1 //===- CoverageMappingReader.cpp - Code coverage mapping reader -----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains support for reading coverage mapping data for 10 // instrumentation based coverage. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/ProfileData/Coverage/CoverageMappingReader.h" 15 #include "llvm/ADT/ArrayRef.h" 16 #include "llvm/ADT/DenseMap.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/SmallVector.h" 19 #include "llvm/ADT/Statistic.h" 20 #include "llvm/ADT/StringRef.h" 21 #include "llvm/Object/Archive.h" 22 #include "llvm/Object/Binary.h" 23 #include "llvm/Object/COFF.h" 24 #include "llvm/Object/Error.h" 25 #include "llvm/Object/MachOUniversal.h" 26 #include "llvm/Object/ObjectFile.h" 27 #include "llvm/ProfileData/InstrProf.h" 28 #include "llvm/Support/Casting.h" 29 #include "llvm/Support/Compression.h" 30 #include "llvm/Support/Debug.h" 31 #include "llvm/Support/Endian.h" 32 #include "llvm/Support/Error.h" 33 #include "llvm/Support/ErrorHandling.h" 34 #include "llvm/Support/LEB128.h" 35 #include "llvm/Support/MathExtras.h" 36 #include "llvm/Support/Path.h" 37 #include "llvm/Support/raw_ostream.h" 38 #include "llvm/TargetParser/Triple.h" 39 #include <vector> 40 41 using namespace llvm; 42 using namespace coverage; 43 using namespace object; 44 45 #define DEBUG_TYPE "coverage-mapping" 46 47 STATISTIC(CovMapNumRecords, "The # of coverage function records"); 48 STATISTIC(CovMapNumUsedRecords, "The # of used coverage function records"); 49 50 void CoverageMappingIterator::increment() { 51 if (ReadErr != coveragemap_error::success) 52 return; 53 54 // Check if all the records were read or if an error occurred while reading 55 // the next record. 56 if (auto E = Reader->readNextRecord(Record)) 57 handleAllErrors(std::move(E), [&](const CoverageMapError &CME) { 58 if (CME.get() == coveragemap_error::eof) 59 *this = CoverageMappingIterator(); 60 else 61 ReadErr = CME.get(); 62 }); 63 } 64 65 Error RawCoverageReader::readULEB128(uint64_t &Result) { 66 if (Data.empty()) 67 return make_error<CoverageMapError>(coveragemap_error::truncated); 68 unsigned N = 0; 69 Result = decodeULEB128(Data.bytes_begin(), &N); 70 if (N > Data.size()) 71 return make_error<CoverageMapError>(coveragemap_error::malformed, 72 "the size of ULEB128 is too big"); 73 Data = Data.substr(N); 74 return Error::success(); 75 } 76 77 Error RawCoverageReader::readIntMax(uint64_t &Result, uint64_t MaxPlus1) { 78 if (auto Err = readULEB128(Result)) 79 return Err; 80 if (Result >= MaxPlus1) 81 return make_error<CoverageMapError>( 82 coveragemap_error::malformed, 83 "the value of ULEB128 is greater than or equal to MaxPlus1"); 84 return Error::success(); 85 } 86 87 Error RawCoverageReader::readSize(uint64_t &Result) { 88 if (auto Err = readULEB128(Result)) 89 return Err; 90 if (Result > Data.size()) 91 return make_error<CoverageMapError>(coveragemap_error::malformed, 92 "the value of ULEB128 is too big"); 93 return Error::success(); 94 } 95 96 Error RawCoverageReader::readString(StringRef &Result) { 97 uint64_t Length; 98 if (auto Err = readSize(Length)) 99 return Err; 100 Result = Data.substr(0, Length); 101 Data = Data.substr(Length); 102 return Error::success(); 103 } 104 105 Error RawCoverageFilenamesReader::read(CovMapVersion Version) { 106 uint64_t NumFilenames; 107 if (auto Err = readSize(NumFilenames)) 108 return Err; 109 if (!NumFilenames) 110 return make_error<CoverageMapError>(coveragemap_error::malformed, 111 "number of filenames is zero"); 112 113 if (Version < CovMapVersion::Version4) 114 return readUncompressed(Version, NumFilenames); 115 116 // The uncompressed length may exceed the size of the encoded filenames. 117 // Skip size validation. 118 uint64_t UncompressedLen; 119 if (auto Err = readULEB128(UncompressedLen)) 120 return Err; 121 122 uint64_t CompressedLen; 123 if (auto Err = readSize(CompressedLen)) 124 return Err; 125 126 if (CompressedLen > 0) { 127 if (!compression::zlib::isAvailable()) 128 return make_error<CoverageMapError>( 129 coveragemap_error::decompression_failed); 130 131 // Allocate memory for the decompressed filenames. 132 SmallVector<uint8_t, 0> StorageBuf; 133 134 // Read compressed filenames. 135 StringRef CompressedFilenames = Data.substr(0, CompressedLen); 136 Data = Data.substr(CompressedLen); 137 auto Err = compression::zlib::decompress( 138 arrayRefFromStringRef(CompressedFilenames), StorageBuf, 139 UncompressedLen); 140 if (Err) { 141 consumeError(std::move(Err)); 142 return make_error<CoverageMapError>( 143 coveragemap_error::decompression_failed); 144 } 145 146 RawCoverageFilenamesReader Delegate(toStringRef(StorageBuf), Filenames, 147 CompilationDir); 148 return Delegate.readUncompressed(Version, NumFilenames); 149 } 150 151 return readUncompressed(Version, NumFilenames); 152 } 153 154 Error RawCoverageFilenamesReader::readUncompressed(CovMapVersion Version, 155 uint64_t NumFilenames) { 156 // Read uncompressed filenames. 157 if (Version < CovMapVersion::Version6) { 158 for (size_t I = 0; I < NumFilenames; ++I) { 159 StringRef Filename; 160 if (auto Err = readString(Filename)) 161 return Err; 162 Filenames.push_back(Filename.str()); 163 } 164 } else { 165 StringRef CWD; 166 if (auto Err = readString(CWD)) 167 return Err; 168 Filenames.push_back(CWD.str()); 169 170 for (size_t I = 1; I < NumFilenames; ++I) { 171 StringRef Filename; 172 if (auto Err = readString(Filename)) 173 return Err; 174 if (sys::path::is_absolute(Filename)) { 175 Filenames.push_back(Filename.str()); 176 } else { 177 SmallString<256> P; 178 if (!CompilationDir.empty()) 179 P.assign(CompilationDir); 180 else 181 P.assign(CWD); 182 llvm::sys::path::append(P, Filename); 183 sys::path::remove_dots(P, /*remove_dot_dot=*/true); 184 Filenames.push_back(static_cast<std::string>(P.str())); 185 } 186 } 187 } 188 return Error::success(); 189 } 190 191 Error RawCoverageMappingReader::decodeCounter(unsigned Value, Counter &C) { 192 auto Tag = Value & Counter::EncodingTagMask; 193 switch (Tag) { 194 case Counter::Zero: 195 C = Counter::getZero(); 196 return Error::success(); 197 case Counter::CounterValueReference: 198 C = Counter::getCounter(Value >> Counter::EncodingTagBits); 199 return Error::success(); 200 default: 201 break; 202 } 203 Tag -= Counter::Expression; 204 switch (Tag) { 205 case CounterExpression::Subtract: 206 case CounterExpression::Add: { 207 auto ID = Value >> Counter::EncodingTagBits; 208 if (ID >= Expressions.size()) 209 return make_error<CoverageMapError>(coveragemap_error::malformed, 210 "counter expression is invalid"); 211 Expressions[ID].Kind = CounterExpression::ExprKind(Tag); 212 C = Counter::getExpression(ID); 213 break; 214 } 215 default: 216 return make_error<CoverageMapError>(coveragemap_error::malformed, 217 "counter expression kind is invalid"); 218 } 219 return Error::success(); 220 } 221 222 Error RawCoverageMappingReader::readCounter(Counter &C) { 223 uint64_t EncodedCounter; 224 if (auto Err = 225 readIntMax(EncodedCounter, std::numeric_limits<unsigned>::max())) 226 return Err; 227 if (auto Err = decodeCounter(EncodedCounter, C)) 228 return Err; 229 return Error::success(); 230 } 231 232 static const unsigned EncodingExpansionRegionBit = 1 233 << Counter::EncodingTagBits; 234 235 /// Read the sub-array of regions for the given inferred file id. 236 /// \param NumFileIDs the number of file ids that are defined for this 237 /// function. 238 Error RawCoverageMappingReader::readMappingRegionsSubArray( 239 std::vector<CounterMappingRegion> &MappingRegions, unsigned InferredFileID, 240 size_t NumFileIDs) { 241 uint64_t NumRegions; 242 if (auto Err = readSize(NumRegions)) 243 return Err; 244 unsigned LineStart = 0; 245 for (size_t I = 0; I < NumRegions; ++I) { 246 Counter C, C2; 247 CounterMappingRegion::RegionKind Kind = CounterMappingRegion::CodeRegion; 248 249 // Read the combined counter + region kind. 250 uint64_t EncodedCounterAndRegion; 251 if (auto Err = readIntMax(EncodedCounterAndRegion, 252 std::numeric_limits<unsigned>::max())) 253 return Err; 254 unsigned Tag = EncodedCounterAndRegion & Counter::EncodingTagMask; 255 uint64_t ExpandedFileID = 0; 256 257 // If Tag does not represent a ZeroCounter, then it is understood to refer 258 // to a counter or counter expression with region kind assumed to be 259 // "CodeRegion". In that case, EncodedCounterAndRegion actually encodes the 260 // referenced counter or counter expression (and nothing else). 261 // 262 // If Tag represents a ZeroCounter and EncodingExpansionRegionBit is set, 263 // then EncodedCounterAndRegion is interpreted to represent an 264 // ExpansionRegion. In all other cases, EncodedCounterAndRegion is 265 // interpreted to refer to a specific region kind, after which additional 266 // fields may be read (e.g. BranchRegions have two encoded counters that 267 // follow an encoded region kind value). 268 if (Tag != Counter::Zero) { 269 if (auto Err = decodeCounter(EncodedCounterAndRegion, C)) 270 return Err; 271 } else { 272 // Is it an expansion region? 273 if (EncodedCounterAndRegion & EncodingExpansionRegionBit) { 274 Kind = CounterMappingRegion::ExpansionRegion; 275 ExpandedFileID = EncodedCounterAndRegion >> 276 Counter::EncodingCounterTagAndExpansionRegionTagBits; 277 if (ExpandedFileID >= NumFileIDs) 278 return make_error<CoverageMapError>(coveragemap_error::malformed, 279 "ExpandedFileID is invalid"); 280 } else { 281 switch (EncodedCounterAndRegion >> 282 Counter::EncodingCounterTagAndExpansionRegionTagBits) { 283 case CounterMappingRegion::CodeRegion: 284 // Don't do anything when we have a code region with a zero counter. 285 break; 286 case CounterMappingRegion::SkippedRegion: 287 Kind = CounterMappingRegion::SkippedRegion; 288 break; 289 case CounterMappingRegion::BranchRegion: 290 // For a Branch Region, read two successive counters. 291 Kind = CounterMappingRegion::BranchRegion; 292 if (auto Err = readCounter(C)) 293 return Err; 294 if (auto Err = readCounter(C2)) 295 return Err; 296 break; 297 default: 298 return make_error<CoverageMapError>(coveragemap_error::malformed, 299 "region kind is incorrect"); 300 } 301 } 302 } 303 304 // Read the source range. 305 uint64_t LineStartDelta, ColumnStart, NumLines, ColumnEnd; 306 if (auto Err = 307 readIntMax(LineStartDelta, std::numeric_limits<unsigned>::max())) 308 return Err; 309 if (auto Err = readULEB128(ColumnStart)) 310 return Err; 311 if (ColumnStart > std::numeric_limits<unsigned>::max()) 312 return make_error<CoverageMapError>(coveragemap_error::malformed, 313 "start column is too big"); 314 if (auto Err = readIntMax(NumLines, std::numeric_limits<unsigned>::max())) 315 return Err; 316 if (auto Err = readIntMax(ColumnEnd, std::numeric_limits<unsigned>::max())) 317 return Err; 318 LineStart += LineStartDelta; 319 320 // If the high bit of ColumnEnd is set, this is a gap region. 321 if (ColumnEnd & (1U << 31)) { 322 Kind = CounterMappingRegion::GapRegion; 323 ColumnEnd &= ~(1U << 31); 324 } 325 326 // Adjust the column locations for the empty regions that are supposed to 327 // cover whole lines. Those regions should be encoded with the 328 // column range (1 -> std::numeric_limits<unsigned>::max()), but because 329 // the encoded std::numeric_limits<unsigned>::max() is several bytes long, 330 // we set the column range to (0 -> 0) to ensure that the column start and 331 // column end take up one byte each. 332 // The std::numeric_limits<unsigned>::max() is used to represent a column 333 // position at the end of the line without knowing the length of that line. 334 if (ColumnStart == 0 && ColumnEnd == 0) { 335 ColumnStart = 1; 336 ColumnEnd = std::numeric_limits<unsigned>::max(); 337 } 338 339 LLVM_DEBUG({ 340 dbgs() << "Counter in file " << InferredFileID << " " << LineStart << ":" 341 << ColumnStart << " -> " << (LineStart + NumLines) << ":" 342 << ColumnEnd << ", "; 343 if (Kind == CounterMappingRegion::ExpansionRegion) 344 dbgs() << "Expands to file " << ExpandedFileID; 345 else 346 CounterMappingContext(Expressions).dump(C, dbgs()); 347 dbgs() << "\n"; 348 }); 349 350 auto CMR = CounterMappingRegion(C, C2, InferredFileID, ExpandedFileID, 351 LineStart, ColumnStart, 352 LineStart + NumLines, ColumnEnd, Kind); 353 if (CMR.startLoc() > CMR.endLoc()) 354 return make_error<CoverageMapError>( 355 coveragemap_error::malformed, 356 "counter mapping region locations are incorrect"); 357 MappingRegions.push_back(CMR); 358 } 359 return Error::success(); 360 } 361 362 Error RawCoverageMappingReader::read() { 363 // Read the virtual file mapping. 364 SmallVector<unsigned, 8> VirtualFileMapping; 365 uint64_t NumFileMappings; 366 if (auto Err = readSize(NumFileMappings)) 367 return Err; 368 for (size_t I = 0; I < NumFileMappings; ++I) { 369 uint64_t FilenameIndex; 370 if (auto Err = readIntMax(FilenameIndex, TranslationUnitFilenames.size())) 371 return Err; 372 VirtualFileMapping.push_back(FilenameIndex); 373 } 374 375 // Construct the files using unique filenames and virtual file mapping. 376 for (auto I : VirtualFileMapping) { 377 Filenames.push_back(TranslationUnitFilenames[I]); 378 } 379 380 // Read the expressions. 381 uint64_t NumExpressions; 382 if (auto Err = readSize(NumExpressions)) 383 return Err; 384 // Create an array of dummy expressions that get the proper counters 385 // when the expressions are read, and the proper kinds when the counters 386 // are decoded. 387 Expressions.resize( 388 NumExpressions, 389 CounterExpression(CounterExpression::Subtract, Counter(), Counter())); 390 for (size_t I = 0; I < NumExpressions; ++I) { 391 if (auto Err = readCounter(Expressions[I].LHS)) 392 return Err; 393 if (auto Err = readCounter(Expressions[I].RHS)) 394 return Err; 395 } 396 397 // Read the mapping regions sub-arrays. 398 for (unsigned InferredFileID = 0, S = VirtualFileMapping.size(); 399 InferredFileID < S; ++InferredFileID) { 400 if (auto Err = readMappingRegionsSubArray(MappingRegions, InferredFileID, 401 VirtualFileMapping.size())) 402 return Err; 403 } 404 405 // Set the counters for the expansion regions. 406 // i.e. Counter of expansion region = counter of the first region 407 // from the expanded file. 408 // Perform multiple passes to correctly propagate the counters through 409 // all the nested expansion regions. 410 SmallVector<CounterMappingRegion *, 8> FileIDExpansionRegionMapping; 411 FileIDExpansionRegionMapping.resize(VirtualFileMapping.size(), nullptr); 412 for (unsigned Pass = 1, S = VirtualFileMapping.size(); Pass < S; ++Pass) { 413 for (auto &R : MappingRegions) { 414 if (R.Kind != CounterMappingRegion::ExpansionRegion) 415 continue; 416 assert(!FileIDExpansionRegionMapping[R.ExpandedFileID]); 417 FileIDExpansionRegionMapping[R.ExpandedFileID] = &R; 418 } 419 for (auto &R : MappingRegions) { 420 if (FileIDExpansionRegionMapping[R.FileID]) { 421 FileIDExpansionRegionMapping[R.FileID]->Count = R.Count; 422 FileIDExpansionRegionMapping[R.FileID] = nullptr; 423 } 424 } 425 } 426 427 return Error::success(); 428 } 429 430 Expected<bool> RawCoverageMappingDummyChecker::isDummy() { 431 // A dummy coverage mapping data consists of just one region with zero count. 432 uint64_t NumFileMappings; 433 if (Error Err = readSize(NumFileMappings)) 434 return std::move(Err); 435 if (NumFileMappings != 1) 436 return false; 437 // We don't expect any specific value for the filename index, just skip it. 438 uint64_t FilenameIndex; 439 if (Error Err = 440 readIntMax(FilenameIndex, std::numeric_limits<unsigned>::max())) 441 return std::move(Err); 442 uint64_t NumExpressions; 443 if (Error Err = readSize(NumExpressions)) 444 return std::move(Err); 445 if (NumExpressions != 0) 446 return false; 447 uint64_t NumRegions; 448 if (Error Err = readSize(NumRegions)) 449 return std::move(Err); 450 if (NumRegions != 1) 451 return false; 452 uint64_t EncodedCounterAndRegion; 453 if (Error Err = readIntMax(EncodedCounterAndRegion, 454 std::numeric_limits<unsigned>::max())) 455 return std::move(Err); 456 unsigned Tag = EncodedCounterAndRegion & Counter::EncodingTagMask; 457 return Tag == Counter::Zero; 458 } 459 460 Error InstrProfSymtab::create(SectionRef &Section) { 461 Expected<StringRef> DataOrErr = Section.getContents(); 462 if (!DataOrErr) 463 return DataOrErr.takeError(); 464 Data = *DataOrErr; 465 Address = Section.getAddress(); 466 467 // If this is a linked PE/COFF file, then we have to skip over the null byte 468 // that is allocated in the .lprfn$A section in the LLVM profiling runtime. 469 const ObjectFile *Obj = Section.getObject(); 470 if (isa<COFFObjectFile>(Obj) && !Obj->isRelocatableObject()) 471 Data = Data.drop_front(1); 472 473 return Error::success(); 474 } 475 476 StringRef InstrProfSymtab::getFuncName(uint64_t Pointer, size_t Size) { 477 if (Pointer < Address) 478 return StringRef(); 479 auto Offset = Pointer - Address; 480 if (Offset + Size > Data.size()) 481 return StringRef(); 482 return Data.substr(Pointer - Address, Size); 483 } 484 485 // Check if the mapping data is a dummy, i.e. is emitted for an unused function. 486 static Expected<bool> isCoverageMappingDummy(uint64_t Hash, StringRef Mapping) { 487 // The hash value of dummy mapping records is always zero. 488 if (Hash) 489 return false; 490 return RawCoverageMappingDummyChecker(Mapping).isDummy(); 491 } 492 493 /// A range of filename indices. Used to specify the location of a batch of 494 /// filenames in a vector-like container. 495 struct FilenameRange { 496 unsigned StartingIndex; 497 unsigned Length; 498 499 FilenameRange(unsigned StartingIndex, unsigned Length) 500 : StartingIndex(StartingIndex), Length(Length) {} 501 502 void markInvalid() { Length = 0; } 503 bool isInvalid() const { return Length == 0; } 504 }; 505 506 namespace { 507 508 /// The interface to read coverage mapping function records for a module. 509 struct CovMapFuncRecordReader { 510 virtual ~CovMapFuncRecordReader() = default; 511 512 // Read a coverage header. 513 // 514 // \p CovBuf points to the buffer containing the \c CovHeader of the coverage 515 // mapping data associated with the module. 516 // 517 // Returns a pointer to the next \c CovHeader if it exists, or to an address 518 // greater than \p CovEnd if not. 519 virtual Expected<const char *> readCoverageHeader(const char *CovBuf, 520 const char *CovBufEnd) = 0; 521 522 // Read function records. 523 // 524 // \p FuncRecBuf points to the buffer containing a batch of function records. 525 // \p FuncRecBufEnd points past the end of the batch of records. 526 // 527 // Prior to Version4, \p OutOfLineFileRange points to a sequence of filenames 528 // associated with the function records. It is unused in Version4. 529 // 530 // Prior to Version4, \p OutOfLineMappingBuf points to a sequence of coverage 531 // mappings associated with the function records. It is unused in Version4. 532 virtual Error 533 readFunctionRecords(const char *FuncRecBuf, const char *FuncRecBufEnd, 534 std::optional<FilenameRange> OutOfLineFileRange, 535 const char *OutOfLineMappingBuf, 536 const char *OutOfLineMappingBufEnd) = 0; 537 538 template <class IntPtrT, llvm::endianness Endian> 539 static Expected<std::unique_ptr<CovMapFuncRecordReader>> 540 get(CovMapVersion Version, InstrProfSymtab &P, 541 std::vector<BinaryCoverageReader::ProfileMappingRecord> &R, StringRef D, 542 std::vector<std::string> &F); 543 }; 544 545 // A class for reading coverage mapping function records for a module. 546 template <CovMapVersion Version, class IntPtrT, llvm::endianness Endian> 547 class VersionedCovMapFuncRecordReader : public CovMapFuncRecordReader { 548 using FuncRecordType = 549 typename CovMapTraits<Version, IntPtrT>::CovMapFuncRecordType; 550 using NameRefType = typename CovMapTraits<Version, IntPtrT>::NameRefType; 551 552 // Maps function's name references to the indexes of their records 553 // in \c Records. 554 DenseMap<NameRefType, size_t> FunctionRecords; 555 InstrProfSymtab &ProfileNames; 556 StringRef CompilationDir; 557 std::vector<std::string> &Filenames; 558 std::vector<BinaryCoverageReader::ProfileMappingRecord> &Records; 559 560 // Maps a hash of the filenames in a TU to a \c FileRange. The range 561 // specifies the location of the hashed filenames in \c Filenames. 562 DenseMap<uint64_t, FilenameRange> FileRangeMap; 563 564 // Add the record to the collection if we don't already have a record that 565 // points to the same function name. This is useful to ignore the redundant 566 // records for the functions with ODR linkage. 567 // In addition, prefer records with real coverage mapping data to dummy 568 // records, which were emitted for inline functions which were seen but 569 // not used in the corresponding translation unit. 570 Error insertFunctionRecordIfNeeded(const FuncRecordType *CFR, 571 StringRef Mapping, 572 FilenameRange FileRange) { 573 ++CovMapNumRecords; 574 uint64_t FuncHash = CFR->template getFuncHash<Endian>(); 575 NameRefType NameRef = CFR->template getFuncNameRef<Endian>(); 576 auto InsertResult = 577 FunctionRecords.insert(std::make_pair(NameRef, Records.size())); 578 if (InsertResult.second) { 579 StringRef FuncName; 580 if (Error Err = CFR->template getFuncName<Endian>(ProfileNames, FuncName)) 581 return Err; 582 if (FuncName.empty()) 583 return make_error<InstrProfError>(instrprof_error::malformed, 584 "function name is empty"); 585 ++CovMapNumUsedRecords; 586 Records.emplace_back(Version, FuncName, FuncHash, Mapping, 587 FileRange.StartingIndex, FileRange.Length); 588 return Error::success(); 589 } 590 // Update the existing record if it's a dummy and the new record is real. 591 size_t OldRecordIndex = InsertResult.first->second; 592 BinaryCoverageReader::ProfileMappingRecord &OldRecord = 593 Records[OldRecordIndex]; 594 Expected<bool> OldIsDummyExpected = isCoverageMappingDummy( 595 OldRecord.FunctionHash, OldRecord.CoverageMapping); 596 if (Error Err = OldIsDummyExpected.takeError()) 597 return Err; 598 if (!*OldIsDummyExpected) 599 return Error::success(); 600 Expected<bool> NewIsDummyExpected = 601 isCoverageMappingDummy(FuncHash, Mapping); 602 if (Error Err = NewIsDummyExpected.takeError()) 603 return Err; 604 if (*NewIsDummyExpected) 605 return Error::success(); 606 ++CovMapNumUsedRecords; 607 OldRecord.FunctionHash = FuncHash; 608 OldRecord.CoverageMapping = Mapping; 609 OldRecord.FilenamesBegin = FileRange.StartingIndex; 610 OldRecord.FilenamesSize = FileRange.Length; 611 return Error::success(); 612 } 613 614 public: 615 VersionedCovMapFuncRecordReader( 616 InstrProfSymtab &P, 617 std::vector<BinaryCoverageReader::ProfileMappingRecord> &R, StringRef D, 618 std::vector<std::string> &F) 619 : ProfileNames(P), CompilationDir(D), Filenames(F), Records(R) {} 620 621 ~VersionedCovMapFuncRecordReader() override = default; 622 623 Expected<const char *> readCoverageHeader(const char *CovBuf, 624 const char *CovBufEnd) override { 625 using namespace support; 626 627 if (CovBuf + sizeof(CovMapHeader) > CovBufEnd) 628 return make_error<CoverageMapError>( 629 coveragemap_error::malformed, 630 "coverage mapping header section is larger than buffer size"); 631 auto CovHeader = reinterpret_cast<const CovMapHeader *>(CovBuf); 632 uint32_t NRecords = CovHeader->getNRecords<Endian>(); 633 uint32_t FilenamesSize = CovHeader->getFilenamesSize<Endian>(); 634 uint32_t CoverageSize = CovHeader->getCoverageSize<Endian>(); 635 assert((CovMapVersion)CovHeader->getVersion<Endian>() == Version); 636 CovBuf = reinterpret_cast<const char *>(CovHeader + 1); 637 638 // Skip past the function records, saving the start and end for later. 639 // This is a no-op in Version4 (function records are read after all headers 640 // are read). 641 const char *FuncRecBuf = nullptr; 642 const char *FuncRecBufEnd = nullptr; 643 if (Version < CovMapVersion::Version4) 644 FuncRecBuf = CovBuf; 645 CovBuf += NRecords * sizeof(FuncRecordType); 646 if (Version < CovMapVersion::Version4) 647 FuncRecBufEnd = CovBuf; 648 649 // Get the filenames. 650 if (CovBuf + FilenamesSize > CovBufEnd) 651 return make_error<CoverageMapError>( 652 coveragemap_error::malformed, 653 "filenames section is larger than buffer size"); 654 size_t FilenamesBegin = Filenames.size(); 655 StringRef FilenameRegion(CovBuf, FilenamesSize); 656 RawCoverageFilenamesReader Reader(FilenameRegion, Filenames, 657 CompilationDir); 658 if (auto Err = Reader.read(Version)) 659 return std::move(Err); 660 CovBuf += FilenamesSize; 661 FilenameRange FileRange(FilenamesBegin, Filenames.size() - FilenamesBegin); 662 663 if (Version >= CovMapVersion::Version4) { 664 // Map a hash of the filenames region to the filename range associated 665 // with this coverage header. 666 int64_t FilenamesRef = 667 llvm::IndexedInstrProf::ComputeHash(FilenameRegion); 668 auto Insert = 669 FileRangeMap.insert(std::make_pair(FilenamesRef, FileRange)); 670 if (!Insert.second) { 671 // The same filenames ref was encountered twice. It's possible that 672 // the associated filenames are the same. 673 auto It = Filenames.begin(); 674 FilenameRange &OrigRange = Insert.first->getSecond(); 675 if (std::equal(It + OrigRange.StartingIndex, 676 It + OrigRange.StartingIndex + OrigRange.Length, 677 It + FileRange.StartingIndex, 678 It + FileRange.StartingIndex + FileRange.Length)) 679 // Map the new range to the original one. 680 FileRange = OrigRange; 681 else 682 // This is a hash collision. Mark the filenames ref invalid. 683 OrigRange.markInvalid(); 684 } 685 } 686 687 // We'll read the coverage mapping records in the loop below. 688 // This is a no-op in Version4 (coverage mappings are not affixed to the 689 // coverage header). 690 const char *MappingBuf = CovBuf; 691 if (Version >= CovMapVersion::Version4 && CoverageSize != 0) 692 return make_error<CoverageMapError>(coveragemap_error::malformed, 693 "coverage mapping size is not zero"); 694 CovBuf += CoverageSize; 695 const char *MappingEnd = CovBuf; 696 697 if (CovBuf > CovBufEnd) 698 return make_error<CoverageMapError>( 699 coveragemap_error::malformed, 700 "function records section is larger than buffer size"); 701 702 if (Version < CovMapVersion::Version4) { 703 // Read each function record. 704 if (Error E = readFunctionRecords(FuncRecBuf, FuncRecBufEnd, FileRange, 705 MappingBuf, MappingEnd)) 706 return std::move(E); 707 } 708 709 // Each coverage map has an alignment of 8, so we need to adjust alignment 710 // before reading the next map. 711 CovBuf += offsetToAlignedAddr(CovBuf, Align(8)); 712 713 return CovBuf; 714 } 715 716 Error readFunctionRecords(const char *FuncRecBuf, const char *FuncRecBufEnd, 717 std::optional<FilenameRange> OutOfLineFileRange, 718 const char *OutOfLineMappingBuf, 719 const char *OutOfLineMappingBufEnd) override { 720 auto CFR = reinterpret_cast<const FuncRecordType *>(FuncRecBuf); 721 while ((const char *)CFR < FuncRecBufEnd) { 722 // Validate the length of the coverage mapping for this function. 723 const char *NextMappingBuf; 724 const FuncRecordType *NextCFR; 725 std::tie(NextMappingBuf, NextCFR) = 726 CFR->template advanceByOne<Endian>(OutOfLineMappingBuf); 727 if (Version < CovMapVersion::Version4) 728 if (NextMappingBuf > OutOfLineMappingBufEnd) 729 return make_error<CoverageMapError>( 730 coveragemap_error::malformed, 731 "next mapping buffer is larger than buffer size"); 732 733 // Look up the set of filenames associated with this function record. 734 std::optional<FilenameRange> FileRange; 735 if (Version < CovMapVersion::Version4) { 736 FileRange = OutOfLineFileRange; 737 } else { 738 uint64_t FilenamesRef = CFR->template getFilenamesRef<Endian>(); 739 auto It = FileRangeMap.find(FilenamesRef); 740 if (It == FileRangeMap.end()) 741 return make_error<CoverageMapError>( 742 coveragemap_error::malformed, 743 "no filename found for function with hash=0x" + 744 Twine::utohexstr(FilenamesRef)); 745 else 746 FileRange = It->getSecond(); 747 } 748 749 // Now, read the coverage data. 750 if (FileRange && !FileRange->isInvalid()) { 751 StringRef Mapping = 752 CFR->template getCoverageMapping<Endian>(OutOfLineMappingBuf); 753 if (Version >= CovMapVersion::Version4 && 754 Mapping.data() + Mapping.size() > FuncRecBufEnd) 755 return make_error<CoverageMapError>( 756 coveragemap_error::malformed, 757 "coverage mapping data is larger than buffer size"); 758 if (Error Err = insertFunctionRecordIfNeeded(CFR, Mapping, *FileRange)) 759 return Err; 760 } 761 762 std::tie(OutOfLineMappingBuf, CFR) = std::tie(NextMappingBuf, NextCFR); 763 } 764 return Error::success(); 765 } 766 }; 767 768 } // end anonymous namespace 769 770 template <class IntPtrT, llvm::endianness Endian> 771 Expected<std::unique_ptr<CovMapFuncRecordReader>> CovMapFuncRecordReader::get( 772 CovMapVersion Version, InstrProfSymtab &P, 773 std::vector<BinaryCoverageReader::ProfileMappingRecord> &R, StringRef D, 774 std::vector<std::string> &F) { 775 using namespace coverage; 776 777 switch (Version) { 778 case CovMapVersion::Version1: 779 return std::make_unique<VersionedCovMapFuncRecordReader< 780 CovMapVersion::Version1, IntPtrT, Endian>>(P, R, D, F); 781 case CovMapVersion::Version2: 782 case CovMapVersion::Version3: 783 case CovMapVersion::Version4: 784 case CovMapVersion::Version5: 785 case CovMapVersion::Version6: 786 case CovMapVersion::Version7: 787 // Decompress the name data. 788 if (Error E = P.create(P.getNameData())) 789 return std::move(E); 790 if (Version == CovMapVersion::Version2) 791 return std::make_unique<VersionedCovMapFuncRecordReader< 792 CovMapVersion::Version2, IntPtrT, Endian>>(P, R, D, F); 793 else if (Version == CovMapVersion::Version3) 794 return std::make_unique<VersionedCovMapFuncRecordReader< 795 CovMapVersion::Version3, IntPtrT, Endian>>(P, R, D, F); 796 else if (Version == CovMapVersion::Version4) 797 return std::make_unique<VersionedCovMapFuncRecordReader< 798 CovMapVersion::Version4, IntPtrT, Endian>>(P, R, D, F); 799 else if (Version == CovMapVersion::Version5) 800 return std::make_unique<VersionedCovMapFuncRecordReader< 801 CovMapVersion::Version5, IntPtrT, Endian>>(P, R, D, F); 802 else if (Version == CovMapVersion::Version6) 803 return std::make_unique<VersionedCovMapFuncRecordReader< 804 CovMapVersion::Version6, IntPtrT, Endian>>(P, R, D, F); 805 else if (Version == CovMapVersion::Version7) 806 return std::make_unique<VersionedCovMapFuncRecordReader< 807 CovMapVersion::Version7, IntPtrT, Endian>>(P, R, D, F); 808 } 809 llvm_unreachable("Unsupported version"); 810 } 811 812 template <typename T, llvm::endianness Endian> 813 static Error readCoverageMappingData( 814 InstrProfSymtab &ProfileNames, StringRef CovMap, StringRef FuncRecords, 815 std::vector<BinaryCoverageReader::ProfileMappingRecord> &Records, 816 StringRef CompilationDir, std::vector<std::string> &Filenames) { 817 using namespace coverage; 818 819 // Read the records in the coverage data section. 820 auto CovHeader = 821 reinterpret_cast<const CovMapHeader *>(CovMap.data()); 822 CovMapVersion Version = (CovMapVersion)CovHeader->getVersion<Endian>(); 823 if (Version > CovMapVersion::CurrentVersion) 824 return make_error<CoverageMapError>(coveragemap_error::unsupported_version); 825 Expected<std::unique_ptr<CovMapFuncRecordReader>> ReaderExpected = 826 CovMapFuncRecordReader::get<T, Endian>(Version, ProfileNames, Records, 827 CompilationDir, Filenames); 828 if (Error E = ReaderExpected.takeError()) 829 return E; 830 auto Reader = std::move(ReaderExpected.get()); 831 const char *CovBuf = CovMap.data(); 832 const char *CovBufEnd = CovBuf + CovMap.size(); 833 const char *FuncRecBuf = FuncRecords.data(); 834 const char *FuncRecBufEnd = FuncRecords.data() + FuncRecords.size(); 835 while (CovBuf < CovBufEnd) { 836 // Read the current coverage header & filename data. 837 // 838 // Prior to Version4, this also reads all function records affixed to the 839 // header. 840 // 841 // Return a pointer to the next coverage header. 842 auto NextOrErr = Reader->readCoverageHeader(CovBuf, CovBufEnd); 843 if (auto E = NextOrErr.takeError()) 844 return E; 845 CovBuf = NextOrErr.get(); 846 } 847 // In Version4, function records are not affixed to coverage headers. Read 848 // the records from their dedicated section. 849 if (Version >= CovMapVersion::Version4) 850 return Reader->readFunctionRecords(FuncRecBuf, FuncRecBufEnd, std::nullopt, 851 nullptr, nullptr); 852 return Error::success(); 853 } 854 855 Expected<std::unique_ptr<BinaryCoverageReader>> 856 BinaryCoverageReader::createCoverageReaderFromBuffer( 857 StringRef Coverage, FuncRecordsStorage &&FuncRecords, 858 InstrProfSymtab &&ProfileNames, uint8_t BytesInAddress, 859 llvm::endianness Endian, StringRef CompilationDir) { 860 std::unique_ptr<BinaryCoverageReader> Reader( 861 new BinaryCoverageReader(std::move(FuncRecords))); 862 Reader->ProfileNames = std::move(ProfileNames); 863 StringRef FuncRecordsRef = Reader->FuncRecords->getBuffer(); 864 if (BytesInAddress == 4 && Endian == llvm::endianness::little) { 865 if (Error E = readCoverageMappingData<uint32_t, llvm::endianness::little>( 866 Reader->ProfileNames, Coverage, FuncRecordsRef, 867 Reader->MappingRecords, CompilationDir, Reader->Filenames)) 868 return std::move(E); 869 } else if (BytesInAddress == 4 && Endian == llvm::endianness::big) { 870 if (Error E = readCoverageMappingData<uint32_t, llvm::endianness::big>( 871 Reader->ProfileNames, Coverage, FuncRecordsRef, 872 Reader->MappingRecords, CompilationDir, Reader->Filenames)) 873 return std::move(E); 874 } else if (BytesInAddress == 8 && Endian == llvm::endianness::little) { 875 if (Error E = readCoverageMappingData<uint64_t, llvm::endianness::little>( 876 Reader->ProfileNames, Coverage, FuncRecordsRef, 877 Reader->MappingRecords, CompilationDir, Reader->Filenames)) 878 return std::move(E); 879 } else if (BytesInAddress == 8 && Endian == llvm::endianness::big) { 880 if (Error E = readCoverageMappingData<uint64_t, llvm::endianness::big>( 881 Reader->ProfileNames, Coverage, FuncRecordsRef, 882 Reader->MappingRecords, CompilationDir, Reader->Filenames)) 883 return std::move(E); 884 } else 885 return make_error<CoverageMapError>( 886 coveragemap_error::malformed, 887 "not supported endianness or bytes in address"); 888 return std::move(Reader); 889 } 890 891 static Expected<std::unique_ptr<BinaryCoverageReader>> 892 loadTestingFormat(StringRef Data, StringRef CompilationDir) { 893 uint8_t BytesInAddress = 8; 894 llvm::endianness Endian = llvm::endianness::little; 895 896 // Read the magic and version. 897 Data = Data.substr(sizeof(TestingFormatMagic)); 898 if (Data.size() < sizeof(uint64_t)) 899 return make_error<CoverageMapError>(coveragemap_error::malformed, 900 "the size of data is too small"); 901 auto TestingVersion = 902 support::endian::byte_swap<uint64_t, llvm::endianness::little>( 903 *reinterpret_cast<const uint64_t *>(Data.data())); 904 Data = Data.substr(sizeof(uint64_t)); 905 906 // Read the ProfileNames data. 907 if (Data.empty()) 908 return make_error<CoverageMapError>(coveragemap_error::truncated); 909 unsigned N = 0; 910 uint64_t ProfileNamesSize = decodeULEB128(Data.bytes_begin(), &N); 911 if (N > Data.size()) 912 return make_error<CoverageMapError>( 913 coveragemap_error::malformed, 914 "the size of TestingFormatMagic is too big"); 915 Data = Data.substr(N); 916 if (Data.empty()) 917 return make_error<CoverageMapError>(coveragemap_error::truncated); 918 N = 0; 919 uint64_t Address = decodeULEB128(Data.bytes_begin(), &N); 920 if (N > Data.size()) 921 return make_error<CoverageMapError>(coveragemap_error::malformed, 922 "the size of ULEB128 is too big"); 923 Data = Data.substr(N); 924 if (Data.size() < ProfileNamesSize) 925 return make_error<CoverageMapError>(coveragemap_error::malformed, 926 "the size of ProfileNames is too big"); 927 InstrProfSymtab ProfileNames; 928 if (Error E = ProfileNames.create(Data.substr(0, ProfileNamesSize), Address)) 929 return std::move(E); 930 Data = Data.substr(ProfileNamesSize); 931 932 // In Version2, the size of CoverageMapping is stored directly. 933 uint64_t CoverageMappingSize; 934 if (TestingVersion == uint64_t(TestingFormatVersion::Version2)) { 935 N = 0; 936 CoverageMappingSize = decodeULEB128(Data.bytes_begin(), &N); 937 if (N > Data.size()) 938 return make_error<CoverageMapError>(coveragemap_error::malformed, 939 "the size of ULEB128 is too big"); 940 Data = Data.substr(N); 941 if (CoverageMappingSize < sizeof(CovMapHeader)) 942 return make_error<CoverageMapError>( 943 coveragemap_error::malformed, 944 "the size of CoverageMapping is teoo small"); 945 } else if (TestingVersion != uint64_t(TestingFormatVersion::Version1)) { 946 return make_error<CoverageMapError>(coveragemap_error::unsupported_version); 947 } 948 949 // Skip the padding bytes because coverage map data has an alignment of 8. 950 auto Pad = offsetToAlignedAddr(Data.data(), Align(8)); 951 if (Data.size() < Pad) 952 return make_error<CoverageMapError>(coveragemap_error::malformed, 953 "insufficient padding"); 954 Data = Data.substr(Pad); 955 if (Data.size() < sizeof(CovMapHeader)) 956 return make_error<CoverageMapError>( 957 coveragemap_error::malformed, 958 "coverage mapping header section is larger than data size"); 959 auto const *CovHeader = reinterpret_cast<const CovMapHeader *>( 960 Data.substr(0, sizeof(CovMapHeader)).data()); 961 auto Version = 962 CovMapVersion(CovHeader->getVersion<llvm::endianness::little>()); 963 964 // In Version1, the size of CoverageMapping is calculated. 965 if (TestingVersion == uint64_t(TestingFormatVersion::Version1)) { 966 if (Version < CovMapVersion::Version4) { 967 CoverageMappingSize = Data.size(); 968 } else { 969 auto FilenamesSize = 970 CovHeader->getFilenamesSize<llvm::endianness::little>(); 971 CoverageMappingSize = sizeof(CovMapHeader) + FilenamesSize; 972 } 973 } 974 975 auto CoverageMapping = Data.substr(0, CoverageMappingSize); 976 Data = Data.substr(CoverageMappingSize); 977 978 // Read the CoverageRecords data. 979 if (Version < CovMapVersion::Version4) { 980 if (!Data.empty()) 981 return make_error<CoverageMapError>(coveragemap_error::malformed, 982 "data is not empty"); 983 } else { 984 // Skip the padding bytes because coverage records data has an alignment 985 // of 8. 986 Pad = offsetToAlignedAddr(Data.data(), Align(8)); 987 if (Data.size() < Pad) 988 return make_error<CoverageMapError>(coveragemap_error::malformed, 989 "insufficient padding"); 990 Data = Data.substr(Pad); 991 } 992 BinaryCoverageReader::FuncRecordsStorage CoverageRecords = 993 MemoryBuffer::getMemBuffer(Data); 994 995 return BinaryCoverageReader::createCoverageReaderFromBuffer( 996 CoverageMapping, std::move(CoverageRecords), std::move(ProfileNames), 997 BytesInAddress, Endian, CompilationDir); 998 } 999 1000 /// Find all sections that match \p Name. There may be more than one if comdats 1001 /// are in use, e.g. for the __llvm_covfun section on ELF. 1002 static Expected<std::vector<SectionRef>> lookupSections(ObjectFile &OF, 1003 StringRef Name) { 1004 // On COFF, the object file section name may end in "$M". This tells the 1005 // linker to sort these sections between "$A" and "$Z". The linker removes the 1006 // dollar and everything after it in the final binary. Do the same to match. 1007 bool IsCOFF = isa<COFFObjectFile>(OF); 1008 auto stripSuffix = [IsCOFF](StringRef N) { 1009 return IsCOFF ? N.split('$').first : N; 1010 }; 1011 Name = stripSuffix(Name); 1012 1013 std::vector<SectionRef> Sections; 1014 for (const auto &Section : OF.sections()) { 1015 Expected<StringRef> NameOrErr = Section.getName(); 1016 if (!NameOrErr) 1017 return NameOrErr.takeError(); 1018 if (stripSuffix(*NameOrErr) == Name) 1019 Sections.push_back(Section); 1020 } 1021 if (Sections.empty()) 1022 return make_error<CoverageMapError>(coveragemap_error::no_data_found); 1023 return Sections; 1024 } 1025 1026 static Expected<std::unique_ptr<BinaryCoverageReader>> 1027 loadBinaryFormat(std::unique_ptr<Binary> Bin, StringRef Arch, 1028 StringRef CompilationDir = "", 1029 object::BuildIDRef *BinaryID = nullptr) { 1030 std::unique_ptr<ObjectFile> OF; 1031 if (auto *Universal = dyn_cast<MachOUniversalBinary>(Bin.get())) { 1032 // If we have a universal binary, try to look up the object for the 1033 // appropriate architecture. 1034 auto ObjectFileOrErr = Universal->getMachOObjectForArch(Arch); 1035 if (!ObjectFileOrErr) 1036 return ObjectFileOrErr.takeError(); 1037 OF = std::move(ObjectFileOrErr.get()); 1038 } else if (isa<ObjectFile>(Bin.get())) { 1039 // For any other object file, upcast and take ownership. 1040 OF.reset(cast<ObjectFile>(Bin.release())); 1041 // If we've asked for a particular arch, make sure they match. 1042 if (!Arch.empty() && OF->getArch() != Triple(Arch).getArch()) 1043 return errorCodeToError(object_error::arch_not_found); 1044 } else 1045 // We can only handle object files. 1046 return make_error<CoverageMapError>(coveragemap_error::malformed, 1047 "binary is not an object file"); 1048 1049 // The coverage uses native pointer sizes for the object it's written in. 1050 uint8_t BytesInAddress = OF->getBytesInAddress(); 1051 llvm::endianness Endian = 1052 OF->isLittleEndian() ? llvm::endianness::little : llvm::endianness::big; 1053 1054 // Look for the sections that we are interested in. 1055 auto ObjFormat = OF->getTripleObjectFormat(); 1056 auto NamesSection = 1057 lookupSections(*OF, getInstrProfSectionName(IPSK_name, ObjFormat, 1058 /*AddSegmentInfo=*/false)); 1059 if (auto E = NamesSection.takeError()) 1060 return std::move(E); 1061 auto CoverageSection = 1062 lookupSections(*OF, getInstrProfSectionName(IPSK_covmap, ObjFormat, 1063 /*AddSegmentInfo=*/false)); 1064 if (auto E = CoverageSection.takeError()) 1065 return std::move(E); 1066 std::vector<SectionRef> CoverageSectionRefs = *CoverageSection; 1067 if (CoverageSectionRefs.size() != 1) 1068 return make_error<CoverageMapError>(coveragemap_error::malformed, 1069 "the size of name section is not one"); 1070 auto CoverageMappingOrErr = CoverageSectionRefs.back().getContents(); 1071 if (!CoverageMappingOrErr) 1072 return CoverageMappingOrErr.takeError(); 1073 StringRef CoverageMapping = CoverageMappingOrErr.get(); 1074 1075 InstrProfSymtab ProfileNames; 1076 std::vector<SectionRef> NamesSectionRefs = *NamesSection; 1077 if (NamesSectionRefs.size() != 1) 1078 return make_error<CoverageMapError>( 1079 coveragemap_error::malformed, 1080 "the size of coverage mapping section is not one"); 1081 if (Error E = ProfileNames.create(NamesSectionRefs.back())) 1082 return std::move(E); 1083 1084 // Look for the coverage records section (Version4 only). 1085 auto CoverageRecordsSections = 1086 lookupSections(*OF, getInstrProfSectionName(IPSK_covfun, ObjFormat, 1087 /*AddSegmentInfo=*/false)); 1088 1089 BinaryCoverageReader::FuncRecordsStorage FuncRecords; 1090 if (auto E = CoverageRecordsSections.takeError()) { 1091 consumeError(std::move(E)); 1092 FuncRecords = MemoryBuffer::getMemBuffer(""); 1093 } else { 1094 // Compute the FuncRecordsBuffer of the buffer, taking into account the 1095 // padding between each record, and making sure the first block is aligned 1096 // in memory to maintain consistency between buffer address and size 1097 // alignment. 1098 const Align RecordAlignment(8); 1099 uint64_t FuncRecordsSize = 0; 1100 for (SectionRef Section : *CoverageRecordsSections) { 1101 auto CoverageRecordsOrErr = Section.getContents(); 1102 if (!CoverageRecordsOrErr) 1103 return CoverageRecordsOrErr.takeError(); 1104 FuncRecordsSize += alignTo(CoverageRecordsOrErr->size(), RecordAlignment); 1105 } 1106 auto WritableBuffer = 1107 WritableMemoryBuffer::getNewUninitMemBuffer(FuncRecordsSize); 1108 char *FuncRecordsBuffer = WritableBuffer->getBufferStart(); 1109 assert(isAddrAligned(RecordAlignment, FuncRecordsBuffer) && 1110 "Allocated memory is correctly aligned"); 1111 1112 for (SectionRef Section : *CoverageRecordsSections) { 1113 auto CoverageRecordsOrErr = Section.getContents(); 1114 if (!CoverageRecordsOrErr) 1115 return CoverageRecordsOrErr.takeError(); 1116 const auto &CoverageRecords = CoverageRecordsOrErr.get(); 1117 FuncRecordsBuffer = std::copy(CoverageRecords.begin(), 1118 CoverageRecords.end(), FuncRecordsBuffer); 1119 FuncRecordsBuffer = 1120 std::fill_n(FuncRecordsBuffer, 1121 alignAddr(FuncRecordsBuffer, RecordAlignment) - 1122 (uintptr_t)FuncRecordsBuffer, 1123 '\0'); 1124 } 1125 assert(FuncRecordsBuffer == WritableBuffer->getBufferEnd() && 1126 "consistent init"); 1127 FuncRecords = std::move(WritableBuffer); 1128 } 1129 1130 if (BinaryID) 1131 *BinaryID = getBuildID(OF.get()); 1132 1133 return BinaryCoverageReader::createCoverageReaderFromBuffer( 1134 CoverageMapping, std::move(FuncRecords), std::move(ProfileNames), 1135 BytesInAddress, Endian, CompilationDir); 1136 } 1137 1138 /// Determine whether \p Arch is invalid or empty, given \p Bin. 1139 static bool isArchSpecifierInvalidOrMissing(Binary *Bin, StringRef Arch) { 1140 // If we have a universal binary and Arch doesn't identify any of its slices, 1141 // it's user error. 1142 if (auto *Universal = dyn_cast<MachOUniversalBinary>(Bin)) { 1143 for (auto &ObjForArch : Universal->objects()) 1144 if (Arch == ObjForArch.getArchFlagName()) 1145 return false; 1146 return true; 1147 } 1148 return false; 1149 } 1150 1151 Expected<std::vector<std::unique_ptr<BinaryCoverageReader>>> 1152 BinaryCoverageReader::create( 1153 MemoryBufferRef ObjectBuffer, StringRef Arch, 1154 SmallVectorImpl<std::unique_ptr<MemoryBuffer>> &ObjectFileBuffers, 1155 StringRef CompilationDir, SmallVectorImpl<object::BuildIDRef> *BinaryIDs) { 1156 std::vector<std::unique_ptr<BinaryCoverageReader>> Readers; 1157 1158 if (ObjectBuffer.getBuffer().size() > sizeof(TestingFormatMagic)) { 1159 uint64_t Magic = 1160 support::endian::byte_swap<uint64_t, llvm::endianness::little>( 1161 *reinterpret_cast<const uint64_t *>(ObjectBuffer.getBufferStart())); 1162 if (Magic == TestingFormatMagic) { 1163 // This is a special format used for testing. 1164 auto ReaderOrErr = 1165 loadTestingFormat(ObjectBuffer.getBuffer(), CompilationDir); 1166 if (!ReaderOrErr) 1167 return ReaderOrErr.takeError(); 1168 Readers.push_back(std::move(ReaderOrErr.get())); 1169 return std::move(Readers); 1170 } 1171 } 1172 1173 auto BinOrErr = createBinary(ObjectBuffer); 1174 if (!BinOrErr) 1175 return BinOrErr.takeError(); 1176 std::unique_ptr<Binary> Bin = std::move(BinOrErr.get()); 1177 1178 if (isArchSpecifierInvalidOrMissing(Bin.get(), Arch)) 1179 return make_error<CoverageMapError>( 1180 coveragemap_error::invalid_or_missing_arch_specifier); 1181 1182 // MachO universal binaries which contain archives need to be treated as 1183 // archives, not as regular binaries. 1184 if (auto *Universal = dyn_cast<MachOUniversalBinary>(Bin.get())) { 1185 for (auto &ObjForArch : Universal->objects()) { 1186 // Skip slices within the universal binary which target the wrong arch. 1187 std::string ObjArch = ObjForArch.getArchFlagName(); 1188 if (Arch != ObjArch) 1189 continue; 1190 1191 auto ArchiveOrErr = ObjForArch.getAsArchive(); 1192 if (!ArchiveOrErr) { 1193 // If this is not an archive, try treating it as a regular object. 1194 consumeError(ArchiveOrErr.takeError()); 1195 break; 1196 } 1197 1198 return BinaryCoverageReader::create( 1199 ArchiveOrErr.get()->getMemoryBufferRef(), Arch, ObjectFileBuffers, 1200 CompilationDir, BinaryIDs); 1201 } 1202 } 1203 1204 // Load coverage out of archive members. 1205 if (auto *Ar = dyn_cast<Archive>(Bin.get())) { 1206 Error Err = Error::success(); 1207 for (auto &Child : Ar->children(Err)) { 1208 Expected<MemoryBufferRef> ChildBufOrErr = Child.getMemoryBufferRef(); 1209 if (!ChildBufOrErr) 1210 return ChildBufOrErr.takeError(); 1211 1212 auto ChildReadersOrErr = BinaryCoverageReader::create( 1213 ChildBufOrErr.get(), Arch, ObjectFileBuffers, CompilationDir, 1214 BinaryIDs); 1215 if (!ChildReadersOrErr) 1216 return ChildReadersOrErr.takeError(); 1217 for (auto &Reader : ChildReadersOrErr.get()) 1218 Readers.push_back(std::move(Reader)); 1219 } 1220 if (Err) 1221 return std::move(Err); 1222 1223 // Thin archives reference object files outside of the archive file, i.e. 1224 // files which reside in memory not owned by the caller. Transfer ownership 1225 // to the caller. 1226 if (Ar->isThin()) 1227 for (auto &Buffer : Ar->takeThinBuffers()) 1228 ObjectFileBuffers.push_back(std::move(Buffer)); 1229 1230 return std::move(Readers); 1231 } 1232 1233 object::BuildIDRef BinaryID; 1234 auto ReaderOrErr = loadBinaryFormat(std::move(Bin), Arch, CompilationDir, 1235 BinaryIDs ? &BinaryID : nullptr); 1236 if (!ReaderOrErr) 1237 return ReaderOrErr.takeError(); 1238 Readers.push_back(std::move(ReaderOrErr.get())); 1239 if (!BinaryID.empty()) 1240 BinaryIDs->push_back(BinaryID); 1241 return std::move(Readers); 1242 } 1243 1244 Error BinaryCoverageReader::readNextRecord(CoverageMappingRecord &Record) { 1245 if (CurrentRecord >= MappingRecords.size()) 1246 return make_error<CoverageMapError>(coveragemap_error::eof); 1247 1248 FunctionsFilenames.clear(); 1249 Expressions.clear(); 1250 MappingRegions.clear(); 1251 auto &R = MappingRecords[CurrentRecord]; 1252 auto F = ArrayRef(Filenames).slice(R.FilenamesBegin, R.FilenamesSize); 1253 RawCoverageMappingReader Reader(R.CoverageMapping, F, FunctionsFilenames, 1254 Expressions, MappingRegions); 1255 if (auto Err = Reader.read()) 1256 return Err; 1257 1258 Record.FunctionName = R.FunctionName; 1259 Record.FunctionHash = R.FunctionHash; 1260 Record.Filenames = FunctionsFilenames; 1261 Record.Expressions = Expressions; 1262 Record.MappingRegions = MappingRegions; 1263 1264 ++CurrentRecord; 1265 return Error::success(); 1266 } 1267