1 //===-- APFloat.cpp - Implement APFloat class -----------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements a class to represent arbitrary precision floating 11 // point values and provide a variety of arithmetic operations on them. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APSInt.h" 17 #include "llvm/ADT/FoldingSet.h" 18 #include "llvm/ADT/Hashing.h" 19 #include "llvm/ADT/StringExtras.h" 20 #include "llvm/ADT/StringRef.h" 21 #include "llvm/Support/ErrorHandling.h" 22 #include "llvm/Support/MathExtras.h" 23 #include <cstring> 24 #include <limits.h> 25 26 using namespace llvm; 27 28 /// A macro used to combine two fcCategory enums into one key which can be used 29 /// in a switch statement to classify how the interaction of two APFloat's 30 /// categories affects an operation. 31 /// 32 /// TODO: If clang source code is ever allowed to use constexpr in its own 33 /// codebase, change this into a static inline function. 34 #define PackCategoriesIntoKey(_lhs, _rhs) ((_lhs) * 4 + (_rhs)) 35 36 /* Assumed in hexadecimal significand parsing, and conversion to 37 hexadecimal strings. */ 38 #define COMPILE_TIME_ASSERT(cond) extern int CTAssert[(cond) ? 1 : -1] 39 COMPILE_TIME_ASSERT(integerPartWidth % 4 == 0); 40 41 namespace llvm { 42 43 /* Represents floating point arithmetic semantics. */ 44 struct fltSemantics { 45 /* The largest E such that 2^E is representable; this matches the 46 definition of IEEE 754. */ 47 APFloat::ExponentType maxExponent; 48 49 /* The smallest E such that 2^E is a normalized number; this 50 matches the definition of IEEE 754. */ 51 APFloat::ExponentType minExponent; 52 53 /* Number of bits in the significand. This includes the integer 54 bit. */ 55 unsigned int precision; 56 }; 57 58 const fltSemantics APFloat::IEEEhalf = { 15, -14, 11 }; 59 const fltSemantics APFloat::IEEEsingle = { 127, -126, 24 }; 60 const fltSemantics APFloat::IEEEdouble = { 1023, -1022, 53 }; 61 const fltSemantics APFloat::IEEEquad = { 16383, -16382, 113 }; 62 const fltSemantics APFloat::x87DoubleExtended = { 16383, -16382, 64 }; 63 const fltSemantics APFloat::Bogus = { 0, 0, 0 }; 64 65 /* The PowerPC format consists of two doubles. It does not map cleanly 66 onto the usual format above. It is approximated using twice the 67 mantissa bits. Note that for exponents near the double minimum, 68 we no longer can represent the full 106 mantissa bits, so those 69 will be treated as denormal numbers. 70 71 FIXME: While this approximation is equivalent to what GCC uses for 72 compile-time arithmetic on PPC double-double numbers, it is not able 73 to represent all possible values held by a PPC double-double number, 74 for example: (long double) 1.0 + (long double) 0x1p-106 75 Should this be replaced by a full emulation of PPC double-double? */ 76 const fltSemantics APFloat::PPCDoubleDouble = { 1023, -1022 + 53, 53 + 53 }; 77 78 /* A tight upper bound on number of parts required to hold the value 79 pow(5, power) is 80 81 power * 815 / (351 * integerPartWidth) + 1 82 83 However, whilst the result may require only this many parts, 84 because we are multiplying two values to get it, the 85 multiplication may require an extra part with the excess part 86 being zero (consider the trivial case of 1 * 1, tcFullMultiply 87 requires two parts to hold the single-part result). So we add an 88 extra one to guarantee enough space whilst multiplying. */ 89 const unsigned int maxExponent = 16383; 90 const unsigned int maxPrecision = 113; 91 const unsigned int maxPowerOfFiveExponent = maxExponent + maxPrecision - 1; 92 const unsigned int maxPowerOfFiveParts = 2 + ((maxPowerOfFiveExponent * 815) 93 / (351 * integerPartWidth)); 94 } 95 96 /* A bunch of private, handy routines. */ 97 98 static inline unsigned int 99 partCountForBits(unsigned int bits) 100 { 101 return ((bits) + integerPartWidth - 1) / integerPartWidth; 102 } 103 104 /* Returns 0U-9U. Return values >= 10U are not digits. */ 105 static inline unsigned int 106 decDigitValue(unsigned int c) 107 { 108 return c - '0'; 109 } 110 111 /* Return the value of a decimal exponent of the form 112 [+-]ddddddd. 113 114 If the exponent overflows, returns a large exponent with the 115 appropriate sign. */ 116 static int 117 readExponent(StringRef::iterator begin, StringRef::iterator end) 118 { 119 bool isNegative; 120 unsigned int absExponent; 121 const unsigned int overlargeExponent = 24000; /* FIXME. */ 122 StringRef::iterator p = begin; 123 124 assert(p != end && "Exponent has no digits"); 125 126 isNegative = (*p == '-'); 127 if (*p == '-' || *p == '+') { 128 p++; 129 assert(p != end && "Exponent has no digits"); 130 } 131 132 absExponent = decDigitValue(*p++); 133 assert(absExponent < 10U && "Invalid character in exponent"); 134 135 for (; p != end; ++p) { 136 unsigned int value; 137 138 value = decDigitValue(*p); 139 assert(value < 10U && "Invalid character in exponent"); 140 141 value += absExponent * 10; 142 if (absExponent >= overlargeExponent) { 143 absExponent = overlargeExponent; 144 p = end; /* outwit assert below */ 145 break; 146 } 147 absExponent = value; 148 } 149 150 assert(p == end && "Invalid exponent in exponent"); 151 152 if (isNegative) 153 return -(int) absExponent; 154 else 155 return (int) absExponent; 156 } 157 158 /* This is ugly and needs cleaning up, but I don't immediately see 159 how whilst remaining safe. */ 160 static int 161 totalExponent(StringRef::iterator p, StringRef::iterator end, 162 int exponentAdjustment) 163 { 164 int unsignedExponent; 165 bool negative, overflow; 166 int exponent = 0; 167 168 assert(p != end && "Exponent has no digits"); 169 170 negative = *p == '-'; 171 if (*p == '-' || *p == '+') { 172 p++; 173 assert(p != end && "Exponent has no digits"); 174 } 175 176 unsignedExponent = 0; 177 overflow = false; 178 for (; p != end; ++p) { 179 unsigned int value; 180 181 value = decDigitValue(*p); 182 assert(value < 10U && "Invalid character in exponent"); 183 184 unsignedExponent = unsignedExponent * 10 + value; 185 if (unsignedExponent > 32767) { 186 overflow = true; 187 break; 188 } 189 } 190 191 if (exponentAdjustment > 32767 || exponentAdjustment < -32768) 192 overflow = true; 193 194 if (!overflow) { 195 exponent = unsignedExponent; 196 if (negative) 197 exponent = -exponent; 198 exponent += exponentAdjustment; 199 if (exponent > 32767 || exponent < -32768) 200 overflow = true; 201 } 202 203 if (overflow) 204 exponent = negative ? -32768: 32767; 205 206 return exponent; 207 } 208 209 static StringRef::iterator 210 skipLeadingZeroesAndAnyDot(StringRef::iterator begin, StringRef::iterator end, 211 StringRef::iterator *dot) 212 { 213 StringRef::iterator p = begin; 214 *dot = end; 215 while (*p == '0' && p != end) 216 p++; 217 218 if (*p == '.') { 219 *dot = p++; 220 221 assert(end - begin != 1 && "Significand has no digits"); 222 223 while (*p == '0' && p != end) 224 p++; 225 } 226 227 return p; 228 } 229 230 /* Given a normal decimal floating point number of the form 231 232 dddd.dddd[eE][+-]ddd 233 234 where the decimal point and exponent are optional, fill out the 235 structure D. Exponent is appropriate if the significand is 236 treated as an integer, and normalizedExponent if the significand 237 is taken to have the decimal point after a single leading 238 non-zero digit. 239 240 If the value is zero, V->firstSigDigit points to a non-digit, and 241 the return exponent is zero. 242 */ 243 struct decimalInfo { 244 const char *firstSigDigit; 245 const char *lastSigDigit; 246 int exponent; 247 int normalizedExponent; 248 }; 249 250 static void 251 interpretDecimal(StringRef::iterator begin, StringRef::iterator end, 252 decimalInfo *D) 253 { 254 StringRef::iterator dot = end; 255 StringRef::iterator p = skipLeadingZeroesAndAnyDot (begin, end, &dot); 256 257 D->firstSigDigit = p; 258 D->exponent = 0; 259 D->normalizedExponent = 0; 260 261 for (; p != end; ++p) { 262 if (*p == '.') { 263 assert(dot == end && "String contains multiple dots"); 264 dot = p++; 265 if (p == end) 266 break; 267 } 268 if (decDigitValue(*p) >= 10U) 269 break; 270 } 271 272 if (p != end) { 273 assert((*p == 'e' || *p == 'E') && "Invalid character in significand"); 274 assert(p != begin && "Significand has no digits"); 275 assert((dot == end || p - begin != 1) && "Significand has no digits"); 276 277 /* p points to the first non-digit in the string */ 278 D->exponent = readExponent(p + 1, end); 279 280 /* Implied decimal point? */ 281 if (dot == end) 282 dot = p; 283 } 284 285 /* If number is all zeroes accept any exponent. */ 286 if (p != D->firstSigDigit) { 287 /* Drop insignificant trailing zeroes. */ 288 if (p != begin) { 289 do 290 do 291 p--; 292 while (p != begin && *p == '0'); 293 while (p != begin && *p == '.'); 294 } 295 296 /* Adjust the exponents for any decimal point. */ 297 D->exponent += static_cast<APFloat::ExponentType>((dot - p) - (dot > p)); 298 D->normalizedExponent = (D->exponent + 299 static_cast<APFloat::ExponentType>((p - D->firstSigDigit) 300 - (dot > D->firstSigDigit && dot < p))); 301 } 302 303 D->lastSigDigit = p; 304 } 305 306 /* Return the trailing fraction of a hexadecimal number. 307 DIGITVALUE is the first hex digit of the fraction, P points to 308 the next digit. */ 309 static lostFraction 310 trailingHexadecimalFraction(StringRef::iterator p, StringRef::iterator end, 311 unsigned int digitValue) 312 { 313 unsigned int hexDigit; 314 315 /* If the first trailing digit isn't 0 or 8 we can work out the 316 fraction immediately. */ 317 if (digitValue > 8) 318 return lfMoreThanHalf; 319 else if (digitValue < 8 && digitValue > 0) 320 return lfLessThanHalf; 321 322 /* Otherwise we need to find the first non-zero digit. */ 323 while (*p == '0') 324 p++; 325 326 assert(p != end && "Invalid trailing hexadecimal fraction!"); 327 328 hexDigit = hexDigitValue(*p); 329 330 /* If we ran off the end it is exactly zero or one-half, otherwise 331 a little more. */ 332 if (hexDigit == -1U) 333 return digitValue == 0 ? lfExactlyZero: lfExactlyHalf; 334 else 335 return digitValue == 0 ? lfLessThanHalf: lfMoreThanHalf; 336 } 337 338 /* Return the fraction lost were a bignum truncated losing the least 339 significant BITS bits. */ 340 static lostFraction 341 lostFractionThroughTruncation(const integerPart *parts, 342 unsigned int partCount, 343 unsigned int bits) 344 { 345 unsigned int lsb; 346 347 lsb = APInt::tcLSB(parts, partCount); 348 349 /* Note this is guaranteed true if bits == 0, or LSB == -1U. */ 350 if (bits <= lsb) 351 return lfExactlyZero; 352 if (bits == lsb + 1) 353 return lfExactlyHalf; 354 if (bits <= partCount * integerPartWidth && 355 APInt::tcExtractBit(parts, bits - 1)) 356 return lfMoreThanHalf; 357 358 return lfLessThanHalf; 359 } 360 361 /* Shift DST right BITS bits noting lost fraction. */ 362 static lostFraction 363 shiftRight(integerPart *dst, unsigned int parts, unsigned int bits) 364 { 365 lostFraction lost_fraction; 366 367 lost_fraction = lostFractionThroughTruncation(dst, parts, bits); 368 369 APInt::tcShiftRight(dst, parts, bits); 370 371 return lost_fraction; 372 } 373 374 /* Combine the effect of two lost fractions. */ 375 static lostFraction 376 combineLostFractions(lostFraction moreSignificant, 377 lostFraction lessSignificant) 378 { 379 if (lessSignificant != lfExactlyZero) { 380 if (moreSignificant == lfExactlyZero) 381 moreSignificant = lfLessThanHalf; 382 else if (moreSignificant == lfExactlyHalf) 383 moreSignificant = lfMoreThanHalf; 384 } 385 386 return moreSignificant; 387 } 388 389 /* The error from the true value, in half-ulps, on multiplying two 390 floating point numbers, which differ from the value they 391 approximate by at most HUE1 and HUE2 half-ulps, is strictly less 392 than the returned value. 393 394 See "How to Read Floating Point Numbers Accurately" by William D 395 Clinger. */ 396 static unsigned int 397 HUerrBound(bool inexactMultiply, unsigned int HUerr1, unsigned int HUerr2) 398 { 399 assert(HUerr1 < 2 || HUerr2 < 2 || (HUerr1 + HUerr2 < 8)); 400 401 if (HUerr1 + HUerr2 == 0) 402 return inexactMultiply * 2; /* <= inexactMultiply half-ulps. */ 403 else 404 return inexactMultiply + 2 * (HUerr1 + HUerr2); 405 } 406 407 /* The number of ulps from the boundary (zero, or half if ISNEAREST) 408 when the least significant BITS are truncated. BITS cannot be 409 zero. */ 410 static integerPart 411 ulpsFromBoundary(const integerPart *parts, unsigned int bits, bool isNearest) 412 { 413 unsigned int count, partBits; 414 integerPart part, boundary; 415 416 assert(bits != 0); 417 418 bits--; 419 count = bits / integerPartWidth; 420 partBits = bits % integerPartWidth + 1; 421 422 part = parts[count] & (~(integerPart) 0 >> (integerPartWidth - partBits)); 423 424 if (isNearest) 425 boundary = (integerPart) 1 << (partBits - 1); 426 else 427 boundary = 0; 428 429 if (count == 0) { 430 if (part - boundary <= boundary - part) 431 return part - boundary; 432 else 433 return boundary - part; 434 } 435 436 if (part == boundary) { 437 while (--count) 438 if (parts[count]) 439 return ~(integerPart) 0; /* A lot. */ 440 441 return parts[0]; 442 } else if (part == boundary - 1) { 443 while (--count) 444 if (~parts[count]) 445 return ~(integerPart) 0; /* A lot. */ 446 447 return -parts[0]; 448 } 449 450 return ~(integerPart) 0; /* A lot. */ 451 } 452 453 /* Place pow(5, power) in DST, and return the number of parts used. 454 DST must be at least one part larger than size of the answer. */ 455 static unsigned int 456 powerOf5(integerPart *dst, unsigned int power) 457 { 458 static const integerPart firstEightPowers[] = { 1, 5, 25, 125, 625, 3125, 459 15625, 78125 }; 460 integerPart pow5s[maxPowerOfFiveParts * 2 + 5]; 461 pow5s[0] = 78125 * 5; 462 463 unsigned int partsCount[16] = { 1 }; 464 integerPart scratch[maxPowerOfFiveParts], *p1, *p2, *pow5; 465 unsigned int result; 466 assert(power <= maxExponent); 467 468 p1 = dst; 469 p2 = scratch; 470 471 *p1 = firstEightPowers[power & 7]; 472 power >>= 3; 473 474 result = 1; 475 pow5 = pow5s; 476 477 for (unsigned int n = 0; power; power >>= 1, n++) { 478 unsigned int pc; 479 480 pc = partsCount[n]; 481 482 /* Calculate pow(5,pow(2,n+3)) if we haven't yet. */ 483 if (pc == 0) { 484 pc = partsCount[n - 1]; 485 APInt::tcFullMultiply(pow5, pow5 - pc, pow5 - pc, pc, pc); 486 pc *= 2; 487 if (pow5[pc - 1] == 0) 488 pc--; 489 partsCount[n] = pc; 490 } 491 492 if (power & 1) { 493 integerPart *tmp; 494 495 APInt::tcFullMultiply(p2, p1, pow5, result, pc); 496 result += pc; 497 if (p2[result - 1] == 0) 498 result--; 499 500 /* Now result is in p1 with partsCount parts and p2 is scratch 501 space. */ 502 tmp = p1, p1 = p2, p2 = tmp; 503 } 504 505 pow5 += pc; 506 } 507 508 if (p1 != dst) 509 APInt::tcAssign(dst, p1, result); 510 511 return result; 512 } 513 514 /* Zero at the end to avoid modular arithmetic when adding one; used 515 when rounding up during hexadecimal output. */ 516 static const char hexDigitsLower[] = "0123456789abcdef0"; 517 static const char hexDigitsUpper[] = "0123456789ABCDEF0"; 518 static const char infinityL[] = "infinity"; 519 static const char infinityU[] = "INFINITY"; 520 static const char NaNL[] = "nan"; 521 static const char NaNU[] = "NAN"; 522 523 /* Write out an integerPart in hexadecimal, starting with the most 524 significant nibble. Write out exactly COUNT hexdigits, return 525 COUNT. */ 526 static unsigned int 527 partAsHex (char *dst, integerPart part, unsigned int count, 528 const char *hexDigitChars) 529 { 530 unsigned int result = count; 531 532 assert(count != 0 && count <= integerPartWidth / 4); 533 534 part >>= (integerPartWidth - 4 * count); 535 while (count--) { 536 dst[count] = hexDigitChars[part & 0xf]; 537 part >>= 4; 538 } 539 540 return result; 541 } 542 543 /* Write out an unsigned decimal integer. */ 544 static char * 545 writeUnsignedDecimal (char *dst, unsigned int n) 546 { 547 char buff[40], *p; 548 549 p = buff; 550 do 551 *p++ = '0' + n % 10; 552 while (n /= 10); 553 554 do 555 *dst++ = *--p; 556 while (p != buff); 557 558 return dst; 559 } 560 561 /* Write out a signed decimal integer. */ 562 static char * 563 writeSignedDecimal (char *dst, int value) 564 { 565 if (value < 0) { 566 *dst++ = '-'; 567 dst = writeUnsignedDecimal(dst, -(unsigned) value); 568 } else 569 dst = writeUnsignedDecimal(dst, value); 570 571 return dst; 572 } 573 574 /* Constructors. */ 575 void 576 APFloat::initialize(const fltSemantics *ourSemantics) 577 { 578 unsigned int count; 579 580 semantics = ourSemantics; 581 count = partCount(); 582 if (count > 1) 583 significand.parts = new integerPart[count]; 584 } 585 586 void 587 APFloat::freeSignificand() 588 { 589 if (needsCleanup()) 590 delete [] significand.parts; 591 } 592 593 void 594 APFloat::assign(const APFloat &rhs) 595 { 596 assert(semantics == rhs.semantics); 597 598 sign = rhs.sign; 599 category = rhs.category; 600 exponent = rhs.exponent; 601 if (isFiniteNonZero() || category == fcNaN) 602 copySignificand(rhs); 603 } 604 605 void 606 APFloat::copySignificand(const APFloat &rhs) 607 { 608 assert(isFiniteNonZero() || category == fcNaN); 609 assert(rhs.partCount() >= partCount()); 610 611 APInt::tcAssign(significandParts(), rhs.significandParts(), 612 partCount()); 613 } 614 615 /* Make this number a NaN, with an arbitrary but deterministic value 616 for the significand. If double or longer, this is a signalling NaN, 617 which may not be ideal. If float, this is QNaN(0). */ 618 void APFloat::makeNaN(bool SNaN, bool Negative, const APInt *fill) 619 { 620 category = fcNaN; 621 sign = Negative; 622 623 integerPart *significand = significandParts(); 624 unsigned numParts = partCount(); 625 626 // Set the significand bits to the fill. 627 if (!fill || fill->getNumWords() < numParts) 628 APInt::tcSet(significand, 0, numParts); 629 if (fill) { 630 APInt::tcAssign(significand, fill->getRawData(), 631 std::min(fill->getNumWords(), numParts)); 632 633 // Zero out the excess bits of the significand. 634 unsigned bitsToPreserve = semantics->precision - 1; 635 unsigned part = bitsToPreserve / 64; 636 bitsToPreserve %= 64; 637 significand[part] &= ((1ULL << bitsToPreserve) - 1); 638 for (part++; part != numParts; ++part) 639 significand[part] = 0; 640 } 641 642 unsigned QNaNBit = semantics->precision - 2; 643 644 if (SNaN) { 645 // We always have to clear the QNaN bit to make it an SNaN. 646 APInt::tcClearBit(significand, QNaNBit); 647 648 // If there are no bits set in the payload, we have to set 649 // *something* to make it a NaN instead of an infinity; 650 // conventionally, this is the next bit down from the QNaN bit. 651 if (APInt::tcIsZero(significand, numParts)) 652 APInt::tcSetBit(significand, QNaNBit - 1); 653 } else { 654 // We always have to set the QNaN bit to make it a QNaN. 655 APInt::tcSetBit(significand, QNaNBit); 656 } 657 658 // For x87 extended precision, we want to make a NaN, not a 659 // pseudo-NaN. Maybe we should expose the ability to make 660 // pseudo-NaNs? 661 if (semantics == &APFloat::x87DoubleExtended) 662 APInt::tcSetBit(significand, QNaNBit + 1); 663 } 664 665 APFloat APFloat::makeNaN(const fltSemantics &Sem, bool SNaN, bool Negative, 666 const APInt *fill) { 667 APFloat value(Sem, uninitialized); 668 value.makeNaN(SNaN, Negative, fill); 669 return value; 670 } 671 672 APFloat & 673 APFloat::operator=(const APFloat &rhs) 674 { 675 if (this != &rhs) { 676 if (semantics != rhs.semantics) { 677 freeSignificand(); 678 initialize(rhs.semantics); 679 } 680 assign(rhs); 681 } 682 683 return *this; 684 } 685 686 bool 687 APFloat::isDenormal() const { 688 return isFiniteNonZero() && (exponent == semantics->minExponent) && 689 (APInt::tcExtractBit(significandParts(), 690 semantics->precision - 1) == 0); 691 } 692 693 bool 694 APFloat::isSmallest() const { 695 // The smallest number by magnitude in our format will be the smallest 696 // denormal, i.e. the floating point number with exponent being minimum 697 // exponent and significand bitwise equal to 1 (i.e. with MSB equal to 0). 698 return isFiniteNonZero() && exponent == semantics->minExponent && 699 significandMSB() == 0; 700 } 701 702 bool APFloat::isSignificandAllOnes() const { 703 // Test if the significand excluding the integral bit is all ones. This allows 704 // us to test for binade boundaries. 705 const integerPart *Parts = significandParts(); 706 const unsigned PartCount = partCount(); 707 for (unsigned i = 0; i < PartCount - 1; i++) 708 if (~Parts[i]) 709 return false; 710 711 // Set the unused high bits to all ones when we compare. 712 const unsigned NumHighBits = 713 PartCount*integerPartWidth - semantics->precision + 1; 714 assert(NumHighBits <= integerPartWidth && "Can not have more high bits to " 715 "fill than integerPartWidth"); 716 const integerPart HighBitFill = 717 ~integerPart(0) << (integerPartWidth - NumHighBits); 718 if (~(Parts[PartCount - 1] | HighBitFill)) 719 return false; 720 721 return true; 722 } 723 724 bool APFloat::isSignificandAllZeros() const { 725 // Test if the significand excluding the integral bit is all zeros. This 726 // allows us to test for binade boundaries. 727 const integerPart *Parts = significandParts(); 728 const unsigned PartCount = partCount(); 729 730 for (unsigned i = 0; i < PartCount - 1; i++) 731 if (Parts[i]) 732 return false; 733 734 const unsigned NumHighBits = 735 PartCount*integerPartWidth - semantics->precision + 1; 736 assert(NumHighBits <= integerPartWidth && "Can not have more high bits to " 737 "clear than integerPartWidth"); 738 const integerPart HighBitMask = ~integerPart(0) >> NumHighBits; 739 740 if (Parts[PartCount - 1] & HighBitMask) 741 return false; 742 743 return true; 744 } 745 746 bool 747 APFloat::isLargest() const { 748 // The largest number by magnitude in our format will be the floating point 749 // number with maximum exponent and with significand that is all ones. 750 return isFiniteNonZero() && exponent == semantics->maxExponent 751 && isSignificandAllOnes(); 752 } 753 754 bool 755 APFloat::bitwiseIsEqual(const APFloat &rhs) const { 756 if (this == &rhs) 757 return true; 758 if (semantics != rhs.semantics || 759 category != rhs.category || 760 sign != rhs.sign) 761 return false; 762 if (category==fcZero || category==fcInfinity) 763 return true; 764 else if (isFiniteNonZero() && exponent!=rhs.exponent) 765 return false; 766 else { 767 int i= partCount(); 768 const integerPart* p=significandParts(); 769 const integerPart* q=rhs.significandParts(); 770 for (; i>0; i--, p++, q++) { 771 if (*p != *q) 772 return false; 773 } 774 return true; 775 } 776 } 777 778 APFloat::APFloat(const fltSemantics &ourSemantics, integerPart value) { 779 initialize(&ourSemantics); 780 sign = 0; 781 zeroSignificand(); 782 exponent = ourSemantics.precision - 1; 783 significandParts()[0] = value; 784 normalize(rmNearestTiesToEven, lfExactlyZero); 785 } 786 787 APFloat::APFloat(const fltSemantics &ourSemantics) { 788 initialize(&ourSemantics); 789 category = fcZero; 790 sign = false; 791 } 792 793 APFloat::APFloat(const fltSemantics &ourSemantics, uninitializedTag tag) { 794 // Allocates storage if necessary but does not initialize it. 795 initialize(&ourSemantics); 796 } 797 798 APFloat::APFloat(const fltSemantics &ourSemantics, StringRef text) { 799 initialize(&ourSemantics); 800 convertFromString(text, rmNearestTiesToEven); 801 } 802 803 APFloat::APFloat(const APFloat &rhs) { 804 initialize(rhs.semantics); 805 assign(rhs); 806 } 807 808 APFloat::~APFloat() 809 { 810 freeSignificand(); 811 } 812 813 // Profile - This method 'profiles' an APFloat for use with FoldingSet. 814 void APFloat::Profile(FoldingSetNodeID& ID) const { 815 ID.Add(bitcastToAPInt()); 816 } 817 818 unsigned int 819 APFloat::partCount() const 820 { 821 return partCountForBits(semantics->precision + 1); 822 } 823 824 unsigned int 825 APFloat::semanticsPrecision(const fltSemantics &semantics) 826 { 827 return semantics.precision; 828 } 829 830 const integerPart * 831 APFloat::significandParts() const 832 { 833 return const_cast<APFloat *>(this)->significandParts(); 834 } 835 836 integerPart * 837 APFloat::significandParts() 838 { 839 if (partCount() > 1) 840 return significand.parts; 841 else 842 return &significand.part; 843 } 844 845 void 846 APFloat::zeroSignificand() 847 { 848 category = fcNormal; 849 APInt::tcSet(significandParts(), 0, partCount()); 850 } 851 852 /* Increment an fcNormal floating point number's significand. */ 853 void 854 APFloat::incrementSignificand() 855 { 856 integerPart carry; 857 858 carry = APInt::tcIncrement(significandParts(), partCount()); 859 860 /* Our callers should never cause us to overflow. */ 861 assert(carry == 0); 862 (void)carry; 863 } 864 865 /* Add the significand of the RHS. Returns the carry flag. */ 866 integerPart 867 APFloat::addSignificand(const APFloat &rhs) 868 { 869 integerPart *parts; 870 871 parts = significandParts(); 872 873 assert(semantics == rhs.semantics); 874 assert(exponent == rhs.exponent); 875 876 return APInt::tcAdd(parts, rhs.significandParts(), 0, partCount()); 877 } 878 879 /* Subtract the significand of the RHS with a borrow flag. Returns 880 the borrow flag. */ 881 integerPart 882 APFloat::subtractSignificand(const APFloat &rhs, integerPart borrow) 883 { 884 integerPart *parts; 885 886 parts = significandParts(); 887 888 assert(semantics == rhs.semantics); 889 assert(exponent == rhs.exponent); 890 891 return APInt::tcSubtract(parts, rhs.significandParts(), borrow, 892 partCount()); 893 } 894 895 /* Multiply the significand of the RHS. If ADDEND is non-NULL, add it 896 on to the full-precision result of the multiplication. Returns the 897 lost fraction. */ 898 lostFraction 899 APFloat::multiplySignificand(const APFloat &rhs, const APFloat *addend) 900 { 901 unsigned int omsb; // One, not zero, based MSB. 902 unsigned int partsCount, newPartsCount, precision; 903 integerPart *lhsSignificand; 904 integerPart scratch[4]; 905 integerPart *fullSignificand; 906 lostFraction lost_fraction; 907 bool ignored; 908 909 assert(semantics == rhs.semantics); 910 911 precision = semantics->precision; 912 newPartsCount = partCountForBits(precision * 2); 913 914 if (newPartsCount > 4) 915 fullSignificand = new integerPart[newPartsCount]; 916 else 917 fullSignificand = scratch; 918 919 lhsSignificand = significandParts(); 920 partsCount = partCount(); 921 922 APInt::tcFullMultiply(fullSignificand, lhsSignificand, 923 rhs.significandParts(), partsCount, partsCount); 924 925 lost_fraction = lfExactlyZero; 926 omsb = APInt::tcMSB(fullSignificand, newPartsCount) + 1; 927 exponent += rhs.exponent; 928 929 // Assume the operands involved in the multiplication are single-precision 930 // FP, and the two multiplicants are: 931 // *this = a23 . a22 ... a0 * 2^e1 932 // rhs = b23 . b22 ... b0 * 2^e2 933 // the result of multiplication is: 934 // *this = c47 c46 . c45 ... c0 * 2^(e1+e2) 935 // Note that there are two significant bits at the left-hand side of the 936 // radix point. Move the radix point toward left by one bit, and adjust 937 // exponent accordingly. 938 exponent += 1; 939 940 if (addend) { 941 // The intermediate result of the multiplication has "2 * precision" 942 // signicant bit; adjust the addend to be consistent with mul result. 943 // 944 Significand savedSignificand = significand; 945 const fltSemantics *savedSemantics = semantics; 946 fltSemantics extendedSemantics; 947 opStatus status; 948 unsigned int extendedPrecision; 949 950 /* Normalize our MSB. */ 951 extendedPrecision = 2 * precision; 952 if (omsb != extendedPrecision) { 953 assert(extendedPrecision > omsb); 954 APInt::tcShiftLeft(fullSignificand, newPartsCount, 955 extendedPrecision - omsb); 956 exponent -= extendedPrecision - omsb; 957 } 958 959 /* Create new semantics. */ 960 extendedSemantics = *semantics; 961 extendedSemantics.precision = extendedPrecision; 962 963 if (newPartsCount == 1) 964 significand.part = fullSignificand[0]; 965 else 966 significand.parts = fullSignificand; 967 semantics = &extendedSemantics; 968 969 APFloat extendedAddend(*addend); 970 status = extendedAddend.convert(extendedSemantics, rmTowardZero, &ignored); 971 assert(status == opOK); 972 (void)status; 973 lost_fraction = addOrSubtractSignificand(extendedAddend, false); 974 975 /* Restore our state. */ 976 if (newPartsCount == 1) 977 fullSignificand[0] = significand.part; 978 significand = savedSignificand; 979 semantics = savedSemantics; 980 981 omsb = APInt::tcMSB(fullSignificand, newPartsCount) + 1; 982 } 983 984 // Convert the result having "2 * precision" significant-bits back to the one 985 // having "precision" significant-bits. First, move the radix point from 986 // poision "2*precision - 1" to "precision - 1". The exponent need to be 987 // adjusted by "2*precision - 1" - "precision - 1" = "precision". 988 exponent -= precision; 989 990 // In case MSB resides at the left-hand side of radix point, shift the 991 // mantissa right by some amount to make sure the MSB reside right before 992 // the radix point (i.e. "MSB . rest-significant-bits"). 993 // 994 // Note that the result is not normalized when "omsb < precision". So, the 995 // caller needs to call APFloat::normalize() if normalized value is expected. 996 if (omsb > precision) { 997 unsigned int bits, significantParts; 998 lostFraction lf; 999 1000 bits = omsb - precision; 1001 significantParts = partCountForBits(omsb); 1002 lf = shiftRight(fullSignificand, significantParts, bits); 1003 lost_fraction = combineLostFractions(lf, lost_fraction); 1004 exponent += bits; 1005 } 1006 1007 APInt::tcAssign(lhsSignificand, fullSignificand, partsCount); 1008 1009 if (newPartsCount > 4) 1010 delete [] fullSignificand; 1011 1012 return lost_fraction; 1013 } 1014 1015 /* Multiply the significands of LHS and RHS to DST. */ 1016 lostFraction 1017 APFloat::divideSignificand(const APFloat &rhs) 1018 { 1019 unsigned int bit, i, partsCount; 1020 const integerPart *rhsSignificand; 1021 integerPart *lhsSignificand, *dividend, *divisor; 1022 integerPart scratch[4]; 1023 lostFraction lost_fraction; 1024 1025 assert(semantics == rhs.semantics); 1026 1027 lhsSignificand = significandParts(); 1028 rhsSignificand = rhs.significandParts(); 1029 partsCount = partCount(); 1030 1031 if (partsCount > 2) 1032 dividend = new integerPart[partsCount * 2]; 1033 else 1034 dividend = scratch; 1035 1036 divisor = dividend + partsCount; 1037 1038 /* Copy the dividend and divisor as they will be modified in-place. */ 1039 for (i = 0; i < partsCount; i++) { 1040 dividend[i] = lhsSignificand[i]; 1041 divisor[i] = rhsSignificand[i]; 1042 lhsSignificand[i] = 0; 1043 } 1044 1045 exponent -= rhs.exponent; 1046 1047 unsigned int precision = semantics->precision; 1048 1049 /* Normalize the divisor. */ 1050 bit = precision - APInt::tcMSB(divisor, partsCount) - 1; 1051 if (bit) { 1052 exponent += bit; 1053 APInt::tcShiftLeft(divisor, partsCount, bit); 1054 } 1055 1056 /* Normalize the dividend. */ 1057 bit = precision - APInt::tcMSB(dividend, partsCount) - 1; 1058 if (bit) { 1059 exponent -= bit; 1060 APInt::tcShiftLeft(dividend, partsCount, bit); 1061 } 1062 1063 /* Ensure the dividend >= divisor initially for the loop below. 1064 Incidentally, this means that the division loop below is 1065 guaranteed to set the integer bit to one. */ 1066 if (APInt::tcCompare(dividend, divisor, partsCount) < 0) { 1067 exponent--; 1068 APInt::tcShiftLeft(dividend, partsCount, 1); 1069 assert(APInt::tcCompare(dividend, divisor, partsCount) >= 0); 1070 } 1071 1072 /* Long division. */ 1073 for (bit = precision; bit; bit -= 1) { 1074 if (APInt::tcCompare(dividend, divisor, partsCount) >= 0) { 1075 APInt::tcSubtract(dividend, divisor, 0, partsCount); 1076 APInt::tcSetBit(lhsSignificand, bit - 1); 1077 } 1078 1079 APInt::tcShiftLeft(dividend, partsCount, 1); 1080 } 1081 1082 /* Figure out the lost fraction. */ 1083 int cmp = APInt::tcCompare(dividend, divisor, partsCount); 1084 1085 if (cmp > 0) 1086 lost_fraction = lfMoreThanHalf; 1087 else if (cmp == 0) 1088 lost_fraction = lfExactlyHalf; 1089 else if (APInt::tcIsZero(dividend, partsCount)) 1090 lost_fraction = lfExactlyZero; 1091 else 1092 lost_fraction = lfLessThanHalf; 1093 1094 if (partsCount > 2) 1095 delete [] dividend; 1096 1097 return lost_fraction; 1098 } 1099 1100 unsigned int 1101 APFloat::significandMSB() const 1102 { 1103 return APInt::tcMSB(significandParts(), partCount()); 1104 } 1105 1106 unsigned int 1107 APFloat::significandLSB() const 1108 { 1109 return APInt::tcLSB(significandParts(), partCount()); 1110 } 1111 1112 /* Note that a zero result is NOT normalized to fcZero. */ 1113 lostFraction 1114 APFloat::shiftSignificandRight(unsigned int bits) 1115 { 1116 /* Our exponent should not overflow. */ 1117 assert((ExponentType) (exponent + bits) >= exponent); 1118 1119 exponent += bits; 1120 1121 return shiftRight(significandParts(), partCount(), bits); 1122 } 1123 1124 /* Shift the significand left BITS bits, subtract BITS from its exponent. */ 1125 void 1126 APFloat::shiftSignificandLeft(unsigned int bits) 1127 { 1128 assert(bits < semantics->precision); 1129 1130 if (bits) { 1131 unsigned int partsCount = partCount(); 1132 1133 APInt::tcShiftLeft(significandParts(), partsCount, bits); 1134 exponent -= bits; 1135 1136 assert(!APInt::tcIsZero(significandParts(), partsCount)); 1137 } 1138 } 1139 1140 APFloat::cmpResult 1141 APFloat::compareAbsoluteValue(const APFloat &rhs) const 1142 { 1143 int compare; 1144 1145 assert(semantics == rhs.semantics); 1146 assert(isFiniteNonZero()); 1147 assert(rhs.isFiniteNonZero()); 1148 1149 compare = exponent - rhs.exponent; 1150 1151 /* If exponents are equal, do an unsigned bignum comparison of the 1152 significands. */ 1153 if (compare == 0) 1154 compare = APInt::tcCompare(significandParts(), rhs.significandParts(), 1155 partCount()); 1156 1157 if (compare > 0) 1158 return cmpGreaterThan; 1159 else if (compare < 0) 1160 return cmpLessThan; 1161 else 1162 return cmpEqual; 1163 } 1164 1165 /* Handle overflow. Sign is preserved. We either become infinity or 1166 the largest finite number. */ 1167 APFloat::opStatus 1168 APFloat::handleOverflow(roundingMode rounding_mode) 1169 { 1170 /* Infinity? */ 1171 if (rounding_mode == rmNearestTiesToEven || 1172 rounding_mode == rmNearestTiesToAway || 1173 (rounding_mode == rmTowardPositive && !sign) || 1174 (rounding_mode == rmTowardNegative && sign)) { 1175 category = fcInfinity; 1176 return (opStatus) (opOverflow | opInexact); 1177 } 1178 1179 /* Otherwise we become the largest finite number. */ 1180 category = fcNormal; 1181 exponent = semantics->maxExponent; 1182 APInt::tcSetLeastSignificantBits(significandParts(), partCount(), 1183 semantics->precision); 1184 1185 return opInexact; 1186 } 1187 1188 /* Returns TRUE if, when truncating the current number, with BIT the 1189 new LSB, with the given lost fraction and rounding mode, the result 1190 would need to be rounded away from zero (i.e., by increasing the 1191 signficand). This routine must work for fcZero of both signs, and 1192 fcNormal numbers. */ 1193 bool 1194 APFloat::roundAwayFromZero(roundingMode rounding_mode, 1195 lostFraction lost_fraction, 1196 unsigned int bit) const 1197 { 1198 /* NaNs and infinities should not have lost fractions. */ 1199 assert(isFiniteNonZero() || category == fcZero); 1200 1201 /* Current callers never pass this so we don't handle it. */ 1202 assert(lost_fraction != lfExactlyZero); 1203 1204 switch (rounding_mode) { 1205 case rmNearestTiesToAway: 1206 return lost_fraction == lfExactlyHalf || lost_fraction == lfMoreThanHalf; 1207 1208 case rmNearestTiesToEven: 1209 if (lost_fraction == lfMoreThanHalf) 1210 return true; 1211 1212 /* Our zeroes don't have a significand to test. */ 1213 if (lost_fraction == lfExactlyHalf && category != fcZero) 1214 return APInt::tcExtractBit(significandParts(), bit); 1215 1216 return false; 1217 1218 case rmTowardZero: 1219 return false; 1220 1221 case rmTowardPositive: 1222 return sign == false; 1223 1224 case rmTowardNegative: 1225 return sign == true; 1226 } 1227 llvm_unreachable("Invalid rounding mode found"); 1228 } 1229 1230 APFloat::opStatus 1231 APFloat::normalize(roundingMode rounding_mode, 1232 lostFraction lost_fraction) 1233 { 1234 unsigned int omsb; /* One, not zero, based MSB. */ 1235 int exponentChange; 1236 1237 if (!isFiniteNonZero()) 1238 return opOK; 1239 1240 /* Before rounding normalize the exponent of fcNormal numbers. */ 1241 omsb = significandMSB() + 1; 1242 1243 if (omsb) { 1244 /* OMSB is numbered from 1. We want to place it in the integer 1245 bit numbered PRECISION if possible, with a compensating change in 1246 the exponent. */ 1247 exponentChange = omsb - semantics->precision; 1248 1249 /* If the resulting exponent is too high, overflow according to 1250 the rounding mode. */ 1251 if (exponent + exponentChange > semantics->maxExponent) 1252 return handleOverflow(rounding_mode); 1253 1254 /* Subnormal numbers have exponent minExponent, and their MSB 1255 is forced based on that. */ 1256 if (exponent + exponentChange < semantics->minExponent) 1257 exponentChange = semantics->minExponent - exponent; 1258 1259 /* Shifting left is easy as we don't lose precision. */ 1260 if (exponentChange < 0) { 1261 assert(lost_fraction == lfExactlyZero); 1262 1263 shiftSignificandLeft(-exponentChange); 1264 1265 return opOK; 1266 } 1267 1268 if (exponentChange > 0) { 1269 lostFraction lf; 1270 1271 /* Shift right and capture any new lost fraction. */ 1272 lf = shiftSignificandRight(exponentChange); 1273 1274 lost_fraction = combineLostFractions(lf, lost_fraction); 1275 1276 /* Keep OMSB up-to-date. */ 1277 if (omsb > (unsigned) exponentChange) 1278 omsb -= exponentChange; 1279 else 1280 omsb = 0; 1281 } 1282 } 1283 1284 /* Now round the number according to rounding_mode given the lost 1285 fraction. */ 1286 1287 /* As specified in IEEE 754, since we do not trap we do not report 1288 underflow for exact results. */ 1289 if (lost_fraction == lfExactlyZero) { 1290 /* Canonicalize zeroes. */ 1291 if (omsb == 0) 1292 category = fcZero; 1293 1294 return opOK; 1295 } 1296 1297 /* Increment the significand if we're rounding away from zero. */ 1298 if (roundAwayFromZero(rounding_mode, lost_fraction, 0)) { 1299 if (omsb == 0) 1300 exponent = semantics->minExponent; 1301 1302 incrementSignificand(); 1303 omsb = significandMSB() + 1; 1304 1305 /* Did the significand increment overflow? */ 1306 if (omsb == (unsigned) semantics->precision + 1) { 1307 /* Renormalize by incrementing the exponent and shifting our 1308 significand right one. However if we already have the 1309 maximum exponent we overflow to infinity. */ 1310 if (exponent == semantics->maxExponent) { 1311 category = fcInfinity; 1312 1313 return (opStatus) (opOverflow | opInexact); 1314 } 1315 1316 shiftSignificandRight(1); 1317 1318 return opInexact; 1319 } 1320 } 1321 1322 /* The normal case - we were and are not denormal, and any 1323 significand increment above didn't overflow. */ 1324 if (omsb == semantics->precision) 1325 return opInexact; 1326 1327 /* We have a non-zero denormal. */ 1328 assert(omsb < semantics->precision); 1329 1330 /* Canonicalize zeroes. */ 1331 if (omsb == 0) 1332 category = fcZero; 1333 1334 /* The fcZero case is a denormal that underflowed to zero. */ 1335 return (opStatus) (opUnderflow | opInexact); 1336 } 1337 1338 APFloat::opStatus 1339 APFloat::addOrSubtractSpecials(const APFloat &rhs, bool subtract) 1340 { 1341 switch (PackCategoriesIntoKey(category, rhs.category)) { 1342 default: 1343 llvm_unreachable(0); 1344 1345 case PackCategoriesIntoKey(fcNaN, fcZero): 1346 case PackCategoriesIntoKey(fcNaN, fcNormal): 1347 case PackCategoriesIntoKey(fcNaN, fcInfinity): 1348 case PackCategoriesIntoKey(fcNaN, fcNaN): 1349 case PackCategoriesIntoKey(fcNormal, fcZero): 1350 case PackCategoriesIntoKey(fcInfinity, fcNormal): 1351 case PackCategoriesIntoKey(fcInfinity, fcZero): 1352 return opOK; 1353 1354 case PackCategoriesIntoKey(fcZero, fcNaN): 1355 case PackCategoriesIntoKey(fcNormal, fcNaN): 1356 case PackCategoriesIntoKey(fcInfinity, fcNaN): 1357 category = fcNaN; 1358 copySignificand(rhs); 1359 return opOK; 1360 1361 case PackCategoriesIntoKey(fcNormal, fcInfinity): 1362 case PackCategoriesIntoKey(fcZero, fcInfinity): 1363 category = fcInfinity; 1364 sign = rhs.sign ^ subtract; 1365 return opOK; 1366 1367 case PackCategoriesIntoKey(fcZero, fcNormal): 1368 assign(rhs); 1369 sign = rhs.sign ^ subtract; 1370 return opOK; 1371 1372 case PackCategoriesIntoKey(fcZero, fcZero): 1373 /* Sign depends on rounding mode; handled by caller. */ 1374 return opOK; 1375 1376 case PackCategoriesIntoKey(fcInfinity, fcInfinity): 1377 /* Differently signed infinities can only be validly 1378 subtracted. */ 1379 if (((sign ^ rhs.sign)!=0) != subtract) { 1380 makeNaN(); 1381 return opInvalidOp; 1382 } 1383 1384 return opOK; 1385 1386 case PackCategoriesIntoKey(fcNormal, fcNormal): 1387 return opDivByZero; 1388 } 1389 } 1390 1391 /* Add or subtract two normal numbers. */ 1392 lostFraction 1393 APFloat::addOrSubtractSignificand(const APFloat &rhs, bool subtract) 1394 { 1395 integerPart carry; 1396 lostFraction lost_fraction; 1397 int bits; 1398 1399 /* Determine if the operation on the absolute values is effectively 1400 an addition or subtraction. */ 1401 subtract ^= (sign ^ rhs.sign) ? true : false; 1402 1403 /* Are we bigger exponent-wise than the RHS? */ 1404 bits = exponent - rhs.exponent; 1405 1406 /* Subtraction is more subtle than one might naively expect. */ 1407 if (subtract) { 1408 APFloat temp_rhs(rhs); 1409 bool reverse; 1410 1411 if (bits == 0) { 1412 reverse = compareAbsoluteValue(temp_rhs) == cmpLessThan; 1413 lost_fraction = lfExactlyZero; 1414 } else if (bits > 0) { 1415 lost_fraction = temp_rhs.shiftSignificandRight(bits - 1); 1416 shiftSignificandLeft(1); 1417 reverse = false; 1418 } else { 1419 lost_fraction = shiftSignificandRight(-bits - 1); 1420 temp_rhs.shiftSignificandLeft(1); 1421 reverse = true; 1422 } 1423 1424 if (reverse) { 1425 carry = temp_rhs.subtractSignificand 1426 (*this, lost_fraction != lfExactlyZero); 1427 copySignificand(temp_rhs); 1428 sign = !sign; 1429 } else { 1430 carry = subtractSignificand 1431 (temp_rhs, lost_fraction != lfExactlyZero); 1432 } 1433 1434 /* Invert the lost fraction - it was on the RHS and 1435 subtracted. */ 1436 if (lost_fraction == lfLessThanHalf) 1437 lost_fraction = lfMoreThanHalf; 1438 else if (lost_fraction == lfMoreThanHalf) 1439 lost_fraction = lfLessThanHalf; 1440 1441 /* The code above is intended to ensure that no borrow is 1442 necessary. */ 1443 assert(!carry); 1444 (void)carry; 1445 } else { 1446 if (bits > 0) { 1447 APFloat temp_rhs(rhs); 1448 1449 lost_fraction = temp_rhs.shiftSignificandRight(bits); 1450 carry = addSignificand(temp_rhs); 1451 } else { 1452 lost_fraction = shiftSignificandRight(-bits); 1453 carry = addSignificand(rhs); 1454 } 1455 1456 /* We have a guard bit; generating a carry cannot happen. */ 1457 assert(!carry); 1458 (void)carry; 1459 } 1460 1461 return lost_fraction; 1462 } 1463 1464 APFloat::opStatus 1465 APFloat::multiplySpecials(const APFloat &rhs) 1466 { 1467 switch (PackCategoriesIntoKey(category, rhs.category)) { 1468 default: 1469 llvm_unreachable(0); 1470 1471 case PackCategoriesIntoKey(fcNaN, fcZero): 1472 case PackCategoriesIntoKey(fcNaN, fcNormal): 1473 case PackCategoriesIntoKey(fcNaN, fcInfinity): 1474 case PackCategoriesIntoKey(fcNaN, fcNaN): 1475 return opOK; 1476 1477 case PackCategoriesIntoKey(fcZero, fcNaN): 1478 case PackCategoriesIntoKey(fcNormal, fcNaN): 1479 case PackCategoriesIntoKey(fcInfinity, fcNaN): 1480 category = fcNaN; 1481 copySignificand(rhs); 1482 return opOK; 1483 1484 case PackCategoriesIntoKey(fcNormal, fcInfinity): 1485 case PackCategoriesIntoKey(fcInfinity, fcNormal): 1486 case PackCategoriesIntoKey(fcInfinity, fcInfinity): 1487 category = fcInfinity; 1488 return opOK; 1489 1490 case PackCategoriesIntoKey(fcZero, fcNormal): 1491 case PackCategoriesIntoKey(fcNormal, fcZero): 1492 case PackCategoriesIntoKey(fcZero, fcZero): 1493 category = fcZero; 1494 return opOK; 1495 1496 case PackCategoriesIntoKey(fcZero, fcInfinity): 1497 case PackCategoriesIntoKey(fcInfinity, fcZero): 1498 makeNaN(); 1499 return opInvalidOp; 1500 1501 case PackCategoriesIntoKey(fcNormal, fcNormal): 1502 return opOK; 1503 } 1504 } 1505 1506 APFloat::opStatus 1507 APFloat::divideSpecials(const APFloat &rhs) 1508 { 1509 switch (PackCategoriesIntoKey(category, rhs.category)) { 1510 default: 1511 llvm_unreachable(0); 1512 1513 case PackCategoriesIntoKey(fcNaN, fcZero): 1514 case PackCategoriesIntoKey(fcNaN, fcNormal): 1515 case PackCategoriesIntoKey(fcNaN, fcInfinity): 1516 case PackCategoriesIntoKey(fcNaN, fcNaN): 1517 case PackCategoriesIntoKey(fcInfinity, fcZero): 1518 case PackCategoriesIntoKey(fcInfinity, fcNormal): 1519 case PackCategoriesIntoKey(fcZero, fcInfinity): 1520 case PackCategoriesIntoKey(fcZero, fcNormal): 1521 return opOK; 1522 1523 case PackCategoriesIntoKey(fcZero, fcNaN): 1524 case PackCategoriesIntoKey(fcNormal, fcNaN): 1525 case PackCategoriesIntoKey(fcInfinity, fcNaN): 1526 category = fcNaN; 1527 copySignificand(rhs); 1528 return opOK; 1529 1530 case PackCategoriesIntoKey(fcNormal, fcInfinity): 1531 category = fcZero; 1532 return opOK; 1533 1534 case PackCategoriesIntoKey(fcNormal, fcZero): 1535 category = fcInfinity; 1536 return opDivByZero; 1537 1538 case PackCategoriesIntoKey(fcInfinity, fcInfinity): 1539 case PackCategoriesIntoKey(fcZero, fcZero): 1540 makeNaN(); 1541 return opInvalidOp; 1542 1543 case PackCategoriesIntoKey(fcNormal, fcNormal): 1544 return opOK; 1545 } 1546 } 1547 1548 APFloat::opStatus 1549 APFloat::modSpecials(const APFloat &rhs) 1550 { 1551 switch (PackCategoriesIntoKey(category, rhs.category)) { 1552 default: 1553 llvm_unreachable(0); 1554 1555 case PackCategoriesIntoKey(fcNaN, fcZero): 1556 case PackCategoriesIntoKey(fcNaN, fcNormal): 1557 case PackCategoriesIntoKey(fcNaN, fcInfinity): 1558 case PackCategoriesIntoKey(fcNaN, fcNaN): 1559 case PackCategoriesIntoKey(fcZero, fcInfinity): 1560 case PackCategoriesIntoKey(fcZero, fcNormal): 1561 case PackCategoriesIntoKey(fcNormal, fcInfinity): 1562 return opOK; 1563 1564 case PackCategoriesIntoKey(fcZero, fcNaN): 1565 case PackCategoriesIntoKey(fcNormal, fcNaN): 1566 case PackCategoriesIntoKey(fcInfinity, fcNaN): 1567 category = fcNaN; 1568 copySignificand(rhs); 1569 return opOK; 1570 1571 case PackCategoriesIntoKey(fcNormal, fcZero): 1572 case PackCategoriesIntoKey(fcInfinity, fcZero): 1573 case PackCategoriesIntoKey(fcInfinity, fcNormal): 1574 case PackCategoriesIntoKey(fcInfinity, fcInfinity): 1575 case PackCategoriesIntoKey(fcZero, fcZero): 1576 makeNaN(); 1577 return opInvalidOp; 1578 1579 case PackCategoriesIntoKey(fcNormal, fcNormal): 1580 return opOK; 1581 } 1582 } 1583 1584 /* Change sign. */ 1585 void 1586 APFloat::changeSign() 1587 { 1588 /* Look mummy, this one's easy. */ 1589 sign = !sign; 1590 } 1591 1592 void 1593 APFloat::clearSign() 1594 { 1595 /* So is this one. */ 1596 sign = 0; 1597 } 1598 1599 void 1600 APFloat::copySign(const APFloat &rhs) 1601 { 1602 /* And this one. */ 1603 sign = rhs.sign; 1604 } 1605 1606 /* Normalized addition or subtraction. */ 1607 APFloat::opStatus 1608 APFloat::addOrSubtract(const APFloat &rhs, roundingMode rounding_mode, 1609 bool subtract) 1610 { 1611 opStatus fs; 1612 1613 fs = addOrSubtractSpecials(rhs, subtract); 1614 1615 /* This return code means it was not a simple case. */ 1616 if (fs == opDivByZero) { 1617 lostFraction lost_fraction; 1618 1619 lost_fraction = addOrSubtractSignificand(rhs, subtract); 1620 fs = normalize(rounding_mode, lost_fraction); 1621 1622 /* Can only be zero if we lost no fraction. */ 1623 assert(category != fcZero || lost_fraction == lfExactlyZero); 1624 } 1625 1626 /* If two numbers add (exactly) to zero, IEEE 754 decrees it is a 1627 positive zero unless rounding to minus infinity, except that 1628 adding two like-signed zeroes gives that zero. */ 1629 if (category == fcZero) { 1630 if (rhs.category != fcZero || (sign == rhs.sign) == subtract) 1631 sign = (rounding_mode == rmTowardNegative); 1632 } 1633 1634 return fs; 1635 } 1636 1637 /* Normalized addition. */ 1638 APFloat::opStatus 1639 APFloat::add(const APFloat &rhs, roundingMode rounding_mode) 1640 { 1641 return addOrSubtract(rhs, rounding_mode, false); 1642 } 1643 1644 /* Normalized subtraction. */ 1645 APFloat::opStatus 1646 APFloat::subtract(const APFloat &rhs, roundingMode rounding_mode) 1647 { 1648 return addOrSubtract(rhs, rounding_mode, true); 1649 } 1650 1651 /* Normalized multiply. */ 1652 APFloat::opStatus 1653 APFloat::multiply(const APFloat &rhs, roundingMode rounding_mode) 1654 { 1655 opStatus fs; 1656 1657 sign ^= rhs.sign; 1658 fs = multiplySpecials(rhs); 1659 1660 if (isFiniteNonZero()) { 1661 lostFraction lost_fraction = multiplySignificand(rhs, 0); 1662 fs = normalize(rounding_mode, lost_fraction); 1663 if (lost_fraction != lfExactlyZero) 1664 fs = (opStatus) (fs | opInexact); 1665 } 1666 1667 return fs; 1668 } 1669 1670 /* Normalized divide. */ 1671 APFloat::opStatus 1672 APFloat::divide(const APFloat &rhs, roundingMode rounding_mode) 1673 { 1674 opStatus fs; 1675 1676 sign ^= rhs.sign; 1677 fs = divideSpecials(rhs); 1678 1679 if (isFiniteNonZero()) { 1680 lostFraction lost_fraction = divideSignificand(rhs); 1681 fs = normalize(rounding_mode, lost_fraction); 1682 if (lost_fraction != lfExactlyZero) 1683 fs = (opStatus) (fs | opInexact); 1684 } 1685 1686 return fs; 1687 } 1688 1689 /* Normalized remainder. This is not currently correct in all cases. */ 1690 APFloat::opStatus 1691 APFloat::remainder(const APFloat &rhs) 1692 { 1693 opStatus fs; 1694 APFloat V = *this; 1695 unsigned int origSign = sign; 1696 1697 fs = V.divide(rhs, rmNearestTiesToEven); 1698 if (fs == opDivByZero) 1699 return fs; 1700 1701 int parts = partCount(); 1702 integerPart *x = new integerPart[parts]; 1703 bool ignored; 1704 fs = V.convertToInteger(x, parts * integerPartWidth, true, 1705 rmNearestTiesToEven, &ignored); 1706 if (fs==opInvalidOp) 1707 return fs; 1708 1709 fs = V.convertFromZeroExtendedInteger(x, parts * integerPartWidth, true, 1710 rmNearestTiesToEven); 1711 assert(fs==opOK); // should always work 1712 1713 fs = V.multiply(rhs, rmNearestTiesToEven); 1714 assert(fs==opOK || fs==opInexact); // should not overflow or underflow 1715 1716 fs = subtract(V, rmNearestTiesToEven); 1717 assert(fs==opOK || fs==opInexact); // likewise 1718 1719 if (isZero()) 1720 sign = origSign; // IEEE754 requires this 1721 delete[] x; 1722 return fs; 1723 } 1724 1725 /* Normalized llvm frem (C fmod). 1726 This is not currently correct in all cases. */ 1727 APFloat::opStatus 1728 APFloat::mod(const APFloat &rhs, roundingMode rounding_mode) 1729 { 1730 opStatus fs; 1731 fs = modSpecials(rhs); 1732 1733 if (isFiniteNonZero() && rhs.isFiniteNonZero()) { 1734 APFloat V = *this; 1735 unsigned int origSign = sign; 1736 1737 fs = V.divide(rhs, rmNearestTiesToEven); 1738 if (fs == opDivByZero) 1739 return fs; 1740 1741 int parts = partCount(); 1742 integerPart *x = new integerPart[parts]; 1743 bool ignored; 1744 fs = V.convertToInteger(x, parts * integerPartWidth, true, 1745 rmTowardZero, &ignored); 1746 if (fs==opInvalidOp) 1747 return fs; 1748 1749 fs = V.convertFromZeroExtendedInteger(x, parts * integerPartWidth, true, 1750 rmNearestTiesToEven); 1751 assert(fs==opOK); // should always work 1752 1753 fs = V.multiply(rhs, rounding_mode); 1754 assert(fs==opOK || fs==opInexact); // should not overflow or underflow 1755 1756 fs = subtract(V, rounding_mode); 1757 assert(fs==opOK || fs==opInexact); // likewise 1758 1759 if (isZero()) 1760 sign = origSign; // IEEE754 requires this 1761 delete[] x; 1762 } 1763 return fs; 1764 } 1765 1766 /* Normalized fused-multiply-add. */ 1767 APFloat::opStatus 1768 APFloat::fusedMultiplyAdd(const APFloat &multiplicand, 1769 const APFloat &addend, 1770 roundingMode rounding_mode) 1771 { 1772 opStatus fs; 1773 1774 /* Post-multiplication sign, before addition. */ 1775 sign ^= multiplicand.sign; 1776 1777 /* If and only if all arguments are normal do we need to do an 1778 extended-precision calculation. */ 1779 if (isFiniteNonZero() && 1780 multiplicand.isFiniteNonZero() && 1781 addend.isFiniteNonZero()) { 1782 lostFraction lost_fraction; 1783 1784 lost_fraction = multiplySignificand(multiplicand, &addend); 1785 fs = normalize(rounding_mode, lost_fraction); 1786 if (lost_fraction != lfExactlyZero) 1787 fs = (opStatus) (fs | opInexact); 1788 1789 /* If two numbers add (exactly) to zero, IEEE 754 decrees it is a 1790 positive zero unless rounding to minus infinity, except that 1791 adding two like-signed zeroes gives that zero. */ 1792 if (category == fcZero && sign != addend.sign) 1793 sign = (rounding_mode == rmTowardNegative); 1794 } else { 1795 fs = multiplySpecials(multiplicand); 1796 1797 /* FS can only be opOK or opInvalidOp. There is no more work 1798 to do in the latter case. The IEEE-754R standard says it is 1799 implementation-defined in this case whether, if ADDEND is a 1800 quiet NaN, we raise invalid op; this implementation does so. 1801 1802 If we need to do the addition we can do so with normal 1803 precision. */ 1804 if (fs == opOK) 1805 fs = addOrSubtract(addend, rounding_mode, false); 1806 } 1807 1808 return fs; 1809 } 1810 1811 /* Rounding-mode corrrect round to integral value. */ 1812 APFloat::opStatus APFloat::roundToIntegral(roundingMode rounding_mode) { 1813 opStatus fs; 1814 1815 // If the exponent is large enough, we know that this value is already 1816 // integral, and the arithmetic below would potentially cause it to saturate 1817 // to +/-Inf. Bail out early instead. 1818 if (isFiniteNonZero() && exponent+1 >= (int)semanticsPrecision(*semantics)) 1819 return opOK; 1820 1821 // The algorithm here is quite simple: we add 2^(p-1), where p is the 1822 // precision of our format, and then subtract it back off again. The choice 1823 // of rounding modes for the addition/subtraction determines the rounding mode 1824 // for our integral rounding as well. 1825 // NOTE: When the input value is negative, we do subtraction followed by 1826 // addition instead. 1827 APInt IntegerConstant(NextPowerOf2(semanticsPrecision(*semantics)), 1); 1828 IntegerConstant <<= semanticsPrecision(*semantics)-1; 1829 APFloat MagicConstant(*semantics); 1830 fs = MagicConstant.convertFromAPInt(IntegerConstant, false, 1831 rmNearestTiesToEven); 1832 MagicConstant.copySign(*this); 1833 1834 if (fs != opOK) 1835 return fs; 1836 1837 // Preserve the input sign so that we can handle 0.0/-0.0 cases correctly. 1838 bool inputSign = isNegative(); 1839 1840 fs = add(MagicConstant, rounding_mode); 1841 if (fs != opOK && fs != opInexact) 1842 return fs; 1843 1844 fs = subtract(MagicConstant, rounding_mode); 1845 1846 // Restore the input sign. 1847 if (inputSign != isNegative()) 1848 changeSign(); 1849 1850 return fs; 1851 } 1852 1853 1854 /* Comparison requires normalized numbers. */ 1855 APFloat::cmpResult 1856 APFloat::compare(const APFloat &rhs) const 1857 { 1858 cmpResult result; 1859 1860 assert(semantics == rhs.semantics); 1861 1862 switch (PackCategoriesIntoKey(category, rhs.category)) { 1863 default: 1864 llvm_unreachable(0); 1865 1866 case PackCategoriesIntoKey(fcNaN, fcZero): 1867 case PackCategoriesIntoKey(fcNaN, fcNormal): 1868 case PackCategoriesIntoKey(fcNaN, fcInfinity): 1869 case PackCategoriesIntoKey(fcNaN, fcNaN): 1870 case PackCategoriesIntoKey(fcZero, fcNaN): 1871 case PackCategoriesIntoKey(fcNormal, fcNaN): 1872 case PackCategoriesIntoKey(fcInfinity, fcNaN): 1873 return cmpUnordered; 1874 1875 case PackCategoriesIntoKey(fcInfinity, fcNormal): 1876 case PackCategoriesIntoKey(fcInfinity, fcZero): 1877 case PackCategoriesIntoKey(fcNormal, fcZero): 1878 if (sign) 1879 return cmpLessThan; 1880 else 1881 return cmpGreaterThan; 1882 1883 case PackCategoriesIntoKey(fcNormal, fcInfinity): 1884 case PackCategoriesIntoKey(fcZero, fcInfinity): 1885 case PackCategoriesIntoKey(fcZero, fcNormal): 1886 if (rhs.sign) 1887 return cmpGreaterThan; 1888 else 1889 return cmpLessThan; 1890 1891 case PackCategoriesIntoKey(fcInfinity, fcInfinity): 1892 if (sign == rhs.sign) 1893 return cmpEqual; 1894 else if (sign) 1895 return cmpLessThan; 1896 else 1897 return cmpGreaterThan; 1898 1899 case PackCategoriesIntoKey(fcZero, fcZero): 1900 return cmpEqual; 1901 1902 case PackCategoriesIntoKey(fcNormal, fcNormal): 1903 break; 1904 } 1905 1906 /* Two normal numbers. Do they have the same sign? */ 1907 if (sign != rhs.sign) { 1908 if (sign) 1909 result = cmpLessThan; 1910 else 1911 result = cmpGreaterThan; 1912 } else { 1913 /* Compare absolute values; invert result if negative. */ 1914 result = compareAbsoluteValue(rhs); 1915 1916 if (sign) { 1917 if (result == cmpLessThan) 1918 result = cmpGreaterThan; 1919 else if (result == cmpGreaterThan) 1920 result = cmpLessThan; 1921 } 1922 } 1923 1924 return result; 1925 } 1926 1927 /// APFloat::convert - convert a value of one floating point type to another. 1928 /// The return value corresponds to the IEEE754 exceptions. *losesInfo 1929 /// records whether the transformation lost information, i.e. whether 1930 /// converting the result back to the original type will produce the 1931 /// original value (this is almost the same as return value==fsOK, but there 1932 /// are edge cases where this is not so). 1933 1934 APFloat::opStatus 1935 APFloat::convert(const fltSemantics &toSemantics, 1936 roundingMode rounding_mode, bool *losesInfo) 1937 { 1938 lostFraction lostFraction; 1939 unsigned int newPartCount, oldPartCount; 1940 opStatus fs; 1941 int shift; 1942 const fltSemantics &fromSemantics = *semantics; 1943 1944 lostFraction = lfExactlyZero; 1945 newPartCount = partCountForBits(toSemantics.precision + 1); 1946 oldPartCount = partCount(); 1947 shift = toSemantics.precision - fromSemantics.precision; 1948 1949 bool X86SpecialNan = false; 1950 if (&fromSemantics == &APFloat::x87DoubleExtended && 1951 &toSemantics != &APFloat::x87DoubleExtended && category == fcNaN && 1952 (!(*significandParts() & 0x8000000000000000ULL) || 1953 !(*significandParts() & 0x4000000000000000ULL))) { 1954 // x86 has some unusual NaNs which cannot be represented in any other 1955 // format; note them here. 1956 X86SpecialNan = true; 1957 } 1958 1959 // If this is a truncation, perform the shift before we narrow the storage. 1960 if (shift < 0 && (isFiniteNonZero() || category==fcNaN)) 1961 lostFraction = shiftRight(significandParts(), oldPartCount, -shift); 1962 1963 // Fix the storage so it can hold to new value. 1964 if (newPartCount > oldPartCount) { 1965 // The new type requires more storage; make it available. 1966 integerPart *newParts; 1967 newParts = new integerPart[newPartCount]; 1968 APInt::tcSet(newParts, 0, newPartCount); 1969 if (isFiniteNonZero() || category==fcNaN) 1970 APInt::tcAssign(newParts, significandParts(), oldPartCount); 1971 freeSignificand(); 1972 significand.parts = newParts; 1973 } else if (newPartCount == 1 && oldPartCount != 1) { 1974 // Switch to built-in storage for a single part. 1975 integerPart newPart = 0; 1976 if (isFiniteNonZero() || category==fcNaN) 1977 newPart = significandParts()[0]; 1978 freeSignificand(); 1979 significand.part = newPart; 1980 } 1981 1982 // Now that we have the right storage, switch the semantics. 1983 semantics = &toSemantics; 1984 1985 // If this is an extension, perform the shift now that the storage is 1986 // available. 1987 if (shift > 0 && (isFiniteNonZero() || category==fcNaN)) 1988 APInt::tcShiftLeft(significandParts(), newPartCount, shift); 1989 1990 if (isFiniteNonZero()) { 1991 fs = normalize(rounding_mode, lostFraction); 1992 *losesInfo = (fs != opOK); 1993 } else if (category == fcNaN) { 1994 *losesInfo = lostFraction != lfExactlyZero || X86SpecialNan; 1995 1996 // For x87 extended precision, we want to make a NaN, not a special NaN if 1997 // the input wasn't special either. 1998 if (!X86SpecialNan && semantics == &APFloat::x87DoubleExtended) 1999 APInt::tcSetBit(significandParts(), semantics->precision - 1); 2000 2001 // gcc forces the Quiet bit on, which means (float)(double)(float_sNan) 2002 // does not give you back the same bits. This is dubious, and we 2003 // don't currently do it. You're really supposed to get 2004 // an invalid operation signal at runtime, but nobody does that. 2005 fs = opOK; 2006 } else { 2007 *losesInfo = false; 2008 fs = opOK; 2009 } 2010 2011 return fs; 2012 } 2013 2014 /* Convert a floating point number to an integer according to the 2015 rounding mode. If the rounded integer value is out of range this 2016 returns an invalid operation exception and the contents of the 2017 destination parts are unspecified. If the rounded value is in 2018 range but the floating point number is not the exact integer, the C 2019 standard doesn't require an inexact exception to be raised. IEEE 2020 854 does require it so we do that. 2021 2022 Note that for conversions to integer type the C standard requires 2023 round-to-zero to always be used. */ 2024 APFloat::opStatus 2025 APFloat::convertToSignExtendedInteger(integerPart *parts, unsigned int width, 2026 bool isSigned, 2027 roundingMode rounding_mode, 2028 bool *isExact) const 2029 { 2030 lostFraction lost_fraction; 2031 const integerPart *src; 2032 unsigned int dstPartsCount, truncatedBits; 2033 2034 *isExact = false; 2035 2036 /* Handle the three special cases first. */ 2037 if (category == fcInfinity || category == fcNaN) 2038 return opInvalidOp; 2039 2040 dstPartsCount = partCountForBits(width); 2041 2042 if (category == fcZero) { 2043 APInt::tcSet(parts, 0, dstPartsCount); 2044 // Negative zero can't be represented as an int. 2045 *isExact = !sign; 2046 return opOK; 2047 } 2048 2049 src = significandParts(); 2050 2051 /* Step 1: place our absolute value, with any fraction truncated, in 2052 the destination. */ 2053 if (exponent < 0) { 2054 /* Our absolute value is less than one; truncate everything. */ 2055 APInt::tcSet(parts, 0, dstPartsCount); 2056 /* For exponent -1 the integer bit represents .5, look at that. 2057 For smaller exponents leftmost truncated bit is 0. */ 2058 truncatedBits = semantics->precision -1U - exponent; 2059 } else { 2060 /* We want the most significant (exponent + 1) bits; the rest are 2061 truncated. */ 2062 unsigned int bits = exponent + 1U; 2063 2064 /* Hopelessly large in magnitude? */ 2065 if (bits > width) 2066 return opInvalidOp; 2067 2068 if (bits < semantics->precision) { 2069 /* We truncate (semantics->precision - bits) bits. */ 2070 truncatedBits = semantics->precision - bits; 2071 APInt::tcExtract(parts, dstPartsCount, src, bits, truncatedBits); 2072 } else { 2073 /* We want at least as many bits as are available. */ 2074 APInt::tcExtract(parts, dstPartsCount, src, semantics->precision, 0); 2075 APInt::tcShiftLeft(parts, dstPartsCount, bits - semantics->precision); 2076 truncatedBits = 0; 2077 } 2078 } 2079 2080 /* Step 2: work out any lost fraction, and increment the absolute 2081 value if we would round away from zero. */ 2082 if (truncatedBits) { 2083 lost_fraction = lostFractionThroughTruncation(src, partCount(), 2084 truncatedBits); 2085 if (lost_fraction != lfExactlyZero && 2086 roundAwayFromZero(rounding_mode, lost_fraction, truncatedBits)) { 2087 if (APInt::tcIncrement(parts, dstPartsCount)) 2088 return opInvalidOp; /* Overflow. */ 2089 } 2090 } else { 2091 lost_fraction = lfExactlyZero; 2092 } 2093 2094 /* Step 3: check if we fit in the destination. */ 2095 unsigned int omsb = APInt::tcMSB(parts, dstPartsCount) + 1; 2096 2097 if (sign) { 2098 if (!isSigned) { 2099 /* Negative numbers cannot be represented as unsigned. */ 2100 if (omsb != 0) 2101 return opInvalidOp; 2102 } else { 2103 /* It takes omsb bits to represent the unsigned integer value. 2104 We lose a bit for the sign, but care is needed as the 2105 maximally negative integer is a special case. */ 2106 if (omsb == width && APInt::tcLSB(parts, dstPartsCount) + 1 != omsb) 2107 return opInvalidOp; 2108 2109 /* This case can happen because of rounding. */ 2110 if (omsb > width) 2111 return opInvalidOp; 2112 } 2113 2114 APInt::tcNegate (parts, dstPartsCount); 2115 } else { 2116 if (omsb >= width + !isSigned) 2117 return opInvalidOp; 2118 } 2119 2120 if (lost_fraction == lfExactlyZero) { 2121 *isExact = true; 2122 return opOK; 2123 } else 2124 return opInexact; 2125 } 2126 2127 /* Same as convertToSignExtendedInteger, except we provide 2128 deterministic values in case of an invalid operation exception, 2129 namely zero for NaNs and the minimal or maximal value respectively 2130 for underflow or overflow. 2131 The *isExact output tells whether the result is exact, in the sense 2132 that converting it back to the original floating point type produces 2133 the original value. This is almost equivalent to result==opOK, 2134 except for negative zeroes. 2135 */ 2136 APFloat::opStatus 2137 APFloat::convertToInteger(integerPart *parts, unsigned int width, 2138 bool isSigned, 2139 roundingMode rounding_mode, bool *isExact) const 2140 { 2141 opStatus fs; 2142 2143 fs = convertToSignExtendedInteger(parts, width, isSigned, rounding_mode, 2144 isExact); 2145 2146 if (fs == opInvalidOp) { 2147 unsigned int bits, dstPartsCount; 2148 2149 dstPartsCount = partCountForBits(width); 2150 2151 if (category == fcNaN) 2152 bits = 0; 2153 else if (sign) 2154 bits = isSigned; 2155 else 2156 bits = width - isSigned; 2157 2158 APInt::tcSetLeastSignificantBits(parts, dstPartsCount, bits); 2159 if (sign && isSigned) 2160 APInt::tcShiftLeft(parts, dstPartsCount, width - 1); 2161 } 2162 2163 return fs; 2164 } 2165 2166 /* Same as convertToInteger(integerPart*, ...), except the result is returned in 2167 an APSInt, whose initial bit-width and signed-ness are used to determine the 2168 precision of the conversion. 2169 */ 2170 APFloat::opStatus 2171 APFloat::convertToInteger(APSInt &result, 2172 roundingMode rounding_mode, bool *isExact) const 2173 { 2174 unsigned bitWidth = result.getBitWidth(); 2175 SmallVector<uint64_t, 4> parts(result.getNumWords()); 2176 opStatus status = convertToInteger( 2177 parts.data(), bitWidth, result.isSigned(), rounding_mode, isExact); 2178 // Keeps the original signed-ness. 2179 result = APInt(bitWidth, parts); 2180 return status; 2181 } 2182 2183 /* Convert an unsigned integer SRC to a floating point number, 2184 rounding according to ROUNDING_MODE. The sign of the floating 2185 point number is not modified. */ 2186 APFloat::opStatus 2187 APFloat::convertFromUnsignedParts(const integerPart *src, 2188 unsigned int srcCount, 2189 roundingMode rounding_mode) 2190 { 2191 unsigned int omsb, precision, dstCount; 2192 integerPart *dst; 2193 lostFraction lost_fraction; 2194 2195 category = fcNormal; 2196 omsb = APInt::tcMSB(src, srcCount) + 1; 2197 dst = significandParts(); 2198 dstCount = partCount(); 2199 precision = semantics->precision; 2200 2201 /* We want the most significant PRECISION bits of SRC. There may not 2202 be that many; extract what we can. */ 2203 if (precision <= omsb) { 2204 exponent = omsb - 1; 2205 lost_fraction = lostFractionThroughTruncation(src, srcCount, 2206 omsb - precision); 2207 APInt::tcExtract(dst, dstCount, src, precision, omsb - precision); 2208 } else { 2209 exponent = precision - 1; 2210 lost_fraction = lfExactlyZero; 2211 APInt::tcExtract(dst, dstCount, src, omsb, 0); 2212 } 2213 2214 return normalize(rounding_mode, lost_fraction); 2215 } 2216 2217 APFloat::opStatus 2218 APFloat::convertFromAPInt(const APInt &Val, 2219 bool isSigned, 2220 roundingMode rounding_mode) 2221 { 2222 unsigned int partCount = Val.getNumWords(); 2223 APInt api = Val; 2224 2225 sign = false; 2226 if (isSigned && api.isNegative()) { 2227 sign = true; 2228 api = -api; 2229 } 2230 2231 return convertFromUnsignedParts(api.getRawData(), partCount, rounding_mode); 2232 } 2233 2234 /* Convert a two's complement integer SRC to a floating point number, 2235 rounding according to ROUNDING_MODE. ISSIGNED is true if the 2236 integer is signed, in which case it must be sign-extended. */ 2237 APFloat::opStatus 2238 APFloat::convertFromSignExtendedInteger(const integerPart *src, 2239 unsigned int srcCount, 2240 bool isSigned, 2241 roundingMode rounding_mode) 2242 { 2243 opStatus status; 2244 2245 if (isSigned && 2246 APInt::tcExtractBit(src, srcCount * integerPartWidth - 1)) { 2247 integerPart *copy; 2248 2249 /* If we're signed and negative negate a copy. */ 2250 sign = true; 2251 copy = new integerPart[srcCount]; 2252 APInt::tcAssign(copy, src, srcCount); 2253 APInt::tcNegate(copy, srcCount); 2254 status = convertFromUnsignedParts(copy, srcCount, rounding_mode); 2255 delete [] copy; 2256 } else { 2257 sign = false; 2258 status = convertFromUnsignedParts(src, srcCount, rounding_mode); 2259 } 2260 2261 return status; 2262 } 2263 2264 /* FIXME: should this just take a const APInt reference? */ 2265 APFloat::opStatus 2266 APFloat::convertFromZeroExtendedInteger(const integerPart *parts, 2267 unsigned int width, bool isSigned, 2268 roundingMode rounding_mode) 2269 { 2270 unsigned int partCount = partCountForBits(width); 2271 APInt api = APInt(width, makeArrayRef(parts, partCount)); 2272 2273 sign = false; 2274 if (isSigned && APInt::tcExtractBit(parts, width - 1)) { 2275 sign = true; 2276 api = -api; 2277 } 2278 2279 return convertFromUnsignedParts(api.getRawData(), partCount, rounding_mode); 2280 } 2281 2282 APFloat::opStatus 2283 APFloat::convertFromHexadecimalString(StringRef s, roundingMode rounding_mode) 2284 { 2285 lostFraction lost_fraction = lfExactlyZero; 2286 integerPart *significand; 2287 unsigned int bitPos, partsCount; 2288 StringRef::iterator dot, firstSignificantDigit; 2289 2290 zeroSignificand(); 2291 exponent = 0; 2292 category = fcNormal; 2293 2294 significand = significandParts(); 2295 partsCount = partCount(); 2296 bitPos = partsCount * integerPartWidth; 2297 2298 /* Skip leading zeroes and any (hexa)decimal point. */ 2299 StringRef::iterator begin = s.begin(); 2300 StringRef::iterator end = s.end(); 2301 StringRef::iterator p = skipLeadingZeroesAndAnyDot(begin, end, &dot); 2302 firstSignificantDigit = p; 2303 2304 for (; p != end;) { 2305 integerPart hex_value; 2306 2307 if (*p == '.') { 2308 assert(dot == end && "String contains multiple dots"); 2309 dot = p++; 2310 if (p == end) { 2311 break; 2312 } 2313 } 2314 2315 hex_value = hexDigitValue(*p); 2316 if (hex_value == -1U) { 2317 break; 2318 } 2319 2320 p++; 2321 2322 if (p == end) { 2323 break; 2324 } else { 2325 /* Store the number whilst 4-bit nibbles remain. */ 2326 if (bitPos) { 2327 bitPos -= 4; 2328 hex_value <<= bitPos % integerPartWidth; 2329 significand[bitPos / integerPartWidth] |= hex_value; 2330 } else { 2331 lost_fraction = trailingHexadecimalFraction(p, end, hex_value); 2332 while (p != end && hexDigitValue(*p) != -1U) 2333 p++; 2334 break; 2335 } 2336 } 2337 } 2338 2339 /* Hex floats require an exponent but not a hexadecimal point. */ 2340 assert(p != end && "Hex strings require an exponent"); 2341 assert((*p == 'p' || *p == 'P') && "Invalid character in significand"); 2342 assert(p != begin && "Significand has no digits"); 2343 assert((dot == end || p - begin != 1) && "Significand has no digits"); 2344 2345 /* Ignore the exponent if we are zero. */ 2346 if (p != firstSignificantDigit) { 2347 int expAdjustment; 2348 2349 /* Implicit hexadecimal point? */ 2350 if (dot == end) 2351 dot = p; 2352 2353 /* Calculate the exponent adjustment implicit in the number of 2354 significant digits. */ 2355 expAdjustment = static_cast<int>(dot - firstSignificantDigit); 2356 if (expAdjustment < 0) 2357 expAdjustment++; 2358 expAdjustment = expAdjustment * 4 - 1; 2359 2360 /* Adjust for writing the significand starting at the most 2361 significant nibble. */ 2362 expAdjustment += semantics->precision; 2363 expAdjustment -= partsCount * integerPartWidth; 2364 2365 /* Adjust for the given exponent. */ 2366 exponent = totalExponent(p + 1, end, expAdjustment); 2367 } 2368 2369 return normalize(rounding_mode, lost_fraction); 2370 } 2371 2372 APFloat::opStatus 2373 APFloat::roundSignificandWithExponent(const integerPart *decSigParts, 2374 unsigned sigPartCount, int exp, 2375 roundingMode rounding_mode) 2376 { 2377 unsigned int parts, pow5PartCount; 2378 fltSemantics calcSemantics = { 32767, -32767, 0 }; 2379 integerPart pow5Parts[maxPowerOfFiveParts]; 2380 bool isNearest; 2381 2382 isNearest = (rounding_mode == rmNearestTiesToEven || 2383 rounding_mode == rmNearestTiesToAway); 2384 2385 parts = partCountForBits(semantics->precision + 11); 2386 2387 /* Calculate pow(5, abs(exp)). */ 2388 pow5PartCount = powerOf5(pow5Parts, exp >= 0 ? exp: -exp); 2389 2390 for (;; parts *= 2) { 2391 opStatus sigStatus, powStatus; 2392 unsigned int excessPrecision, truncatedBits; 2393 2394 calcSemantics.precision = parts * integerPartWidth - 1; 2395 excessPrecision = calcSemantics.precision - semantics->precision; 2396 truncatedBits = excessPrecision; 2397 2398 APFloat decSig = APFloat::getZero(calcSemantics, sign); 2399 APFloat pow5(calcSemantics); 2400 2401 sigStatus = decSig.convertFromUnsignedParts(decSigParts, sigPartCount, 2402 rmNearestTiesToEven); 2403 powStatus = pow5.convertFromUnsignedParts(pow5Parts, pow5PartCount, 2404 rmNearestTiesToEven); 2405 /* Add exp, as 10^n = 5^n * 2^n. */ 2406 decSig.exponent += exp; 2407 2408 lostFraction calcLostFraction; 2409 integerPart HUerr, HUdistance; 2410 unsigned int powHUerr; 2411 2412 if (exp >= 0) { 2413 /* multiplySignificand leaves the precision-th bit set to 1. */ 2414 calcLostFraction = decSig.multiplySignificand(pow5, NULL); 2415 powHUerr = powStatus != opOK; 2416 } else { 2417 calcLostFraction = decSig.divideSignificand(pow5); 2418 /* Denormal numbers have less precision. */ 2419 if (decSig.exponent < semantics->minExponent) { 2420 excessPrecision += (semantics->minExponent - decSig.exponent); 2421 truncatedBits = excessPrecision; 2422 if (excessPrecision > calcSemantics.precision) 2423 excessPrecision = calcSemantics.precision; 2424 } 2425 /* Extra half-ulp lost in reciprocal of exponent. */ 2426 powHUerr = (powStatus == opOK && calcLostFraction == lfExactlyZero) ? 0:2; 2427 } 2428 2429 /* Both multiplySignificand and divideSignificand return the 2430 result with the integer bit set. */ 2431 assert(APInt::tcExtractBit 2432 (decSig.significandParts(), calcSemantics.precision - 1) == 1); 2433 2434 HUerr = HUerrBound(calcLostFraction != lfExactlyZero, sigStatus != opOK, 2435 powHUerr); 2436 HUdistance = 2 * ulpsFromBoundary(decSig.significandParts(), 2437 excessPrecision, isNearest); 2438 2439 /* Are we guaranteed to round correctly if we truncate? */ 2440 if (HUdistance >= HUerr) { 2441 APInt::tcExtract(significandParts(), partCount(), decSig.significandParts(), 2442 calcSemantics.precision - excessPrecision, 2443 excessPrecision); 2444 /* Take the exponent of decSig. If we tcExtract-ed less bits 2445 above we must adjust our exponent to compensate for the 2446 implicit right shift. */ 2447 exponent = (decSig.exponent + semantics->precision 2448 - (calcSemantics.precision - excessPrecision)); 2449 calcLostFraction = lostFractionThroughTruncation(decSig.significandParts(), 2450 decSig.partCount(), 2451 truncatedBits); 2452 return normalize(rounding_mode, calcLostFraction); 2453 } 2454 } 2455 } 2456 2457 APFloat::opStatus 2458 APFloat::convertFromDecimalString(StringRef str, roundingMode rounding_mode) 2459 { 2460 decimalInfo D; 2461 opStatus fs; 2462 2463 /* Scan the text. */ 2464 StringRef::iterator p = str.begin(); 2465 interpretDecimal(p, str.end(), &D); 2466 2467 /* Handle the quick cases. First the case of no significant digits, 2468 i.e. zero, and then exponents that are obviously too large or too 2469 small. Writing L for log 10 / log 2, a number d.ddddd*10^exp 2470 definitely overflows if 2471 2472 (exp - 1) * L >= maxExponent 2473 2474 and definitely underflows to zero where 2475 2476 (exp + 1) * L <= minExponent - precision 2477 2478 With integer arithmetic the tightest bounds for L are 2479 2480 93/28 < L < 196/59 [ numerator <= 256 ] 2481 42039/12655 < L < 28738/8651 [ numerator <= 65536 ] 2482 */ 2483 2484 // Test if we have a zero number allowing for strings with no null terminators 2485 // and zero decimals with non-zero exponents. 2486 // 2487 // We computed firstSigDigit by ignoring all zeros and dots. Thus if 2488 // D->firstSigDigit equals str.end(), every digit must be a zero and there can 2489 // be at most one dot. On the other hand, if we have a zero with a non-zero 2490 // exponent, then we know that D.firstSigDigit will be non-numeric. 2491 if (decDigitValue(*D.firstSigDigit) >= 10U || D.firstSigDigit == str.end()) { 2492 category = fcZero; 2493 fs = opOK; 2494 2495 /* Check whether the normalized exponent is high enough to overflow 2496 max during the log-rebasing in the max-exponent check below. */ 2497 } else if (D.normalizedExponent - 1 > INT_MAX / 42039) { 2498 fs = handleOverflow(rounding_mode); 2499 2500 /* If it wasn't, then it also wasn't high enough to overflow max 2501 during the log-rebasing in the min-exponent check. Check that it 2502 won't overflow min in either check, then perform the min-exponent 2503 check. */ 2504 } else if (D.normalizedExponent - 1 < INT_MIN / 42039 || 2505 (D.normalizedExponent + 1) * 28738 <= 2506 8651 * (semantics->minExponent - (int) semantics->precision)) { 2507 /* Underflow to zero and round. */ 2508 zeroSignificand(); 2509 fs = normalize(rounding_mode, lfLessThanHalf); 2510 2511 /* We can finally safely perform the max-exponent check. */ 2512 } else if ((D.normalizedExponent - 1) * 42039 2513 >= 12655 * semantics->maxExponent) { 2514 /* Overflow and round. */ 2515 fs = handleOverflow(rounding_mode); 2516 } else { 2517 integerPart *decSignificand; 2518 unsigned int partCount; 2519 2520 /* A tight upper bound on number of bits required to hold an 2521 N-digit decimal integer is N * 196 / 59. Allocate enough space 2522 to hold the full significand, and an extra part required by 2523 tcMultiplyPart. */ 2524 partCount = static_cast<unsigned int>(D.lastSigDigit - D.firstSigDigit) + 1; 2525 partCount = partCountForBits(1 + 196 * partCount / 59); 2526 decSignificand = new integerPart[partCount + 1]; 2527 partCount = 0; 2528 2529 /* Convert to binary efficiently - we do almost all multiplication 2530 in an integerPart. When this would overflow do we do a single 2531 bignum multiplication, and then revert again to multiplication 2532 in an integerPart. */ 2533 do { 2534 integerPart decValue, val, multiplier; 2535 2536 val = 0; 2537 multiplier = 1; 2538 2539 do { 2540 if (*p == '.') { 2541 p++; 2542 if (p == str.end()) { 2543 break; 2544 } 2545 } 2546 decValue = decDigitValue(*p++); 2547 assert(decValue < 10U && "Invalid character in significand"); 2548 multiplier *= 10; 2549 val = val * 10 + decValue; 2550 /* The maximum number that can be multiplied by ten with any 2551 digit added without overflowing an integerPart. */ 2552 } while (p <= D.lastSigDigit && multiplier <= (~ (integerPart) 0 - 9) / 10); 2553 2554 /* Multiply out the current part. */ 2555 APInt::tcMultiplyPart(decSignificand, decSignificand, multiplier, val, 2556 partCount, partCount + 1, false); 2557 2558 /* If we used another part (likely but not guaranteed), increase 2559 the count. */ 2560 if (decSignificand[partCount]) 2561 partCount++; 2562 } while (p <= D.lastSigDigit); 2563 2564 category = fcNormal; 2565 fs = roundSignificandWithExponent(decSignificand, partCount, 2566 D.exponent, rounding_mode); 2567 2568 delete [] decSignificand; 2569 } 2570 2571 return fs; 2572 } 2573 2574 bool 2575 APFloat::convertFromStringSpecials(StringRef str) { 2576 if (str.equals("inf") || str.equals("INFINITY")) { 2577 makeInf(false); 2578 return true; 2579 } 2580 2581 if (str.equals("-inf") || str.equals("-INFINITY")) { 2582 makeInf(true); 2583 return true; 2584 } 2585 2586 if (str.equals("nan") || str.equals("NaN")) { 2587 makeNaN(false, false); 2588 return true; 2589 } 2590 2591 if (str.equals("-nan") || str.equals("-NaN")) { 2592 makeNaN(false, true); 2593 return true; 2594 } 2595 2596 return false; 2597 } 2598 2599 APFloat::opStatus 2600 APFloat::convertFromString(StringRef str, roundingMode rounding_mode) 2601 { 2602 assert(!str.empty() && "Invalid string length"); 2603 2604 // Handle special cases. 2605 if (convertFromStringSpecials(str)) 2606 return opOK; 2607 2608 /* Handle a leading minus sign. */ 2609 StringRef::iterator p = str.begin(); 2610 size_t slen = str.size(); 2611 sign = *p == '-' ? 1 : 0; 2612 if (*p == '-' || *p == '+') { 2613 p++; 2614 slen--; 2615 assert(slen && "String has no digits"); 2616 } 2617 2618 if (slen >= 2 && p[0] == '0' && (p[1] == 'x' || p[1] == 'X')) { 2619 assert(slen - 2 && "Invalid string"); 2620 return convertFromHexadecimalString(StringRef(p + 2, slen - 2), 2621 rounding_mode); 2622 } 2623 2624 return convertFromDecimalString(StringRef(p, slen), rounding_mode); 2625 } 2626 2627 /* Write out a hexadecimal representation of the floating point value 2628 to DST, which must be of sufficient size, in the C99 form 2629 [-]0xh.hhhhp[+-]d. Return the number of characters written, 2630 excluding the terminating NUL. 2631 2632 If UPPERCASE, the output is in upper case, otherwise in lower case. 2633 2634 HEXDIGITS digits appear altogether, rounding the value if 2635 necessary. If HEXDIGITS is 0, the minimal precision to display the 2636 number precisely is used instead. If nothing would appear after 2637 the decimal point it is suppressed. 2638 2639 The decimal exponent is always printed and has at least one digit. 2640 Zero values display an exponent of zero. Infinities and NaNs 2641 appear as "infinity" or "nan" respectively. 2642 2643 The above rules are as specified by C99. There is ambiguity about 2644 what the leading hexadecimal digit should be. This implementation 2645 uses whatever is necessary so that the exponent is displayed as 2646 stored. This implies the exponent will fall within the IEEE format 2647 range, and the leading hexadecimal digit will be 0 (for denormals), 2648 1 (normal numbers) or 2 (normal numbers rounded-away-from-zero with 2649 any other digits zero). 2650 */ 2651 unsigned int 2652 APFloat::convertToHexString(char *dst, unsigned int hexDigits, 2653 bool upperCase, roundingMode rounding_mode) const 2654 { 2655 char *p; 2656 2657 p = dst; 2658 if (sign) 2659 *dst++ = '-'; 2660 2661 switch (category) { 2662 case fcInfinity: 2663 memcpy (dst, upperCase ? infinityU: infinityL, sizeof infinityU - 1); 2664 dst += sizeof infinityL - 1; 2665 break; 2666 2667 case fcNaN: 2668 memcpy (dst, upperCase ? NaNU: NaNL, sizeof NaNU - 1); 2669 dst += sizeof NaNU - 1; 2670 break; 2671 2672 case fcZero: 2673 *dst++ = '0'; 2674 *dst++ = upperCase ? 'X': 'x'; 2675 *dst++ = '0'; 2676 if (hexDigits > 1) { 2677 *dst++ = '.'; 2678 memset (dst, '0', hexDigits - 1); 2679 dst += hexDigits - 1; 2680 } 2681 *dst++ = upperCase ? 'P': 'p'; 2682 *dst++ = '0'; 2683 break; 2684 2685 case fcNormal: 2686 dst = convertNormalToHexString (dst, hexDigits, upperCase, rounding_mode); 2687 break; 2688 } 2689 2690 *dst = 0; 2691 2692 return static_cast<unsigned int>(dst - p); 2693 } 2694 2695 /* Does the hard work of outputting the correctly rounded hexadecimal 2696 form of a normal floating point number with the specified number of 2697 hexadecimal digits. If HEXDIGITS is zero the minimum number of 2698 digits necessary to print the value precisely is output. */ 2699 char * 2700 APFloat::convertNormalToHexString(char *dst, unsigned int hexDigits, 2701 bool upperCase, 2702 roundingMode rounding_mode) const 2703 { 2704 unsigned int count, valueBits, shift, partsCount, outputDigits; 2705 const char *hexDigitChars; 2706 const integerPart *significand; 2707 char *p; 2708 bool roundUp; 2709 2710 *dst++ = '0'; 2711 *dst++ = upperCase ? 'X': 'x'; 2712 2713 roundUp = false; 2714 hexDigitChars = upperCase ? hexDigitsUpper: hexDigitsLower; 2715 2716 significand = significandParts(); 2717 partsCount = partCount(); 2718 2719 /* +3 because the first digit only uses the single integer bit, so 2720 we have 3 virtual zero most-significant-bits. */ 2721 valueBits = semantics->precision + 3; 2722 shift = integerPartWidth - valueBits % integerPartWidth; 2723 2724 /* The natural number of digits required ignoring trailing 2725 insignificant zeroes. */ 2726 outputDigits = (valueBits - significandLSB () + 3) / 4; 2727 2728 /* hexDigits of zero means use the required number for the 2729 precision. Otherwise, see if we are truncating. If we are, 2730 find out if we need to round away from zero. */ 2731 if (hexDigits) { 2732 if (hexDigits < outputDigits) { 2733 /* We are dropping non-zero bits, so need to check how to round. 2734 "bits" is the number of dropped bits. */ 2735 unsigned int bits; 2736 lostFraction fraction; 2737 2738 bits = valueBits - hexDigits * 4; 2739 fraction = lostFractionThroughTruncation (significand, partsCount, bits); 2740 roundUp = roundAwayFromZero(rounding_mode, fraction, bits); 2741 } 2742 outputDigits = hexDigits; 2743 } 2744 2745 /* Write the digits consecutively, and start writing in the location 2746 of the hexadecimal point. We move the most significant digit 2747 left and add the hexadecimal point later. */ 2748 p = ++dst; 2749 2750 count = (valueBits + integerPartWidth - 1) / integerPartWidth; 2751 2752 while (outputDigits && count) { 2753 integerPart part; 2754 2755 /* Put the most significant integerPartWidth bits in "part". */ 2756 if (--count == partsCount) 2757 part = 0; /* An imaginary higher zero part. */ 2758 else 2759 part = significand[count] << shift; 2760 2761 if (count && shift) 2762 part |= significand[count - 1] >> (integerPartWidth - shift); 2763 2764 /* Convert as much of "part" to hexdigits as we can. */ 2765 unsigned int curDigits = integerPartWidth / 4; 2766 2767 if (curDigits > outputDigits) 2768 curDigits = outputDigits; 2769 dst += partAsHex (dst, part, curDigits, hexDigitChars); 2770 outputDigits -= curDigits; 2771 } 2772 2773 if (roundUp) { 2774 char *q = dst; 2775 2776 /* Note that hexDigitChars has a trailing '0'. */ 2777 do { 2778 q--; 2779 *q = hexDigitChars[hexDigitValue (*q) + 1]; 2780 } while (*q == '0'); 2781 assert(q >= p); 2782 } else { 2783 /* Add trailing zeroes. */ 2784 memset (dst, '0', outputDigits); 2785 dst += outputDigits; 2786 } 2787 2788 /* Move the most significant digit to before the point, and if there 2789 is something after the decimal point add it. This must come 2790 after rounding above. */ 2791 p[-1] = p[0]; 2792 if (dst -1 == p) 2793 dst--; 2794 else 2795 p[0] = '.'; 2796 2797 /* Finally output the exponent. */ 2798 *dst++ = upperCase ? 'P': 'p'; 2799 2800 return writeSignedDecimal (dst, exponent); 2801 } 2802 2803 hash_code llvm::hash_value(const APFloat &Arg) { 2804 if (!Arg.isFiniteNonZero()) 2805 return hash_combine((uint8_t)Arg.category, 2806 // NaN has no sign, fix it at zero. 2807 Arg.isNaN() ? (uint8_t)0 : (uint8_t)Arg.sign, 2808 Arg.semantics->precision); 2809 2810 // Normal floats need their exponent and significand hashed. 2811 return hash_combine((uint8_t)Arg.category, (uint8_t)Arg.sign, 2812 Arg.semantics->precision, Arg.exponent, 2813 hash_combine_range( 2814 Arg.significandParts(), 2815 Arg.significandParts() + Arg.partCount())); 2816 } 2817 2818 // Conversion from APFloat to/from host float/double. It may eventually be 2819 // possible to eliminate these and have everybody deal with APFloats, but that 2820 // will take a while. This approach will not easily extend to long double. 2821 // Current implementation requires integerPartWidth==64, which is correct at 2822 // the moment but could be made more general. 2823 2824 // Denormals have exponent minExponent in APFloat, but minExponent-1 in 2825 // the actual IEEE respresentations. We compensate for that here. 2826 2827 APInt 2828 APFloat::convertF80LongDoubleAPFloatToAPInt() const 2829 { 2830 assert(semantics == (const llvm::fltSemantics*)&x87DoubleExtended); 2831 assert(partCount()==2); 2832 2833 uint64_t myexponent, mysignificand; 2834 2835 if (isFiniteNonZero()) { 2836 myexponent = exponent+16383; //bias 2837 mysignificand = significandParts()[0]; 2838 if (myexponent==1 && !(mysignificand & 0x8000000000000000ULL)) 2839 myexponent = 0; // denormal 2840 } else if (category==fcZero) { 2841 myexponent = 0; 2842 mysignificand = 0; 2843 } else if (category==fcInfinity) { 2844 myexponent = 0x7fff; 2845 mysignificand = 0x8000000000000000ULL; 2846 } else { 2847 assert(category == fcNaN && "Unknown category"); 2848 myexponent = 0x7fff; 2849 mysignificand = significandParts()[0]; 2850 } 2851 2852 uint64_t words[2]; 2853 words[0] = mysignificand; 2854 words[1] = ((uint64_t)(sign & 1) << 15) | 2855 (myexponent & 0x7fffLL); 2856 return APInt(80, words); 2857 } 2858 2859 APInt 2860 APFloat::convertPPCDoubleDoubleAPFloatToAPInt() const 2861 { 2862 assert(semantics == (const llvm::fltSemantics*)&PPCDoubleDouble); 2863 assert(partCount()==2); 2864 2865 uint64_t words[2]; 2866 opStatus fs; 2867 bool losesInfo; 2868 2869 // Convert number to double. To avoid spurious underflows, we re- 2870 // normalize against the "double" minExponent first, and only *then* 2871 // truncate the mantissa. The result of that second conversion 2872 // may be inexact, but should never underflow. 2873 // Declare fltSemantics before APFloat that uses it (and 2874 // saves pointer to it) to ensure correct destruction order. 2875 fltSemantics extendedSemantics = *semantics; 2876 extendedSemantics.minExponent = IEEEdouble.minExponent; 2877 APFloat extended(*this); 2878 fs = extended.convert(extendedSemantics, rmNearestTiesToEven, &losesInfo); 2879 assert(fs == opOK && !losesInfo); 2880 (void)fs; 2881 2882 APFloat u(extended); 2883 fs = u.convert(IEEEdouble, rmNearestTiesToEven, &losesInfo); 2884 assert(fs == opOK || fs == opInexact); 2885 (void)fs; 2886 words[0] = *u.convertDoubleAPFloatToAPInt().getRawData(); 2887 2888 // If conversion was exact or resulted in a special case, we're done; 2889 // just set the second double to zero. Otherwise, re-convert back to 2890 // the extended format and compute the difference. This now should 2891 // convert exactly to double. 2892 if (u.isFiniteNonZero() && losesInfo) { 2893 fs = u.convert(extendedSemantics, rmNearestTiesToEven, &losesInfo); 2894 assert(fs == opOK && !losesInfo); 2895 (void)fs; 2896 2897 APFloat v(extended); 2898 v.subtract(u, rmNearestTiesToEven); 2899 fs = v.convert(IEEEdouble, rmNearestTiesToEven, &losesInfo); 2900 assert(fs == opOK && !losesInfo); 2901 (void)fs; 2902 words[1] = *v.convertDoubleAPFloatToAPInt().getRawData(); 2903 } else { 2904 words[1] = 0; 2905 } 2906 2907 return APInt(128, words); 2908 } 2909 2910 APInt 2911 APFloat::convertQuadrupleAPFloatToAPInt() const 2912 { 2913 assert(semantics == (const llvm::fltSemantics*)&IEEEquad); 2914 assert(partCount()==2); 2915 2916 uint64_t myexponent, mysignificand, mysignificand2; 2917 2918 if (isFiniteNonZero()) { 2919 myexponent = exponent+16383; //bias 2920 mysignificand = significandParts()[0]; 2921 mysignificand2 = significandParts()[1]; 2922 if (myexponent==1 && !(mysignificand2 & 0x1000000000000LL)) 2923 myexponent = 0; // denormal 2924 } else if (category==fcZero) { 2925 myexponent = 0; 2926 mysignificand = mysignificand2 = 0; 2927 } else if (category==fcInfinity) { 2928 myexponent = 0x7fff; 2929 mysignificand = mysignificand2 = 0; 2930 } else { 2931 assert(category == fcNaN && "Unknown category!"); 2932 myexponent = 0x7fff; 2933 mysignificand = significandParts()[0]; 2934 mysignificand2 = significandParts()[1]; 2935 } 2936 2937 uint64_t words[2]; 2938 words[0] = mysignificand; 2939 words[1] = ((uint64_t)(sign & 1) << 63) | 2940 ((myexponent & 0x7fff) << 48) | 2941 (mysignificand2 & 0xffffffffffffLL); 2942 2943 return APInt(128, words); 2944 } 2945 2946 APInt 2947 APFloat::convertDoubleAPFloatToAPInt() const 2948 { 2949 assert(semantics == (const llvm::fltSemantics*)&IEEEdouble); 2950 assert(partCount()==1); 2951 2952 uint64_t myexponent, mysignificand; 2953 2954 if (isFiniteNonZero()) { 2955 myexponent = exponent+1023; //bias 2956 mysignificand = *significandParts(); 2957 if (myexponent==1 && !(mysignificand & 0x10000000000000LL)) 2958 myexponent = 0; // denormal 2959 } else if (category==fcZero) { 2960 myexponent = 0; 2961 mysignificand = 0; 2962 } else if (category==fcInfinity) { 2963 myexponent = 0x7ff; 2964 mysignificand = 0; 2965 } else { 2966 assert(category == fcNaN && "Unknown category!"); 2967 myexponent = 0x7ff; 2968 mysignificand = *significandParts(); 2969 } 2970 2971 return APInt(64, ((((uint64_t)(sign & 1) << 63) | 2972 ((myexponent & 0x7ff) << 52) | 2973 (mysignificand & 0xfffffffffffffLL)))); 2974 } 2975 2976 APInt 2977 APFloat::convertFloatAPFloatToAPInt() const 2978 { 2979 assert(semantics == (const llvm::fltSemantics*)&IEEEsingle); 2980 assert(partCount()==1); 2981 2982 uint32_t myexponent, mysignificand; 2983 2984 if (isFiniteNonZero()) { 2985 myexponent = exponent+127; //bias 2986 mysignificand = (uint32_t)*significandParts(); 2987 if (myexponent == 1 && !(mysignificand & 0x800000)) 2988 myexponent = 0; // denormal 2989 } else if (category==fcZero) { 2990 myexponent = 0; 2991 mysignificand = 0; 2992 } else if (category==fcInfinity) { 2993 myexponent = 0xff; 2994 mysignificand = 0; 2995 } else { 2996 assert(category == fcNaN && "Unknown category!"); 2997 myexponent = 0xff; 2998 mysignificand = (uint32_t)*significandParts(); 2999 } 3000 3001 return APInt(32, (((sign&1) << 31) | ((myexponent&0xff) << 23) | 3002 (mysignificand & 0x7fffff))); 3003 } 3004 3005 APInt 3006 APFloat::convertHalfAPFloatToAPInt() const 3007 { 3008 assert(semantics == (const llvm::fltSemantics*)&IEEEhalf); 3009 assert(partCount()==1); 3010 3011 uint32_t myexponent, mysignificand; 3012 3013 if (isFiniteNonZero()) { 3014 myexponent = exponent+15; //bias 3015 mysignificand = (uint32_t)*significandParts(); 3016 if (myexponent == 1 && !(mysignificand & 0x400)) 3017 myexponent = 0; // denormal 3018 } else if (category==fcZero) { 3019 myexponent = 0; 3020 mysignificand = 0; 3021 } else if (category==fcInfinity) { 3022 myexponent = 0x1f; 3023 mysignificand = 0; 3024 } else { 3025 assert(category == fcNaN && "Unknown category!"); 3026 myexponent = 0x1f; 3027 mysignificand = (uint32_t)*significandParts(); 3028 } 3029 3030 return APInt(16, (((sign&1) << 15) | ((myexponent&0x1f) << 10) | 3031 (mysignificand & 0x3ff))); 3032 } 3033 3034 // This function creates an APInt that is just a bit map of the floating 3035 // point constant as it would appear in memory. It is not a conversion, 3036 // and treating the result as a normal integer is unlikely to be useful. 3037 3038 APInt 3039 APFloat::bitcastToAPInt() const 3040 { 3041 if (semantics == (const llvm::fltSemantics*)&IEEEhalf) 3042 return convertHalfAPFloatToAPInt(); 3043 3044 if (semantics == (const llvm::fltSemantics*)&IEEEsingle) 3045 return convertFloatAPFloatToAPInt(); 3046 3047 if (semantics == (const llvm::fltSemantics*)&IEEEdouble) 3048 return convertDoubleAPFloatToAPInt(); 3049 3050 if (semantics == (const llvm::fltSemantics*)&IEEEquad) 3051 return convertQuadrupleAPFloatToAPInt(); 3052 3053 if (semantics == (const llvm::fltSemantics*)&PPCDoubleDouble) 3054 return convertPPCDoubleDoubleAPFloatToAPInt(); 3055 3056 assert(semantics == (const llvm::fltSemantics*)&x87DoubleExtended && 3057 "unknown format!"); 3058 return convertF80LongDoubleAPFloatToAPInt(); 3059 } 3060 3061 float 3062 APFloat::convertToFloat() const 3063 { 3064 assert(semantics == (const llvm::fltSemantics*)&IEEEsingle && 3065 "Float semantics are not IEEEsingle"); 3066 APInt api = bitcastToAPInt(); 3067 return api.bitsToFloat(); 3068 } 3069 3070 double 3071 APFloat::convertToDouble() const 3072 { 3073 assert(semantics == (const llvm::fltSemantics*)&IEEEdouble && 3074 "Float semantics are not IEEEdouble"); 3075 APInt api = bitcastToAPInt(); 3076 return api.bitsToDouble(); 3077 } 3078 3079 /// Integer bit is explicit in this format. Intel hardware (387 and later) 3080 /// does not support these bit patterns: 3081 /// exponent = all 1's, integer bit 0, significand 0 ("pseudoinfinity") 3082 /// exponent = all 1's, integer bit 0, significand nonzero ("pseudoNaN") 3083 /// exponent = 0, integer bit 1 ("pseudodenormal") 3084 /// exponent!=0 nor all 1's, integer bit 0 ("unnormal") 3085 /// At the moment, the first two are treated as NaNs, the second two as Normal. 3086 void 3087 APFloat::initFromF80LongDoubleAPInt(const APInt &api) 3088 { 3089 assert(api.getBitWidth()==80); 3090 uint64_t i1 = api.getRawData()[0]; 3091 uint64_t i2 = api.getRawData()[1]; 3092 uint64_t myexponent = (i2 & 0x7fff); 3093 uint64_t mysignificand = i1; 3094 3095 initialize(&APFloat::x87DoubleExtended); 3096 assert(partCount()==2); 3097 3098 sign = static_cast<unsigned int>(i2>>15); 3099 if (myexponent==0 && mysignificand==0) { 3100 // exponent, significand meaningless 3101 category = fcZero; 3102 } else if (myexponent==0x7fff && mysignificand==0x8000000000000000ULL) { 3103 // exponent, significand meaningless 3104 category = fcInfinity; 3105 } else if (myexponent==0x7fff && mysignificand!=0x8000000000000000ULL) { 3106 // exponent meaningless 3107 category = fcNaN; 3108 significandParts()[0] = mysignificand; 3109 significandParts()[1] = 0; 3110 } else { 3111 category = fcNormal; 3112 exponent = myexponent - 16383; 3113 significandParts()[0] = mysignificand; 3114 significandParts()[1] = 0; 3115 if (myexponent==0) // denormal 3116 exponent = -16382; 3117 } 3118 } 3119 3120 void 3121 APFloat::initFromPPCDoubleDoubleAPInt(const APInt &api) 3122 { 3123 assert(api.getBitWidth()==128); 3124 uint64_t i1 = api.getRawData()[0]; 3125 uint64_t i2 = api.getRawData()[1]; 3126 opStatus fs; 3127 bool losesInfo; 3128 3129 // Get the first double and convert to our format. 3130 initFromDoubleAPInt(APInt(64, i1)); 3131 fs = convert(PPCDoubleDouble, rmNearestTiesToEven, &losesInfo); 3132 assert(fs == opOK && !losesInfo); 3133 (void)fs; 3134 3135 // Unless we have a special case, add in second double. 3136 if (isFiniteNonZero()) { 3137 APFloat v(IEEEdouble, APInt(64, i2)); 3138 fs = v.convert(PPCDoubleDouble, rmNearestTiesToEven, &losesInfo); 3139 assert(fs == opOK && !losesInfo); 3140 (void)fs; 3141 3142 add(v, rmNearestTiesToEven); 3143 } 3144 } 3145 3146 void 3147 APFloat::initFromQuadrupleAPInt(const APInt &api) 3148 { 3149 assert(api.getBitWidth()==128); 3150 uint64_t i1 = api.getRawData()[0]; 3151 uint64_t i2 = api.getRawData()[1]; 3152 uint64_t myexponent = (i2 >> 48) & 0x7fff; 3153 uint64_t mysignificand = i1; 3154 uint64_t mysignificand2 = i2 & 0xffffffffffffLL; 3155 3156 initialize(&APFloat::IEEEquad); 3157 assert(partCount()==2); 3158 3159 sign = static_cast<unsigned int>(i2>>63); 3160 if (myexponent==0 && 3161 (mysignificand==0 && mysignificand2==0)) { 3162 // exponent, significand meaningless 3163 category = fcZero; 3164 } else if (myexponent==0x7fff && 3165 (mysignificand==0 && mysignificand2==0)) { 3166 // exponent, significand meaningless 3167 category = fcInfinity; 3168 } else if (myexponent==0x7fff && 3169 (mysignificand!=0 || mysignificand2 !=0)) { 3170 // exponent meaningless 3171 category = fcNaN; 3172 significandParts()[0] = mysignificand; 3173 significandParts()[1] = mysignificand2; 3174 } else { 3175 category = fcNormal; 3176 exponent = myexponent - 16383; 3177 significandParts()[0] = mysignificand; 3178 significandParts()[1] = mysignificand2; 3179 if (myexponent==0) // denormal 3180 exponent = -16382; 3181 else 3182 significandParts()[1] |= 0x1000000000000LL; // integer bit 3183 } 3184 } 3185 3186 void 3187 APFloat::initFromDoubleAPInt(const APInt &api) 3188 { 3189 assert(api.getBitWidth()==64); 3190 uint64_t i = *api.getRawData(); 3191 uint64_t myexponent = (i >> 52) & 0x7ff; 3192 uint64_t mysignificand = i & 0xfffffffffffffLL; 3193 3194 initialize(&APFloat::IEEEdouble); 3195 assert(partCount()==1); 3196 3197 sign = static_cast<unsigned int>(i>>63); 3198 if (myexponent==0 && mysignificand==0) { 3199 // exponent, significand meaningless 3200 category = fcZero; 3201 } else if (myexponent==0x7ff && mysignificand==0) { 3202 // exponent, significand meaningless 3203 category = fcInfinity; 3204 } else if (myexponent==0x7ff && mysignificand!=0) { 3205 // exponent meaningless 3206 category = fcNaN; 3207 *significandParts() = mysignificand; 3208 } else { 3209 category = fcNormal; 3210 exponent = myexponent - 1023; 3211 *significandParts() = mysignificand; 3212 if (myexponent==0) // denormal 3213 exponent = -1022; 3214 else 3215 *significandParts() |= 0x10000000000000LL; // integer bit 3216 } 3217 } 3218 3219 void 3220 APFloat::initFromFloatAPInt(const APInt & api) 3221 { 3222 assert(api.getBitWidth()==32); 3223 uint32_t i = (uint32_t)*api.getRawData(); 3224 uint32_t myexponent = (i >> 23) & 0xff; 3225 uint32_t mysignificand = i & 0x7fffff; 3226 3227 initialize(&APFloat::IEEEsingle); 3228 assert(partCount()==1); 3229 3230 sign = i >> 31; 3231 if (myexponent==0 && mysignificand==0) { 3232 // exponent, significand meaningless 3233 category = fcZero; 3234 } else if (myexponent==0xff && mysignificand==0) { 3235 // exponent, significand meaningless 3236 category = fcInfinity; 3237 } else if (myexponent==0xff && mysignificand!=0) { 3238 // sign, exponent, significand meaningless 3239 category = fcNaN; 3240 *significandParts() = mysignificand; 3241 } else { 3242 category = fcNormal; 3243 exponent = myexponent - 127; //bias 3244 *significandParts() = mysignificand; 3245 if (myexponent==0) // denormal 3246 exponent = -126; 3247 else 3248 *significandParts() |= 0x800000; // integer bit 3249 } 3250 } 3251 3252 void 3253 APFloat::initFromHalfAPInt(const APInt & api) 3254 { 3255 assert(api.getBitWidth()==16); 3256 uint32_t i = (uint32_t)*api.getRawData(); 3257 uint32_t myexponent = (i >> 10) & 0x1f; 3258 uint32_t mysignificand = i & 0x3ff; 3259 3260 initialize(&APFloat::IEEEhalf); 3261 assert(partCount()==1); 3262 3263 sign = i >> 15; 3264 if (myexponent==0 && mysignificand==0) { 3265 // exponent, significand meaningless 3266 category = fcZero; 3267 } else if (myexponent==0x1f && mysignificand==0) { 3268 // exponent, significand meaningless 3269 category = fcInfinity; 3270 } else if (myexponent==0x1f && mysignificand!=0) { 3271 // sign, exponent, significand meaningless 3272 category = fcNaN; 3273 *significandParts() = mysignificand; 3274 } else { 3275 category = fcNormal; 3276 exponent = myexponent - 15; //bias 3277 *significandParts() = mysignificand; 3278 if (myexponent==0) // denormal 3279 exponent = -14; 3280 else 3281 *significandParts() |= 0x400; // integer bit 3282 } 3283 } 3284 3285 /// Treat api as containing the bits of a floating point number. Currently 3286 /// we infer the floating point type from the size of the APInt. The 3287 /// isIEEE argument distinguishes between PPC128 and IEEE128 (not meaningful 3288 /// when the size is anything else). 3289 void 3290 APFloat::initFromAPInt(const fltSemantics* Sem, const APInt& api) 3291 { 3292 if (Sem == &IEEEhalf) 3293 return initFromHalfAPInt(api); 3294 if (Sem == &IEEEsingle) 3295 return initFromFloatAPInt(api); 3296 if (Sem == &IEEEdouble) 3297 return initFromDoubleAPInt(api); 3298 if (Sem == &x87DoubleExtended) 3299 return initFromF80LongDoubleAPInt(api); 3300 if (Sem == &IEEEquad) 3301 return initFromQuadrupleAPInt(api); 3302 if (Sem == &PPCDoubleDouble) 3303 return initFromPPCDoubleDoubleAPInt(api); 3304 3305 llvm_unreachable(0); 3306 } 3307 3308 APFloat 3309 APFloat::getAllOnesValue(unsigned BitWidth, bool isIEEE) 3310 { 3311 switch (BitWidth) { 3312 case 16: 3313 return APFloat(IEEEhalf, APInt::getAllOnesValue(BitWidth)); 3314 case 32: 3315 return APFloat(IEEEsingle, APInt::getAllOnesValue(BitWidth)); 3316 case 64: 3317 return APFloat(IEEEdouble, APInt::getAllOnesValue(BitWidth)); 3318 case 80: 3319 return APFloat(x87DoubleExtended, APInt::getAllOnesValue(BitWidth)); 3320 case 128: 3321 if (isIEEE) 3322 return APFloat(IEEEquad, APInt::getAllOnesValue(BitWidth)); 3323 return APFloat(PPCDoubleDouble, APInt::getAllOnesValue(BitWidth)); 3324 default: 3325 llvm_unreachable("Unknown floating bit width"); 3326 } 3327 } 3328 3329 /// Make this number the largest magnitude normal number in the given 3330 /// semantics. 3331 void APFloat::makeLargest(bool Negative) { 3332 // We want (in interchange format): 3333 // sign = {Negative} 3334 // exponent = 1..10 3335 // significand = 1..1 3336 category = fcNormal; 3337 sign = Negative; 3338 exponent = semantics->maxExponent; 3339 3340 // Use memset to set all but the highest integerPart to all ones. 3341 integerPart *significand = significandParts(); 3342 unsigned PartCount = partCount(); 3343 memset(significand, 0xFF, sizeof(integerPart)*(PartCount - 1)); 3344 3345 // Set the high integerPart especially setting all unused top bits for 3346 // internal consistency. 3347 const unsigned NumUnusedHighBits = 3348 PartCount*integerPartWidth - semantics->precision; 3349 significand[PartCount - 1] = ~integerPart(0) >> NumUnusedHighBits; 3350 } 3351 3352 /// Make this number the smallest magnitude denormal number in the given 3353 /// semantics. 3354 void APFloat::makeSmallest(bool Negative) { 3355 // We want (in interchange format): 3356 // sign = {Negative} 3357 // exponent = 0..0 3358 // significand = 0..01 3359 category = fcNormal; 3360 sign = Negative; 3361 exponent = semantics->minExponent; 3362 APInt::tcSet(significandParts(), 1, partCount()); 3363 } 3364 3365 3366 APFloat APFloat::getLargest(const fltSemantics &Sem, bool Negative) { 3367 // We want (in interchange format): 3368 // sign = {Negative} 3369 // exponent = 1..10 3370 // significand = 1..1 3371 APFloat Val(Sem, uninitialized); 3372 Val.makeLargest(Negative); 3373 return Val; 3374 } 3375 3376 APFloat APFloat::getSmallest(const fltSemantics &Sem, bool Negative) { 3377 // We want (in interchange format): 3378 // sign = {Negative} 3379 // exponent = 0..0 3380 // significand = 0..01 3381 APFloat Val(Sem, uninitialized); 3382 Val.makeSmallest(Negative); 3383 return Val; 3384 } 3385 3386 APFloat APFloat::getSmallestNormalized(const fltSemantics &Sem, bool Negative) { 3387 APFloat Val(Sem, uninitialized); 3388 3389 // We want (in interchange format): 3390 // sign = {Negative} 3391 // exponent = 0..0 3392 // significand = 10..0 3393 3394 Val.zeroSignificand(); 3395 Val.sign = Negative; 3396 Val.exponent = Sem.minExponent; 3397 Val.significandParts()[partCountForBits(Sem.precision)-1] |= 3398 (((integerPart) 1) << ((Sem.precision - 1) % integerPartWidth)); 3399 3400 return Val; 3401 } 3402 3403 APFloat::APFloat(const fltSemantics &Sem, const APInt &API) { 3404 initFromAPInt(&Sem, API); 3405 } 3406 3407 APFloat::APFloat(float f) { 3408 initFromAPInt(&IEEEsingle, APInt::floatToBits(f)); 3409 } 3410 3411 APFloat::APFloat(double d) { 3412 initFromAPInt(&IEEEdouble, APInt::doubleToBits(d)); 3413 } 3414 3415 namespace { 3416 void append(SmallVectorImpl<char> &Buffer, StringRef Str) { 3417 Buffer.append(Str.begin(), Str.end()); 3418 } 3419 3420 /// Removes data from the given significand until it is no more 3421 /// precise than is required for the desired precision. 3422 void AdjustToPrecision(APInt &significand, 3423 int &exp, unsigned FormatPrecision) { 3424 unsigned bits = significand.getActiveBits(); 3425 3426 // 196/59 is a very slight overestimate of lg_2(10). 3427 unsigned bitsRequired = (FormatPrecision * 196 + 58) / 59; 3428 3429 if (bits <= bitsRequired) return; 3430 3431 unsigned tensRemovable = (bits - bitsRequired) * 59 / 196; 3432 if (!tensRemovable) return; 3433 3434 exp += tensRemovable; 3435 3436 APInt divisor(significand.getBitWidth(), 1); 3437 APInt powten(significand.getBitWidth(), 10); 3438 while (true) { 3439 if (tensRemovable & 1) 3440 divisor *= powten; 3441 tensRemovable >>= 1; 3442 if (!tensRemovable) break; 3443 powten *= powten; 3444 } 3445 3446 significand = significand.udiv(divisor); 3447 3448 // Truncate the significand down to its active bit count. 3449 significand = significand.trunc(significand.getActiveBits()); 3450 } 3451 3452 3453 void AdjustToPrecision(SmallVectorImpl<char> &buffer, 3454 int &exp, unsigned FormatPrecision) { 3455 unsigned N = buffer.size(); 3456 if (N <= FormatPrecision) return; 3457 3458 // The most significant figures are the last ones in the buffer. 3459 unsigned FirstSignificant = N - FormatPrecision; 3460 3461 // Round. 3462 // FIXME: this probably shouldn't use 'round half up'. 3463 3464 // Rounding down is just a truncation, except we also want to drop 3465 // trailing zeros from the new result. 3466 if (buffer[FirstSignificant - 1] < '5') { 3467 while (FirstSignificant < N && buffer[FirstSignificant] == '0') 3468 FirstSignificant++; 3469 3470 exp += FirstSignificant; 3471 buffer.erase(&buffer[0], &buffer[FirstSignificant]); 3472 return; 3473 } 3474 3475 // Rounding up requires a decimal add-with-carry. If we continue 3476 // the carry, the newly-introduced zeros will just be truncated. 3477 for (unsigned I = FirstSignificant; I != N; ++I) { 3478 if (buffer[I] == '9') { 3479 FirstSignificant++; 3480 } else { 3481 buffer[I]++; 3482 break; 3483 } 3484 } 3485 3486 // If we carried through, we have exactly one digit of precision. 3487 if (FirstSignificant == N) { 3488 exp += FirstSignificant; 3489 buffer.clear(); 3490 buffer.push_back('1'); 3491 return; 3492 } 3493 3494 exp += FirstSignificant; 3495 buffer.erase(&buffer[0], &buffer[FirstSignificant]); 3496 } 3497 } 3498 3499 void APFloat::toString(SmallVectorImpl<char> &Str, 3500 unsigned FormatPrecision, 3501 unsigned FormatMaxPadding) const { 3502 switch (category) { 3503 case fcInfinity: 3504 if (isNegative()) 3505 return append(Str, "-Inf"); 3506 else 3507 return append(Str, "+Inf"); 3508 3509 case fcNaN: return append(Str, "NaN"); 3510 3511 case fcZero: 3512 if (isNegative()) 3513 Str.push_back('-'); 3514 3515 if (!FormatMaxPadding) 3516 append(Str, "0.0E+0"); 3517 else 3518 Str.push_back('0'); 3519 return; 3520 3521 case fcNormal: 3522 break; 3523 } 3524 3525 if (isNegative()) 3526 Str.push_back('-'); 3527 3528 // Decompose the number into an APInt and an exponent. 3529 int exp = exponent - ((int) semantics->precision - 1); 3530 APInt significand(semantics->precision, 3531 makeArrayRef(significandParts(), 3532 partCountForBits(semantics->precision))); 3533 3534 // Set FormatPrecision if zero. We want to do this before we 3535 // truncate trailing zeros, as those are part of the precision. 3536 if (!FormatPrecision) { 3537 // It's an interesting question whether to use the nominal 3538 // precision or the active precision here for denormals. 3539 3540 // FormatPrecision = ceil(significandBits / lg_2(10)) 3541 FormatPrecision = (semantics->precision * 59 + 195) / 196; 3542 } 3543 3544 // Ignore trailing binary zeros. 3545 int trailingZeros = significand.countTrailingZeros(); 3546 exp += trailingZeros; 3547 significand = significand.lshr(trailingZeros); 3548 3549 // Change the exponent from 2^e to 10^e. 3550 if (exp == 0) { 3551 // Nothing to do. 3552 } else if (exp > 0) { 3553 // Just shift left. 3554 significand = significand.zext(semantics->precision + exp); 3555 significand <<= exp; 3556 exp = 0; 3557 } else { /* exp < 0 */ 3558 int texp = -exp; 3559 3560 // We transform this using the identity: 3561 // (N)(2^-e) == (N)(5^e)(10^-e) 3562 // This means we have to multiply N (the significand) by 5^e. 3563 // To avoid overflow, we have to operate on numbers large 3564 // enough to store N * 5^e: 3565 // log2(N * 5^e) == log2(N) + e * log2(5) 3566 // <= semantics->precision + e * 137 / 59 3567 // (log_2(5) ~ 2.321928 < 2.322034 ~ 137/59) 3568 3569 unsigned precision = semantics->precision + (137 * texp + 136) / 59; 3570 3571 // Multiply significand by 5^e. 3572 // N * 5^0101 == N * 5^(1*1) * 5^(0*2) * 5^(1*4) * 5^(0*8) 3573 significand = significand.zext(precision); 3574 APInt five_to_the_i(precision, 5); 3575 while (true) { 3576 if (texp & 1) significand *= five_to_the_i; 3577 3578 texp >>= 1; 3579 if (!texp) break; 3580 five_to_the_i *= five_to_the_i; 3581 } 3582 } 3583 3584 AdjustToPrecision(significand, exp, FormatPrecision); 3585 3586 SmallVector<char, 256> buffer; 3587 3588 // Fill the buffer. 3589 unsigned precision = significand.getBitWidth(); 3590 APInt ten(precision, 10); 3591 APInt digit(precision, 0); 3592 3593 bool inTrail = true; 3594 while (significand != 0) { 3595 // digit <- significand % 10 3596 // significand <- significand / 10 3597 APInt::udivrem(significand, ten, significand, digit); 3598 3599 unsigned d = digit.getZExtValue(); 3600 3601 // Drop trailing zeros. 3602 if (inTrail && !d) exp++; 3603 else { 3604 buffer.push_back((char) ('0' + d)); 3605 inTrail = false; 3606 } 3607 } 3608 3609 assert(!buffer.empty() && "no characters in buffer!"); 3610 3611 // Drop down to FormatPrecision. 3612 // TODO: don't do more precise calculations above than are required. 3613 AdjustToPrecision(buffer, exp, FormatPrecision); 3614 3615 unsigned NDigits = buffer.size(); 3616 3617 // Check whether we should use scientific notation. 3618 bool FormatScientific; 3619 if (!FormatMaxPadding) 3620 FormatScientific = true; 3621 else { 3622 if (exp >= 0) { 3623 // 765e3 --> 765000 3624 // ^^^ 3625 // But we shouldn't make the number look more precise than it is. 3626 FormatScientific = ((unsigned) exp > FormatMaxPadding || 3627 NDigits + (unsigned) exp > FormatPrecision); 3628 } else { 3629 // Power of the most significant digit. 3630 int MSD = exp + (int) (NDigits - 1); 3631 if (MSD >= 0) { 3632 // 765e-2 == 7.65 3633 FormatScientific = false; 3634 } else { 3635 // 765e-5 == 0.00765 3636 // ^ ^^ 3637 FormatScientific = ((unsigned) -MSD) > FormatMaxPadding; 3638 } 3639 } 3640 } 3641 3642 // Scientific formatting is pretty straightforward. 3643 if (FormatScientific) { 3644 exp += (NDigits - 1); 3645 3646 Str.push_back(buffer[NDigits-1]); 3647 Str.push_back('.'); 3648 if (NDigits == 1) 3649 Str.push_back('0'); 3650 else 3651 for (unsigned I = 1; I != NDigits; ++I) 3652 Str.push_back(buffer[NDigits-1-I]); 3653 Str.push_back('E'); 3654 3655 Str.push_back(exp >= 0 ? '+' : '-'); 3656 if (exp < 0) exp = -exp; 3657 SmallVector<char, 6> expbuf; 3658 do { 3659 expbuf.push_back((char) ('0' + (exp % 10))); 3660 exp /= 10; 3661 } while (exp); 3662 for (unsigned I = 0, E = expbuf.size(); I != E; ++I) 3663 Str.push_back(expbuf[E-1-I]); 3664 return; 3665 } 3666 3667 // Non-scientific, positive exponents. 3668 if (exp >= 0) { 3669 for (unsigned I = 0; I != NDigits; ++I) 3670 Str.push_back(buffer[NDigits-1-I]); 3671 for (unsigned I = 0; I != (unsigned) exp; ++I) 3672 Str.push_back('0'); 3673 return; 3674 } 3675 3676 // Non-scientific, negative exponents. 3677 3678 // The number of digits to the left of the decimal point. 3679 int NWholeDigits = exp + (int) NDigits; 3680 3681 unsigned I = 0; 3682 if (NWholeDigits > 0) { 3683 for (; I != (unsigned) NWholeDigits; ++I) 3684 Str.push_back(buffer[NDigits-I-1]); 3685 Str.push_back('.'); 3686 } else { 3687 unsigned NZeros = 1 + (unsigned) -NWholeDigits; 3688 3689 Str.push_back('0'); 3690 Str.push_back('.'); 3691 for (unsigned Z = 1; Z != NZeros; ++Z) 3692 Str.push_back('0'); 3693 } 3694 3695 for (; I != NDigits; ++I) 3696 Str.push_back(buffer[NDigits-I-1]); 3697 } 3698 3699 bool APFloat::getExactInverse(APFloat *inv) const { 3700 // Special floats and denormals have no exact inverse. 3701 if (!isFiniteNonZero()) 3702 return false; 3703 3704 // Check that the number is a power of two by making sure that only the 3705 // integer bit is set in the significand. 3706 if (significandLSB() != semantics->precision - 1) 3707 return false; 3708 3709 // Get the inverse. 3710 APFloat reciprocal(*semantics, 1ULL); 3711 if (reciprocal.divide(*this, rmNearestTiesToEven) != opOK) 3712 return false; 3713 3714 // Avoid multiplication with a denormal, it is not safe on all platforms and 3715 // may be slower than a normal division. 3716 if (reciprocal.isDenormal()) 3717 return false; 3718 3719 assert(reciprocal.isFiniteNonZero() && 3720 reciprocal.significandLSB() == reciprocal.semantics->precision - 1); 3721 3722 if (inv) 3723 *inv = reciprocal; 3724 3725 return true; 3726 } 3727 3728 bool APFloat::isSignaling() const { 3729 if (!isNaN()) 3730 return false; 3731 3732 // IEEE-754R 2008 6.2.1: A signaling NaN bit string should be encoded with the 3733 // first bit of the trailing significand being 0. 3734 return !APInt::tcExtractBit(significandParts(), semantics->precision - 2); 3735 } 3736 3737 /// IEEE-754R 2008 5.3.1: nextUp/nextDown. 3738 /// 3739 /// *NOTE* since nextDown(x) = -nextUp(-x), we only implement nextUp with 3740 /// appropriate sign switching before/after the computation. 3741 APFloat::opStatus APFloat::next(bool nextDown) { 3742 // If we are performing nextDown, swap sign so we have -x. 3743 if (nextDown) 3744 changeSign(); 3745 3746 // Compute nextUp(x) 3747 opStatus result = opOK; 3748 3749 // Handle each float category separately. 3750 switch (category) { 3751 case fcInfinity: 3752 // nextUp(+inf) = +inf 3753 if (!isNegative()) 3754 break; 3755 // nextUp(-inf) = -getLargest() 3756 makeLargest(true); 3757 break; 3758 case fcNaN: 3759 // IEEE-754R 2008 6.2 Par 2: nextUp(sNaN) = qNaN. Set Invalid flag. 3760 // IEEE-754R 2008 6.2: nextUp(qNaN) = qNaN. Must be identity so we do not 3761 // change the payload. 3762 if (isSignaling()) { 3763 result = opInvalidOp; 3764 // For consistency, propogate the sign of the sNaN to the qNaN. 3765 makeNaN(false, isNegative(), 0); 3766 } 3767 break; 3768 case fcZero: 3769 // nextUp(pm 0) = +getSmallest() 3770 makeSmallest(false); 3771 break; 3772 case fcNormal: 3773 // nextUp(-getSmallest()) = -0 3774 if (isSmallest() && isNegative()) { 3775 APInt::tcSet(significandParts(), 0, partCount()); 3776 category = fcZero; 3777 exponent = 0; 3778 break; 3779 } 3780 3781 // nextUp(getLargest()) == INFINITY 3782 if (isLargest() && !isNegative()) { 3783 APInt::tcSet(significandParts(), 0, partCount()); 3784 category = fcInfinity; 3785 exponent = semantics->maxExponent + 1; 3786 break; 3787 } 3788 3789 // nextUp(normal) == normal + inc. 3790 if (isNegative()) { 3791 // If we are negative, we need to decrement the significand. 3792 3793 // We only cross a binade boundary that requires adjusting the exponent 3794 // if: 3795 // 1. exponent != semantics->minExponent. This implies we are not in the 3796 // smallest binade or are dealing with denormals. 3797 // 2. Our significand excluding the integral bit is all zeros. 3798 bool WillCrossBinadeBoundary = 3799 exponent != semantics->minExponent && isSignificandAllZeros(); 3800 3801 // Decrement the significand. 3802 // 3803 // We always do this since: 3804 // 1. If we are dealing with a non binade decrement, by definition we 3805 // just decrement the significand. 3806 // 2. If we are dealing with a normal -> normal binade decrement, since 3807 // we have an explicit integral bit the fact that all bits but the 3808 // integral bit are zero implies that subtracting one will yield a 3809 // significand with 0 integral bit and 1 in all other spots. Thus we 3810 // must just adjust the exponent and set the integral bit to 1. 3811 // 3. If we are dealing with a normal -> denormal binade decrement, 3812 // since we set the integral bit to 0 when we represent denormals, we 3813 // just decrement the significand. 3814 integerPart *Parts = significandParts(); 3815 APInt::tcDecrement(Parts, partCount()); 3816 3817 if (WillCrossBinadeBoundary) { 3818 // Our result is a normal number. Do the following: 3819 // 1. Set the integral bit to 1. 3820 // 2. Decrement the exponent. 3821 APInt::tcSetBit(Parts, semantics->precision - 1); 3822 exponent--; 3823 } 3824 } else { 3825 // If we are positive, we need to increment the significand. 3826 3827 // We only cross a binade boundary that requires adjusting the exponent if 3828 // the input is not a denormal and all of said input's significand bits 3829 // are set. If all of said conditions are true: clear the significand, set 3830 // the integral bit to 1, and increment the exponent. If we have a 3831 // denormal always increment since moving denormals and the numbers in the 3832 // smallest normal binade have the same exponent in our representation. 3833 bool WillCrossBinadeBoundary = !isDenormal() && isSignificandAllOnes(); 3834 3835 if (WillCrossBinadeBoundary) { 3836 integerPart *Parts = significandParts(); 3837 APInt::tcSet(Parts, 0, partCount()); 3838 APInt::tcSetBit(Parts, semantics->precision - 1); 3839 assert(exponent != semantics->maxExponent && 3840 "We can not increment an exponent beyond the maxExponent allowed" 3841 " by the given floating point semantics."); 3842 exponent++; 3843 } else { 3844 incrementSignificand(); 3845 } 3846 } 3847 break; 3848 } 3849 3850 // If we are performing nextDown, swap sign so we have -nextUp(-x) 3851 if (nextDown) 3852 changeSign(); 3853 3854 return result; 3855 } 3856 3857 void 3858 APFloat::makeInf(bool Negative) { 3859 category = fcInfinity; 3860 sign = Negative; 3861 exponent = semantics->maxExponent + 1; 3862 APInt::tcSet(significandParts(), 0, partCount()); 3863 } 3864 3865 void 3866 APFloat::makeZero(bool Negative) { 3867 category = fcZero; 3868 sign = Negative; 3869 exponent = semantics->minExponent-1; 3870 APInt::tcSet(significandParts(), 0, partCount()); 3871 } 3872