2007 APInt APInt::sshl_ov(const APInt &ShAmt, bool &Overflow) const {
2008   return sshl_ov(ShAmt.getLimitedValue(getBitWidth()), Overflow);
2009 }
2010 
2011 APInt APInt::sshl_ov(unsigned ShAmt, bool &Overflow) const {
2012   Overflow = ShAmt >= getBitWidth();
2013   if (Overflow)
2014     return APInt(BitWidth, 0);
2015 
2016   if (isNonNegative()) // Don't allow sign change.
2017     Overflow = ShAmt >= countl_zero();
2018   else
2019     Overflow = ShAmt >= countl_one();
2020 
2021   return *this << ShAmt;
2022 }
2023 
2024 APInt APInt::ushl_ov(const APInt &ShAmt, bool &Overflow) const {
2025   return ushl_ov(ShAmt.getLimitedValue(getBitWidth()), Overflow);
2026 }
2027 
2028 APInt APInt::ushl_ov(unsigned ShAmt, bool &Overflow) const {
2029   Overflow = ShAmt >= getBitWidth();
2030   if (Overflow)
2031     return APInt(BitWidth, 0);
2032 
2033   Overflow = ShAmt > countl_zero();
2034 
2035   return *this << ShAmt;
2036 }
2037 
2038 APInt APInt::sfloordiv_ov(const APInt &RHS, bool &Overflow) const {
2039   APInt quotient = sdiv_ov(RHS, Overflow);
2040   if ((quotient * RHS != *this) && (isNegative() != RHS.isNegative()))
2041     return quotient - 1;
2042   return quotient;
2043 }
2044 
2045 APInt APInt::sadd_sat(const APInt &RHS) const {
2046   bool Overflow;
2047   APInt Res = sadd_ov(RHS, Overflow);
2048   if (!Overflow)
2049     return Res;
2050 
2051   return isNegative() ? APInt::getSignedMinValue(BitWidth)
2052                       : APInt::getSignedMaxValue(BitWidth);
2053 }
2054 
2055 APInt APInt::uadd_sat(const APInt &RHS) const {
2056   bool Overflow;
2057   APInt Res = uadd_ov(RHS, Overflow);
2058   if (!Overflow)
2059     return Res;
2060 
2061   return APInt::getMaxValue(BitWidth);
2062 }
2063 
2064 APInt APInt::ssub_sat(const APInt &RHS) const {
2065   bool Overflow;
2066   APInt Res = ssub_ov(RHS, Overflow);
2067   if (!Overflow)
2068     return Res;
2069 
2070   return isNegative() ? APInt::getSignedMinValue(BitWidth)
2071                       : APInt::getSignedMaxValue(BitWidth);
2072 }
2073 
2074 APInt APInt::usub_sat(const APInt &RHS) const {
2075   bool Overflow;
2076   APInt Res = usub_ov(RHS, Overflow);
2077   if (!Overflow)
2078     return Res;
2079 
2080   return APInt(BitWidth, 0);
2081 }
2082 
2083 APInt APInt::smul_sat(const APInt &RHS) const {
2084   bool Overflow;
2085   APInt Res = smul_ov(RHS, Overflow);
2086   if (!Overflow)
2087     return Res;
2088 
2089   // The result is negative if one and only one of inputs is negative.
2090   bool ResIsNegative = isNegative() ^ RHS.isNegative();
2091 
2092   return ResIsNegative ? APInt::getSignedMinValue(BitWidth)
2093                        : APInt::getSignedMaxValue(BitWidth);
2094 }
2095 
2096 APInt APInt::umul_sat(const APInt &RHS) const {
2097   bool Overflow;
2098   APInt Res = umul_ov(RHS, Overflow);
2099   if (!Overflow)
2100     return Res;
2101 
2102   return APInt::getMaxValue(BitWidth);
2103 }
2104 
2105 APInt APInt::sshl_sat(const APInt &RHS) const {
2106   return sshl_sat(RHS.getLimitedValue(getBitWidth()));
2107 }
2108 
2109 APInt APInt::sshl_sat(unsigned RHS) const {
2110   bool Overflow;
2111   APInt Res = sshl_ov(RHS, Overflow);
2112   if (!Overflow)
2113     return Res;
2114 
2115   return isNegative() ? APInt::getSignedMinValue(BitWidth)
2116                       : APInt::getSignedMaxValue(BitWidth);
2117 }
2118 
2119 APInt APInt::ushl_sat(const APInt &RHS) const {
2120   return ushl_sat(RHS.getLimitedValue(getBitWidth()));
2121 }
2122 
2123 APInt APInt::ushl_sat(unsigned RHS) const {
2124   bool Overflow;
2125   APInt Res = ushl_ov(RHS, Overflow);
2126   if (!Overflow)
2127     return Res;
2128 
2129   return APInt::getMaxValue(BitWidth);
2130 }
2131 
2132 void APInt::fromString(unsigned numbits, StringRef str, uint8_t radix) {
2133   // Check our assumptions here
2134   assert(!str.empty() && "Invalid string length");
2135   assert((radix == 10 || radix == 8 || radix == 16 || radix == 2 ||
2136           radix == 36) &&
2137          "Radix should be 2, 8, 10, 16, or 36!");
2138 
2139   StringRef::iterator p = str.begin();
2140   size_t slen = str.size();
2141   bool isNeg = *p == '-';
2142   if (*p == '-' || *p == '+') {
2143     p++;
2144     slen--;
2145     assert(slen && "String is only a sign, needs a value.");
2146   }
2147   assert((slen <= numbits || radix != 2) && "Insufficient bit width");
2148   assert(((slen-1)*3 <= numbits || radix != 8) && "Insufficient bit width");
2149   assert(((slen-1)*4 <= numbits || radix != 16) && "Insufficient bit width");
2150   assert((((slen-1)*64)/22 <= numbits || radix != 10) &&
2151          "Insufficient bit width");
2152 
2153   // Allocate memory if needed
2154   if (isSingleWord())
2155     U.VAL = 0;
2156   else
2157     U.pVal = getClearedMemory(getNumWords());
2158 
2159   // Figure out if we can shift instead of multiply
2160   unsigned shift = (radix == 16 ? 4 : radix == 8 ? 3 : radix == 2 ? 1 : 0);
2161 
2162   // Enter digit traversal loop
2163   for (StringRef::iterator e = str.end(); p != e; ++p) {
2164     unsigned digit = getDigit(*p, radix);
2165     assert(digit < radix && "Invalid character in digit string");
2166 
2167     // Shift or multiply the value by the radix
2168     if (slen > 1) {
2169       if (shift)
2170         *this <<= shift;
2171       else
2172         *this *= radix;
2173     }
2174 
2175     // Add in the digit we just interpreted
2176     *this += digit;
2177   }
2178   // If its negative, put it in two's complement form
2179   if (isNeg)
2180     this->negate();
2181 }
2182 
2183 void APInt::toString(SmallVectorImpl<char> &Str, unsigned Radix, bool Signed,
2184                      bool formatAsCLiteral, bool UpperCase,
2185                      bool InsertSeparators) const {
2186   assert((Radix == 10 || Radix == 8 || Radix == 16 || Radix == 2 ||
2187           Radix == 36) &&
2188          "Radix should be 2, 8, 10, 16, or 36!");
2189 
2190   const char *Prefix = "";
2191   if (formatAsCLiteral) {
2192     switch (Radix) {
2193       case 2:
2194         // Binary literals are a non-standard extension added in gcc 4.3:
2195         // http://gcc.gnu.org/onlinedocs/gcc-4.3.0/gcc/Binary-constants.html
2196         Prefix = "0b";
2197         break;
2198       case 8:
2199         Prefix = "0";
2200         break;
2201       case 10:
2202         break; // No prefix
2203       case 16:
2204         Prefix = "0x";
2205         break;
2206       default:
2207         llvm_unreachable("Invalid radix!");
2208     }
2209   }
2210 
2211   // Number of digits in a group between separators.
2212   unsigned Grouping = (Radix == 8 || Radix == 10) ? 3 : 4;
2213 
2214   // First, check for a zero value and just short circuit the logic below.
2215   if (isZero()) {
2216     while (*Prefix) {
2217       Str.push_back(*Prefix);
2218       ++Prefix;
2219     };
2220     Str.push_back('0');
2221     return;
2222   }
2223 
2224   static const char BothDigits[] = "0123456789abcdefghijklmnopqrstuvwxyz"
2225                                    "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ";
2226   const char *Digits = BothDigits + (UpperCase ? 36 : 0);
2227 
2228   if (isSingleWord()) {
2229     char Buffer[65];
2230     char *BufPtr = std::end(Buffer);
2231 
2232     uint64_t N;
2233     if (!Signed) {
2234       N = getZExtValue();
2235     } else {
2236       int64_t I = getSExtValue();
2237       if (I >= 0) {
2238         N = I;
2239       } else {
2240         Str.push_back('-');
2241         N = -(uint64_t)I;
2242       }
2243     }
2244 
2245     while (*Prefix) {
2246       Str.push_back(*Prefix);
2247       ++Prefix;
2248     };
2249 
2250     int Pos = 0;
2251     while (N) {
2252       if (InsertSeparators && Pos % Grouping == 0 && Pos > 0)
2253         *--BufPtr = '\'';
2254       *--BufPtr = Digits[N % Radix];
2255       N /= Radix;
2256       Pos++;
2257     }
2258     Str.append(BufPtr, std::end(Buffer));
2259     return;
2260   }
2261 
2262   APInt Tmp(*this);
2263 
2264   if (Signed && isNegative()) {
2265     // They want to print the signed version and it is a negative value
2266     // Flip the bits and add one to turn it into the equivalent positive
2267     // value and put a '-' in the result.
2268     Tmp.negate();
2269     Str.push_back('-');
2270   }
2271 
2272   while (*Prefix) {
2273     Str.push_back(*Prefix);
2274     ++Prefix;
2275   };
2276 
2277   // We insert the digits backward, then reverse them to get the right order.
2278   unsigned StartDig = Str.size();
2279 
2280   // For the 2, 8 and 16 bit cases, we can just shift instead of divide
2281   // because the number of bits per digit (1, 3 and 4 respectively) divides
2282   // equally.  We just shift until the value is zero.
2283   if (Radix == 2 || Radix == 8 || Radix == 16) {
2284     // Just shift tmp right for each digit width until it becomes zero
2285     unsigned ShiftAmt = (Radix == 16 ? 4 : (Radix == 8 ? 3 : 1));
2286     unsigned MaskAmt = Radix - 1;
2287 
2288     int Pos = 0;
2289     while (Tmp.getBoolValue()) {
2290       unsigned Digit = unsigned(Tmp.getRawData()[0]) & MaskAmt;
2291       if (InsertSeparators && Pos % Grouping == 0 && Pos > 0)
2292         Str.push_back('\'');
2293 
2294       Str.push_back(Digits[Digit]);
2295       Tmp.lshrInPlace(ShiftAmt);
2296       Pos++;
2297     }
2298   } else {
2299     int Pos = 0;
2300     while (Tmp.getBoolValue()) {
2301       uint64_t Digit;
2302       udivrem(Tmp, Radix, Tmp, Digit);
2303       assert(Digit < Radix && "divide failed");
2304       if (InsertSeparators && Pos % Grouping == 0 && Pos > 0)
2305         Str.push_back('\'');
2306 
2307       Str.push_back(Digits[Digit]);
2308       Pos++;
2309     }
2310   }
2311 
2312   // Reverse the digits before returning.
2313   std::reverse(Str.begin()+StartDig, Str.end());
2314 }
2315 
2316 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2317 LLVM_DUMP_METHOD void APInt::dump() const {
2318   SmallString<40> S, U;
2319   this->toStringUnsigned(U);
2320   this->toStringSigned(S);
2321   dbgs() << "APInt(" << BitWidth << "b, "
2322          << U << "u " << S << "s)\n";
2323 }
2324 #endif
2325 
2326 void APInt::print(raw_ostream &OS, bool isSigned) const {
2327   SmallString<40> S;
2328   this->toString(S, 10, isSigned, /* formatAsCLiteral = */false);
2329   OS << S;
2330 }
2331 
2332 // This implements a variety of operations on a representation of
2333 // arbitrary precision, two's-complement, bignum integer values.
2334 
2335 // Assumed by lowHalf, highHalf, partMSB and partLSB.  A fairly safe
2336 // and unrestricting assumption.
2337 static_assert(APInt::APINT_BITS_PER_WORD % 2 == 0,
2338               "Part width must be divisible by 2!");
2339 
2340 // Returns the integer part with the least significant BITS set.
2341 // BITS cannot be zero.
2342 static inline APInt::WordType lowBitMask(unsigned bits) {
2343   assert(bits != 0 && bits <= APInt::APINT_BITS_PER_WORD);
2344   return ~(APInt::WordType) 0 >> (APInt::APINT_BITS_PER_WORD - bits);
2345 }
2346 
2347 /// Returns the value of the lower half of PART.
2348 static inline APInt::WordType lowHalf(APInt::WordType part) {
2349   return part & lowBitMask(APInt::APINT_BITS_PER_WORD / 2);
2350 }
2351 
2352 /// Returns the value of the upper half of PART.
2353 static inline APInt::WordType highHalf(APInt::WordType part) {
2354   return part >> (APInt::APINT_BITS_PER_WORD / 2);
2355 }
2356 
2357 /// Sets the least significant part of a bignum to the input value, and zeroes
2358 /// out higher parts.
2359 void APInt::tcSet(WordType *dst, WordType part, unsigned parts) {
2360   assert(parts > 0);
2361   dst[0] = part;
2362   for (unsigned i = 1; i < parts; i++)
2363     dst[i] = 0;
2364 }
2365 
2366 /// Assign one bignum to another.
2367 void APInt::tcAssign(WordType *dst, const WordType *src, unsigned parts) {
2368   for (unsigned i = 0; i < parts; i++)
2369     dst[i] = src[i];
2370 }
2371 
2372 /// Returns true if a bignum is zero, false otherwise.
2373 bool APInt::tcIsZero(const WordType *src, unsigned parts) {
2374   for (unsigned i = 0; i < parts; i++)
2375     if (src[i])
2376       return false;
2377 
2378   return true;
2379 }
2380 
2381 /// Extract the given bit of a bignum; returns 0 or 1.
2382 int APInt::tcExtractBit(const WordType *parts, unsigned bit) {
2383   return (parts[whichWord(bit)] & maskBit(bit)) != 0;
2384 }
2385 
2386 /// Set the given bit of a bignum.
2387 void APInt::tcSetBit(WordType *parts, unsigned bit) {
2388   parts[whichWord(bit)] |= maskBit(bit);
2389 }
2390 
2391 /// Clears the given bit of a bignum.
2392 void APInt::tcClearBit(WordType *parts, unsigned bit) {
2393   parts[whichWord(bit)] &= ~maskBit(bit);
2394 }
2395 
2396 /// Returns the bit number of the least significant set bit of a number.  If the
2397 /// input number has no bits set UINT_MAX is returned.
2398 unsigned APInt::tcLSB(const WordType *parts, unsigned n) {
2399   for (unsigned i = 0; i < n; i++) {
2400     if (parts[i] != 0) {
2401       unsigned lsb = llvm::countr_zero(parts[i]);
2402       return lsb + i * APINT_BITS_PER_WORD;
2403     }
2404   }
2405 
2406   return UINT_MAX;
2407 }
2408 
2409 /// Returns the bit number of the most significant set bit of a number.
2410 /// If the input number has no bits set UINT_MAX is returned.
2411 unsigned APInt::tcMSB(const WordType *parts, unsigned n) {
2412   do {
2413     --n;
2414 
2415     if (parts[n] != 0) {
2416       static_assert(sizeof(parts[n]) <= sizeof(uint64_t));
2417       unsigned msb = llvm::Log2_64(parts[n]);
2418 
2419       return msb + n * APINT_BITS_PER_WORD;
2420     }
2421   } while (n);
2422 
2423   return UINT_MAX;
2424 }
2425 
2426 /// Copy the bit vector of width srcBITS from SRC, starting at bit srcLSB, to
2427 /// DST, of dstCOUNT parts, such that the bit srcLSB becomes the least
2428 /// significant bit of DST.  All high bits above srcBITS in DST are zero-filled.
2429 /// */
2430 void
2431 APInt::tcExtract(WordType *dst, unsigned dstCount, const WordType *src,
2432                  unsigned srcBits, unsigned srcLSB) {
2433   unsigned dstParts = (srcBits + APINT_BITS_PER_WORD - 1) / APINT_BITS_PER_WORD;
2434   assert(dstParts <= dstCount);
2435 
2436   unsigned firstSrcPart = srcLSB / APINT_BITS_PER_WORD;
2437   tcAssign(dst, src + firstSrcPart, dstParts);
2438 
2439   unsigned shift = srcLSB % APINT_BITS_PER_WORD;
2440   tcShiftRight(dst, dstParts, shift);
2441 
2442   // We now have (dstParts * APINT_BITS_PER_WORD - shift) bits from SRC
2443   // in DST.  If this is less that srcBits, append the rest, else
2444   // clear the high bits.
2445   unsigned n = dstParts * APINT_BITS_PER_WORD - shift;
2446   if (n < srcBits) {
2447     WordType mask = lowBitMask (srcBits - n);
2448     dst[dstParts - 1] |= ((src[firstSrcPart + dstParts] & mask)
2449                           << n % APINT_BITS_PER_WORD);
2450   } else if (n > srcBits) {
2451     if (srcBits % APINT_BITS_PER_WORD)
2452       dst[dstParts - 1] &= lowBitMask (srcBits % APINT_BITS_PER_WORD);
2453   }
2454 
2455   // Clear high parts.
2456   while (dstParts < dstCount)
2457     dst[dstParts++] = 0;
2458 }
2459 
2460 //// DST += RHS + C where C is zero or one.  Returns the carry flag.
2461 APInt::WordType APInt::tcAdd(WordType *dst, const WordType *rhs,
2462                              WordType c, unsigned parts) {
2463   assert(c <= 1);
2464 
2465   for (unsigned i = 0; i < parts; i++) {
2466     WordType l = dst[i];
2467     if (c) {
2468       dst[i] += rhs[i] + 1;
2469       c = (dst[i] <= l);
2470     } else {
2471       dst[i] += rhs[i];
2472       c = (dst[i] < l);
2473     }
2474   }
2475 
2476   return c;
2477 }
2478 
2479 /// This function adds a single "word" integer, src, to the multiple
2480 /// "word" integer array, dst[]. dst[] is modified to reflect the addition and
2481 /// 1 is returned if there is a carry out, otherwise 0 is returned.
2482 /// @returns the carry of the addition.
2483 APInt::WordType APInt::tcAddPart(WordType *dst, WordType src,
2484                                  unsigned parts) {
2485   for (unsigned i = 0; i < parts; ++i) {
2486     dst[i] += src;
2487     if (dst[i] >= src)
2488       return 0; // No need to carry so exit early.
2489     src = 1; // Carry one to next digit.
2490   }
2491 
2492   return 1;
2493 }
2494 
2495 /// DST -= RHS + C where C is zero or one.  Returns the carry flag.
2496 APInt::WordType APInt::tcSubtract(WordType *dst, const WordType *rhs,
2497                                   WordType c, unsigned parts) {
2498   assert(c <= 1);
2499 
2500   for (unsigned i = 0; i < parts; i++) {
2501     WordType l = dst[i];
2502     if (c) {
2503       dst[i] -= rhs[i] + 1;
2504       c = (dst[i] >= l);
2505     } else {
2506       dst[i] -= rhs[i];
2507       c = (dst[i] > l);
2508     }
2509   }
2510 
2511   return c;
2512 }
2513 
2514 /// This function subtracts a single "word" (64-bit word), src, from
2515 /// the multi-word integer array, dst[], propagating the borrowed 1 value until
2516 /// no further borrowing is needed or it runs out of "words" in dst.  The result
2517 /// is 1 if "borrowing" exhausted the digits in dst, or 0 if dst was not
2518 /// exhausted. In other words, if src > dst then this function returns 1,
2519 /// otherwise 0.
2520 /// @returns the borrow out of the subtraction
2521 APInt::WordType APInt::tcSubtractPart(WordType *dst, WordType src,
2522                                       unsigned parts) {
2523   for (unsigned i = 0; i < parts; ++i) {
2524     WordType Dst = dst[i];
2525     dst[i] -= src;
2526     if (src <= Dst)
2527       return 0; // No need to borrow so exit early.
2528     src = 1; // We have to "borrow 1" from next "word"
2529   }
2530 
2531   return 1;
2532 }
2533 
2534 /// Negate a bignum in-place.
2535 void APInt::tcNegate(WordType *dst, unsigned parts) {
2536   tcComplement(dst, parts);
2537   tcIncrement(dst, parts);
2538 }
2539 
2540 /// DST += SRC * MULTIPLIER + CARRY   if add is true
2541 /// DST  = SRC * MULTIPLIER + CARRY   if add is false
2542 /// Requires 0 <= DSTPARTS <= SRCPARTS + 1.  If DST overlaps SRC
2543 /// they must start at the same point, i.e. DST == SRC.
2544 /// If DSTPARTS == SRCPARTS + 1 no overflow occurs and zero is
2545 /// returned.  Otherwise DST is filled with the least significant
2546 /// DSTPARTS parts of the result, and if all of the omitted higher
2547 /// parts were zero return zero, otherwise overflow occurred and
2548 /// return one.
2549 int APInt::tcMultiplyPart(WordType *dst, const WordType *src,
2550                           WordType multiplier, WordType carry,
2551                           unsigned srcParts, unsigned dstParts,
2552                           bool add) {
2553   // Otherwise our writes of DST kill our later reads of SRC.
2554   assert(dst <= src || dst >= src + srcParts);
2555   assert(dstParts <= srcParts + 1);
2556 
2557   // N loops; minimum of dstParts and srcParts.
2558   unsigned n = std::min(dstParts, srcParts);
2559 
2560   for (unsigned i = 0; i < n; i++) {
2561     // [LOW, HIGH] = MULTIPLIER * SRC[i] + DST[i] + CARRY.
2562     // This cannot overflow, because:
2563     //   (n - 1) * (n - 1) + 2 (n - 1) = (n - 1) * (n + 1)
2564     // which is less than n^2.
2565     WordType srcPart = src[i];
2566     WordType low, mid, high;
2567     if (multiplier == 0 || srcPart == 0) {
2568       low = carry;
2569       high = 0;
2570     } else {
2571       low = lowHalf(srcPart) * lowHalf(multiplier);
2572       high = highHalf(srcPart) * highHalf(multiplier);
2573 
2574       mid = lowHalf(srcPart) * highHalf(multiplier);
2575       high += highHalf(mid);
2576       mid <<= APINT_BITS_PER_WORD / 2;
2577       if (low + mid < low)
2578         high++;
2579       low += mid;
2580 
2581       mid = highHalf(srcPart) * lowHalf(multiplier);
2582       high += highHalf(mid);
2583       mid <<= APINT_BITS_PER_WORD / 2;
2584       if (low + mid < low)
2585         high++;
2586       low += mid;
2587 
2588       // Now add carry.
2589       if (low + carry < low)
2590         high++;
2591       low += carry;
2592     }
2593 
2594     if (add) {
2595       // And now DST[i], and store the new low part there.
2596       if (low + dst[i] < low)
2597         high++;
2598       dst[i] += low;
2599     } else
2600       dst[i] = low;
2601 
2602     carry = high;
2603   }
2604 
2605   if (srcParts < dstParts) {
2606     // Full multiplication, there is no overflow.
2607     assert(srcParts + 1 == dstParts);
2608     dst[srcParts] = carry;
2609     return 0;
2610   }
2611 
2612   // We overflowed if there is carry.
2613   if (carry)
2614     return 1;
2615 
2616   // We would overflow if any significant unwritten parts would be
2617   // non-zero.  This is true if any remaining src parts are non-zero
2618   // and the multiplier is non-zero.
2619   if (multiplier)
2620     for (unsigned i = dstParts; i < srcParts; i++)
2621       if (src[i])
2622         return 1;
2623 
2624   // We fitted in the narrow destination.
2625   return 0;
2626 }
2627 
2628 /// DST = LHS * RHS, where DST has the same width as the operands and
2629 /// is filled with the least significant parts of the result.  Returns
2630 /// one if overflow occurred, otherwise zero.  DST must be disjoint
2631 /// from both operands.
2632 int APInt::tcMultiply(WordType *dst, const WordType *lhs,
2633                       const WordType *rhs, unsigned parts) {
2634   assert(dst != lhs && dst != rhs);
2635 
2636   int overflow = 0;
2637   tcSet(dst, 0, parts);
2638 
2639   for (unsigned i = 0; i < parts; i++)
2640     overflow |= tcMultiplyPart(&dst[i], lhs, rhs[i], 0, parts,
2641                                parts - i, true);
2642 
2643   return overflow;
2644 }
2645 
2646 /// DST = LHS * RHS, where DST has width the sum of the widths of the
2647 /// operands. No overflow occurs. DST must be disjoint from both operands.
2648 void APInt::tcFullMultiply(WordType *dst, const WordType *lhs,
2649                            const WordType *rhs, unsigned lhsParts,
2650                            unsigned rhsParts) {
2651   // Put the narrower number on the LHS for less loops below.
2652   if (lhsParts > rhsParts)
2653     return tcFullMultiply (dst, rhs, lhs, rhsParts, lhsParts);
2654 
2655   assert(dst != lhs && dst != rhs);
2656 
2657   tcSet(dst, 0, rhsParts);
2658 
2659   for (unsigned i = 0; i < lhsParts; i++)
2660     tcMultiplyPart(&dst[i], rhs, lhs[i], 0, rhsParts, rhsParts + 1, true);
2661 }
2662 
2663 // If RHS is zero LHS and REMAINDER are left unchanged, return one.
2664 // Otherwise set LHS to LHS / RHS with the fractional part discarded,
2665 // set REMAINDER to the remainder, return zero.  i.e.
2666 //
2667 //   OLD_LHS = RHS * LHS + REMAINDER
2668 //
2669 // SCRATCH is a bignum of the same size as the operands and result for
2670 // use by the routine; its contents need not be initialized and are
2671 // destroyed.  LHS, REMAINDER and SCRATCH must be distinct.
2672 int APInt::tcDivide(WordType *lhs, const WordType *rhs,
2673                     WordType *remainder, WordType *srhs,
2674                     unsigned parts) {
2675   assert(lhs != remainder && lhs != srhs && remainder != srhs);
2676 
2677   unsigned shiftCount = tcMSB(rhs, parts) + 1;
2678   if (shiftCount == 0)
2679     return true;
2680 
2681   shiftCount = parts * APINT_BITS_PER_WORD - shiftCount;
2682   unsigned n = shiftCount / APINT_BITS_PER_WORD;
2683   WordType mask = (WordType) 1 << (shiftCount % APINT_BITS_PER_WORD);
2684 
2685   tcAssign(srhs, rhs, parts);
2686   tcShiftLeft(srhs, parts, shiftCount);
2687   tcAssign(remainder, lhs, parts);
2688   tcSet(lhs, 0, parts);
2689 
2690   // Loop, subtracting SRHS if REMAINDER is greater and adding that to the
2691   // total.
2692   for (;;) {
2693     int compare = tcCompare(remainder, srhs, parts);
2694     if (compare >= 0) {
2695       tcSubtract(remainder, srhs, 0, parts);
2696       lhs[n] |= mask;
2697     }
2698 
2699     if (shiftCount == 0)
2700       break;
2701     shiftCount--;
2702     tcShiftRight(srhs, parts, 1);
2703     if ((mask >>= 1) == 0) {
2704       mask = (WordType) 1 << (APINT_BITS_PER_WORD - 1);
2705       n--;
2706     }
2707   }
2708 
2709   return false;
2710 }
2711 
2712 /// Shift a bignum left Cound bits in-place. Shifted in bits are zero. There are
2713 /// no restrictions on Count.
2714 void APInt::tcShiftLeft(WordType *Dst, unsigned Words, unsigned Count) {
2715   // Don't bother performing a no-op shift.
2716   if (!Count)
2717     return;
2718 
2719   // WordShift is the inter-part shift; BitShift is the intra-part shift.
2720   unsigned WordShift = std::min(Count / APINT_BITS_PER_WORD, Words);
2721   unsigned BitShift = Count % APINT_BITS_PER_WORD;
2722 
2723   // Fastpath for moving by whole words.
2724   if (BitShift == 0) {
2725     std::memmove(Dst + WordShift, Dst, (Words - WordShift) * APINT_WORD_SIZE);
2726   } else {
2727     while (Words-- > WordShift) {
2728       Dst[Words] = Dst[Words - WordShift] << BitShift;
2729       if (Words > WordShift)
2730         Dst[Words] |=
2731           Dst[Words - WordShift - 1] >> (APINT_BITS_PER_WORD - BitShift);
2732     }
2733   }
2734 
2735   // Fill in the remainder with 0s.
2736   std::memset(Dst, 0, WordShift * APINT_WORD_SIZE);
2737 }
2738 
2739 /// Shift a bignum right Count bits in-place. Shifted in bits are zero. There
2740 /// are no restrictions on Count.
2741 void APInt::tcShiftRight(WordType *Dst, unsigned Words, unsigned Count) {
2742   // Don't bother performing a no-op shift.
2743   if (!Count)
2744     return;
2745 
2746   // WordShift is the inter-part shift; BitShift is the intra-part shift.
2747   unsigned WordShift = std::min(Count / APINT_BITS_PER_WORD, Words);
2748   unsigned BitShift = Count % APINT_BITS_PER_WORD;
2749 
2750   unsigned WordsToMove = Words - WordShift;
2751   // Fastpath for moving by whole words.
2752   if (BitShift == 0) {
2753     std::memmove(Dst, Dst + WordShift, WordsToMove * APINT_WORD_SIZE);
2754   } else {
2755     for (unsigned i = 0; i != WordsToMove; ++i) {
2756       Dst[i] = Dst[i + WordShift] >> BitShift;
2757       if (i + 1 != WordsToMove)
2758         Dst[i] |= Dst[i + WordShift + 1] << (APINT_BITS_PER_WORD - BitShift);
2759     }
2760   }
2761 
2762   // Fill in the remainder with 0s.
2763   std::memset(Dst + WordsToMove, 0, WordShift * APINT_WORD_SIZE);
2764 }
2765 
2766 // Comparison (unsigned) of two bignums.
2767 int APInt::tcCompare(const WordType *lhs, const WordType *rhs,
2768                      unsigned parts) {
2769   while (parts) {
2770     parts--;
2771     if (lhs[parts] != rhs[parts])
2772       return (lhs[parts] > rhs[parts]) ? 1 : -1;
2773   }
2774 
2775   return 0;
2776 }
2777 
2778 APInt llvm::APIntOps::RoundingUDiv(const APInt &A, const APInt &B,
2779                                    APInt::Rounding RM) {
2780   // Currently udivrem always rounds down.
2781   switch (RM) {
2782   case APInt::Rounding::DOWN:
2783   case APInt::Rounding::TOWARD_ZERO:
2784     return A.udiv(B);
2785   case APInt::Rounding::UP: {
2786     APInt Quo, Rem;
2787     APInt::udivrem(A, B, Quo, Rem);
2788     if (Rem.isZero())
2789       return Quo;
2790     return Quo + 1;
2791   }
2792   }
2793   llvm_unreachable("Unknown APInt::Rounding enum");
2794 }
2795 
2796 APInt llvm::APIntOps::RoundingSDiv(const APInt &A, const APInt &B,
2797                                    APInt::Rounding RM) {
2798   switch (RM) {
2799   case APInt::Rounding::DOWN:
2800   case APInt::Rounding::UP: {
2801     APInt Quo, Rem;
2802     APInt::sdivrem(A, B, Quo, Rem);
2803     if (Rem.isZero())
2804       return Quo;
2805     // This algorithm deals with arbitrary rounding mode used by sdivrem.
2806     // We want to check whether the non-integer part of the mathematical value
2807     // is negative or not. If the non-integer part is negative, we need to round
2808     // down from Quo; otherwise, if it's positive or 0, we return Quo, as it's
2809     // already rounded down.
2810     if (RM == APInt::Rounding::DOWN) {
2811       if (Rem.isNegative() != B.isNegative())
2812         return Quo - 1;
2813       return Quo;
2814     }
2815     if (Rem.isNegative() != B.isNegative())
2816       return Quo;
2817     return Quo + 1;
2818   }
2819   // Currently sdiv rounds towards zero.
2820   case APInt::Rounding::TOWARD_ZERO:
2821     return A.sdiv(B);
2822   }
2823   llvm_unreachable("Unknown APInt::Rounding enum");
2824 }
2825 
2826 std::optional<APInt>
2827 llvm::APIntOps::SolveQuadraticEquationWrap(APInt A, APInt B, APInt C,
2828                                            unsigned RangeWidth) {
2829   unsigned CoeffWidth = A.getBitWidth();
2830   assert(CoeffWidth == B.getBitWidth() && CoeffWidth == C.getBitWidth());
2831   assert(RangeWidth <= CoeffWidth &&
2832          "Value range width should be less than coefficient width");
2833   assert(RangeWidth > 1 && "Value range bit width should be > 1");
2834 
2835   LLVM_DEBUG(dbgs() << __func__ << ": solving " << A << "x^2 + " << B
2836                     << "x + " << C << ", rw:" << RangeWidth << '\n');
2837 
2838   // Identify 0 as a (non)solution immediately.
2839   if (C.sextOrTrunc(RangeWidth).isZero()) {
2840     LLVM_DEBUG(dbgs() << __func__ << ": zero solution\n");
2841     return APInt(CoeffWidth, 0);
2842   }
2843 
2844   // The result of APInt arithmetic has the same bit width as the operands,
2845   // so it can actually lose high bits. A product of two n-bit integers needs
2846   // 2n-1 bits to represent the full value.
2847   // The operation done below (on quadratic coefficients) that can produce
2848   // the largest value is the evaluation of the equation during bisection,
2849   // which needs 3 times the bitwidth of the coefficient, so the total number
2850   // of required bits is 3n.
2851   //
2852   // The purpose of this extension is to simulate the set Z of all integers,
2853   // where n+1 > n for all n in Z. In Z it makes sense to talk about positive
2854   // and negative numbers (not so much in a modulo arithmetic). The method
2855   // used to solve the equation is based on the standard formula for real
2856   // numbers, and uses the concepts of "positive" and "negative" with their
2857   // usual meanings.
2858   CoeffWidth *= 3;
2859   A = A.sext(CoeffWidth);
2860   B = B.sext(CoeffWidth);
2861   C = C.sext(CoeffWidth);
2862 
2863   // Make A > 0 for simplicity. Negate cannot overflow at this point because
2864   // the bit width has increased.
2865   if (A.isNegative()) {
2866     A.negate();
2867     B.negate();
2868     C.negate();
2869   }
2870 
2871   // Solving an equation q(x) = 0 with coefficients in modular arithmetic
2872   // is really solving a set of equations q(x) = kR for k = 0, 1, 2, ...,
2873   // and R = 2^BitWidth.
2874   // Since we're trying not only to find exact solutions, but also values
2875   // that "wrap around", such a set will always have a solution, i.e. an x
2876   // that satisfies at least one of the equations, or such that |q(x)|
2877   // exceeds kR, while |q(x-1)| for the same k does not.
2878   //
2879   // We need to find a value k, such that Ax^2 + Bx + C = kR will have a
2880   // positive solution n (in the above sense), and also such that the n
2881   // will be the least among all solutions corresponding to k = 0, 1, ...
2882   // (more precisely, the least element in the set
2883   //   { n(k) | k is such that a solution n(k) exists }).
2884   //
2885   // Consider the parabola (over real numbers) that corresponds to the
2886   // quadratic equation. Since A > 0, the arms of the parabola will point
2887   // up. Picking different values of k will shift it up and down by R.
2888   //
2889   // We want to shift the parabola in such a way as to reduce the problem
2890   // of solving q(x) = kR to solving shifted_q(x) = 0.
2891   // (The interesting solutions are the ceilings of the real number
2892   // solutions.)
2893   APInt R = APInt::getOneBitSet(CoeffWidth, RangeWidth);
2894   APInt TwoA = 2 * A;
2895   APInt SqrB = B * B;
2896   bool PickLow;
2897 
2898   auto RoundUp = [] (const APInt &V, const APInt &A) -> APInt {
2899     assert(A.isStrictlyPositive());
2900     APInt T = V.abs().urem(A);
2901     if (T.isZero())
2902       return V;
2903     return V.isNegative() ? V+T : V+(A-T);
2904   };
2905 
2906   // The vertex of the parabola is at -B/2A, but since A > 0, it's negative
2907   // iff B is positive.
2908   if (B.isNonNegative()) {
2909     // If B >= 0, the vertex it at a negative location (or at 0), so in
2910     // order to have a non-negative solution we need to pick k that makes
2911     // C-kR negative. To satisfy all the requirements for the solution
2912     // that we are looking for, it needs to be closest to 0 of all k.
2913     C = C.srem(R);
2914     if (C.isStrictlyPositive())
2915       C -= R;
2916     // Pick the greater solution.
2917     PickLow = false;
2918   } else {
2919     // If B < 0, the vertex is at a positive location. For any solution
2920     // to exist, the discriminant must be non-negative. This means that
2921     // C-kR <= B^2/4A is a necessary condition for k, i.e. there is a
2922     // lower bound on values of k: kR >= C - B^2/4A.
2923     APInt LowkR = C - SqrB.udiv(2*TwoA); // udiv because all values > 0.
2924     // Round LowkR up (towards +inf) to the nearest kR.
2925     LowkR = RoundUp(LowkR, R);
2926 
2927     // If there exists k meeting the condition above, and such that
2928     // C-kR > 0, there will be two positive real number solutions of
2929     // q(x) = kR. Out of all such values of k, pick the one that makes
2930     // C-kR closest to 0, (i.e. pick maximum k such that C-kR > 0).
2931     // In other words, find maximum k such that LowkR <= kR < C.
2932     if (C.sgt(LowkR)) {
2933       // If LowkR < C, then such a k is guaranteed to exist because
2934       // LowkR itself is a multiple of R.
2935       C -= -RoundUp(-C, R);      // C = C - RoundDown(C, R)
2936       // Pick the smaller solution.
2937       PickLow = true;
2938     } else {
2939       // If C-kR < 0 for all potential k's, it means that one solution
2940       // will be negative, while the other will be positive. The positive
2941       // solution will shift towards 0 if the parabola is moved up.
2942       // Pick the kR closest to the lower bound (i.e. make C-kR closest
2943       // to 0, or in other words, out of all parabolas that have solutions,
2944       // pick the one that is the farthest "up").
2945       // Since LowkR is itself a multiple of R, simply take C-LowkR.
2946       C -= LowkR;
2947       // Pick the greater solution.
2948       PickLow = false;
2949     }
2950   }
2951 
2952   LLVM_DEBUG(dbgs() << __func__ << ": updated coefficients " << A << "x^2 + "
2953                     << B << "x + " << C << ", rw:" << RangeWidth << '\n');
2954 
2955   APInt D = SqrB - 4*A*C;
2956   assert(D.isNonNegative() && "Negative discriminant");
2957   APInt SQ = D.sqrt();
2958 
2959   APInt Q = SQ * SQ;
2960   bool InexactSQ = Q != D;
2961   // The calculated SQ may actually be greater than the exact (non-integer)
2962   // value. If that's the case, decrement SQ to get a value that is lower.
2963   if (Q.sgt(D))
2964     SQ -= 1;
2965 
2966   APInt X;
2967   APInt Rem;
2968 
2969   // SQ is rounded down (i.e SQ * SQ <= D), so the roots may be inexact.
2970   // When using the quadratic formula directly, the calculated low root
2971   // may be greater than the exact one, since we would be subtracting SQ.
2972   // To make sure that the calculated root is not greater than the exact
2973   // one, subtract SQ+1 when calculating the low root (for inexact value
2974   // of SQ).
2975   if (PickLow)
2976     APInt::sdivrem(-B - (SQ+InexactSQ), TwoA, X, Rem);
2977   else
2978     APInt::sdivrem(-B + SQ, TwoA, X, Rem);
2979 
2980   // The updated coefficients should be such that the (exact) solution is
2981   // positive. Since APInt division rounds towards 0, the calculated one
2982   // can be 0, but cannot be negative.
2983   assert(X.isNonNegative() && "Solution should be non-negative");
2984 
2985   if (!InexactSQ && Rem.isZero()) {
2986     LLVM_DEBUG(dbgs() << __func__ << ": solution (root): " << X << '\n');
2987     return X;
2988   }
2989 
2990   assert((SQ*SQ).sle(D) && "SQ = |_sqrt(D)_|, so SQ*SQ <= D");
2991   // The exact value of the square root of D should be between SQ and SQ+1.
2992   // This implies that the solution should be between that corresponding to
2993   // SQ (i.e. X) and that corresponding to SQ+1.
2994   //
2995   // The calculated X cannot be greater than the exact (real) solution.
2996   // Actually it must be strictly less than the exact solution, while
2997   // X+1 will be greater than or equal to it.
2998 
2999   APInt VX = (A*X + B)*X + C;
3000   APInt VY = VX + TwoA*X + A + B;
3001   bool SignChange =
3002       VX.isNegative() != VY.isNegative() || VX.isZero() != VY.isZero();
3003   // If the sign did not change between X and X+1, X is not a valid solution.
3004   // This could happen when the actual (exact) roots don't have an integer
3005   // between them, so they would both be contained between X and X+1.
3006   if (!SignChange) {
3007     LLVM_DEBUG(dbgs() << __func__ << ": no valid solution\n");
3008     return std::nullopt;
3009   }
3010 
3011   X += 1;
3012   LLVM_DEBUG(dbgs() << __func__ << ": solution (wrap): " << X << '\n');
3013   return X;
3014 }
3015 
3016 std::optional<unsigned>
3017 llvm::APIntOps::GetMostSignificantDifferentBit(const APInt &A, const APInt &B) {
3018   assert(A.getBitWidth() == B.getBitWidth() && "Must have the same bitwidth");
3019   if (A == B)
3020     return std::nullopt;
3021   return A.getBitWidth() - ((A ^ B).countl_zero() + 1);
3022 }
3023 
3024 APInt llvm::APIntOps::ScaleBitMask(const APInt &A, unsigned NewBitWidth,
3025                                    bool MatchAllBits) {
3026   unsigned OldBitWidth = A.getBitWidth();
3027   assert((((OldBitWidth % NewBitWidth) == 0) ||
3028           ((NewBitWidth % OldBitWidth) == 0)) &&
3029          "One size should be a multiple of the other one. "
3030          "Can't do fractional scaling.");
3031 
3032   // Check for matching bitwidths.
3033   if (OldBitWidth == NewBitWidth)
3034     return A;
3035 
3036   APInt NewA = APInt::getZero(NewBitWidth);
3037 
3038   // Check for null input.
3039   if (A.isZero())
3040     return NewA;
3041 
3042   if (NewBitWidth > OldBitWidth) {
3043     // Repeat bits.
3044     unsigned Scale = NewBitWidth / OldBitWidth;
3045     for (unsigned i = 0; i != OldBitWidth; ++i)
3046       if (A[i])
3047         NewA.setBits(i * Scale, (i + 1) * Scale);
3048   } else {
3049     unsigned Scale = OldBitWidth / NewBitWidth;
3050     for (unsigned i = 0; i != NewBitWidth; ++i) {
3051       if (MatchAllBits) {
3052         if (A.extractBits(Scale, i * Scale).isAllOnes())
3053           NewA.setBit(i);
3054       } else {
3055         if (!A.extractBits(Scale, i * Scale).isZero())
3056           NewA.setBit(i);
3057       }
3058     }
3059   }
3060 
3061   return NewA;
3062 }
3063 
3064 /// StoreIntToMemory - Fills the StoreBytes bytes of memory starting from Dst
3065 /// with the integer held in IntVal.
3066 void llvm::StoreIntToMemory(const APInt &IntVal, uint8_t *Dst,
3067                             unsigned StoreBytes) {
3068   assert((IntVal.getBitWidth()+7)/8 >= StoreBytes && "Integer too small!");
3069   const uint8_t *Src = (const uint8_t *)IntVal.getRawData();
3070 
3071   if (sys::IsLittleEndianHost) {
3072     // Little-endian host - the source is ordered from LSB to MSB.  Order the
3073     // destination from LSB to MSB: Do a straight copy.
3074     memcpy(Dst, Src, StoreBytes);
3075   } else {
3076     // Big-endian host - the source is an array of 64 bit words ordered from
3077     // LSW to MSW.  Each word is ordered from MSB to LSB.  Order the destination
3078     // from MSB to LSB: Reverse the word order, but not the bytes in a word.
3079     while (StoreBytes > sizeof(uint64_t)) {
3080       StoreBytes -= sizeof(uint64_t);
3081       // May not be aligned so use memcpy.
3082       memcpy(Dst + StoreBytes, Src, sizeof(uint64_t));
3083       Src += sizeof(uint64_t);
3084     }
3085 
3086     memcpy(Dst, Src + sizeof(uint64_t) - StoreBytes, StoreBytes);
3087   }
3088 }
3089 
3090 /// LoadIntFromMemory - Loads the integer stored in the LoadBytes bytes starting
3091 /// from Src into IntVal, which is assumed to be wide enough and to hold zero.
3092 void llvm::LoadIntFromMemory(APInt &IntVal, const uint8_t *Src,
3093                              unsigned LoadBytes) {
3094   assert((IntVal.getBitWidth()+7)/8 >= LoadBytes && "Integer too small!");
3095   uint8_t *Dst = reinterpret_cast<uint8_t *>(
3096                    const_cast<uint64_t *>(IntVal.getRawData()));
3097 
3098   if (sys::IsLittleEndianHost)
3099     // Little-endian host - the destination must be ordered from LSB to MSB.
3100     // The source is ordered from LSB to MSB: Do a straight copy.
3101     memcpy(Dst, Src, LoadBytes);
3102   else {
3103     // Big-endian - the destination is an array of 64 bit words ordered from
3104     // LSW to MSW.  Each word must be ordered from MSB to LSB.  The source is
3105     // ordered from MSB to LSB: Reverse the word order, but not the bytes in
3106     // a word.
3107     while (LoadBytes > sizeof(uint64_t)) {
3108       LoadBytes -= sizeof(uint64_t);
3109       // May not be aligned so use memcpy.
3110       memcpy(Dst, Src + LoadBytes, sizeof(uint64_t));
3111       Dst += sizeof(uint64_t);
3112     }
3113 
3114     memcpy(Dst + sizeof(uint64_t) - LoadBytes, Src, LoadBytes);
3115   }
3116 }
3117 
3118 APInt APIntOps::avgFloorS(const APInt &C1, const APInt &C2) {
3119   // Return floor((C1 + C2) / 2)
3120   return (C1 & C2) + (C1 ^ C2).ashr(1);
3121 }
3122 
3123 APInt APIntOps::avgFloorU(const APInt &C1, const APInt &C2) {
3124   // Return floor((C1 + C2) / 2)
3125   return (C1 & C2) + (C1 ^ C2).lshr(1);
3126 }
3127 
3128 APInt APIntOps::avgCeilS(const APInt &C1, const APInt &C2) {
3129   // Return ceil((C1 + C2) / 2)
3130   return (C1 | C2) - (C1 ^ C2).ashr(1);
3131 }
3132 
3133 APInt APIntOps::avgCeilU(const APInt &C1, const APInt &C2) {
3134   // Return ceil((C1 + C2) / 2)
3135   return (C1 | C2) - (C1 ^ C2).lshr(1);
3136 }
3137 
3138 APInt APIntOps::mulhs(const APInt &C1, const APInt &C2) {
3139   assert(C1.getBitWidth() == C2.getBitWidth() && "Unequal bitwidths");
3140   unsigned FullWidth = C1.getBitWidth() * 2;
3141   APInt C1Ext = C1.sext(FullWidth);
3142   APInt C2Ext = C2.sext(FullWidth);
3143   return (C1Ext * C2Ext).extractBits(C1.getBitWidth(), C1.getBitWidth());
3144 }
3145 
3146 APInt APIntOps::mulhu(const APInt &C1, const APInt &C2) {
3147   assert(C1.getBitWidth() == C2.getBitWidth() && "Unequal bitwidths");
3148   unsigned FullWidth = C1.getBitWidth() * 2;
3149   APInt C1Ext = C1.zext(FullWidth);
3150   APInt C2Ext = C2.zext(FullWidth);
3151   return (C1Ext * C2Ext).extractBits(C1.getBitWidth(), C1.getBitWidth());
3152 }
3153