xref: /llvm-project/llvm/lib/ProfileData/SampleProfReader.cpp (revision 84719e2f038751b0c76d668413934dd54f720e84)
1 //===- SampleProfReader.cpp - Read LLVM sample profile data ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the class that reads LLVM sample profiles. It
10 // supports three file formats: text, binary and gcov.
11 //
12 // The textual representation is useful for debugging and testing purposes. The
13 // binary representation is more compact, resulting in smaller file sizes.
14 //
15 // The gcov encoding is the one generated by GCC's AutoFDO profile creation
16 // tool (https://github.com/google/autofdo)
17 //
18 // All three encodings can be used interchangeably as an input sample profile.
19 //
20 //===----------------------------------------------------------------------===//
21 
22 #include "llvm/ProfileData/SampleProfReader.h"
23 #include "llvm/ADT/DenseMap.h"
24 #include "llvm/ADT/STLExtras.h"
25 #include "llvm/ADT/StringRef.h"
26 #include "llvm/IR/Module.h"
27 #include "llvm/IR/ProfileSummary.h"
28 #include "llvm/ProfileData/ProfileCommon.h"
29 #include "llvm/ProfileData/SampleProf.h"
30 #include "llvm/Support/CommandLine.h"
31 #include "llvm/Support/Compression.h"
32 #include "llvm/Support/ErrorOr.h"
33 #include "llvm/Support/JSON.h"
34 #include "llvm/Support/LEB128.h"
35 #include "llvm/Support/LineIterator.h"
36 #include "llvm/Support/MD5.h"
37 #include "llvm/Support/MemoryBuffer.h"
38 #include "llvm/Support/VirtualFileSystem.h"
39 #include "llvm/Support/raw_ostream.h"
40 #include <algorithm>
41 #include <cstddef>
42 #include <cstdint>
43 #include <limits>
44 #include <memory>
45 #include <system_error>
46 #include <vector>
47 
48 using namespace llvm;
49 using namespace sampleprof;
50 
51 #define DEBUG_TYPE "samplepgo-reader"
52 
53 // This internal option specifies if the profile uses FS discriminators.
54 // It only applies to text, binary and compact binary format profiles.
55 // For ext-binary format profiles, the flag is set in the summary.
56 static cl::opt<bool> ProfileIsFSDisciminator(
57     "profile-isfs", cl::Hidden, cl::init(false),
58     cl::desc("Profile uses flow sensitive discriminators"));
59 
60 /// Dump the function profile for \p FName.
61 ///
62 /// \param FContext Name + context of the function to print.
63 /// \param OS Stream to emit the output to.
64 void SampleProfileReader::dumpFunctionProfile(SampleContext FContext,
65                                               raw_ostream &OS) {
66   OS << "Function: " << FContext.toString() << ": " << Profiles[FContext];
67 }
68 
69 /// Dump all the function profiles found on stream \p OS.
70 void SampleProfileReader::dump(raw_ostream &OS) {
71   std::vector<NameFunctionSamples> V;
72   sortFuncProfiles(Profiles, V);
73   for (const auto &I : V)
74     dumpFunctionProfile(I.first, OS);
75 }
76 
77 static void dumpFunctionProfileJson(const FunctionSamples &S,
78                                     json::OStream &JOS, bool TopLevel = false) {
79   auto DumpBody = [&](const BodySampleMap &BodySamples) {
80     for (const auto &I : BodySamples) {
81       const LineLocation &Loc = I.first;
82       const SampleRecord &Sample = I.second;
83       JOS.object([&] {
84         JOS.attribute("line", Loc.LineOffset);
85         if (Loc.Discriminator)
86           JOS.attribute("discriminator", Loc.Discriminator);
87         JOS.attribute("samples", Sample.getSamples());
88 
89         auto CallTargets = Sample.getSortedCallTargets();
90         if (!CallTargets.empty()) {
91           JOS.attributeArray("calls", [&] {
92             for (const auto &J : CallTargets) {
93               JOS.object([&] {
94                 JOS.attribute("function", J.first);
95                 JOS.attribute("samples", J.second);
96               });
97             }
98           });
99         }
100       });
101     }
102   };
103 
104   auto DumpCallsiteSamples = [&](const CallsiteSampleMap &CallsiteSamples) {
105     for (const auto &I : CallsiteSamples)
106       for (const auto &FS : I.second) {
107         const LineLocation &Loc = I.first;
108         const FunctionSamples &CalleeSamples = FS.second;
109         JOS.object([&] {
110           JOS.attribute("line", Loc.LineOffset);
111           if (Loc.Discriminator)
112             JOS.attribute("discriminator", Loc.Discriminator);
113           JOS.attributeArray(
114               "samples", [&] { dumpFunctionProfileJson(CalleeSamples, JOS); });
115         });
116       }
117   };
118 
119   JOS.object([&] {
120     JOS.attribute("name", S.getName());
121     JOS.attribute("total", S.getTotalSamples());
122     if (TopLevel)
123       JOS.attribute("head", S.getHeadSamples());
124 
125     const auto &BodySamples = S.getBodySamples();
126     if (!BodySamples.empty())
127       JOS.attributeArray("body", [&] { DumpBody(BodySamples); });
128 
129     const auto &CallsiteSamples = S.getCallsiteSamples();
130     if (!CallsiteSamples.empty())
131       JOS.attributeArray("callsites",
132                          [&] { DumpCallsiteSamples(CallsiteSamples); });
133   });
134 }
135 
136 /// Dump all the function profiles found on stream \p OS in the JSON format.
137 void SampleProfileReader::dumpJson(raw_ostream &OS) {
138   std::vector<NameFunctionSamples> V;
139   sortFuncProfiles(Profiles, V);
140   json::OStream JOS(OS, 2);
141   JOS.arrayBegin();
142   for (const auto &F : V)
143     dumpFunctionProfileJson(*F.second, JOS, true);
144   JOS.arrayEnd();
145 
146   // Emit a newline character at the end as json::OStream doesn't emit one.
147   OS << "\n";
148 }
149 
150 /// Parse \p Input as function head.
151 ///
152 /// Parse one line of \p Input, and update function name in \p FName,
153 /// function's total sample count in \p NumSamples, function's entry
154 /// count in \p NumHeadSamples.
155 ///
156 /// \returns true if parsing is successful.
157 static bool ParseHead(const StringRef &Input, StringRef &FName,
158                       uint64_t &NumSamples, uint64_t &NumHeadSamples) {
159   if (Input[0] == ' ')
160     return false;
161   size_t n2 = Input.rfind(':');
162   size_t n1 = Input.rfind(':', n2 - 1);
163   FName = Input.substr(0, n1);
164   if (Input.substr(n1 + 1, n2 - n1 - 1).getAsInteger(10, NumSamples))
165     return false;
166   if (Input.substr(n2 + 1).getAsInteger(10, NumHeadSamples))
167     return false;
168   return true;
169 }
170 
171 /// Returns true if line offset \p L is legal (only has 16 bits).
172 static bool isOffsetLegal(unsigned L) { return (L & 0xffff) == L; }
173 
174 /// Parse \p Input that contains metadata.
175 /// Possible metadata:
176 /// - CFG Checksum information:
177 ///     !CFGChecksum: 12345
178 /// - CFG Checksum information:
179 ///     !Attributes: 1
180 /// Stores the FunctionHash (a.k.a. CFG Checksum) into \p FunctionHash.
181 static bool parseMetadata(const StringRef &Input, uint64_t &FunctionHash,
182                           uint32_t &Attributes) {
183   if (Input.startswith("!CFGChecksum:")) {
184     StringRef CFGInfo = Input.substr(strlen("!CFGChecksum:")).trim();
185     return !CFGInfo.getAsInteger(10, FunctionHash);
186   }
187 
188   if (Input.startswith("!Attributes:")) {
189     StringRef Attrib = Input.substr(strlen("!Attributes:")).trim();
190     return !Attrib.getAsInteger(10, Attributes);
191   }
192 
193   return false;
194 }
195 
196 enum class LineType {
197   CallSiteProfile,
198   BodyProfile,
199   Metadata,
200 };
201 
202 /// Parse \p Input as line sample.
203 ///
204 /// \param Input input line.
205 /// \param LineTy Type of this line.
206 /// \param Depth the depth of the inline stack.
207 /// \param NumSamples total samples of the line/inlined callsite.
208 /// \param LineOffset line offset to the start of the function.
209 /// \param Discriminator discriminator of the line.
210 /// \param TargetCountMap map from indirect call target to count.
211 /// \param FunctionHash the function's CFG hash, used by pseudo probe.
212 ///
213 /// returns true if parsing is successful.
214 static bool ParseLine(const StringRef &Input, LineType &LineTy, uint32_t &Depth,
215                       uint64_t &NumSamples, uint32_t &LineOffset,
216                       uint32_t &Discriminator, StringRef &CalleeName,
217                       DenseMap<StringRef, uint64_t> &TargetCountMap,
218                       uint64_t &FunctionHash, uint32_t &Attributes) {
219   for (Depth = 0; Input[Depth] == ' '; Depth++)
220     ;
221   if (Depth == 0)
222     return false;
223 
224   if (Input[Depth] == '!') {
225     LineTy = LineType::Metadata;
226     return parseMetadata(Input.substr(Depth), FunctionHash, Attributes);
227   }
228 
229   size_t n1 = Input.find(':');
230   StringRef Loc = Input.substr(Depth, n1 - Depth);
231   size_t n2 = Loc.find('.');
232   if (n2 == StringRef::npos) {
233     if (Loc.getAsInteger(10, LineOffset) || !isOffsetLegal(LineOffset))
234       return false;
235     Discriminator = 0;
236   } else {
237     if (Loc.substr(0, n2).getAsInteger(10, LineOffset))
238       return false;
239     if (Loc.substr(n2 + 1).getAsInteger(10, Discriminator))
240       return false;
241   }
242 
243   StringRef Rest = Input.substr(n1 + 2);
244   if (isDigit(Rest[0])) {
245     LineTy = LineType::BodyProfile;
246     size_t n3 = Rest.find(' ');
247     if (n3 == StringRef::npos) {
248       if (Rest.getAsInteger(10, NumSamples))
249         return false;
250     } else {
251       if (Rest.substr(0, n3).getAsInteger(10, NumSamples))
252         return false;
253     }
254     // Find call targets and their sample counts.
255     // Note: In some cases, there are symbols in the profile which are not
256     // mangled. To accommodate such cases, use colon + integer pairs as the
257     // anchor points.
258     // An example:
259     // _M_construct<char *>:1000 string_view<std::allocator<char> >:437
260     // ":1000" and ":437" are used as anchor points so the string above will
261     // be interpreted as
262     // target: _M_construct<char *>
263     // count: 1000
264     // target: string_view<std::allocator<char> >
265     // count: 437
266     while (n3 != StringRef::npos) {
267       n3 += Rest.substr(n3).find_first_not_of(' ');
268       Rest = Rest.substr(n3);
269       n3 = Rest.find_first_of(':');
270       if (n3 == StringRef::npos || n3 == 0)
271         return false;
272 
273       StringRef Target;
274       uint64_t count, n4;
275       while (true) {
276         // Get the segment after the current colon.
277         StringRef AfterColon = Rest.substr(n3 + 1);
278         // Get the target symbol before the current colon.
279         Target = Rest.substr(0, n3);
280         // Check if the word after the current colon is an integer.
281         n4 = AfterColon.find_first_of(' ');
282         n4 = (n4 != StringRef::npos) ? n3 + n4 + 1 : Rest.size();
283         StringRef WordAfterColon = Rest.substr(n3 + 1, n4 - n3 - 1);
284         if (!WordAfterColon.getAsInteger(10, count))
285           break;
286 
287         // Try to find the next colon.
288         uint64_t n5 = AfterColon.find_first_of(':');
289         if (n5 == StringRef::npos)
290           return false;
291         n3 += n5 + 1;
292       }
293 
294       // An anchor point is found. Save the {target, count} pair
295       TargetCountMap[Target] = count;
296       if (n4 == Rest.size())
297         break;
298       // Change n3 to the next blank space after colon + integer pair.
299       n3 = n4;
300     }
301   } else {
302     LineTy = LineType::CallSiteProfile;
303     size_t n3 = Rest.find_last_of(':');
304     CalleeName = Rest.substr(0, n3);
305     if (Rest.substr(n3 + 1).getAsInteger(10, NumSamples))
306       return false;
307   }
308   return true;
309 }
310 
311 /// Load samples from a text file.
312 ///
313 /// See the documentation at the top of the file for an explanation of
314 /// the expected format.
315 ///
316 /// \returns true if the file was loaded successfully, false otherwise.
317 std::error_code SampleProfileReaderText::readImpl() {
318   line_iterator LineIt(*Buffer, /*SkipBlanks=*/true, '#');
319   sampleprof_error Result = sampleprof_error::success;
320 
321   InlineCallStack InlineStack;
322   uint32_t TopLevelProbeProfileCount = 0;
323 
324   // DepthMetadata tracks whether we have processed metadata for the current
325   // top-level or nested function profile.
326   uint32_t DepthMetadata = 0;
327 
328   ProfileIsFS = ProfileIsFSDisciminator;
329   FunctionSamples::ProfileIsFS = ProfileIsFS;
330   for (; !LineIt.is_at_eof(); ++LineIt) {
331     size_t pos = LineIt->find_first_not_of(' ');
332     if (pos == LineIt->npos || (*LineIt)[pos] == '#')
333       continue;
334     // Read the header of each function.
335     //
336     // Note that for function identifiers we are actually expecting
337     // mangled names, but we may not always get them. This happens when
338     // the compiler decides not to emit the function (e.g., it was inlined
339     // and removed). In this case, the binary will not have the linkage
340     // name for the function, so the profiler will emit the function's
341     // unmangled name, which may contain characters like ':' and '>' in its
342     // name (member functions, templates, etc).
343     //
344     // The only requirement we place on the identifier, then, is that it
345     // should not begin with a number.
346     if ((*LineIt)[0] != ' ') {
347       uint64_t NumSamples, NumHeadSamples;
348       StringRef FName;
349       if (!ParseHead(*LineIt, FName, NumSamples, NumHeadSamples)) {
350         reportError(LineIt.line_number(),
351                     "Expected 'mangled_name:NUM:NUM', found " + *LineIt);
352         return sampleprof_error::malformed;
353       }
354       DepthMetadata = 0;
355       SampleContext FContext(FName, CSNameTable);
356       if (FContext.hasContext())
357         ++CSProfileCount;
358       Profiles[FContext] = FunctionSamples();
359       FunctionSamples &FProfile = Profiles[FContext];
360       FProfile.setContext(FContext);
361       MergeResult(Result, FProfile.addTotalSamples(NumSamples));
362       MergeResult(Result, FProfile.addHeadSamples(NumHeadSamples));
363       InlineStack.clear();
364       InlineStack.push_back(&FProfile);
365     } else {
366       uint64_t NumSamples;
367       StringRef FName;
368       DenseMap<StringRef, uint64_t> TargetCountMap;
369       uint32_t Depth, LineOffset, Discriminator;
370       LineType LineTy;
371       uint64_t FunctionHash = 0;
372       uint32_t Attributes = 0;
373       if (!ParseLine(*LineIt, LineTy, Depth, NumSamples, LineOffset,
374                      Discriminator, FName, TargetCountMap, FunctionHash,
375                      Attributes)) {
376         reportError(LineIt.line_number(),
377                     "Expected 'NUM[.NUM]: NUM[ mangled_name:NUM]*', found " +
378                         *LineIt);
379         return sampleprof_error::malformed;
380       }
381       if (LineTy != LineType::Metadata && Depth == DepthMetadata) {
382         // Metadata must be put at the end of a function profile.
383         reportError(LineIt.line_number(),
384                     "Found non-metadata after metadata: " + *LineIt);
385         return sampleprof_error::malformed;
386       }
387 
388       // Here we handle FS discriminators.
389       Discriminator &= getDiscriminatorMask();
390 
391       while (InlineStack.size() > Depth) {
392         InlineStack.pop_back();
393       }
394       switch (LineTy) {
395       case LineType::CallSiteProfile: {
396         FunctionSamples &FSamples = InlineStack.back()->functionSamplesAt(
397             LineLocation(LineOffset, Discriminator))[std::string(FName)];
398         FSamples.setName(FName);
399         MergeResult(Result, FSamples.addTotalSamples(NumSamples));
400         InlineStack.push_back(&FSamples);
401         DepthMetadata = 0;
402         break;
403       }
404       case LineType::BodyProfile: {
405         while (InlineStack.size() > Depth) {
406           InlineStack.pop_back();
407         }
408         FunctionSamples &FProfile = *InlineStack.back();
409         for (const auto &name_count : TargetCountMap) {
410           MergeResult(Result, FProfile.addCalledTargetSamples(
411                                   LineOffset, Discriminator, name_count.first,
412                                   name_count.second));
413         }
414         MergeResult(Result, FProfile.addBodySamples(LineOffset, Discriminator,
415                                                     NumSamples));
416         break;
417       }
418       case LineType::Metadata: {
419         FunctionSamples &FProfile = *InlineStack.back();
420         if (FunctionHash) {
421           FProfile.setFunctionHash(FunctionHash);
422           if (Depth == 1)
423             ++TopLevelProbeProfileCount;
424         }
425         FProfile.getContext().setAllAttributes(Attributes);
426         if (Attributes & (uint32_t)ContextShouldBeInlined)
427           ProfileIsPreInlined = true;
428         DepthMetadata = Depth;
429         break;
430       }
431       }
432     }
433   }
434 
435   assert((CSProfileCount == 0 || CSProfileCount == Profiles.size()) &&
436          "Cannot have both context-sensitive and regular profile");
437   ProfileIsCS = (CSProfileCount > 0);
438   assert((TopLevelProbeProfileCount == 0 ||
439           TopLevelProbeProfileCount == Profiles.size()) &&
440          "Cannot have both probe-based profiles and regular profiles");
441   ProfileIsProbeBased = (TopLevelProbeProfileCount > 0);
442   FunctionSamples::ProfileIsProbeBased = ProfileIsProbeBased;
443   FunctionSamples::ProfileIsCS = ProfileIsCS;
444   FunctionSamples::ProfileIsPreInlined = ProfileIsPreInlined;
445 
446   if (Result == sampleprof_error::success)
447     computeSummary();
448 
449   return Result;
450 }
451 
452 bool SampleProfileReaderText::hasFormat(const MemoryBuffer &Buffer) {
453   bool result = false;
454 
455   // Check that the first non-comment line is a valid function header.
456   line_iterator LineIt(Buffer, /*SkipBlanks=*/true, '#');
457   if (!LineIt.is_at_eof()) {
458     if ((*LineIt)[0] != ' ') {
459       uint64_t NumSamples, NumHeadSamples;
460       StringRef FName;
461       result = ParseHead(*LineIt, FName, NumSamples, NumHeadSamples);
462     }
463   }
464 
465   return result;
466 }
467 
468 template <typename T> ErrorOr<T> SampleProfileReaderBinary::readNumber() {
469   unsigned NumBytesRead = 0;
470   std::error_code EC;
471   uint64_t Val = decodeULEB128(Data, &NumBytesRead);
472 
473   if (Val > std::numeric_limits<T>::max())
474     EC = sampleprof_error::malformed;
475   else if (Data + NumBytesRead > End)
476     EC = sampleprof_error::truncated;
477   else
478     EC = sampleprof_error::success;
479 
480   if (EC) {
481     reportError(0, EC.message());
482     return EC;
483   }
484 
485   Data += NumBytesRead;
486   return static_cast<T>(Val);
487 }
488 
489 ErrorOr<StringRef> SampleProfileReaderBinary::readString() {
490   std::error_code EC;
491   StringRef Str(reinterpret_cast<const char *>(Data));
492   if (Data + Str.size() + 1 > End) {
493     EC = sampleprof_error::truncated;
494     reportError(0, EC.message());
495     return EC;
496   }
497 
498   Data += Str.size() + 1;
499   return Str;
500 }
501 
502 template <typename T>
503 ErrorOr<T> SampleProfileReaderBinary::readUnencodedNumber() {
504   std::error_code EC;
505 
506   if (Data + sizeof(T) > End) {
507     EC = sampleprof_error::truncated;
508     reportError(0, EC.message());
509     return EC;
510   }
511 
512   using namespace support;
513   T Val = endian::readNext<T, little, unaligned>(Data);
514   return Val;
515 }
516 
517 template <typename T>
518 inline ErrorOr<uint32_t> SampleProfileReaderBinary::readStringIndex(T &Table) {
519   std::error_code EC;
520   auto Idx = readNumber<uint32_t>();
521   if (std::error_code EC = Idx.getError())
522     return EC;
523   if (*Idx >= Table.size())
524     return sampleprof_error::truncated_name_table;
525   return *Idx;
526 }
527 
528 ErrorOr<StringRef> SampleProfileReaderBinary::readStringFromTable() {
529   auto Idx = readStringIndex(NameTable);
530   if (std::error_code EC = Idx.getError())
531     return EC;
532 
533   return NameTable[*Idx];
534 }
535 
536 ErrorOr<SampleContext> SampleProfileReaderBinary::readSampleContextFromTable() {
537   auto FName(readStringFromTable());
538   if (std::error_code EC = FName.getError())
539     return EC;
540   return SampleContext(*FName);
541 }
542 
543 ErrorOr<StringRef> SampleProfileReaderExtBinaryBase::readStringFromTable() {
544   if (!FixedLengthMD5)
545     return SampleProfileReaderBinary::readStringFromTable();
546 
547   // read NameTable index.
548   auto Idx = readStringIndex(NameTable);
549   if (std::error_code EC = Idx.getError())
550     return EC;
551 
552   // Check whether the name to be accessed has been accessed before,
553   // if not, read it from memory directly.
554   StringRef &SR = NameTable[*Idx];
555   if (SR.empty()) {
556     const uint8_t *SavedData = Data;
557     Data = MD5NameMemStart + ((*Idx) * sizeof(uint64_t));
558     auto FID = readUnencodedNumber<uint64_t>();
559     if (std::error_code EC = FID.getError())
560       return EC;
561     // Save the string converted from uint64_t in MD5StringBuf. All the
562     // references to the name are all StringRefs refering to the string
563     // in MD5StringBuf.
564     MD5StringBuf->push_back(std::to_string(*FID));
565     SR = MD5StringBuf->back();
566     Data = SavedData;
567   }
568   return SR;
569 }
570 
571 ErrorOr<StringRef> SampleProfileReaderCompactBinary::readStringFromTable() {
572   auto Idx = readStringIndex(NameTable);
573   if (std::error_code EC = Idx.getError())
574     return EC;
575 
576   return StringRef(NameTable[*Idx]);
577 }
578 
579 std::error_code
580 SampleProfileReaderBinary::readProfile(FunctionSamples &FProfile) {
581   auto NumSamples = readNumber<uint64_t>();
582   if (std::error_code EC = NumSamples.getError())
583     return EC;
584   FProfile.addTotalSamples(*NumSamples);
585 
586   // Read the samples in the body.
587   auto NumRecords = readNumber<uint32_t>();
588   if (std::error_code EC = NumRecords.getError())
589     return EC;
590 
591   for (uint32_t I = 0; I < *NumRecords; ++I) {
592     auto LineOffset = readNumber<uint64_t>();
593     if (std::error_code EC = LineOffset.getError())
594       return EC;
595 
596     if (!isOffsetLegal(*LineOffset)) {
597       return std::error_code();
598     }
599 
600     auto Discriminator = readNumber<uint64_t>();
601     if (std::error_code EC = Discriminator.getError())
602       return EC;
603 
604     auto NumSamples = readNumber<uint64_t>();
605     if (std::error_code EC = NumSamples.getError())
606       return EC;
607 
608     auto NumCalls = readNumber<uint32_t>();
609     if (std::error_code EC = NumCalls.getError())
610       return EC;
611 
612     // Here we handle FS discriminators:
613     uint32_t DiscriminatorVal = (*Discriminator) & getDiscriminatorMask();
614 
615     for (uint32_t J = 0; J < *NumCalls; ++J) {
616       auto CalledFunction(readStringFromTable());
617       if (std::error_code EC = CalledFunction.getError())
618         return EC;
619 
620       auto CalledFunctionSamples = readNumber<uint64_t>();
621       if (std::error_code EC = CalledFunctionSamples.getError())
622         return EC;
623 
624       FProfile.addCalledTargetSamples(*LineOffset, DiscriminatorVal,
625                                       *CalledFunction, *CalledFunctionSamples);
626     }
627 
628     FProfile.addBodySamples(*LineOffset, DiscriminatorVal, *NumSamples);
629   }
630 
631   // Read all the samples for inlined function calls.
632   auto NumCallsites = readNumber<uint32_t>();
633   if (std::error_code EC = NumCallsites.getError())
634     return EC;
635 
636   for (uint32_t J = 0; J < *NumCallsites; ++J) {
637     auto LineOffset = readNumber<uint64_t>();
638     if (std::error_code EC = LineOffset.getError())
639       return EC;
640 
641     auto Discriminator = readNumber<uint64_t>();
642     if (std::error_code EC = Discriminator.getError())
643       return EC;
644 
645     auto FName(readStringFromTable());
646     if (std::error_code EC = FName.getError())
647       return EC;
648 
649     // Here we handle FS discriminators:
650     uint32_t DiscriminatorVal = (*Discriminator) & getDiscriminatorMask();
651 
652     FunctionSamples &CalleeProfile = FProfile.functionSamplesAt(
653         LineLocation(*LineOffset, DiscriminatorVal))[std::string(*FName)];
654     CalleeProfile.setName(*FName);
655     if (std::error_code EC = readProfile(CalleeProfile))
656       return EC;
657   }
658 
659   return sampleprof_error::success;
660 }
661 
662 std::error_code
663 SampleProfileReaderBinary::readFuncProfile(const uint8_t *Start) {
664   Data = Start;
665   auto NumHeadSamples = readNumber<uint64_t>();
666   if (std::error_code EC = NumHeadSamples.getError())
667     return EC;
668 
669   ErrorOr<SampleContext> FContext(readSampleContextFromTable());
670   if (std::error_code EC = FContext.getError())
671     return EC;
672 
673   Profiles[*FContext] = FunctionSamples();
674   FunctionSamples &FProfile = Profiles[*FContext];
675   FProfile.setContext(*FContext);
676   FProfile.addHeadSamples(*NumHeadSamples);
677 
678   if (FContext->hasContext())
679     CSProfileCount++;
680 
681   if (std::error_code EC = readProfile(FProfile))
682     return EC;
683   return sampleprof_error::success;
684 }
685 
686 std::error_code SampleProfileReaderBinary::readImpl() {
687   ProfileIsFS = ProfileIsFSDisciminator;
688   FunctionSamples::ProfileIsFS = ProfileIsFS;
689   while (!at_eof()) {
690     if (std::error_code EC = readFuncProfile(Data))
691       return EC;
692   }
693 
694   return sampleprof_error::success;
695 }
696 
697 ErrorOr<SampleContextFrames>
698 SampleProfileReaderExtBinaryBase::readContextFromTable() {
699   auto ContextIdx = readNumber<uint32_t>();
700   if (std::error_code EC = ContextIdx.getError())
701     return EC;
702   if (*ContextIdx >= CSNameTable->size())
703     return sampleprof_error::truncated_name_table;
704   return (*CSNameTable)[*ContextIdx];
705 }
706 
707 ErrorOr<SampleContext>
708 SampleProfileReaderExtBinaryBase::readSampleContextFromTable() {
709   if (ProfileIsCS) {
710     auto FContext(readContextFromTable());
711     if (std::error_code EC = FContext.getError())
712       return EC;
713     return SampleContext(*FContext);
714   } else {
715     auto FName(readStringFromTable());
716     if (std::error_code EC = FName.getError())
717       return EC;
718     return SampleContext(*FName);
719   }
720 }
721 
722 std::error_code SampleProfileReaderExtBinaryBase::readOneSection(
723     const uint8_t *Start, uint64_t Size, const SecHdrTableEntry &Entry) {
724   Data = Start;
725   End = Start + Size;
726   switch (Entry.Type) {
727   case SecProfSummary:
728     if (std::error_code EC = readSummary())
729       return EC;
730     if (hasSecFlag(Entry, SecProfSummaryFlags::SecFlagPartial))
731       Summary->setPartialProfile(true);
732     if (hasSecFlag(Entry, SecProfSummaryFlags::SecFlagFullContext))
733       FunctionSamples::ProfileIsCS = ProfileIsCS = true;
734     if (hasSecFlag(Entry, SecProfSummaryFlags::SecFlagIsPreInlined))
735       FunctionSamples::ProfileIsPreInlined = ProfileIsPreInlined = true;
736     if (hasSecFlag(Entry, SecProfSummaryFlags::SecFlagFSDiscriminator))
737       FunctionSamples::ProfileIsFS = ProfileIsFS = true;
738     break;
739   case SecNameTable: {
740     FixedLengthMD5 =
741         hasSecFlag(Entry, SecNameTableFlags::SecFlagFixedLengthMD5);
742     bool UseMD5 = hasSecFlag(Entry, SecNameTableFlags::SecFlagMD5Name);
743     assert((!FixedLengthMD5 || UseMD5) &&
744            "If FixedLengthMD5 is true, UseMD5 has to be true");
745     FunctionSamples::HasUniqSuffix =
746         hasSecFlag(Entry, SecNameTableFlags::SecFlagUniqSuffix);
747     if (std::error_code EC = readNameTableSec(UseMD5))
748       return EC;
749     break;
750   }
751   case SecCSNameTable: {
752     if (std::error_code EC = readCSNameTableSec())
753       return EC;
754     break;
755   }
756   case SecLBRProfile:
757     if (std::error_code EC = readFuncProfiles())
758       return EC;
759     break;
760   case SecFuncOffsetTable:
761     FuncOffsetsOrdered = hasSecFlag(Entry, SecFuncOffsetFlags::SecFlagOrdered);
762     if (std::error_code EC = readFuncOffsetTable())
763       return EC;
764     break;
765   case SecFuncMetadata: {
766     ProfileIsProbeBased =
767         hasSecFlag(Entry, SecFuncMetadataFlags::SecFlagIsProbeBased);
768     FunctionSamples::ProfileIsProbeBased = ProfileIsProbeBased;
769     bool HasAttribute =
770         hasSecFlag(Entry, SecFuncMetadataFlags::SecFlagHasAttribute);
771     if (std::error_code EC = readFuncMetadata(HasAttribute))
772       return EC;
773     break;
774   }
775   case SecProfileSymbolList:
776     if (std::error_code EC = readProfileSymbolList())
777       return EC;
778     break;
779   default:
780     if (std::error_code EC = readCustomSection(Entry))
781       return EC;
782     break;
783   }
784   return sampleprof_error::success;
785 }
786 
787 bool SampleProfileReaderExtBinaryBase::collectFuncsFromModule() {
788   if (!M)
789     return false;
790   FuncsToUse.clear();
791   for (auto &F : *M)
792     FuncsToUse.insert(FunctionSamples::getCanonicalFnName(F));
793   return true;
794 }
795 
796 std::error_code SampleProfileReaderExtBinaryBase::readFuncOffsetTable() {
797   // If there are more than one FuncOffsetTable, the profile read associated
798   // with previous FuncOffsetTable has to be done before next FuncOffsetTable
799   // is read.
800   FuncOffsetTable.clear();
801 
802   auto Size = readNumber<uint64_t>();
803   if (std::error_code EC = Size.getError())
804     return EC;
805 
806   FuncOffsetTable.reserve(*Size);
807 
808   if (FuncOffsetsOrdered) {
809     OrderedFuncOffsets =
810         std::make_unique<std::vector<std::pair<SampleContext, uint64_t>>>();
811     OrderedFuncOffsets->reserve(*Size);
812   }
813 
814   for (uint64_t I = 0; I < *Size; ++I) {
815     auto FContext(readSampleContextFromTable());
816     if (std::error_code EC = FContext.getError())
817       return EC;
818 
819     auto Offset = readNumber<uint64_t>();
820     if (std::error_code EC = Offset.getError())
821       return EC;
822 
823     FuncOffsetTable[*FContext] = *Offset;
824     if (FuncOffsetsOrdered)
825       OrderedFuncOffsets->emplace_back(*FContext, *Offset);
826   }
827 
828   return sampleprof_error::success;
829 }
830 
831 std::error_code SampleProfileReaderExtBinaryBase::readFuncProfiles() {
832   // Collect functions used by current module if the Reader has been
833   // given a module.
834   // collectFuncsFromModule uses FunctionSamples::getCanonicalFnName
835   // which will query FunctionSamples::HasUniqSuffix, so it has to be
836   // called after FunctionSamples::HasUniqSuffix is set, i.e. after
837   // NameTable section is read.
838   bool LoadFuncsToBeUsed = collectFuncsFromModule();
839 
840   // When LoadFuncsToBeUsed is false, load all the function profiles.
841   const uint8_t *Start = Data;
842   if (!LoadFuncsToBeUsed) {
843     while (Data < End) {
844       if (std::error_code EC = readFuncProfile(Data))
845         return EC;
846     }
847     assert(Data == End && "More data is read than expected");
848   } else {
849     // Load function profiles on demand.
850     if (Remapper) {
851       for (auto Name : FuncsToUse) {
852         Remapper->insert(Name);
853       }
854     }
855 
856     if (ProfileIsCS) {
857       DenseSet<uint64_t> FuncGuidsToUse;
858       if (useMD5()) {
859         for (auto Name : FuncsToUse)
860           FuncGuidsToUse.insert(Function::getGUID(Name));
861       }
862 
863       // For each function in current module, load all context profiles for
864       // the function as well as their callee contexts which can help profile
865       // guided importing for ThinLTO. This can be achieved by walking
866       // through an ordered context container, where contexts are laid out
867       // as if they were walked in preorder of a context trie. While
868       // traversing the trie, a link to the highest common ancestor node is
869       // kept so that all of its decendants will be loaded.
870       assert(OrderedFuncOffsets.get() &&
871              "func offset table should always be sorted in CS profile");
872       const SampleContext *CommonContext = nullptr;
873       for (const auto &NameOffset : *OrderedFuncOffsets) {
874         const auto &FContext = NameOffset.first;
875         auto FName = FContext.getName();
876         // For function in the current module, keep its farthest ancestor
877         // context. This can be used to load itself and its child and
878         // sibling contexts.
879         if ((useMD5() && FuncGuidsToUse.count(std::stoull(FName.data()))) ||
880             (!useMD5() && (FuncsToUse.count(FName) ||
881                            (Remapper && Remapper->exist(FName))))) {
882           if (!CommonContext || !CommonContext->IsPrefixOf(FContext))
883             CommonContext = &FContext;
884         }
885 
886         if (CommonContext == &FContext ||
887             (CommonContext && CommonContext->IsPrefixOf(FContext))) {
888           // Load profile for the current context which originated from
889           // the common ancestor.
890           const uint8_t *FuncProfileAddr = Start + NameOffset.second;
891           assert(FuncProfileAddr < End && "out of LBRProfile section");
892           if (std::error_code EC = readFuncProfile(FuncProfileAddr))
893             return EC;
894         }
895       }
896     } else {
897       if (useMD5()) {
898         for (auto Name : FuncsToUse) {
899           auto GUID = std::to_string(MD5Hash(Name));
900           auto iter = FuncOffsetTable.find(StringRef(GUID));
901           if (iter == FuncOffsetTable.end())
902             continue;
903           const uint8_t *FuncProfileAddr = Start + iter->second;
904           assert(FuncProfileAddr < End && "out of LBRProfile section");
905           if (std::error_code EC = readFuncProfile(FuncProfileAddr))
906             return EC;
907         }
908       } else {
909         for (auto NameOffset : FuncOffsetTable) {
910           SampleContext FContext(NameOffset.first);
911           auto FuncName = FContext.getName();
912           if (!FuncsToUse.count(FuncName) &&
913               (!Remapper || !Remapper->exist(FuncName)))
914             continue;
915           const uint8_t *FuncProfileAddr = Start + NameOffset.second;
916           assert(FuncProfileAddr < End && "out of LBRProfile section");
917           if (std::error_code EC = readFuncProfile(FuncProfileAddr))
918             return EC;
919         }
920       }
921     }
922     Data = End;
923   }
924   assert((CSProfileCount == 0 || CSProfileCount == Profiles.size()) &&
925          "Cannot have both context-sensitive and regular profile");
926   assert((!CSProfileCount || ProfileIsCS) &&
927          "Section flag should be consistent with actual profile");
928   return sampleprof_error::success;
929 }
930 
931 std::error_code SampleProfileReaderExtBinaryBase::readProfileSymbolList() {
932   if (!ProfSymList)
933     ProfSymList = std::make_unique<ProfileSymbolList>();
934 
935   if (std::error_code EC = ProfSymList->read(Data, End - Data))
936     return EC;
937 
938   Data = End;
939   return sampleprof_error::success;
940 }
941 
942 std::error_code SampleProfileReaderExtBinaryBase::decompressSection(
943     const uint8_t *SecStart, const uint64_t SecSize,
944     const uint8_t *&DecompressBuf, uint64_t &DecompressBufSize) {
945   Data = SecStart;
946   End = SecStart + SecSize;
947   auto DecompressSize = readNumber<uint64_t>();
948   if (std::error_code EC = DecompressSize.getError())
949     return EC;
950   DecompressBufSize = *DecompressSize;
951 
952   auto CompressSize = readNumber<uint64_t>();
953   if (std::error_code EC = CompressSize.getError())
954     return EC;
955 
956   if (!llvm::compression::zlib::isAvailable())
957     return sampleprof_error::zlib_unavailable;
958 
959   uint8_t *Buffer = Allocator.Allocate<uint8_t>(DecompressBufSize);
960   size_t UCSize = DecompressBufSize;
961   llvm::Error E = compression::zlib::decompress(ArrayRef(Data, *CompressSize),
962                                                 Buffer, UCSize);
963   if (E)
964     return sampleprof_error::uncompress_failed;
965   DecompressBuf = reinterpret_cast<const uint8_t *>(Buffer);
966   return sampleprof_error::success;
967 }
968 
969 std::error_code SampleProfileReaderExtBinaryBase::readImpl() {
970   const uint8_t *BufStart =
971       reinterpret_cast<const uint8_t *>(Buffer->getBufferStart());
972 
973   for (auto &Entry : SecHdrTable) {
974     // Skip empty section.
975     if (!Entry.Size)
976       continue;
977 
978     // Skip sections without context when SkipFlatProf is true.
979     if (SkipFlatProf && hasSecFlag(Entry, SecCommonFlags::SecFlagFlat))
980       continue;
981 
982     const uint8_t *SecStart = BufStart + Entry.Offset;
983     uint64_t SecSize = Entry.Size;
984 
985     // If the section is compressed, decompress it into a buffer
986     // DecompressBuf before reading the actual data. The pointee of
987     // 'Data' will be changed to buffer hold by DecompressBuf
988     // temporarily when reading the actual data.
989     bool isCompressed = hasSecFlag(Entry, SecCommonFlags::SecFlagCompress);
990     if (isCompressed) {
991       const uint8_t *DecompressBuf;
992       uint64_t DecompressBufSize;
993       if (std::error_code EC = decompressSection(
994               SecStart, SecSize, DecompressBuf, DecompressBufSize))
995         return EC;
996       SecStart = DecompressBuf;
997       SecSize = DecompressBufSize;
998     }
999 
1000     if (std::error_code EC = readOneSection(SecStart, SecSize, Entry))
1001       return EC;
1002     if (Data != SecStart + SecSize)
1003       return sampleprof_error::malformed;
1004 
1005     // Change the pointee of 'Data' from DecompressBuf to original Buffer.
1006     if (isCompressed) {
1007       Data = BufStart + Entry.Offset;
1008       End = BufStart + Buffer->getBufferSize();
1009     }
1010   }
1011 
1012   return sampleprof_error::success;
1013 }
1014 
1015 std::error_code SampleProfileReaderCompactBinary::readImpl() {
1016   // Collect functions used by current module if the Reader has been
1017   // given a module.
1018   bool LoadFuncsToBeUsed = collectFuncsFromModule();
1019   ProfileIsFS = ProfileIsFSDisciminator;
1020   FunctionSamples::ProfileIsFS = ProfileIsFS;
1021   std::vector<uint64_t> OffsetsToUse;
1022   if (!LoadFuncsToBeUsed) {
1023     // load all the function profiles.
1024     for (auto FuncEntry : FuncOffsetTable) {
1025       OffsetsToUse.push_back(FuncEntry.second);
1026     }
1027   } else {
1028     // load function profiles on demand.
1029     for (auto Name : FuncsToUse) {
1030       auto GUID = std::to_string(MD5Hash(Name));
1031       auto iter = FuncOffsetTable.find(StringRef(GUID));
1032       if (iter == FuncOffsetTable.end())
1033         continue;
1034       OffsetsToUse.push_back(iter->second);
1035     }
1036   }
1037 
1038   for (auto Offset : OffsetsToUse) {
1039     const uint8_t *SavedData = Data;
1040     if (std::error_code EC = readFuncProfile(
1041             reinterpret_cast<const uint8_t *>(Buffer->getBufferStart()) +
1042             Offset))
1043       return EC;
1044     Data = SavedData;
1045   }
1046   return sampleprof_error::success;
1047 }
1048 
1049 std::error_code SampleProfileReaderRawBinary::verifySPMagic(uint64_t Magic) {
1050   if (Magic == SPMagic())
1051     return sampleprof_error::success;
1052   return sampleprof_error::bad_magic;
1053 }
1054 
1055 std::error_code SampleProfileReaderExtBinary::verifySPMagic(uint64_t Magic) {
1056   if (Magic == SPMagic(SPF_Ext_Binary))
1057     return sampleprof_error::success;
1058   return sampleprof_error::bad_magic;
1059 }
1060 
1061 std::error_code
1062 SampleProfileReaderCompactBinary::verifySPMagic(uint64_t Magic) {
1063   if (Magic == SPMagic(SPF_Compact_Binary))
1064     return sampleprof_error::success;
1065   return sampleprof_error::bad_magic;
1066 }
1067 
1068 std::error_code SampleProfileReaderBinary::readNameTable() {
1069   auto Size = readNumber<uint32_t>();
1070   if (std::error_code EC = Size.getError())
1071     return EC;
1072   NameTable.reserve(*Size + NameTable.size());
1073   for (uint32_t I = 0; I < *Size; ++I) {
1074     auto Name(readString());
1075     if (std::error_code EC = Name.getError())
1076       return EC;
1077     NameTable.push_back(*Name);
1078   }
1079 
1080   return sampleprof_error::success;
1081 }
1082 
1083 std::error_code SampleProfileReaderExtBinaryBase::readMD5NameTable() {
1084   auto Size = readNumber<uint64_t>();
1085   if (std::error_code EC = Size.getError())
1086     return EC;
1087   MD5StringBuf = std::make_unique<std::vector<std::string>>();
1088   MD5StringBuf->reserve(*Size);
1089   if (FixedLengthMD5) {
1090     // Preallocate and initialize NameTable so we can check whether a name
1091     // index has been read before by checking whether the element in the
1092     // NameTable is empty, meanwhile readStringIndex can do the boundary
1093     // check using the size of NameTable.
1094     NameTable.resize(*Size + NameTable.size());
1095 
1096     MD5NameMemStart = Data;
1097     Data = Data + (*Size) * sizeof(uint64_t);
1098     return sampleprof_error::success;
1099   }
1100   NameTable.reserve(*Size);
1101   for (uint64_t I = 0; I < *Size; ++I) {
1102     auto FID = readNumber<uint64_t>();
1103     if (std::error_code EC = FID.getError())
1104       return EC;
1105     MD5StringBuf->push_back(std::to_string(*FID));
1106     // NameTable is a vector of StringRef. Here it is pushing back a
1107     // StringRef initialized with the last string in MD5stringBuf.
1108     NameTable.push_back(MD5StringBuf->back());
1109   }
1110   return sampleprof_error::success;
1111 }
1112 
1113 std::error_code SampleProfileReaderExtBinaryBase::readNameTableSec(bool IsMD5) {
1114   if (IsMD5)
1115     return readMD5NameTable();
1116   return SampleProfileReaderBinary::readNameTable();
1117 }
1118 
1119 // Read in the CS name table section, which basically contains a list of context
1120 // vectors. Each element of a context vector, aka a frame, refers to the
1121 // underlying raw function names that are stored in the name table, as well as
1122 // a callsite identifier that only makes sense for non-leaf frames.
1123 std::error_code SampleProfileReaderExtBinaryBase::readCSNameTableSec() {
1124   auto Size = readNumber<uint32_t>();
1125   if (std::error_code EC = Size.getError())
1126     return EC;
1127 
1128   std::vector<SampleContextFrameVector> *PNameVec =
1129       new std::vector<SampleContextFrameVector>();
1130   PNameVec->reserve(*Size);
1131   for (uint32_t I = 0; I < *Size; ++I) {
1132     PNameVec->emplace_back(SampleContextFrameVector());
1133     auto ContextSize = readNumber<uint32_t>();
1134     if (std::error_code EC = ContextSize.getError())
1135       return EC;
1136     for (uint32_t J = 0; J < *ContextSize; ++J) {
1137       auto FName(readStringFromTable());
1138       if (std::error_code EC = FName.getError())
1139         return EC;
1140       auto LineOffset = readNumber<uint64_t>();
1141       if (std::error_code EC = LineOffset.getError())
1142         return EC;
1143 
1144       if (!isOffsetLegal(*LineOffset))
1145         return std::error_code();
1146 
1147       auto Discriminator = readNumber<uint64_t>();
1148       if (std::error_code EC = Discriminator.getError())
1149         return EC;
1150 
1151       PNameVec->back().emplace_back(
1152           FName.get(), LineLocation(LineOffset.get(), Discriminator.get()));
1153     }
1154   }
1155 
1156   // From this point the underlying object of CSNameTable should be immutable.
1157   CSNameTable.reset(PNameVec);
1158   return sampleprof_error::success;
1159 }
1160 
1161 std::error_code
1162 
1163 SampleProfileReaderExtBinaryBase::readFuncMetadata(bool ProfileHasAttribute,
1164                                                    FunctionSamples *FProfile) {
1165   if (Data < End) {
1166     if (ProfileIsProbeBased) {
1167       auto Checksum = readNumber<uint64_t>();
1168       if (std::error_code EC = Checksum.getError())
1169         return EC;
1170       if (FProfile)
1171         FProfile->setFunctionHash(*Checksum);
1172     }
1173 
1174     if (ProfileHasAttribute) {
1175       auto Attributes = readNumber<uint32_t>();
1176       if (std::error_code EC = Attributes.getError())
1177         return EC;
1178       if (FProfile)
1179         FProfile->getContext().setAllAttributes(*Attributes);
1180     }
1181 
1182     if (!ProfileIsCS) {
1183       // Read all the attributes for inlined function calls.
1184       auto NumCallsites = readNumber<uint32_t>();
1185       if (std::error_code EC = NumCallsites.getError())
1186         return EC;
1187 
1188       for (uint32_t J = 0; J < *NumCallsites; ++J) {
1189         auto LineOffset = readNumber<uint64_t>();
1190         if (std::error_code EC = LineOffset.getError())
1191           return EC;
1192 
1193         auto Discriminator = readNumber<uint64_t>();
1194         if (std::error_code EC = Discriminator.getError())
1195           return EC;
1196 
1197         auto FContext(readSampleContextFromTable());
1198         if (std::error_code EC = FContext.getError())
1199           return EC;
1200 
1201         FunctionSamples *CalleeProfile = nullptr;
1202         if (FProfile) {
1203           CalleeProfile = const_cast<FunctionSamples *>(
1204               &FProfile->functionSamplesAt(LineLocation(
1205                   *LineOffset,
1206                   *Discriminator))[std::string(FContext.get().getName())]);
1207         }
1208         if (std::error_code EC =
1209                 readFuncMetadata(ProfileHasAttribute, CalleeProfile))
1210           return EC;
1211       }
1212     }
1213   }
1214 
1215   return sampleprof_error::success;
1216 }
1217 
1218 std::error_code
1219 SampleProfileReaderExtBinaryBase::readFuncMetadata(bool ProfileHasAttribute) {
1220   while (Data < End) {
1221     auto FContext(readSampleContextFromTable());
1222     if (std::error_code EC = FContext.getError())
1223       return EC;
1224     FunctionSamples *FProfile = nullptr;
1225     auto It = Profiles.find(*FContext);
1226     if (It != Profiles.end())
1227       FProfile = &It->second;
1228 
1229     if (std::error_code EC = readFuncMetadata(ProfileHasAttribute, FProfile))
1230       return EC;
1231   }
1232 
1233   assert(Data == End && "More data is read than expected");
1234   return sampleprof_error::success;
1235 }
1236 
1237 std::error_code SampleProfileReaderCompactBinary::readNameTable() {
1238   auto Size = readNumber<uint64_t>();
1239   if (std::error_code EC = Size.getError())
1240     return EC;
1241   NameTable.reserve(*Size);
1242   for (uint64_t I = 0; I < *Size; ++I) {
1243     auto FID = readNumber<uint64_t>();
1244     if (std::error_code EC = FID.getError())
1245       return EC;
1246     NameTable.push_back(std::to_string(*FID));
1247   }
1248   return sampleprof_error::success;
1249 }
1250 
1251 std::error_code
1252 SampleProfileReaderExtBinaryBase::readSecHdrTableEntry(uint32_t Idx) {
1253   SecHdrTableEntry Entry;
1254   auto Type = readUnencodedNumber<uint64_t>();
1255   if (std::error_code EC = Type.getError())
1256     return EC;
1257   Entry.Type = static_cast<SecType>(*Type);
1258 
1259   auto Flags = readUnencodedNumber<uint64_t>();
1260   if (std::error_code EC = Flags.getError())
1261     return EC;
1262   Entry.Flags = *Flags;
1263 
1264   auto Offset = readUnencodedNumber<uint64_t>();
1265   if (std::error_code EC = Offset.getError())
1266     return EC;
1267   Entry.Offset = *Offset;
1268 
1269   auto Size = readUnencodedNumber<uint64_t>();
1270   if (std::error_code EC = Size.getError())
1271     return EC;
1272   Entry.Size = *Size;
1273 
1274   Entry.LayoutIndex = Idx;
1275   SecHdrTable.push_back(std::move(Entry));
1276   return sampleprof_error::success;
1277 }
1278 
1279 std::error_code SampleProfileReaderExtBinaryBase::readSecHdrTable() {
1280   auto EntryNum = readUnencodedNumber<uint64_t>();
1281   if (std::error_code EC = EntryNum.getError())
1282     return EC;
1283 
1284   for (uint64_t i = 0; i < (*EntryNum); i++)
1285     if (std::error_code EC = readSecHdrTableEntry(i))
1286       return EC;
1287 
1288   return sampleprof_error::success;
1289 }
1290 
1291 std::error_code SampleProfileReaderExtBinaryBase::readHeader() {
1292   const uint8_t *BufStart =
1293       reinterpret_cast<const uint8_t *>(Buffer->getBufferStart());
1294   Data = BufStart;
1295   End = BufStart + Buffer->getBufferSize();
1296 
1297   if (std::error_code EC = readMagicIdent())
1298     return EC;
1299 
1300   if (std::error_code EC = readSecHdrTable())
1301     return EC;
1302 
1303   return sampleprof_error::success;
1304 }
1305 
1306 uint64_t SampleProfileReaderExtBinaryBase::getSectionSize(SecType Type) {
1307   uint64_t Size = 0;
1308   for (auto &Entry : SecHdrTable) {
1309     if (Entry.Type == Type)
1310       Size += Entry.Size;
1311   }
1312   return Size;
1313 }
1314 
1315 uint64_t SampleProfileReaderExtBinaryBase::getFileSize() {
1316   // Sections in SecHdrTable is not necessarily in the same order as
1317   // sections in the profile because section like FuncOffsetTable needs
1318   // to be written after section LBRProfile but needs to be read before
1319   // section LBRProfile, so we cannot simply use the last entry in
1320   // SecHdrTable to calculate the file size.
1321   uint64_t FileSize = 0;
1322   for (auto &Entry : SecHdrTable) {
1323     FileSize = std::max(Entry.Offset + Entry.Size, FileSize);
1324   }
1325   return FileSize;
1326 }
1327 
1328 static std::string getSecFlagsStr(const SecHdrTableEntry &Entry) {
1329   std::string Flags;
1330   if (hasSecFlag(Entry, SecCommonFlags::SecFlagCompress))
1331     Flags.append("{compressed,");
1332   else
1333     Flags.append("{");
1334 
1335   if (hasSecFlag(Entry, SecCommonFlags::SecFlagFlat))
1336     Flags.append("flat,");
1337 
1338   switch (Entry.Type) {
1339   case SecNameTable:
1340     if (hasSecFlag(Entry, SecNameTableFlags::SecFlagFixedLengthMD5))
1341       Flags.append("fixlenmd5,");
1342     else if (hasSecFlag(Entry, SecNameTableFlags::SecFlagMD5Name))
1343       Flags.append("md5,");
1344     if (hasSecFlag(Entry, SecNameTableFlags::SecFlagUniqSuffix))
1345       Flags.append("uniq,");
1346     break;
1347   case SecProfSummary:
1348     if (hasSecFlag(Entry, SecProfSummaryFlags::SecFlagPartial))
1349       Flags.append("partial,");
1350     if (hasSecFlag(Entry, SecProfSummaryFlags::SecFlagFullContext))
1351       Flags.append("context,");
1352     if (hasSecFlag(Entry, SecProfSummaryFlags::SecFlagIsPreInlined))
1353       Flags.append("preInlined,");
1354     if (hasSecFlag(Entry, SecProfSummaryFlags::SecFlagFSDiscriminator))
1355       Flags.append("fs-discriminator,");
1356     break;
1357   case SecFuncOffsetTable:
1358     if (hasSecFlag(Entry, SecFuncOffsetFlags::SecFlagOrdered))
1359       Flags.append("ordered,");
1360     break;
1361   case SecFuncMetadata:
1362     if (hasSecFlag(Entry, SecFuncMetadataFlags::SecFlagIsProbeBased))
1363       Flags.append("probe,");
1364     if (hasSecFlag(Entry, SecFuncMetadataFlags::SecFlagHasAttribute))
1365       Flags.append("attr,");
1366     break;
1367   default:
1368     break;
1369   }
1370   char &last = Flags.back();
1371   if (last == ',')
1372     last = '}';
1373   else
1374     Flags.append("}");
1375   return Flags;
1376 }
1377 
1378 bool SampleProfileReaderExtBinaryBase::dumpSectionInfo(raw_ostream &OS) {
1379   uint64_t TotalSecsSize = 0;
1380   for (auto &Entry : SecHdrTable) {
1381     OS << getSecName(Entry.Type) << " - Offset: " << Entry.Offset
1382        << ", Size: " << Entry.Size << ", Flags: " << getSecFlagsStr(Entry)
1383        << "\n";
1384     ;
1385     TotalSecsSize += Entry.Size;
1386   }
1387   uint64_t HeaderSize = SecHdrTable.front().Offset;
1388   assert(HeaderSize + TotalSecsSize == getFileSize() &&
1389          "Size of 'header + sections' doesn't match the total size of profile");
1390 
1391   OS << "Header Size: " << HeaderSize << "\n";
1392   OS << "Total Sections Size: " << TotalSecsSize << "\n";
1393   OS << "File Size: " << getFileSize() << "\n";
1394   return true;
1395 }
1396 
1397 std::error_code SampleProfileReaderBinary::readMagicIdent() {
1398   // Read and check the magic identifier.
1399   auto Magic = readNumber<uint64_t>();
1400   if (std::error_code EC = Magic.getError())
1401     return EC;
1402   else if (std::error_code EC = verifySPMagic(*Magic))
1403     return EC;
1404 
1405   // Read the version number.
1406   auto Version = readNumber<uint64_t>();
1407   if (std::error_code EC = Version.getError())
1408     return EC;
1409   else if (*Version != SPVersion())
1410     return sampleprof_error::unsupported_version;
1411 
1412   return sampleprof_error::success;
1413 }
1414 
1415 std::error_code SampleProfileReaderBinary::readHeader() {
1416   Data = reinterpret_cast<const uint8_t *>(Buffer->getBufferStart());
1417   End = Data + Buffer->getBufferSize();
1418 
1419   if (std::error_code EC = readMagicIdent())
1420     return EC;
1421 
1422   if (std::error_code EC = readSummary())
1423     return EC;
1424 
1425   if (std::error_code EC = readNameTable())
1426     return EC;
1427   return sampleprof_error::success;
1428 }
1429 
1430 std::error_code SampleProfileReaderCompactBinary::readHeader() {
1431   SampleProfileReaderBinary::readHeader();
1432   if (std::error_code EC = readFuncOffsetTable())
1433     return EC;
1434   return sampleprof_error::success;
1435 }
1436 
1437 std::error_code SampleProfileReaderCompactBinary::readFuncOffsetTable() {
1438   auto TableOffset = readUnencodedNumber<uint64_t>();
1439   if (std::error_code EC = TableOffset.getError())
1440     return EC;
1441 
1442   const uint8_t *SavedData = Data;
1443   const uint8_t *TableStart =
1444       reinterpret_cast<const uint8_t *>(Buffer->getBufferStart()) +
1445       *TableOffset;
1446   Data = TableStart;
1447 
1448   auto Size = readNumber<uint64_t>();
1449   if (std::error_code EC = Size.getError())
1450     return EC;
1451 
1452   FuncOffsetTable.reserve(*Size);
1453   for (uint64_t I = 0; I < *Size; ++I) {
1454     auto FName(readStringFromTable());
1455     if (std::error_code EC = FName.getError())
1456       return EC;
1457 
1458     auto Offset = readNumber<uint64_t>();
1459     if (std::error_code EC = Offset.getError())
1460       return EC;
1461 
1462     FuncOffsetTable[*FName] = *Offset;
1463   }
1464   End = TableStart;
1465   Data = SavedData;
1466   return sampleprof_error::success;
1467 }
1468 
1469 bool SampleProfileReaderCompactBinary::collectFuncsFromModule() {
1470   if (!M)
1471     return false;
1472   FuncsToUse.clear();
1473   for (auto &F : *M)
1474     FuncsToUse.insert(FunctionSamples::getCanonicalFnName(F));
1475   return true;
1476 }
1477 
1478 std::error_code SampleProfileReaderBinary::readSummaryEntry(
1479     std::vector<ProfileSummaryEntry> &Entries) {
1480   auto Cutoff = readNumber<uint64_t>();
1481   if (std::error_code EC = Cutoff.getError())
1482     return EC;
1483 
1484   auto MinBlockCount = readNumber<uint64_t>();
1485   if (std::error_code EC = MinBlockCount.getError())
1486     return EC;
1487 
1488   auto NumBlocks = readNumber<uint64_t>();
1489   if (std::error_code EC = NumBlocks.getError())
1490     return EC;
1491 
1492   Entries.emplace_back(*Cutoff, *MinBlockCount, *NumBlocks);
1493   return sampleprof_error::success;
1494 }
1495 
1496 std::error_code SampleProfileReaderBinary::readSummary() {
1497   auto TotalCount = readNumber<uint64_t>();
1498   if (std::error_code EC = TotalCount.getError())
1499     return EC;
1500 
1501   auto MaxBlockCount = readNumber<uint64_t>();
1502   if (std::error_code EC = MaxBlockCount.getError())
1503     return EC;
1504 
1505   auto MaxFunctionCount = readNumber<uint64_t>();
1506   if (std::error_code EC = MaxFunctionCount.getError())
1507     return EC;
1508 
1509   auto NumBlocks = readNumber<uint64_t>();
1510   if (std::error_code EC = NumBlocks.getError())
1511     return EC;
1512 
1513   auto NumFunctions = readNumber<uint64_t>();
1514   if (std::error_code EC = NumFunctions.getError())
1515     return EC;
1516 
1517   auto NumSummaryEntries = readNumber<uint64_t>();
1518   if (std::error_code EC = NumSummaryEntries.getError())
1519     return EC;
1520 
1521   std::vector<ProfileSummaryEntry> Entries;
1522   for (unsigned i = 0; i < *NumSummaryEntries; i++) {
1523     std::error_code EC = readSummaryEntry(Entries);
1524     if (EC != sampleprof_error::success)
1525       return EC;
1526   }
1527   Summary = std::make_unique<ProfileSummary>(
1528       ProfileSummary::PSK_Sample, Entries, *TotalCount, *MaxBlockCount, 0,
1529       *MaxFunctionCount, *NumBlocks, *NumFunctions);
1530 
1531   return sampleprof_error::success;
1532 }
1533 
1534 bool SampleProfileReaderRawBinary::hasFormat(const MemoryBuffer &Buffer) {
1535   const uint8_t *Data =
1536       reinterpret_cast<const uint8_t *>(Buffer.getBufferStart());
1537   uint64_t Magic = decodeULEB128(Data);
1538   return Magic == SPMagic();
1539 }
1540 
1541 bool SampleProfileReaderExtBinary::hasFormat(const MemoryBuffer &Buffer) {
1542   const uint8_t *Data =
1543       reinterpret_cast<const uint8_t *>(Buffer.getBufferStart());
1544   uint64_t Magic = decodeULEB128(Data);
1545   return Magic == SPMagic(SPF_Ext_Binary);
1546 }
1547 
1548 bool SampleProfileReaderCompactBinary::hasFormat(const MemoryBuffer &Buffer) {
1549   const uint8_t *Data =
1550       reinterpret_cast<const uint8_t *>(Buffer.getBufferStart());
1551   uint64_t Magic = decodeULEB128(Data);
1552   return Magic == SPMagic(SPF_Compact_Binary);
1553 }
1554 
1555 std::error_code SampleProfileReaderGCC::skipNextWord() {
1556   uint32_t dummy;
1557   if (!GcovBuffer.readInt(dummy))
1558     return sampleprof_error::truncated;
1559   return sampleprof_error::success;
1560 }
1561 
1562 template <typename T> ErrorOr<T> SampleProfileReaderGCC::readNumber() {
1563   if (sizeof(T) <= sizeof(uint32_t)) {
1564     uint32_t Val;
1565     if (GcovBuffer.readInt(Val) && Val <= std::numeric_limits<T>::max())
1566       return static_cast<T>(Val);
1567   } else if (sizeof(T) <= sizeof(uint64_t)) {
1568     uint64_t Val;
1569     if (GcovBuffer.readInt64(Val) && Val <= std::numeric_limits<T>::max())
1570       return static_cast<T>(Val);
1571   }
1572 
1573   std::error_code EC = sampleprof_error::malformed;
1574   reportError(0, EC.message());
1575   return EC;
1576 }
1577 
1578 ErrorOr<StringRef> SampleProfileReaderGCC::readString() {
1579   StringRef Str;
1580   if (!GcovBuffer.readString(Str))
1581     return sampleprof_error::truncated;
1582   return Str;
1583 }
1584 
1585 std::error_code SampleProfileReaderGCC::readHeader() {
1586   // Read the magic identifier.
1587   if (!GcovBuffer.readGCDAFormat())
1588     return sampleprof_error::unrecognized_format;
1589 
1590   // Read the version number. Note - the GCC reader does not validate this
1591   // version, but the profile creator generates v704.
1592   GCOV::GCOVVersion version;
1593   if (!GcovBuffer.readGCOVVersion(version))
1594     return sampleprof_error::unrecognized_format;
1595 
1596   if (version != GCOV::V407)
1597     return sampleprof_error::unsupported_version;
1598 
1599   // Skip the empty integer.
1600   if (std::error_code EC = skipNextWord())
1601     return EC;
1602 
1603   return sampleprof_error::success;
1604 }
1605 
1606 std::error_code SampleProfileReaderGCC::readSectionTag(uint32_t Expected) {
1607   uint32_t Tag;
1608   if (!GcovBuffer.readInt(Tag))
1609     return sampleprof_error::truncated;
1610 
1611   if (Tag != Expected)
1612     return sampleprof_error::malformed;
1613 
1614   if (std::error_code EC = skipNextWord())
1615     return EC;
1616 
1617   return sampleprof_error::success;
1618 }
1619 
1620 std::error_code SampleProfileReaderGCC::readNameTable() {
1621   if (std::error_code EC = readSectionTag(GCOVTagAFDOFileNames))
1622     return EC;
1623 
1624   uint32_t Size;
1625   if (!GcovBuffer.readInt(Size))
1626     return sampleprof_error::truncated;
1627 
1628   for (uint32_t I = 0; I < Size; ++I) {
1629     StringRef Str;
1630     if (!GcovBuffer.readString(Str))
1631       return sampleprof_error::truncated;
1632     Names.push_back(std::string(Str));
1633   }
1634 
1635   return sampleprof_error::success;
1636 }
1637 
1638 std::error_code SampleProfileReaderGCC::readFunctionProfiles() {
1639   if (std::error_code EC = readSectionTag(GCOVTagAFDOFunction))
1640     return EC;
1641 
1642   uint32_t NumFunctions;
1643   if (!GcovBuffer.readInt(NumFunctions))
1644     return sampleprof_error::truncated;
1645 
1646   InlineCallStack Stack;
1647   for (uint32_t I = 0; I < NumFunctions; ++I)
1648     if (std::error_code EC = readOneFunctionProfile(Stack, true, 0))
1649       return EC;
1650 
1651   computeSummary();
1652   return sampleprof_error::success;
1653 }
1654 
1655 std::error_code SampleProfileReaderGCC::readOneFunctionProfile(
1656     const InlineCallStack &InlineStack, bool Update, uint32_t Offset) {
1657   uint64_t HeadCount = 0;
1658   if (InlineStack.size() == 0)
1659     if (!GcovBuffer.readInt64(HeadCount))
1660       return sampleprof_error::truncated;
1661 
1662   uint32_t NameIdx;
1663   if (!GcovBuffer.readInt(NameIdx))
1664     return sampleprof_error::truncated;
1665 
1666   StringRef Name(Names[NameIdx]);
1667 
1668   uint32_t NumPosCounts;
1669   if (!GcovBuffer.readInt(NumPosCounts))
1670     return sampleprof_error::truncated;
1671 
1672   uint32_t NumCallsites;
1673   if (!GcovBuffer.readInt(NumCallsites))
1674     return sampleprof_error::truncated;
1675 
1676   FunctionSamples *FProfile = nullptr;
1677   if (InlineStack.size() == 0) {
1678     // If this is a top function that we have already processed, do not
1679     // update its profile again.  This happens in the presence of
1680     // function aliases.  Since these aliases share the same function
1681     // body, there will be identical replicated profiles for the
1682     // original function.  In this case, we simply not bother updating
1683     // the profile of the original function.
1684     FProfile = &Profiles[Name];
1685     FProfile->addHeadSamples(HeadCount);
1686     if (FProfile->getTotalSamples() > 0)
1687       Update = false;
1688   } else {
1689     // Otherwise, we are reading an inlined instance. The top of the
1690     // inline stack contains the profile of the caller. Insert this
1691     // callee in the caller's CallsiteMap.
1692     FunctionSamples *CallerProfile = InlineStack.front();
1693     uint32_t LineOffset = Offset >> 16;
1694     uint32_t Discriminator = Offset & 0xffff;
1695     FProfile = &CallerProfile->functionSamplesAt(
1696         LineLocation(LineOffset, Discriminator))[std::string(Name)];
1697   }
1698   FProfile->setName(Name);
1699 
1700   for (uint32_t I = 0; I < NumPosCounts; ++I) {
1701     uint32_t Offset;
1702     if (!GcovBuffer.readInt(Offset))
1703       return sampleprof_error::truncated;
1704 
1705     uint32_t NumTargets;
1706     if (!GcovBuffer.readInt(NumTargets))
1707       return sampleprof_error::truncated;
1708 
1709     uint64_t Count;
1710     if (!GcovBuffer.readInt64(Count))
1711       return sampleprof_error::truncated;
1712 
1713     // The line location is encoded in the offset as:
1714     //   high 16 bits: line offset to the start of the function.
1715     //   low 16 bits: discriminator.
1716     uint32_t LineOffset = Offset >> 16;
1717     uint32_t Discriminator = Offset & 0xffff;
1718 
1719     InlineCallStack NewStack;
1720     NewStack.push_back(FProfile);
1721     llvm::append_range(NewStack, InlineStack);
1722     if (Update) {
1723       // Walk up the inline stack, adding the samples on this line to
1724       // the total sample count of the callers in the chain.
1725       for (auto *CallerProfile : NewStack)
1726         CallerProfile->addTotalSamples(Count);
1727 
1728       // Update the body samples for the current profile.
1729       FProfile->addBodySamples(LineOffset, Discriminator, Count);
1730     }
1731 
1732     // Process the list of functions called at an indirect call site.
1733     // These are all the targets that a function pointer (or virtual
1734     // function) resolved at runtime.
1735     for (uint32_t J = 0; J < NumTargets; J++) {
1736       uint32_t HistVal;
1737       if (!GcovBuffer.readInt(HistVal))
1738         return sampleprof_error::truncated;
1739 
1740       if (HistVal != HIST_TYPE_INDIR_CALL_TOPN)
1741         return sampleprof_error::malformed;
1742 
1743       uint64_t TargetIdx;
1744       if (!GcovBuffer.readInt64(TargetIdx))
1745         return sampleprof_error::truncated;
1746       StringRef TargetName(Names[TargetIdx]);
1747 
1748       uint64_t TargetCount;
1749       if (!GcovBuffer.readInt64(TargetCount))
1750         return sampleprof_error::truncated;
1751 
1752       if (Update)
1753         FProfile->addCalledTargetSamples(LineOffset, Discriminator,
1754                                          TargetName, TargetCount);
1755     }
1756   }
1757 
1758   // Process all the inlined callers into the current function. These
1759   // are all the callsites that were inlined into this function.
1760   for (uint32_t I = 0; I < NumCallsites; I++) {
1761     // The offset is encoded as:
1762     //   high 16 bits: line offset to the start of the function.
1763     //   low 16 bits: discriminator.
1764     uint32_t Offset;
1765     if (!GcovBuffer.readInt(Offset))
1766       return sampleprof_error::truncated;
1767     InlineCallStack NewStack;
1768     NewStack.push_back(FProfile);
1769     llvm::append_range(NewStack, InlineStack);
1770     if (std::error_code EC = readOneFunctionProfile(NewStack, Update, Offset))
1771       return EC;
1772   }
1773 
1774   return sampleprof_error::success;
1775 }
1776 
1777 /// Read a GCC AutoFDO profile.
1778 ///
1779 /// This format is generated by the Linux Perf conversion tool at
1780 /// https://github.com/google/autofdo.
1781 std::error_code SampleProfileReaderGCC::readImpl() {
1782   assert(!ProfileIsFSDisciminator && "Gcc profiles not support FSDisciminator");
1783   // Read the string table.
1784   if (std::error_code EC = readNameTable())
1785     return EC;
1786 
1787   // Read the source profile.
1788   if (std::error_code EC = readFunctionProfiles())
1789     return EC;
1790 
1791   return sampleprof_error::success;
1792 }
1793 
1794 bool SampleProfileReaderGCC::hasFormat(const MemoryBuffer &Buffer) {
1795   StringRef Magic(reinterpret_cast<const char *>(Buffer.getBufferStart()));
1796   return Magic == "adcg*704";
1797 }
1798 
1799 void SampleProfileReaderItaniumRemapper::applyRemapping(LLVMContext &Ctx) {
1800   // If the reader uses MD5 to represent string, we can't remap it because
1801   // we don't know what the original function names were.
1802   if (Reader.useMD5()) {
1803     Ctx.diagnose(DiagnosticInfoSampleProfile(
1804         Reader.getBuffer()->getBufferIdentifier(),
1805         "Profile data remapping cannot be applied to profile data "
1806         "in compact format (original mangled names are not available).",
1807         DS_Warning));
1808     return;
1809   }
1810 
1811   // CSSPGO-TODO: Remapper is not yet supported.
1812   // We will need to remap the entire context string.
1813   assert(Remappings && "should be initialized while creating remapper");
1814   for (auto &Sample : Reader.getProfiles()) {
1815     DenseSet<StringRef> NamesInSample;
1816     Sample.second.findAllNames(NamesInSample);
1817     for (auto &Name : NamesInSample)
1818       if (auto Key = Remappings->insert(Name))
1819         NameMap.insert({Key, Name});
1820   }
1821 
1822   RemappingApplied = true;
1823 }
1824 
1825 std::optional<StringRef>
1826 SampleProfileReaderItaniumRemapper::lookUpNameInProfile(StringRef Fname) {
1827   if (auto Key = Remappings->lookup(Fname))
1828     return NameMap.lookup(Key);
1829   return std::nullopt;
1830 }
1831 
1832 /// Prepare a memory buffer for the contents of \p Filename.
1833 ///
1834 /// \returns an error code indicating the status of the buffer.
1835 static ErrorOr<std::unique_ptr<MemoryBuffer>>
1836 setupMemoryBuffer(const Twine &Filename, vfs::FileSystem &FS) {
1837   auto BufferOrErr = Filename.str() == "-" ? MemoryBuffer::getSTDIN()
1838                                            : FS.getBufferForFile(Filename);
1839   if (std::error_code EC = BufferOrErr.getError())
1840     return EC;
1841   auto Buffer = std::move(BufferOrErr.get());
1842 
1843   return std::move(Buffer);
1844 }
1845 
1846 /// Create a sample profile reader based on the format of the input file.
1847 ///
1848 /// \param Filename The file to open.
1849 ///
1850 /// \param C The LLVM context to use to emit diagnostics.
1851 ///
1852 /// \param P The FSDiscriminatorPass.
1853 ///
1854 /// \param RemapFilename The file used for profile remapping.
1855 ///
1856 /// \returns an error code indicating the status of the created reader.
1857 ErrorOr<std::unique_ptr<SampleProfileReader>>
1858 SampleProfileReader::create(const std::string Filename, LLVMContext &C,
1859                             vfs::FileSystem &FS, FSDiscriminatorPass P,
1860                             const std::string RemapFilename) {
1861   auto BufferOrError = setupMemoryBuffer(Filename, FS);
1862   if (std::error_code EC = BufferOrError.getError())
1863     return EC;
1864   return create(BufferOrError.get(), C, FS, P, RemapFilename);
1865 }
1866 
1867 /// Create a sample profile remapper from the given input, to remap the
1868 /// function names in the given profile data.
1869 ///
1870 /// \param Filename The file to open.
1871 ///
1872 /// \param Reader The profile reader the remapper is going to be applied to.
1873 ///
1874 /// \param C The LLVM context to use to emit diagnostics.
1875 ///
1876 /// \returns an error code indicating the status of the created reader.
1877 ErrorOr<std::unique_ptr<SampleProfileReaderItaniumRemapper>>
1878 SampleProfileReaderItaniumRemapper::create(const std::string Filename,
1879                                            vfs::FileSystem &FS,
1880                                            SampleProfileReader &Reader,
1881                                            LLVMContext &C) {
1882   auto BufferOrError = setupMemoryBuffer(Filename, FS);
1883   if (std::error_code EC = BufferOrError.getError())
1884     return EC;
1885   return create(BufferOrError.get(), Reader, C);
1886 }
1887 
1888 /// Create a sample profile remapper from the given input, to remap the
1889 /// function names in the given profile data.
1890 ///
1891 /// \param B The memory buffer to create the reader from (assumes ownership).
1892 ///
1893 /// \param C The LLVM context to use to emit diagnostics.
1894 ///
1895 /// \param Reader The profile reader the remapper is going to be applied to.
1896 ///
1897 /// \returns an error code indicating the status of the created reader.
1898 ErrorOr<std::unique_ptr<SampleProfileReaderItaniumRemapper>>
1899 SampleProfileReaderItaniumRemapper::create(std::unique_ptr<MemoryBuffer> &B,
1900                                            SampleProfileReader &Reader,
1901                                            LLVMContext &C) {
1902   auto Remappings = std::make_unique<SymbolRemappingReader>();
1903   if (Error E = Remappings->read(*B)) {
1904     handleAllErrors(
1905         std::move(E), [&](const SymbolRemappingParseError &ParseError) {
1906           C.diagnose(DiagnosticInfoSampleProfile(B->getBufferIdentifier(),
1907                                                  ParseError.getLineNum(),
1908                                                  ParseError.getMessage()));
1909         });
1910     return sampleprof_error::malformed;
1911   }
1912 
1913   return std::make_unique<SampleProfileReaderItaniumRemapper>(
1914       std::move(B), std::move(Remappings), Reader);
1915 }
1916 
1917 /// Create a sample profile reader based on the format of the input data.
1918 ///
1919 /// \param B The memory buffer to create the reader from (assumes ownership).
1920 ///
1921 /// \param C The LLVM context to use to emit diagnostics.
1922 ///
1923 /// \param P The FSDiscriminatorPass.
1924 ///
1925 /// \param RemapFilename The file used for profile remapping.
1926 ///
1927 /// \returns an error code indicating the status of the created reader.
1928 ErrorOr<std::unique_ptr<SampleProfileReader>>
1929 SampleProfileReader::create(std::unique_ptr<MemoryBuffer> &B, LLVMContext &C,
1930                             vfs::FileSystem &FS, FSDiscriminatorPass P,
1931                             const std::string RemapFilename) {
1932   std::unique_ptr<SampleProfileReader> Reader;
1933   if (SampleProfileReaderRawBinary::hasFormat(*B))
1934     Reader.reset(new SampleProfileReaderRawBinary(std::move(B), C));
1935   else if (SampleProfileReaderExtBinary::hasFormat(*B))
1936     Reader.reset(new SampleProfileReaderExtBinary(std::move(B), C));
1937   else if (SampleProfileReaderCompactBinary::hasFormat(*B))
1938     Reader.reset(new SampleProfileReaderCompactBinary(std::move(B), C));
1939   else if (SampleProfileReaderGCC::hasFormat(*B))
1940     Reader.reset(new SampleProfileReaderGCC(std::move(B), C));
1941   else if (SampleProfileReaderText::hasFormat(*B))
1942     Reader.reset(new SampleProfileReaderText(std::move(B), C));
1943   else
1944     return sampleprof_error::unrecognized_format;
1945 
1946   if (!RemapFilename.empty()) {
1947     auto ReaderOrErr = SampleProfileReaderItaniumRemapper::create(
1948         RemapFilename, FS, *Reader, C);
1949     if (std::error_code EC = ReaderOrErr.getError()) {
1950       std::string Msg = "Could not create remapper: " + EC.message();
1951       C.diagnose(DiagnosticInfoSampleProfile(RemapFilename, Msg));
1952       return EC;
1953     }
1954     Reader->Remapper = std::move(ReaderOrErr.get());
1955   }
1956 
1957   if (std::error_code EC = Reader->readHeader()) {
1958     return EC;
1959   }
1960 
1961   Reader->setDiscriminatorMaskedBitFrom(P);
1962 
1963   return std::move(Reader);
1964 }
1965 
1966 // For text and GCC file formats, we compute the summary after reading the
1967 // profile. Binary format has the profile summary in its header.
1968 void SampleProfileReader::computeSummary() {
1969   SampleProfileSummaryBuilder Builder(ProfileSummaryBuilder::DefaultCutoffs);
1970   Summary = Builder.computeSummaryForProfiles(Profiles);
1971 }
1972