1 //===- SampleProfReader.cpp - Read LLVM sample profile data ---------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the class that reads LLVM sample profiles. It 10 // supports three file formats: text, binary and gcov. 11 // 12 // The textual representation is useful for debugging and testing purposes. The 13 // binary representation is more compact, resulting in smaller file sizes. 14 // 15 // The gcov encoding is the one generated by GCC's AutoFDO profile creation 16 // tool (https://github.com/google/autofdo) 17 // 18 // All three encodings can be used interchangeably as an input sample profile. 19 // 20 //===----------------------------------------------------------------------===// 21 22 #include "llvm/ProfileData/SampleProfReader.h" 23 #include "llvm/ADT/DenseMap.h" 24 #include "llvm/ADT/STLExtras.h" 25 #include "llvm/ADT/StringRef.h" 26 #include "llvm/IR/Module.h" 27 #include "llvm/IR/ProfileSummary.h" 28 #include "llvm/ProfileData/ProfileCommon.h" 29 #include "llvm/ProfileData/SampleProf.h" 30 #include "llvm/Support/CommandLine.h" 31 #include "llvm/Support/Compression.h" 32 #include "llvm/Support/ErrorOr.h" 33 #include "llvm/Support/JSON.h" 34 #include "llvm/Support/LEB128.h" 35 #include "llvm/Support/LineIterator.h" 36 #include "llvm/Support/MD5.h" 37 #include "llvm/Support/MemoryBuffer.h" 38 #include "llvm/Support/VirtualFileSystem.h" 39 #include "llvm/Support/raw_ostream.h" 40 #include <algorithm> 41 #include <cstddef> 42 #include <cstdint> 43 #include <limits> 44 #include <memory> 45 #include <system_error> 46 #include <vector> 47 48 using namespace llvm; 49 using namespace sampleprof; 50 51 #define DEBUG_TYPE "samplepgo-reader" 52 53 // This internal option specifies if the profile uses FS discriminators. 54 // It only applies to text, and binary format profiles. 55 // For ext-binary format profiles, the flag is set in the summary. 56 static cl::opt<bool> ProfileIsFSDisciminator( 57 "profile-isfs", cl::Hidden, cl::init(false), 58 cl::desc("Profile uses flow sensitive discriminators")); 59 60 /// Dump the function profile for \p FName. 61 /// 62 /// \param FContext Name + context of the function to print. 63 /// \param OS Stream to emit the output to. 64 void SampleProfileReader::dumpFunctionProfile(const FunctionSamples &FS, 65 raw_ostream &OS) { 66 OS << "Function: " << FS.getContext().toString() << ": " << FS; 67 } 68 69 /// Dump all the function profiles found on stream \p OS. 70 void SampleProfileReader::dump(raw_ostream &OS) { 71 std::vector<NameFunctionSamples> V; 72 sortFuncProfiles(Profiles, V); 73 for (const auto &I : V) 74 dumpFunctionProfile(*I.second, OS); 75 } 76 77 static void dumpFunctionProfileJson(const FunctionSamples &S, 78 json::OStream &JOS, bool TopLevel = false) { 79 auto DumpBody = [&](const BodySampleMap &BodySamples) { 80 for (const auto &I : BodySamples) { 81 const LineLocation &Loc = I.first; 82 const SampleRecord &Sample = I.second; 83 JOS.object([&] { 84 JOS.attribute("line", Loc.LineOffset); 85 if (Loc.Discriminator) 86 JOS.attribute("discriminator", Loc.Discriminator); 87 JOS.attribute("samples", Sample.getSamples()); 88 89 auto CallTargets = Sample.getSortedCallTargets(); 90 if (!CallTargets.empty()) { 91 JOS.attributeArray("calls", [&] { 92 for (const auto &J : CallTargets) { 93 JOS.object([&] { 94 JOS.attribute("function", J.first); 95 JOS.attribute("samples", J.second); 96 }); 97 } 98 }); 99 } 100 }); 101 } 102 }; 103 104 auto DumpCallsiteSamples = [&](const CallsiteSampleMap &CallsiteSamples) { 105 for (const auto &I : CallsiteSamples) 106 for (const auto &FS : I.second) { 107 const LineLocation &Loc = I.first; 108 const FunctionSamples &CalleeSamples = FS.second; 109 JOS.object([&] { 110 JOS.attribute("line", Loc.LineOffset); 111 if (Loc.Discriminator) 112 JOS.attribute("discriminator", Loc.Discriminator); 113 JOS.attributeArray( 114 "samples", [&] { dumpFunctionProfileJson(CalleeSamples, JOS); }); 115 }); 116 } 117 }; 118 119 JOS.object([&] { 120 JOS.attribute("name", S.getName()); 121 JOS.attribute("total", S.getTotalSamples()); 122 if (TopLevel) 123 JOS.attribute("head", S.getHeadSamples()); 124 125 const auto &BodySamples = S.getBodySamples(); 126 if (!BodySamples.empty()) 127 JOS.attributeArray("body", [&] { DumpBody(BodySamples); }); 128 129 const auto &CallsiteSamples = S.getCallsiteSamples(); 130 if (!CallsiteSamples.empty()) 131 JOS.attributeArray("callsites", 132 [&] { DumpCallsiteSamples(CallsiteSamples); }); 133 }); 134 } 135 136 /// Dump all the function profiles found on stream \p OS in the JSON format. 137 void SampleProfileReader::dumpJson(raw_ostream &OS) { 138 std::vector<NameFunctionSamples> V; 139 sortFuncProfiles(Profiles, V); 140 json::OStream JOS(OS, 2); 141 JOS.arrayBegin(); 142 for (const auto &F : V) 143 dumpFunctionProfileJson(*F.second, JOS, true); 144 JOS.arrayEnd(); 145 146 // Emit a newline character at the end as json::OStream doesn't emit one. 147 OS << "\n"; 148 } 149 150 /// Parse \p Input as function head. 151 /// 152 /// Parse one line of \p Input, and update function name in \p FName, 153 /// function's total sample count in \p NumSamples, function's entry 154 /// count in \p NumHeadSamples. 155 /// 156 /// \returns true if parsing is successful. 157 static bool ParseHead(const StringRef &Input, StringRef &FName, 158 uint64_t &NumSamples, uint64_t &NumHeadSamples) { 159 if (Input[0] == ' ') 160 return false; 161 size_t n2 = Input.rfind(':'); 162 size_t n1 = Input.rfind(':', n2 - 1); 163 FName = Input.substr(0, n1); 164 if (Input.substr(n1 + 1, n2 - n1 - 1).getAsInteger(10, NumSamples)) 165 return false; 166 if (Input.substr(n2 + 1).getAsInteger(10, NumHeadSamples)) 167 return false; 168 return true; 169 } 170 171 /// Returns true if line offset \p L is legal (only has 16 bits). 172 static bool isOffsetLegal(unsigned L) { return (L & 0xffff) == L; } 173 174 /// Parse \p Input that contains metadata. 175 /// Possible metadata: 176 /// - CFG Checksum information: 177 /// !CFGChecksum: 12345 178 /// - CFG Checksum information: 179 /// !Attributes: 1 180 /// Stores the FunctionHash (a.k.a. CFG Checksum) into \p FunctionHash. 181 static bool parseMetadata(const StringRef &Input, uint64_t &FunctionHash, 182 uint32_t &Attributes) { 183 if (Input.startswith("!CFGChecksum:")) { 184 StringRef CFGInfo = Input.substr(strlen("!CFGChecksum:")).trim(); 185 return !CFGInfo.getAsInteger(10, FunctionHash); 186 } 187 188 if (Input.startswith("!Attributes:")) { 189 StringRef Attrib = Input.substr(strlen("!Attributes:")).trim(); 190 return !Attrib.getAsInteger(10, Attributes); 191 } 192 193 return false; 194 } 195 196 enum class LineType { 197 CallSiteProfile, 198 BodyProfile, 199 Metadata, 200 }; 201 202 /// Parse \p Input as line sample. 203 /// 204 /// \param Input input line. 205 /// \param LineTy Type of this line. 206 /// \param Depth the depth of the inline stack. 207 /// \param NumSamples total samples of the line/inlined callsite. 208 /// \param LineOffset line offset to the start of the function. 209 /// \param Discriminator discriminator of the line. 210 /// \param TargetCountMap map from indirect call target to count. 211 /// \param FunctionHash the function's CFG hash, used by pseudo probe. 212 /// 213 /// returns true if parsing is successful. 214 static bool ParseLine(const StringRef &Input, LineType &LineTy, uint32_t &Depth, 215 uint64_t &NumSamples, uint32_t &LineOffset, 216 uint32_t &Discriminator, StringRef &CalleeName, 217 DenseMap<StringRef, uint64_t> &TargetCountMap, 218 uint64_t &FunctionHash, uint32_t &Attributes) { 219 for (Depth = 0; Input[Depth] == ' '; Depth++) 220 ; 221 if (Depth == 0) 222 return false; 223 224 if (Input[Depth] == '!') { 225 LineTy = LineType::Metadata; 226 return parseMetadata(Input.substr(Depth), FunctionHash, Attributes); 227 } 228 229 size_t n1 = Input.find(':'); 230 StringRef Loc = Input.substr(Depth, n1 - Depth); 231 size_t n2 = Loc.find('.'); 232 if (n2 == StringRef::npos) { 233 if (Loc.getAsInteger(10, LineOffset) || !isOffsetLegal(LineOffset)) 234 return false; 235 Discriminator = 0; 236 } else { 237 if (Loc.substr(0, n2).getAsInteger(10, LineOffset)) 238 return false; 239 if (Loc.substr(n2 + 1).getAsInteger(10, Discriminator)) 240 return false; 241 } 242 243 StringRef Rest = Input.substr(n1 + 2); 244 if (isDigit(Rest[0])) { 245 LineTy = LineType::BodyProfile; 246 size_t n3 = Rest.find(' '); 247 if (n3 == StringRef::npos) { 248 if (Rest.getAsInteger(10, NumSamples)) 249 return false; 250 } else { 251 if (Rest.substr(0, n3).getAsInteger(10, NumSamples)) 252 return false; 253 } 254 // Find call targets and their sample counts. 255 // Note: In some cases, there are symbols in the profile which are not 256 // mangled. To accommodate such cases, use colon + integer pairs as the 257 // anchor points. 258 // An example: 259 // _M_construct<char *>:1000 string_view<std::allocator<char> >:437 260 // ":1000" and ":437" are used as anchor points so the string above will 261 // be interpreted as 262 // target: _M_construct<char *> 263 // count: 1000 264 // target: string_view<std::allocator<char> > 265 // count: 437 266 while (n3 != StringRef::npos) { 267 n3 += Rest.substr(n3).find_first_not_of(' '); 268 Rest = Rest.substr(n3); 269 n3 = Rest.find_first_of(':'); 270 if (n3 == StringRef::npos || n3 == 0) 271 return false; 272 273 StringRef Target; 274 uint64_t count, n4; 275 while (true) { 276 // Get the segment after the current colon. 277 StringRef AfterColon = Rest.substr(n3 + 1); 278 // Get the target symbol before the current colon. 279 Target = Rest.substr(0, n3); 280 // Check if the word after the current colon is an integer. 281 n4 = AfterColon.find_first_of(' '); 282 n4 = (n4 != StringRef::npos) ? n3 + n4 + 1 : Rest.size(); 283 StringRef WordAfterColon = Rest.substr(n3 + 1, n4 - n3 - 1); 284 if (!WordAfterColon.getAsInteger(10, count)) 285 break; 286 287 // Try to find the next colon. 288 uint64_t n5 = AfterColon.find_first_of(':'); 289 if (n5 == StringRef::npos) 290 return false; 291 n3 += n5 + 1; 292 } 293 294 // An anchor point is found. Save the {target, count} pair 295 TargetCountMap[Target] = count; 296 if (n4 == Rest.size()) 297 break; 298 // Change n3 to the next blank space after colon + integer pair. 299 n3 = n4; 300 } 301 } else { 302 LineTy = LineType::CallSiteProfile; 303 size_t n3 = Rest.find_last_of(':'); 304 CalleeName = Rest.substr(0, n3); 305 if (Rest.substr(n3 + 1).getAsInteger(10, NumSamples)) 306 return false; 307 } 308 return true; 309 } 310 311 /// Load samples from a text file. 312 /// 313 /// See the documentation at the top of the file for an explanation of 314 /// the expected format. 315 /// 316 /// \returns true if the file was loaded successfully, false otherwise. 317 std::error_code SampleProfileReaderText::readImpl() { 318 line_iterator LineIt(*Buffer, /*SkipBlanks=*/true, '#'); 319 sampleprof_error Result = sampleprof_error::success; 320 321 InlineCallStack InlineStack; 322 uint32_t TopLevelProbeProfileCount = 0; 323 324 // DepthMetadata tracks whether we have processed metadata for the current 325 // top-level or nested function profile. 326 uint32_t DepthMetadata = 0; 327 328 ProfileIsFS = ProfileIsFSDisciminator; 329 FunctionSamples::ProfileIsFS = ProfileIsFS; 330 for (; !LineIt.is_at_eof(); ++LineIt) { 331 size_t pos = LineIt->find_first_not_of(' '); 332 if (pos == LineIt->npos || (*LineIt)[pos] == '#') 333 continue; 334 // Read the header of each function. 335 // 336 // Note that for function identifiers we are actually expecting 337 // mangled names, but we may not always get them. This happens when 338 // the compiler decides not to emit the function (e.g., it was inlined 339 // and removed). In this case, the binary will not have the linkage 340 // name for the function, so the profiler will emit the function's 341 // unmangled name, which may contain characters like ':' and '>' in its 342 // name (member functions, templates, etc). 343 // 344 // The only requirement we place on the identifier, then, is that it 345 // should not begin with a number. 346 if ((*LineIt)[0] != ' ') { 347 uint64_t NumSamples, NumHeadSamples; 348 StringRef FName; 349 if (!ParseHead(*LineIt, FName, NumSamples, NumHeadSamples)) { 350 reportError(LineIt.line_number(), 351 "Expected 'mangled_name:NUM:NUM', found " + *LineIt); 352 return sampleprof_error::malformed; 353 } 354 DepthMetadata = 0; 355 SampleContext FContext(FName, CSNameTable); 356 if (FContext.hasContext()) 357 ++CSProfileCount; 358 FunctionSamples &FProfile = Profiles.Create(FContext); 359 MergeResult(Result, FProfile.addTotalSamples(NumSamples)); 360 MergeResult(Result, FProfile.addHeadSamples(NumHeadSamples)); 361 InlineStack.clear(); 362 InlineStack.push_back(&FProfile); 363 } else { 364 uint64_t NumSamples; 365 StringRef FName; 366 DenseMap<StringRef, uint64_t> TargetCountMap; 367 uint32_t Depth, LineOffset, Discriminator; 368 LineType LineTy; 369 uint64_t FunctionHash = 0; 370 uint32_t Attributes = 0; 371 if (!ParseLine(*LineIt, LineTy, Depth, NumSamples, LineOffset, 372 Discriminator, FName, TargetCountMap, FunctionHash, 373 Attributes)) { 374 reportError(LineIt.line_number(), 375 "Expected 'NUM[.NUM]: NUM[ mangled_name:NUM]*', found " + 376 *LineIt); 377 return sampleprof_error::malformed; 378 } 379 if (LineTy != LineType::Metadata && Depth == DepthMetadata) { 380 // Metadata must be put at the end of a function profile. 381 reportError(LineIt.line_number(), 382 "Found non-metadata after metadata: " + *LineIt); 383 return sampleprof_error::malformed; 384 } 385 386 // Here we handle FS discriminators. 387 Discriminator &= getDiscriminatorMask(); 388 389 while (InlineStack.size() > Depth) { 390 InlineStack.pop_back(); 391 } 392 switch (LineTy) { 393 case LineType::CallSiteProfile: { 394 FunctionSamples &FSamples = InlineStack.back()->functionSamplesAt( 395 LineLocation(LineOffset, Discriminator))[std::string(FName)]; 396 FSamples.setName(FName); 397 MergeResult(Result, FSamples.addTotalSamples(NumSamples)); 398 InlineStack.push_back(&FSamples); 399 DepthMetadata = 0; 400 break; 401 } 402 case LineType::BodyProfile: { 403 while (InlineStack.size() > Depth) { 404 InlineStack.pop_back(); 405 } 406 FunctionSamples &FProfile = *InlineStack.back(); 407 for (const auto &name_count : TargetCountMap) { 408 MergeResult(Result, FProfile.addCalledTargetSamples( 409 LineOffset, Discriminator, name_count.first, 410 name_count.second)); 411 } 412 MergeResult(Result, FProfile.addBodySamples(LineOffset, Discriminator, 413 NumSamples)); 414 break; 415 } 416 case LineType::Metadata: { 417 FunctionSamples &FProfile = *InlineStack.back(); 418 if (FunctionHash) { 419 FProfile.setFunctionHash(FunctionHash); 420 if (Depth == 1) 421 ++TopLevelProbeProfileCount; 422 } 423 FProfile.getContext().setAllAttributes(Attributes); 424 if (Attributes & (uint32_t)ContextShouldBeInlined) 425 ProfileIsPreInlined = true; 426 DepthMetadata = Depth; 427 break; 428 } 429 } 430 } 431 } 432 433 assert((CSProfileCount == 0 || CSProfileCount == Profiles.size()) && 434 "Cannot have both context-sensitive and regular profile"); 435 ProfileIsCS = (CSProfileCount > 0); 436 assert((TopLevelProbeProfileCount == 0 || 437 TopLevelProbeProfileCount == Profiles.size()) && 438 "Cannot have both probe-based profiles and regular profiles"); 439 ProfileIsProbeBased = (TopLevelProbeProfileCount > 0); 440 FunctionSamples::ProfileIsProbeBased = ProfileIsProbeBased; 441 FunctionSamples::ProfileIsCS = ProfileIsCS; 442 FunctionSamples::ProfileIsPreInlined = ProfileIsPreInlined; 443 444 if (Result == sampleprof_error::success) 445 computeSummary(); 446 447 return Result; 448 } 449 450 bool SampleProfileReaderText::hasFormat(const MemoryBuffer &Buffer) { 451 bool result = false; 452 453 // Check that the first non-comment line is a valid function header. 454 line_iterator LineIt(Buffer, /*SkipBlanks=*/true, '#'); 455 if (!LineIt.is_at_eof()) { 456 if ((*LineIt)[0] != ' ') { 457 uint64_t NumSamples, NumHeadSamples; 458 StringRef FName; 459 result = ParseHead(*LineIt, FName, NumSamples, NumHeadSamples); 460 } 461 } 462 463 return result; 464 } 465 466 template <typename T> ErrorOr<T> SampleProfileReaderBinary::readNumber() { 467 unsigned NumBytesRead = 0; 468 uint64_t Val = decodeULEB128(Data, &NumBytesRead); 469 470 if (Val > std::numeric_limits<T>::max()) { 471 std::error_code EC = sampleprof_error::malformed; 472 reportError(0, EC.message()); 473 return EC; 474 } else if (Data + NumBytesRead > End) { 475 std::error_code EC = sampleprof_error::truncated; 476 reportError(0, EC.message()); 477 return EC; 478 } 479 480 Data += NumBytesRead; 481 return static_cast<T>(Val); 482 } 483 484 ErrorOr<StringRef> SampleProfileReaderBinary::readString() { 485 StringRef Str(reinterpret_cast<const char *>(Data)); 486 if (Data + Str.size() + 1 > End) { 487 std::error_code EC = sampleprof_error::truncated; 488 reportError(0, EC.message()); 489 return EC; 490 } 491 492 Data += Str.size() + 1; 493 return Str; 494 } 495 496 template <typename T> 497 ErrorOr<T> SampleProfileReaderBinary::readUnencodedNumber() { 498 if (Data + sizeof(T) > End) { 499 std::error_code EC = sampleprof_error::truncated; 500 reportError(0, EC.message()); 501 return EC; 502 } 503 504 using namespace support; 505 T Val = endian::readNext<T, llvm::endianness::little, unaligned>(Data); 506 return Val; 507 } 508 509 template <typename T> 510 inline ErrorOr<size_t> SampleProfileReaderBinary::readStringIndex(T &Table) { 511 auto Idx = readNumber<size_t>(); 512 if (std::error_code EC = Idx.getError()) 513 return EC; 514 if (*Idx >= Table.size()) 515 return sampleprof_error::truncated_name_table; 516 return *Idx; 517 } 518 519 ErrorOr<StringRef> 520 SampleProfileReaderBinary::readStringFromTable(size_t *RetIdx) { 521 auto Idx = readStringIndex(NameTable); 522 if (std::error_code EC = Idx.getError()) 523 return EC; 524 525 // Lazy loading, if the string has not been materialized from memory storing 526 // MD5 values, then it is default initialized with the null pointer. This can 527 // only happen when using fixed length MD5, that bounds check is performed 528 // while parsing the name table to ensure MD5NameMemStart points to an array 529 // with enough MD5 entries. 530 StringRef &SR = NameTable[*Idx]; 531 if (!SR.data()) { 532 assert(MD5NameMemStart); 533 using namespace support; 534 uint64_t FID = endian::read<uint64_t, llvm::endianness::little>( 535 MD5NameMemStart + (*Idx) * sizeof(uint64_t)); 536 SR = MD5StringBuf.emplace_back(std::to_string(FID)); 537 } 538 if (RetIdx) 539 *RetIdx = *Idx; 540 return SR; 541 } 542 543 ErrorOr<SampleContextFrames> 544 SampleProfileReaderBinary::readContextFromTable(size_t *RetIdx) { 545 auto ContextIdx = readNumber<size_t>(); 546 if (std::error_code EC = ContextIdx.getError()) 547 return EC; 548 if (*ContextIdx >= CSNameTable.size()) 549 return sampleprof_error::truncated_name_table; 550 if (RetIdx) 551 *RetIdx = *ContextIdx; 552 return CSNameTable[*ContextIdx]; 553 } 554 555 ErrorOr<std::pair<SampleContext, uint64_t>> 556 SampleProfileReaderBinary::readSampleContextFromTable() { 557 SampleContext Context; 558 size_t Idx; 559 if (ProfileIsCS) { 560 auto FContext(readContextFromTable(&Idx)); 561 if (std::error_code EC = FContext.getError()) 562 return EC; 563 Context = SampleContext(*FContext); 564 } else { 565 auto FName(readStringFromTable(&Idx)); 566 if (std::error_code EC = FName.getError()) 567 return EC; 568 Context = SampleContext(*FName); 569 } 570 // Since MD5SampleContextStart may point to the profile's file data, need to 571 // make sure it is reading the same value on big endian CPU. 572 uint64_t Hash = support::endian::read64le(MD5SampleContextStart + Idx); 573 // Lazy computing of hash value, write back to the table to cache it. Only 574 // compute the context's hash value if it is being referenced for the first 575 // time. 576 if (Hash == 0) { 577 assert(MD5SampleContextStart == MD5SampleContextTable.data()); 578 Hash = Context.getHashCode(); 579 support::endian::write64le(&MD5SampleContextTable[Idx], Hash); 580 } 581 return std::make_pair(Context, Hash); 582 } 583 584 std::error_code 585 SampleProfileReaderBinary::readProfile(FunctionSamples &FProfile) { 586 auto NumSamples = readNumber<uint64_t>(); 587 if (std::error_code EC = NumSamples.getError()) 588 return EC; 589 FProfile.addTotalSamples(*NumSamples); 590 591 // Read the samples in the body. 592 auto NumRecords = readNumber<uint32_t>(); 593 if (std::error_code EC = NumRecords.getError()) 594 return EC; 595 596 for (uint32_t I = 0; I < *NumRecords; ++I) { 597 auto LineOffset = readNumber<uint64_t>(); 598 if (std::error_code EC = LineOffset.getError()) 599 return EC; 600 601 if (!isOffsetLegal(*LineOffset)) { 602 return std::error_code(); 603 } 604 605 auto Discriminator = readNumber<uint64_t>(); 606 if (std::error_code EC = Discriminator.getError()) 607 return EC; 608 609 auto NumSamples = readNumber<uint64_t>(); 610 if (std::error_code EC = NumSamples.getError()) 611 return EC; 612 613 auto NumCalls = readNumber<uint32_t>(); 614 if (std::error_code EC = NumCalls.getError()) 615 return EC; 616 617 // Here we handle FS discriminators: 618 uint32_t DiscriminatorVal = (*Discriminator) & getDiscriminatorMask(); 619 620 for (uint32_t J = 0; J < *NumCalls; ++J) { 621 auto CalledFunction(readStringFromTable()); 622 if (std::error_code EC = CalledFunction.getError()) 623 return EC; 624 625 auto CalledFunctionSamples = readNumber<uint64_t>(); 626 if (std::error_code EC = CalledFunctionSamples.getError()) 627 return EC; 628 629 FProfile.addCalledTargetSamples(*LineOffset, DiscriminatorVal, 630 *CalledFunction, *CalledFunctionSamples); 631 } 632 633 FProfile.addBodySamples(*LineOffset, DiscriminatorVal, *NumSamples); 634 } 635 636 // Read all the samples for inlined function calls. 637 auto NumCallsites = readNumber<uint32_t>(); 638 if (std::error_code EC = NumCallsites.getError()) 639 return EC; 640 641 for (uint32_t J = 0; J < *NumCallsites; ++J) { 642 auto LineOffset = readNumber<uint64_t>(); 643 if (std::error_code EC = LineOffset.getError()) 644 return EC; 645 646 auto Discriminator = readNumber<uint64_t>(); 647 if (std::error_code EC = Discriminator.getError()) 648 return EC; 649 650 auto FName(readStringFromTable()); 651 if (std::error_code EC = FName.getError()) 652 return EC; 653 654 // Here we handle FS discriminators: 655 uint32_t DiscriminatorVal = (*Discriminator) & getDiscriminatorMask(); 656 657 FunctionSamples &CalleeProfile = FProfile.functionSamplesAt( 658 LineLocation(*LineOffset, DiscriminatorVal))[std::string(*FName)]; 659 CalleeProfile.setName(*FName); 660 if (std::error_code EC = readProfile(CalleeProfile)) 661 return EC; 662 } 663 664 return sampleprof_error::success; 665 } 666 667 std::error_code 668 SampleProfileReaderBinary::readFuncProfile(const uint8_t *Start) { 669 Data = Start; 670 auto NumHeadSamples = readNumber<uint64_t>(); 671 if (std::error_code EC = NumHeadSamples.getError()) 672 return EC; 673 674 auto FContextHash(readSampleContextFromTable()); 675 if (std::error_code EC = FContextHash.getError()) 676 return EC; 677 678 auto &[FContext, Hash] = *FContextHash; 679 // Use the cached hash value for insertion instead of recalculating it. 680 auto Res = Profiles.try_emplace(Hash, FContext, FunctionSamples()); 681 FunctionSamples &FProfile = Res.first->second; 682 FProfile.setContext(FContext); 683 FProfile.addHeadSamples(*NumHeadSamples); 684 685 if (FContext.hasContext()) 686 CSProfileCount++; 687 688 if (std::error_code EC = readProfile(FProfile)) 689 return EC; 690 return sampleprof_error::success; 691 } 692 693 std::error_code SampleProfileReaderBinary::readImpl() { 694 ProfileIsFS = ProfileIsFSDisciminator; 695 FunctionSamples::ProfileIsFS = ProfileIsFS; 696 while (Data < End) { 697 if (std::error_code EC = readFuncProfile(Data)) 698 return EC; 699 } 700 701 return sampleprof_error::success; 702 } 703 704 std::error_code SampleProfileReaderExtBinaryBase::readOneSection( 705 const uint8_t *Start, uint64_t Size, const SecHdrTableEntry &Entry) { 706 Data = Start; 707 End = Start + Size; 708 switch (Entry.Type) { 709 case SecProfSummary: 710 if (std::error_code EC = readSummary()) 711 return EC; 712 if (hasSecFlag(Entry, SecProfSummaryFlags::SecFlagPartial)) 713 Summary->setPartialProfile(true); 714 if (hasSecFlag(Entry, SecProfSummaryFlags::SecFlagFullContext)) 715 FunctionSamples::ProfileIsCS = ProfileIsCS = true; 716 if (hasSecFlag(Entry, SecProfSummaryFlags::SecFlagIsPreInlined)) 717 FunctionSamples::ProfileIsPreInlined = ProfileIsPreInlined = true; 718 if (hasSecFlag(Entry, SecProfSummaryFlags::SecFlagFSDiscriminator)) 719 FunctionSamples::ProfileIsFS = ProfileIsFS = true; 720 break; 721 case SecNameTable: { 722 bool FixedLengthMD5 = 723 hasSecFlag(Entry, SecNameTableFlags::SecFlagFixedLengthMD5); 724 bool UseMD5 = hasSecFlag(Entry, SecNameTableFlags::SecFlagMD5Name); 725 // UseMD5 means if THIS section uses MD5, ProfileIsMD5 means if the entire 726 // profile uses MD5 for function name matching in IPO passes. 727 ProfileIsMD5 = ProfileIsMD5 || UseMD5; 728 FunctionSamples::HasUniqSuffix = 729 hasSecFlag(Entry, SecNameTableFlags::SecFlagUniqSuffix); 730 if (std::error_code EC = readNameTableSec(UseMD5, FixedLengthMD5)) 731 return EC; 732 break; 733 } 734 case SecCSNameTable: { 735 if (std::error_code EC = readCSNameTableSec()) 736 return EC; 737 break; 738 } 739 case SecLBRProfile: 740 if (std::error_code EC = readFuncProfiles()) 741 return EC; 742 break; 743 case SecFuncOffsetTable: 744 // If module is absent, we are using LLVM tools, and need to read all 745 // profiles, so skip reading the function offset table. 746 if (!M) { 747 Data = End; 748 } else { 749 assert((!ProfileIsCS || 750 hasSecFlag(Entry, SecFuncOffsetFlags::SecFlagOrdered)) && 751 "func offset table should always be sorted in CS profile"); 752 if (std::error_code EC = readFuncOffsetTable()) 753 return EC; 754 } 755 break; 756 case SecFuncMetadata: { 757 ProfileIsProbeBased = 758 hasSecFlag(Entry, SecFuncMetadataFlags::SecFlagIsProbeBased); 759 FunctionSamples::ProfileIsProbeBased = ProfileIsProbeBased; 760 bool HasAttribute = 761 hasSecFlag(Entry, SecFuncMetadataFlags::SecFlagHasAttribute); 762 if (std::error_code EC = readFuncMetadata(HasAttribute)) 763 return EC; 764 break; 765 } 766 case SecProfileSymbolList: 767 if (std::error_code EC = readProfileSymbolList()) 768 return EC; 769 break; 770 default: 771 if (std::error_code EC = readCustomSection(Entry)) 772 return EC; 773 break; 774 } 775 return sampleprof_error::success; 776 } 777 778 bool SampleProfileReaderExtBinaryBase::useFuncOffsetList() const { 779 // If profile is CS, the function offset section is expected to consist of 780 // sequences of contexts in pre-order layout 781 // (e.g. [A, A:1 @ B, A:1 @ B:2.3 @ C] [D, D:1 @ E]), so that when a matched 782 // context in the module is found, the profiles of all its callees are 783 // recursively loaded. A list is needed since the order of profiles matters. 784 if (ProfileIsCS) 785 return true; 786 787 // If the profile is MD5, use the map container to lookup functions in 788 // the module. A remapper has no use on MD5 names. 789 if (useMD5()) 790 return false; 791 792 // Profile is not MD5 and if a remapper is present, the remapped name of 793 // every function needed to be matched against the module, so use the list 794 // container since each entry is accessed. 795 if (Remapper) 796 return true; 797 798 // Otherwise use the map container for faster lookup. 799 // TODO: If the cardinality of the function offset section is much smaller 800 // than the number of functions in the module, using the list container can 801 // be always faster, but we need to figure out the constant factor to 802 // determine the cutoff. 803 return false; 804 } 805 806 807 bool SampleProfileReaderExtBinaryBase::collectFuncsFromModule() { 808 if (!M) 809 return false; 810 FuncsToUse.clear(); 811 for (auto &F : *M) 812 FuncsToUse.insert(FunctionSamples::getCanonicalFnName(F)); 813 return true; 814 } 815 816 std::error_code SampleProfileReaderExtBinaryBase::readFuncOffsetTable() { 817 // If there are more than one function offset section, the profile associated 818 // with the previous section has to be done reading before next one is read. 819 FuncOffsetTable.clear(); 820 FuncOffsetList.clear(); 821 822 auto Size = readNumber<uint64_t>(); 823 if (std::error_code EC = Size.getError()) 824 return EC; 825 826 bool UseFuncOffsetList = useFuncOffsetList(); 827 if (UseFuncOffsetList) 828 FuncOffsetList.reserve(*Size); 829 else 830 FuncOffsetTable.reserve(*Size); 831 832 for (uint64_t I = 0; I < *Size; ++I) { 833 auto FContextHash(readSampleContextFromTable()); 834 if (std::error_code EC = FContextHash.getError()) 835 return EC; 836 837 auto &[FContext, Hash] = *FContextHash; 838 auto Offset = readNumber<uint64_t>(); 839 if (std::error_code EC = Offset.getError()) 840 return EC; 841 842 if (UseFuncOffsetList) 843 FuncOffsetList.emplace_back(FContext, *Offset); 844 else 845 // Because Porfiles replace existing value with new value if collision 846 // happens, we also use the latest offset so that they are consistent. 847 FuncOffsetTable[Hash] = *Offset; 848 } 849 850 return sampleprof_error::success; 851 } 852 853 std::error_code SampleProfileReaderExtBinaryBase::readFuncProfiles() { 854 // Collect functions used by current module if the Reader has been 855 // given a module. 856 // collectFuncsFromModule uses FunctionSamples::getCanonicalFnName 857 // which will query FunctionSamples::HasUniqSuffix, so it has to be 858 // called after FunctionSamples::HasUniqSuffix is set, i.e. after 859 // NameTable section is read. 860 bool LoadFuncsToBeUsed = collectFuncsFromModule(); 861 862 // When LoadFuncsToBeUsed is false, we are using LLVM tool, need to read all 863 // profiles. 864 const uint8_t *Start = Data; 865 if (!LoadFuncsToBeUsed) { 866 while (Data < End) { 867 if (std::error_code EC = readFuncProfile(Data)) 868 return EC; 869 } 870 assert(Data == End && "More data is read than expected"); 871 } else { 872 // Load function profiles on demand. 873 if (Remapper) { 874 for (auto Name : FuncsToUse) { 875 Remapper->insert(Name); 876 } 877 } 878 879 if (ProfileIsCS) { 880 assert(useFuncOffsetList()); 881 DenseSet<uint64_t> FuncGuidsToUse; 882 if (useMD5()) { 883 for (auto Name : FuncsToUse) 884 FuncGuidsToUse.insert(Function::getGUID(Name)); 885 } 886 887 // For each function in current module, load all context profiles for 888 // the function as well as their callee contexts which can help profile 889 // guided importing for ThinLTO. This can be achieved by walking 890 // through an ordered context container, where contexts are laid out 891 // as if they were walked in preorder of a context trie. While 892 // traversing the trie, a link to the highest common ancestor node is 893 // kept so that all of its decendants will be loaded. 894 const SampleContext *CommonContext = nullptr; 895 for (const auto &NameOffset : FuncOffsetList) { 896 const auto &FContext = NameOffset.first; 897 auto FName = FContext.getName(); 898 // For function in the current module, keep its farthest ancestor 899 // context. This can be used to load itself and its child and 900 // sibling contexts. 901 if ((useMD5() && FuncGuidsToUse.count(std::stoull(FName.data()))) || 902 (!useMD5() && (FuncsToUse.count(FName) || 903 (Remapper && Remapper->exist(FName))))) { 904 if (!CommonContext || !CommonContext->IsPrefixOf(FContext)) 905 CommonContext = &FContext; 906 } 907 908 if (CommonContext == &FContext || 909 (CommonContext && CommonContext->IsPrefixOf(FContext))) { 910 // Load profile for the current context which originated from 911 // the common ancestor. 912 const uint8_t *FuncProfileAddr = Start + NameOffset.second; 913 if (std::error_code EC = readFuncProfile(FuncProfileAddr)) 914 return EC; 915 } 916 } 917 } else if (useMD5()) { 918 assert(!useFuncOffsetList()); 919 for (auto Name : FuncsToUse) { 920 auto GUID = MD5Hash(Name); 921 auto iter = FuncOffsetTable.find(GUID); 922 if (iter == FuncOffsetTable.end()) 923 continue; 924 const uint8_t *FuncProfileAddr = Start + iter->second; 925 if (std::error_code EC = readFuncProfile(FuncProfileAddr)) 926 return EC; 927 } 928 } else if (Remapper) { 929 assert(useFuncOffsetList()); 930 for (auto NameOffset : FuncOffsetList) { 931 SampleContext FContext(NameOffset.first); 932 auto FuncName = FContext.getName(); 933 if (!FuncsToUse.count(FuncName) && !Remapper->exist(FuncName)) 934 continue; 935 const uint8_t *FuncProfileAddr = Start + NameOffset.second; 936 if (std::error_code EC = readFuncProfile(FuncProfileAddr)) 937 return EC; 938 } 939 } else { 940 assert(!useFuncOffsetList()); 941 for (auto Name : FuncsToUse) { 942 auto iter = FuncOffsetTable.find(MD5Hash(Name)); 943 if (iter == FuncOffsetTable.end()) 944 continue; 945 const uint8_t *FuncProfileAddr = Start + iter->second; 946 if (std::error_code EC = readFuncProfile(FuncProfileAddr)) 947 return EC; 948 } 949 } 950 Data = End; 951 } 952 assert((CSProfileCount == 0 || CSProfileCount == Profiles.size()) && 953 "Cannot have both context-sensitive and regular profile"); 954 assert((!CSProfileCount || ProfileIsCS) && 955 "Section flag should be consistent with actual profile"); 956 return sampleprof_error::success; 957 } 958 959 std::error_code SampleProfileReaderExtBinaryBase::readProfileSymbolList() { 960 if (!ProfSymList) 961 ProfSymList = std::make_unique<ProfileSymbolList>(); 962 963 if (std::error_code EC = ProfSymList->read(Data, End - Data)) 964 return EC; 965 966 Data = End; 967 return sampleprof_error::success; 968 } 969 970 std::error_code SampleProfileReaderExtBinaryBase::decompressSection( 971 const uint8_t *SecStart, const uint64_t SecSize, 972 const uint8_t *&DecompressBuf, uint64_t &DecompressBufSize) { 973 Data = SecStart; 974 End = SecStart + SecSize; 975 auto DecompressSize = readNumber<uint64_t>(); 976 if (std::error_code EC = DecompressSize.getError()) 977 return EC; 978 DecompressBufSize = *DecompressSize; 979 980 auto CompressSize = readNumber<uint64_t>(); 981 if (std::error_code EC = CompressSize.getError()) 982 return EC; 983 984 if (!llvm::compression::zlib::isAvailable()) 985 return sampleprof_error::zlib_unavailable; 986 987 uint8_t *Buffer = Allocator.Allocate<uint8_t>(DecompressBufSize); 988 size_t UCSize = DecompressBufSize; 989 llvm::Error E = compression::zlib::decompress(ArrayRef(Data, *CompressSize), 990 Buffer, UCSize); 991 if (E) 992 return sampleprof_error::uncompress_failed; 993 DecompressBuf = reinterpret_cast<const uint8_t *>(Buffer); 994 return sampleprof_error::success; 995 } 996 997 std::error_code SampleProfileReaderExtBinaryBase::readImpl() { 998 const uint8_t *BufStart = 999 reinterpret_cast<const uint8_t *>(Buffer->getBufferStart()); 1000 1001 for (auto &Entry : SecHdrTable) { 1002 // Skip empty section. 1003 if (!Entry.Size) 1004 continue; 1005 1006 // Skip sections without context when SkipFlatProf is true. 1007 if (SkipFlatProf && hasSecFlag(Entry, SecCommonFlags::SecFlagFlat)) 1008 continue; 1009 1010 const uint8_t *SecStart = BufStart + Entry.Offset; 1011 uint64_t SecSize = Entry.Size; 1012 1013 // If the section is compressed, decompress it into a buffer 1014 // DecompressBuf before reading the actual data. The pointee of 1015 // 'Data' will be changed to buffer hold by DecompressBuf 1016 // temporarily when reading the actual data. 1017 bool isCompressed = hasSecFlag(Entry, SecCommonFlags::SecFlagCompress); 1018 if (isCompressed) { 1019 const uint8_t *DecompressBuf; 1020 uint64_t DecompressBufSize; 1021 if (std::error_code EC = decompressSection( 1022 SecStart, SecSize, DecompressBuf, DecompressBufSize)) 1023 return EC; 1024 SecStart = DecompressBuf; 1025 SecSize = DecompressBufSize; 1026 } 1027 1028 if (std::error_code EC = readOneSection(SecStart, SecSize, Entry)) 1029 return EC; 1030 if (Data != SecStart + SecSize) 1031 return sampleprof_error::malformed; 1032 1033 // Change the pointee of 'Data' from DecompressBuf to original Buffer. 1034 if (isCompressed) { 1035 Data = BufStart + Entry.Offset; 1036 End = BufStart + Buffer->getBufferSize(); 1037 } 1038 } 1039 1040 return sampleprof_error::success; 1041 } 1042 1043 std::error_code SampleProfileReaderRawBinary::verifySPMagic(uint64_t Magic) { 1044 if (Magic == SPMagic()) 1045 return sampleprof_error::success; 1046 return sampleprof_error::bad_magic; 1047 } 1048 1049 std::error_code SampleProfileReaderExtBinary::verifySPMagic(uint64_t Magic) { 1050 if (Magic == SPMagic(SPF_Ext_Binary)) 1051 return sampleprof_error::success; 1052 return sampleprof_error::bad_magic; 1053 } 1054 1055 std::error_code SampleProfileReaderBinary::readNameTable() { 1056 auto Size = readNumber<size_t>(); 1057 if (std::error_code EC = Size.getError()) 1058 return EC; 1059 1060 // Normally if useMD5 is true, the name table should have MD5 values, not 1061 // strings, however in the case that ExtBinary profile has multiple name 1062 // tables mixing string and MD5, all of them have to be normalized to use MD5, 1063 // because optimization passes can only handle either type. 1064 bool UseMD5 = useMD5(); 1065 if (UseMD5) 1066 MD5StringBuf.reserve(MD5StringBuf.size() + *Size); 1067 1068 NameTable.clear(); 1069 NameTable.reserve(*Size); 1070 if (!ProfileIsCS) { 1071 MD5SampleContextTable.clear(); 1072 if (UseMD5) 1073 MD5SampleContextTable.reserve(*Size); 1074 else 1075 // If we are using strings, delay MD5 computation since only a portion of 1076 // names are used by top level functions. Use 0 to indicate MD5 value is 1077 // to be calculated as no known string has a MD5 value of 0. 1078 MD5SampleContextTable.resize(*Size); 1079 } 1080 for (size_t I = 0; I < *Size; ++I) { 1081 auto Name(readString()); 1082 if (std::error_code EC = Name.getError()) 1083 return EC; 1084 if (UseMD5) { 1085 uint64_t FID = hashFuncName(*Name); 1086 if (!ProfileIsCS) 1087 MD5SampleContextTable.emplace_back(FID); 1088 NameTable.emplace_back(MD5StringBuf.emplace_back(std::to_string(FID))); 1089 } else 1090 NameTable.push_back(*Name); 1091 } 1092 if (!ProfileIsCS) 1093 MD5SampleContextStart = MD5SampleContextTable.data(); 1094 return sampleprof_error::success; 1095 } 1096 1097 std::error_code 1098 SampleProfileReaderExtBinaryBase::readNameTableSec(bool IsMD5, 1099 bool FixedLengthMD5) { 1100 if (FixedLengthMD5) { 1101 if (!IsMD5) 1102 errs() << "If FixedLengthMD5 is true, UseMD5 has to be true"; 1103 auto Size = readNumber<size_t>(); 1104 if (std::error_code EC = Size.getError()) 1105 return EC; 1106 1107 assert(Data + (*Size) * sizeof(uint64_t) == End && 1108 "Fixed length MD5 name table does not contain specified number of " 1109 "entries"); 1110 if (Data + (*Size) * sizeof(uint64_t) > End) 1111 return sampleprof_error::truncated; 1112 1113 // Preallocate and initialize NameTable so we can check whether a name 1114 // index has been read before by checking whether the element in the 1115 // NameTable is empty, meanwhile readStringIndex can do the boundary 1116 // check using the size of NameTable. 1117 MD5StringBuf.reserve(MD5StringBuf.size() + *Size); 1118 NameTable.clear(); 1119 NameTable.resize(*Size); 1120 MD5NameMemStart = Data; 1121 if (!ProfileIsCS) 1122 MD5SampleContextStart = reinterpret_cast<const uint64_t *>(Data); 1123 Data = Data + (*Size) * sizeof(uint64_t); 1124 return sampleprof_error::success; 1125 } 1126 1127 if (IsMD5) { 1128 assert(!FixedLengthMD5 && "FixedLengthMD5 should be unreachable here"); 1129 auto Size = readNumber<size_t>(); 1130 if (std::error_code EC = Size.getError()) 1131 return EC; 1132 1133 MD5StringBuf.reserve(MD5StringBuf.size() + *Size); 1134 NameTable.clear(); 1135 NameTable.reserve(*Size); 1136 if (!ProfileIsCS) 1137 MD5SampleContextTable.resize(*Size); 1138 for (size_t I = 0; I < *Size; ++I) { 1139 auto FID = readNumber<uint64_t>(); 1140 if (std::error_code EC = FID.getError()) 1141 return EC; 1142 if (!ProfileIsCS) 1143 support::endian::write64le(&MD5SampleContextTable[I], *FID); 1144 NameTable.emplace_back(MD5StringBuf.emplace_back(std::to_string(*FID))); 1145 } 1146 if (!ProfileIsCS) 1147 MD5SampleContextStart = MD5SampleContextTable.data(); 1148 return sampleprof_error::success; 1149 } 1150 1151 return SampleProfileReaderBinary::readNameTable(); 1152 } 1153 1154 // Read in the CS name table section, which basically contains a list of context 1155 // vectors. Each element of a context vector, aka a frame, refers to the 1156 // underlying raw function names that are stored in the name table, as well as 1157 // a callsite identifier that only makes sense for non-leaf frames. 1158 std::error_code SampleProfileReaderExtBinaryBase::readCSNameTableSec() { 1159 auto Size = readNumber<size_t>(); 1160 if (std::error_code EC = Size.getError()) 1161 return EC; 1162 1163 CSNameTable.clear(); 1164 CSNameTable.reserve(*Size); 1165 if (ProfileIsCS) { 1166 // Delay MD5 computation of CS context until they are needed. Use 0 to 1167 // indicate MD5 value is to be calculated as no known string has a MD5 1168 // value of 0. 1169 MD5SampleContextTable.clear(); 1170 MD5SampleContextTable.resize(*Size); 1171 MD5SampleContextStart = MD5SampleContextTable.data(); 1172 } 1173 for (size_t I = 0; I < *Size; ++I) { 1174 CSNameTable.emplace_back(SampleContextFrameVector()); 1175 auto ContextSize = readNumber<uint32_t>(); 1176 if (std::error_code EC = ContextSize.getError()) 1177 return EC; 1178 for (uint32_t J = 0; J < *ContextSize; ++J) { 1179 auto FName(readStringFromTable()); 1180 if (std::error_code EC = FName.getError()) 1181 return EC; 1182 auto LineOffset = readNumber<uint64_t>(); 1183 if (std::error_code EC = LineOffset.getError()) 1184 return EC; 1185 1186 if (!isOffsetLegal(*LineOffset)) 1187 return std::error_code(); 1188 1189 auto Discriminator = readNumber<uint64_t>(); 1190 if (std::error_code EC = Discriminator.getError()) 1191 return EC; 1192 1193 CSNameTable.back().emplace_back( 1194 FName.get(), LineLocation(LineOffset.get(), Discriminator.get())); 1195 } 1196 } 1197 1198 return sampleprof_error::success; 1199 } 1200 1201 std::error_code 1202 SampleProfileReaderExtBinaryBase::readFuncMetadata(bool ProfileHasAttribute, 1203 FunctionSamples *FProfile) { 1204 if (Data < End) { 1205 if (ProfileIsProbeBased) { 1206 auto Checksum = readNumber<uint64_t>(); 1207 if (std::error_code EC = Checksum.getError()) 1208 return EC; 1209 if (FProfile) 1210 FProfile->setFunctionHash(*Checksum); 1211 } 1212 1213 if (ProfileHasAttribute) { 1214 auto Attributes = readNumber<uint32_t>(); 1215 if (std::error_code EC = Attributes.getError()) 1216 return EC; 1217 if (FProfile) 1218 FProfile->getContext().setAllAttributes(*Attributes); 1219 } 1220 1221 if (!ProfileIsCS) { 1222 // Read all the attributes for inlined function calls. 1223 auto NumCallsites = readNumber<uint32_t>(); 1224 if (std::error_code EC = NumCallsites.getError()) 1225 return EC; 1226 1227 for (uint32_t J = 0; J < *NumCallsites; ++J) { 1228 auto LineOffset = readNumber<uint64_t>(); 1229 if (std::error_code EC = LineOffset.getError()) 1230 return EC; 1231 1232 auto Discriminator = readNumber<uint64_t>(); 1233 if (std::error_code EC = Discriminator.getError()) 1234 return EC; 1235 1236 auto FContextHash(readSampleContextFromTable()); 1237 if (std::error_code EC = FContextHash.getError()) 1238 return EC; 1239 1240 auto &[FContext, Hash] = *FContextHash; 1241 FunctionSamples *CalleeProfile = nullptr; 1242 if (FProfile) { 1243 CalleeProfile = const_cast<FunctionSamples *>( 1244 &FProfile->functionSamplesAt(LineLocation( 1245 *LineOffset, 1246 *Discriminator))[std::string(FContext.getName())]); 1247 } 1248 if (std::error_code EC = 1249 readFuncMetadata(ProfileHasAttribute, CalleeProfile)) 1250 return EC; 1251 } 1252 } 1253 } 1254 1255 return sampleprof_error::success; 1256 } 1257 1258 std::error_code 1259 SampleProfileReaderExtBinaryBase::readFuncMetadata(bool ProfileHasAttribute) { 1260 while (Data < End) { 1261 auto FContextHash(readSampleContextFromTable()); 1262 if (std::error_code EC = FContextHash.getError()) 1263 return EC; 1264 auto &[FContext, Hash] = *FContextHash; 1265 FunctionSamples *FProfile = nullptr; 1266 auto It = Profiles.find(FContext); 1267 if (It != Profiles.end()) 1268 FProfile = &It->second; 1269 1270 if (std::error_code EC = readFuncMetadata(ProfileHasAttribute, FProfile)) 1271 return EC; 1272 } 1273 1274 assert(Data == End && "More data is read than expected"); 1275 return sampleprof_error::success; 1276 } 1277 1278 std::error_code 1279 SampleProfileReaderExtBinaryBase::readSecHdrTableEntry(uint64_t Idx) { 1280 SecHdrTableEntry Entry; 1281 auto Type = readUnencodedNumber<uint64_t>(); 1282 if (std::error_code EC = Type.getError()) 1283 return EC; 1284 Entry.Type = static_cast<SecType>(*Type); 1285 1286 auto Flags = readUnencodedNumber<uint64_t>(); 1287 if (std::error_code EC = Flags.getError()) 1288 return EC; 1289 Entry.Flags = *Flags; 1290 1291 auto Offset = readUnencodedNumber<uint64_t>(); 1292 if (std::error_code EC = Offset.getError()) 1293 return EC; 1294 Entry.Offset = *Offset; 1295 1296 auto Size = readUnencodedNumber<uint64_t>(); 1297 if (std::error_code EC = Size.getError()) 1298 return EC; 1299 Entry.Size = *Size; 1300 1301 Entry.LayoutIndex = Idx; 1302 SecHdrTable.push_back(std::move(Entry)); 1303 return sampleprof_error::success; 1304 } 1305 1306 std::error_code SampleProfileReaderExtBinaryBase::readSecHdrTable() { 1307 auto EntryNum = readUnencodedNumber<uint64_t>(); 1308 if (std::error_code EC = EntryNum.getError()) 1309 return EC; 1310 1311 for (uint64_t i = 0; i < (*EntryNum); i++) 1312 if (std::error_code EC = readSecHdrTableEntry(i)) 1313 return EC; 1314 1315 return sampleprof_error::success; 1316 } 1317 1318 std::error_code SampleProfileReaderExtBinaryBase::readHeader() { 1319 const uint8_t *BufStart = 1320 reinterpret_cast<const uint8_t *>(Buffer->getBufferStart()); 1321 Data = BufStart; 1322 End = BufStart + Buffer->getBufferSize(); 1323 1324 if (std::error_code EC = readMagicIdent()) 1325 return EC; 1326 1327 if (std::error_code EC = readSecHdrTable()) 1328 return EC; 1329 1330 return sampleprof_error::success; 1331 } 1332 1333 uint64_t SampleProfileReaderExtBinaryBase::getSectionSize(SecType Type) { 1334 uint64_t Size = 0; 1335 for (auto &Entry : SecHdrTable) { 1336 if (Entry.Type == Type) 1337 Size += Entry.Size; 1338 } 1339 return Size; 1340 } 1341 1342 uint64_t SampleProfileReaderExtBinaryBase::getFileSize() { 1343 // Sections in SecHdrTable is not necessarily in the same order as 1344 // sections in the profile because section like FuncOffsetTable needs 1345 // to be written after section LBRProfile but needs to be read before 1346 // section LBRProfile, so we cannot simply use the last entry in 1347 // SecHdrTable to calculate the file size. 1348 uint64_t FileSize = 0; 1349 for (auto &Entry : SecHdrTable) { 1350 FileSize = std::max(Entry.Offset + Entry.Size, FileSize); 1351 } 1352 return FileSize; 1353 } 1354 1355 static std::string getSecFlagsStr(const SecHdrTableEntry &Entry) { 1356 std::string Flags; 1357 if (hasSecFlag(Entry, SecCommonFlags::SecFlagCompress)) 1358 Flags.append("{compressed,"); 1359 else 1360 Flags.append("{"); 1361 1362 if (hasSecFlag(Entry, SecCommonFlags::SecFlagFlat)) 1363 Flags.append("flat,"); 1364 1365 switch (Entry.Type) { 1366 case SecNameTable: 1367 if (hasSecFlag(Entry, SecNameTableFlags::SecFlagFixedLengthMD5)) 1368 Flags.append("fixlenmd5,"); 1369 else if (hasSecFlag(Entry, SecNameTableFlags::SecFlagMD5Name)) 1370 Flags.append("md5,"); 1371 if (hasSecFlag(Entry, SecNameTableFlags::SecFlagUniqSuffix)) 1372 Flags.append("uniq,"); 1373 break; 1374 case SecProfSummary: 1375 if (hasSecFlag(Entry, SecProfSummaryFlags::SecFlagPartial)) 1376 Flags.append("partial,"); 1377 if (hasSecFlag(Entry, SecProfSummaryFlags::SecFlagFullContext)) 1378 Flags.append("context,"); 1379 if (hasSecFlag(Entry, SecProfSummaryFlags::SecFlagIsPreInlined)) 1380 Flags.append("preInlined,"); 1381 if (hasSecFlag(Entry, SecProfSummaryFlags::SecFlagFSDiscriminator)) 1382 Flags.append("fs-discriminator,"); 1383 break; 1384 case SecFuncOffsetTable: 1385 if (hasSecFlag(Entry, SecFuncOffsetFlags::SecFlagOrdered)) 1386 Flags.append("ordered,"); 1387 break; 1388 case SecFuncMetadata: 1389 if (hasSecFlag(Entry, SecFuncMetadataFlags::SecFlagIsProbeBased)) 1390 Flags.append("probe,"); 1391 if (hasSecFlag(Entry, SecFuncMetadataFlags::SecFlagHasAttribute)) 1392 Flags.append("attr,"); 1393 break; 1394 default: 1395 break; 1396 } 1397 char &last = Flags.back(); 1398 if (last == ',') 1399 last = '}'; 1400 else 1401 Flags.append("}"); 1402 return Flags; 1403 } 1404 1405 bool SampleProfileReaderExtBinaryBase::dumpSectionInfo(raw_ostream &OS) { 1406 uint64_t TotalSecsSize = 0; 1407 for (auto &Entry : SecHdrTable) { 1408 OS << getSecName(Entry.Type) << " - Offset: " << Entry.Offset 1409 << ", Size: " << Entry.Size << ", Flags: " << getSecFlagsStr(Entry) 1410 << "\n"; 1411 ; 1412 TotalSecsSize += Entry.Size; 1413 } 1414 uint64_t HeaderSize = SecHdrTable.front().Offset; 1415 assert(HeaderSize + TotalSecsSize == getFileSize() && 1416 "Size of 'header + sections' doesn't match the total size of profile"); 1417 1418 OS << "Header Size: " << HeaderSize << "\n"; 1419 OS << "Total Sections Size: " << TotalSecsSize << "\n"; 1420 OS << "File Size: " << getFileSize() << "\n"; 1421 return true; 1422 } 1423 1424 std::error_code SampleProfileReaderBinary::readMagicIdent() { 1425 // Read and check the magic identifier. 1426 auto Magic = readNumber<uint64_t>(); 1427 if (std::error_code EC = Magic.getError()) 1428 return EC; 1429 else if (std::error_code EC = verifySPMagic(*Magic)) 1430 return EC; 1431 1432 // Read the version number. 1433 auto Version = readNumber<uint64_t>(); 1434 if (std::error_code EC = Version.getError()) 1435 return EC; 1436 else if (*Version != SPVersion()) 1437 return sampleprof_error::unsupported_version; 1438 1439 return sampleprof_error::success; 1440 } 1441 1442 std::error_code SampleProfileReaderBinary::readHeader() { 1443 Data = reinterpret_cast<const uint8_t *>(Buffer->getBufferStart()); 1444 End = Data + Buffer->getBufferSize(); 1445 1446 if (std::error_code EC = readMagicIdent()) 1447 return EC; 1448 1449 if (std::error_code EC = readSummary()) 1450 return EC; 1451 1452 if (std::error_code EC = readNameTable()) 1453 return EC; 1454 return sampleprof_error::success; 1455 } 1456 1457 std::error_code SampleProfileReaderBinary::readSummaryEntry( 1458 std::vector<ProfileSummaryEntry> &Entries) { 1459 auto Cutoff = readNumber<uint64_t>(); 1460 if (std::error_code EC = Cutoff.getError()) 1461 return EC; 1462 1463 auto MinBlockCount = readNumber<uint64_t>(); 1464 if (std::error_code EC = MinBlockCount.getError()) 1465 return EC; 1466 1467 auto NumBlocks = readNumber<uint64_t>(); 1468 if (std::error_code EC = NumBlocks.getError()) 1469 return EC; 1470 1471 Entries.emplace_back(*Cutoff, *MinBlockCount, *NumBlocks); 1472 return sampleprof_error::success; 1473 } 1474 1475 std::error_code SampleProfileReaderBinary::readSummary() { 1476 auto TotalCount = readNumber<uint64_t>(); 1477 if (std::error_code EC = TotalCount.getError()) 1478 return EC; 1479 1480 auto MaxBlockCount = readNumber<uint64_t>(); 1481 if (std::error_code EC = MaxBlockCount.getError()) 1482 return EC; 1483 1484 auto MaxFunctionCount = readNumber<uint64_t>(); 1485 if (std::error_code EC = MaxFunctionCount.getError()) 1486 return EC; 1487 1488 auto NumBlocks = readNumber<uint64_t>(); 1489 if (std::error_code EC = NumBlocks.getError()) 1490 return EC; 1491 1492 auto NumFunctions = readNumber<uint64_t>(); 1493 if (std::error_code EC = NumFunctions.getError()) 1494 return EC; 1495 1496 auto NumSummaryEntries = readNumber<uint64_t>(); 1497 if (std::error_code EC = NumSummaryEntries.getError()) 1498 return EC; 1499 1500 std::vector<ProfileSummaryEntry> Entries; 1501 for (unsigned i = 0; i < *NumSummaryEntries; i++) { 1502 std::error_code EC = readSummaryEntry(Entries); 1503 if (EC != sampleprof_error::success) 1504 return EC; 1505 } 1506 Summary = std::make_unique<ProfileSummary>( 1507 ProfileSummary::PSK_Sample, Entries, *TotalCount, *MaxBlockCount, 0, 1508 *MaxFunctionCount, *NumBlocks, *NumFunctions); 1509 1510 return sampleprof_error::success; 1511 } 1512 1513 bool SampleProfileReaderRawBinary::hasFormat(const MemoryBuffer &Buffer) { 1514 const uint8_t *Data = 1515 reinterpret_cast<const uint8_t *>(Buffer.getBufferStart()); 1516 uint64_t Magic = decodeULEB128(Data); 1517 return Magic == SPMagic(); 1518 } 1519 1520 bool SampleProfileReaderExtBinary::hasFormat(const MemoryBuffer &Buffer) { 1521 const uint8_t *Data = 1522 reinterpret_cast<const uint8_t *>(Buffer.getBufferStart()); 1523 uint64_t Magic = decodeULEB128(Data); 1524 return Magic == SPMagic(SPF_Ext_Binary); 1525 } 1526 1527 std::error_code SampleProfileReaderGCC::skipNextWord() { 1528 uint32_t dummy; 1529 if (!GcovBuffer.readInt(dummy)) 1530 return sampleprof_error::truncated; 1531 return sampleprof_error::success; 1532 } 1533 1534 template <typename T> ErrorOr<T> SampleProfileReaderGCC::readNumber() { 1535 if (sizeof(T) <= sizeof(uint32_t)) { 1536 uint32_t Val; 1537 if (GcovBuffer.readInt(Val) && Val <= std::numeric_limits<T>::max()) 1538 return static_cast<T>(Val); 1539 } else if (sizeof(T) <= sizeof(uint64_t)) { 1540 uint64_t Val; 1541 if (GcovBuffer.readInt64(Val) && Val <= std::numeric_limits<T>::max()) 1542 return static_cast<T>(Val); 1543 } 1544 1545 std::error_code EC = sampleprof_error::malformed; 1546 reportError(0, EC.message()); 1547 return EC; 1548 } 1549 1550 ErrorOr<StringRef> SampleProfileReaderGCC::readString() { 1551 StringRef Str; 1552 if (!GcovBuffer.readString(Str)) 1553 return sampleprof_error::truncated; 1554 return Str; 1555 } 1556 1557 std::error_code SampleProfileReaderGCC::readHeader() { 1558 // Read the magic identifier. 1559 if (!GcovBuffer.readGCDAFormat()) 1560 return sampleprof_error::unrecognized_format; 1561 1562 // Read the version number. Note - the GCC reader does not validate this 1563 // version, but the profile creator generates v704. 1564 GCOV::GCOVVersion version; 1565 if (!GcovBuffer.readGCOVVersion(version)) 1566 return sampleprof_error::unrecognized_format; 1567 1568 if (version != GCOV::V407) 1569 return sampleprof_error::unsupported_version; 1570 1571 // Skip the empty integer. 1572 if (std::error_code EC = skipNextWord()) 1573 return EC; 1574 1575 return sampleprof_error::success; 1576 } 1577 1578 std::error_code SampleProfileReaderGCC::readSectionTag(uint32_t Expected) { 1579 uint32_t Tag; 1580 if (!GcovBuffer.readInt(Tag)) 1581 return sampleprof_error::truncated; 1582 1583 if (Tag != Expected) 1584 return sampleprof_error::malformed; 1585 1586 if (std::error_code EC = skipNextWord()) 1587 return EC; 1588 1589 return sampleprof_error::success; 1590 } 1591 1592 std::error_code SampleProfileReaderGCC::readNameTable() { 1593 if (std::error_code EC = readSectionTag(GCOVTagAFDOFileNames)) 1594 return EC; 1595 1596 uint32_t Size; 1597 if (!GcovBuffer.readInt(Size)) 1598 return sampleprof_error::truncated; 1599 1600 for (uint32_t I = 0; I < Size; ++I) { 1601 StringRef Str; 1602 if (!GcovBuffer.readString(Str)) 1603 return sampleprof_error::truncated; 1604 Names.push_back(std::string(Str)); 1605 } 1606 1607 return sampleprof_error::success; 1608 } 1609 1610 std::error_code SampleProfileReaderGCC::readFunctionProfiles() { 1611 if (std::error_code EC = readSectionTag(GCOVTagAFDOFunction)) 1612 return EC; 1613 1614 uint32_t NumFunctions; 1615 if (!GcovBuffer.readInt(NumFunctions)) 1616 return sampleprof_error::truncated; 1617 1618 InlineCallStack Stack; 1619 for (uint32_t I = 0; I < NumFunctions; ++I) 1620 if (std::error_code EC = readOneFunctionProfile(Stack, true, 0)) 1621 return EC; 1622 1623 computeSummary(); 1624 return sampleprof_error::success; 1625 } 1626 1627 std::error_code SampleProfileReaderGCC::readOneFunctionProfile( 1628 const InlineCallStack &InlineStack, bool Update, uint32_t Offset) { 1629 uint64_t HeadCount = 0; 1630 if (InlineStack.size() == 0) 1631 if (!GcovBuffer.readInt64(HeadCount)) 1632 return sampleprof_error::truncated; 1633 1634 uint32_t NameIdx; 1635 if (!GcovBuffer.readInt(NameIdx)) 1636 return sampleprof_error::truncated; 1637 1638 StringRef Name(Names[NameIdx]); 1639 1640 uint32_t NumPosCounts; 1641 if (!GcovBuffer.readInt(NumPosCounts)) 1642 return sampleprof_error::truncated; 1643 1644 uint32_t NumCallsites; 1645 if (!GcovBuffer.readInt(NumCallsites)) 1646 return sampleprof_error::truncated; 1647 1648 FunctionSamples *FProfile = nullptr; 1649 if (InlineStack.size() == 0) { 1650 // If this is a top function that we have already processed, do not 1651 // update its profile again. This happens in the presence of 1652 // function aliases. Since these aliases share the same function 1653 // body, there will be identical replicated profiles for the 1654 // original function. In this case, we simply not bother updating 1655 // the profile of the original function. 1656 FProfile = &Profiles[Name]; 1657 FProfile->addHeadSamples(HeadCount); 1658 if (FProfile->getTotalSamples() > 0) 1659 Update = false; 1660 } else { 1661 // Otherwise, we are reading an inlined instance. The top of the 1662 // inline stack contains the profile of the caller. Insert this 1663 // callee in the caller's CallsiteMap. 1664 FunctionSamples *CallerProfile = InlineStack.front(); 1665 uint32_t LineOffset = Offset >> 16; 1666 uint32_t Discriminator = Offset & 0xffff; 1667 FProfile = &CallerProfile->functionSamplesAt( 1668 LineLocation(LineOffset, Discriminator))[std::string(Name)]; 1669 } 1670 FProfile->setName(Name); 1671 1672 for (uint32_t I = 0; I < NumPosCounts; ++I) { 1673 uint32_t Offset; 1674 if (!GcovBuffer.readInt(Offset)) 1675 return sampleprof_error::truncated; 1676 1677 uint32_t NumTargets; 1678 if (!GcovBuffer.readInt(NumTargets)) 1679 return sampleprof_error::truncated; 1680 1681 uint64_t Count; 1682 if (!GcovBuffer.readInt64(Count)) 1683 return sampleprof_error::truncated; 1684 1685 // The line location is encoded in the offset as: 1686 // high 16 bits: line offset to the start of the function. 1687 // low 16 bits: discriminator. 1688 uint32_t LineOffset = Offset >> 16; 1689 uint32_t Discriminator = Offset & 0xffff; 1690 1691 InlineCallStack NewStack; 1692 NewStack.push_back(FProfile); 1693 llvm::append_range(NewStack, InlineStack); 1694 if (Update) { 1695 // Walk up the inline stack, adding the samples on this line to 1696 // the total sample count of the callers in the chain. 1697 for (auto *CallerProfile : NewStack) 1698 CallerProfile->addTotalSamples(Count); 1699 1700 // Update the body samples for the current profile. 1701 FProfile->addBodySamples(LineOffset, Discriminator, Count); 1702 } 1703 1704 // Process the list of functions called at an indirect call site. 1705 // These are all the targets that a function pointer (or virtual 1706 // function) resolved at runtime. 1707 for (uint32_t J = 0; J < NumTargets; J++) { 1708 uint32_t HistVal; 1709 if (!GcovBuffer.readInt(HistVal)) 1710 return sampleprof_error::truncated; 1711 1712 if (HistVal != HIST_TYPE_INDIR_CALL_TOPN) 1713 return sampleprof_error::malformed; 1714 1715 uint64_t TargetIdx; 1716 if (!GcovBuffer.readInt64(TargetIdx)) 1717 return sampleprof_error::truncated; 1718 StringRef TargetName(Names[TargetIdx]); 1719 1720 uint64_t TargetCount; 1721 if (!GcovBuffer.readInt64(TargetCount)) 1722 return sampleprof_error::truncated; 1723 1724 if (Update) 1725 FProfile->addCalledTargetSamples(LineOffset, Discriminator, 1726 TargetName, TargetCount); 1727 } 1728 } 1729 1730 // Process all the inlined callers into the current function. These 1731 // are all the callsites that were inlined into this function. 1732 for (uint32_t I = 0; I < NumCallsites; I++) { 1733 // The offset is encoded as: 1734 // high 16 bits: line offset to the start of the function. 1735 // low 16 bits: discriminator. 1736 uint32_t Offset; 1737 if (!GcovBuffer.readInt(Offset)) 1738 return sampleprof_error::truncated; 1739 InlineCallStack NewStack; 1740 NewStack.push_back(FProfile); 1741 llvm::append_range(NewStack, InlineStack); 1742 if (std::error_code EC = readOneFunctionProfile(NewStack, Update, Offset)) 1743 return EC; 1744 } 1745 1746 return sampleprof_error::success; 1747 } 1748 1749 /// Read a GCC AutoFDO profile. 1750 /// 1751 /// This format is generated by the Linux Perf conversion tool at 1752 /// https://github.com/google/autofdo. 1753 std::error_code SampleProfileReaderGCC::readImpl() { 1754 assert(!ProfileIsFSDisciminator && "Gcc profiles not support FSDisciminator"); 1755 // Read the string table. 1756 if (std::error_code EC = readNameTable()) 1757 return EC; 1758 1759 // Read the source profile. 1760 if (std::error_code EC = readFunctionProfiles()) 1761 return EC; 1762 1763 return sampleprof_error::success; 1764 } 1765 1766 bool SampleProfileReaderGCC::hasFormat(const MemoryBuffer &Buffer) { 1767 StringRef Magic(reinterpret_cast<const char *>(Buffer.getBufferStart())); 1768 return Magic == "adcg*704"; 1769 } 1770 1771 void SampleProfileReaderItaniumRemapper::applyRemapping(LLVMContext &Ctx) { 1772 // If the reader uses MD5 to represent string, we can't remap it because 1773 // we don't know what the original function names were. 1774 if (Reader.useMD5()) { 1775 Ctx.diagnose(DiagnosticInfoSampleProfile( 1776 Reader.getBuffer()->getBufferIdentifier(), 1777 "Profile data remapping cannot be applied to profile data " 1778 "using MD5 names (original mangled names are not available).", 1779 DS_Warning)); 1780 return; 1781 } 1782 1783 // CSSPGO-TODO: Remapper is not yet supported. 1784 // We will need to remap the entire context string. 1785 assert(Remappings && "should be initialized while creating remapper"); 1786 for (auto &Sample : Reader.getProfiles()) { 1787 DenseSet<StringRef> NamesInSample; 1788 Sample.second.findAllNames(NamesInSample); 1789 for (auto &Name : NamesInSample) 1790 if (auto Key = Remappings->insert(Name)) 1791 NameMap.insert({Key, Name}); 1792 } 1793 1794 RemappingApplied = true; 1795 } 1796 1797 std::optional<StringRef> 1798 SampleProfileReaderItaniumRemapper::lookUpNameInProfile(StringRef Fname) { 1799 if (auto Key = Remappings->lookup(Fname)) 1800 return NameMap.lookup(Key); 1801 return std::nullopt; 1802 } 1803 1804 /// Prepare a memory buffer for the contents of \p Filename. 1805 /// 1806 /// \returns an error code indicating the status of the buffer. 1807 static ErrorOr<std::unique_ptr<MemoryBuffer>> 1808 setupMemoryBuffer(const Twine &Filename, vfs::FileSystem &FS) { 1809 auto BufferOrErr = Filename.str() == "-" ? MemoryBuffer::getSTDIN() 1810 : FS.getBufferForFile(Filename); 1811 if (std::error_code EC = BufferOrErr.getError()) 1812 return EC; 1813 auto Buffer = std::move(BufferOrErr.get()); 1814 1815 return std::move(Buffer); 1816 } 1817 1818 /// Create a sample profile reader based on the format of the input file. 1819 /// 1820 /// \param Filename The file to open. 1821 /// 1822 /// \param C The LLVM context to use to emit diagnostics. 1823 /// 1824 /// \param P The FSDiscriminatorPass. 1825 /// 1826 /// \param RemapFilename The file used for profile remapping. 1827 /// 1828 /// \returns an error code indicating the status of the created reader. 1829 ErrorOr<std::unique_ptr<SampleProfileReader>> 1830 SampleProfileReader::create(const std::string Filename, LLVMContext &C, 1831 vfs::FileSystem &FS, FSDiscriminatorPass P, 1832 const std::string RemapFilename) { 1833 auto BufferOrError = setupMemoryBuffer(Filename, FS); 1834 if (std::error_code EC = BufferOrError.getError()) 1835 return EC; 1836 return create(BufferOrError.get(), C, FS, P, RemapFilename); 1837 } 1838 1839 /// Create a sample profile remapper from the given input, to remap the 1840 /// function names in the given profile data. 1841 /// 1842 /// \param Filename The file to open. 1843 /// 1844 /// \param Reader The profile reader the remapper is going to be applied to. 1845 /// 1846 /// \param C The LLVM context to use to emit diagnostics. 1847 /// 1848 /// \returns an error code indicating the status of the created reader. 1849 ErrorOr<std::unique_ptr<SampleProfileReaderItaniumRemapper>> 1850 SampleProfileReaderItaniumRemapper::create(const std::string Filename, 1851 vfs::FileSystem &FS, 1852 SampleProfileReader &Reader, 1853 LLVMContext &C) { 1854 auto BufferOrError = setupMemoryBuffer(Filename, FS); 1855 if (std::error_code EC = BufferOrError.getError()) 1856 return EC; 1857 return create(BufferOrError.get(), Reader, C); 1858 } 1859 1860 /// Create a sample profile remapper from the given input, to remap the 1861 /// function names in the given profile data. 1862 /// 1863 /// \param B The memory buffer to create the reader from (assumes ownership). 1864 /// 1865 /// \param C The LLVM context to use to emit diagnostics. 1866 /// 1867 /// \param Reader The profile reader the remapper is going to be applied to. 1868 /// 1869 /// \returns an error code indicating the status of the created reader. 1870 ErrorOr<std::unique_ptr<SampleProfileReaderItaniumRemapper>> 1871 SampleProfileReaderItaniumRemapper::create(std::unique_ptr<MemoryBuffer> &B, 1872 SampleProfileReader &Reader, 1873 LLVMContext &C) { 1874 auto Remappings = std::make_unique<SymbolRemappingReader>(); 1875 if (Error E = Remappings->read(*B)) { 1876 handleAllErrors( 1877 std::move(E), [&](const SymbolRemappingParseError &ParseError) { 1878 C.diagnose(DiagnosticInfoSampleProfile(B->getBufferIdentifier(), 1879 ParseError.getLineNum(), 1880 ParseError.getMessage())); 1881 }); 1882 return sampleprof_error::malformed; 1883 } 1884 1885 return std::make_unique<SampleProfileReaderItaniumRemapper>( 1886 std::move(B), std::move(Remappings), Reader); 1887 } 1888 1889 /// Create a sample profile reader based on the format of the input data. 1890 /// 1891 /// \param B The memory buffer to create the reader from (assumes ownership). 1892 /// 1893 /// \param C The LLVM context to use to emit diagnostics. 1894 /// 1895 /// \param P The FSDiscriminatorPass. 1896 /// 1897 /// \param RemapFilename The file used for profile remapping. 1898 /// 1899 /// \returns an error code indicating the status of the created reader. 1900 ErrorOr<std::unique_ptr<SampleProfileReader>> 1901 SampleProfileReader::create(std::unique_ptr<MemoryBuffer> &B, LLVMContext &C, 1902 vfs::FileSystem &FS, FSDiscriminatorPass P, 1903 const std::string RemapFilename) { 1904 std::unique_ptr<SampleProfileReader> Reader; 1905 if (SampleProfileReaderRawBinary::hasFormat(*B)) 1906 Reader.reset(new SampleProfileReaderRawBinary(std::move(B), C)); 1907 else if (SampleProfileReaderExtBinary::hasFormat(*B)) 1908 Reader.reset(new SampleProfileReaderExtBinary(std::move(B), C)); 1909 else if (SampleProfileReaderGCC::hasFormat(*B)) 1910 Reader.reset(new SampleProfileReaderGCC(std::move(B), C)); 1911 else if (SampleProfileReaderText::hasFormat(*B)) 1912 Reader.reset(new SampleProfileReaderText(std::move(B), C)); 1913 else 1914 return sampleprof_error::unrecognized_format; 1915 1916 if (!RemapFilename.empty()) { 1917 auto ReaderOrErr = SampleProfileReaderItaniumRemapper::create( 1918 RemapFilename, FS, *Reader, C); 1919 if (std::error_code EC = ReaderOrErr.getError()) { 1920 std::string Msg = "Could not create remapper: " + EC.message(); 1921 C.diagnose(DiagnosticInfoSampleProfile(RemapFilename, Msg)); 1922 return EC; 1923 } 1924 Reader->Remapper = std::move(ReaderOrErr.get()); 1925 } 1926 1927 if (std::error_code EC = Reader->readHeader()) { 1928 return EC; 1929 } 1930 1931 Reader->setDiscriminatorMaskedBitFrom(P); 1932 1933 return std::move(Reader); 1934 } 1935 1936 // For text and GCC file formats, we compute the summary after reading the 1937 // profile. Binary format has the profile summary in its header. 1938 void SampleProfileReader::computeSummary() { 1939 SampleProfileSummaryBuilder Builder(ProfileSummaryBuilder::DefaultCutoffs); 1940 Summary = Builder.computeSummaryForProfiles(Profiles); 1941 } 1942