1 //===- CoverageMappingReader.cpp - Code coverage mapping reader -----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains support for reading coverage mapping data for 10 // instrumentation based coverage. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/ProfileData/Coverage/CoverageMappingReader.h" 15 #include "llvm/ADT/ArrayRef.h" 16 #include "llvm/ADT/DenseMap.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/SmallVector.h" 19 #include "llvm/ADT/Statistic.h" 20 #include "llvm/ADT/StringRef.h" 21 #include "llvm/Object/Archive.h" 22 #include "llvm/Object/Binary.h" 23 #include "llvm/Object/COFF.h" 24 #include "llvm/Object/Error.h" 25 #include "llvm/Object/MachOUniversal.h" 26 #include "llvm/Object/ObjectFile.h" 27 #include "llvm/ProfileData/InstrProf.h" 28 #include "llvm/Support/Casting.h" 29 #include "llvm/Support/Compression.h" 30 #include "llvm/Support/Debug.h" 31 #include "llvm/Support/Endian.h" 32 #include "llvm/Support/Error.h" 33 #include "llvm/Support/ErrorHandling.h" 34 #include "llvm/Support/LEB128.h" 35 #include "llvm/Support/MathExtras.h" 36 #include "llvm/Support/Path.h" 37 #include "llvm/Support/raw_ostream.h" 38 #include "llvm/TargetParser/Triple.h" 39 #include <vector> 40 41 using namespace llvm; 42 using namespace coverage; 43 using namespace object; 44 45 #define DEBUG_TYPE "coverage-mapping" 46 47 STATISTIC(CovMapNumRecords, "The # of coverage function records"); 48 STATISTIC(CovMapNumUsedRecords, "The # of used coverage function records"); 49 50 void CoverageMappingIterator::increment() { 51 if (ReadErr != coveragemap_error::success) 52 return; 53 54 // Check if all the records were read or if an error occurred while reading 55 // the next record. 56 if (auto E = Reader->readNextRecord(Record)) 57 handleAllErrors(std::move(E), [&](const CoverageMapError &CME) { 58 if (CME.get() == coveragemap_error::eof) 59 *this = CoverageMappingIterator(); 60 else 61 ReadErr = CME.get(); 62 }); 63 } 64 65 Error RawCoverageReader::readULEB128(uint64_t &Result) { 66 if (Data.empty()) 67 return make_error<CoverageMapError>(coveragemap_error::truncated); 68 unsigned N = 0; 69 Result = decodeULEB128(Data.bytes_begin(), &N); 70 if (N > Data.size()) 71 return make_error<CoverageMapError>(coveragemap_error::malformed, 72 "the size of ULEB128 is too big"); 73 Data = Data.substr(N); 74 return Error::success(); 75 } 76 77 Error RawCoverageReader::readIntMax(uint64_t &Result, uint64_t MaxPlus1) { 78 if (auto Err = readULEB128(Result)) 79 return Err; 80 if (Result >= MaxPlus1) 81 return make_error<CoverageMapError>( 82 coveragemap_error::malformed, 83 "the value of ULEB128 is greater than or equal to MaxPlus1"); 84 return Error::success(); 85 } 86 87 Error RawCoverageReader::readSize(uint64_t &Result) { 88 if (auto Err = readULEB128(Result)) 89 return Err; 90 if (Result > Data.size()) 91 return make_error<CoverageMapError>(coveragemap_error::malformed, 92 "the value of ULEB128 is too big"); 93 return Error::success(); 94 } 95 96 Error RawCoverageReader::readString(StringRef &Result) { 97 uint64_t Length; 98 if (auto Err = readSize(Length)) 99 return Err; 100 Result = Data.substr(0, Length); 101 Data = Data.substr(Length); 102 return Error::success(); 103 } 104 105 Error RawCoverageFilenamesReader::read(CovMapVersion Version) { 106 uint64_t NumFilenames; 107 if (auto Err = readSize(NumFilenames)) 108 return Err; 109 if (!NumFilenames) 110 return make_error<CoverageMapError>(coveragemap_error::malformed, 111 "number of filenames is zero"); 112 113 if (Version < CovMapVersion::Version4) 114 return readUncompressed(Version, NumFilenames); 115 116 // The uncompressed length may exceed the size of the encoded filenames. 117 // Skip size validation. 118 uint64_t UncompressedLen; 119 if (auto Err = readULEB128(UncompressedLen)) 120 return Err; 121 122 uint64_t CompressedLen; 123 if (auto Err = readSize(CompressedLen)) 124 return Err; 125 126 if (CompressedLen > 0) { 127 if (!compression::zlib::isAvailable()) 128 return make_error<CoverageMapError>( 129 coveragemap_error::decompression_failed); 130 131 // Allocate memory for the decompressed filenames. 132 SmallVector<uint8_t, 0> StorageBuf; 133 134 // Read compressed filenames. 135 StringRef CompressedFilenames = Data.substr(0, CompressedLen); 136 Data = Data.substr(CompressedLen); 137 auto Err = compression::zlib::decompress( 138 arrayRefFromStringRef(CompressedFilenames), StorageBuf, 139 UncompressedLen); 140 if (Err) { 141 consumeError(std::move(Err)); 142 return make_error<CoverageMapError>( 143 coveragemap_error::decompression_failed); 144 } 145 146 RawCoverageFilenamesReader Delegate(toStringRef(StorageBuf), Filenames, 147 CompilationDir); 148 return Delegate.readUncompressed(Version, NumFilenames); 149 } 150 151 return readUncompressed(Version, NumFilenames); 152 } 153 154 Error RawCoverageFilenamesReader::readUncompressed(CovMapVersion Version, 155 uint64_t NumFilenames) { 156 // Read uncompressed filenames. 157 if (Version < CovMapVersion::Version6) { 158 for (size_t I = 0; I < NumFilenames; ++I) { 159 StringRef Filename; 160 if (auto Err = readString(Filename)) 161 return Err; 162 Filenames.push_back(Filename.str()); 163 } 164 } else { 165 StringRef CWD; 166 if (auto Err = readString(CWD)) 167 return Err; 168 Filenames.push_back(CWD.str()); 169 170 for (size_t I = 1; I < NumFilenames; ++I) { 171 StringRef Filename; 172 if (auto Err = readString(Filename)) 173 return Err; 174 if (sys::path::is_absolute(Filename)) { 175 Filenames.push_back(Filename.str()); 176 } else { 177 SmallString<256> P; 178 if (!CompilationDir.empty()) 179 P.assign(CompilationDir); 180 else 181 P.assign(CWD); 182 llvm::sys::path::append(P, Filename); 183 sys::path::remove_dots(P, /*remove_dot_dot=*/true); 184 Filenames.push_back(static_cast<std::string>(P.str())); 185 } 186 } 187 } 188 return Error::success(); 189 } 190 191 Error RawCoverageMappingReader::decodeCounter(unsigned Value, Counter &C) { 192 auto Tag = Value & Counter::EncodingTagMask; 193 switch (Tag) { 194 case Counter::Zero: 195 C = Counter::getZero(); 196 return Error::success(); 197 case Counter::CounterValueReference: 198 C = Counter::getCounter(Value >> Counter::EncodingTagBits); 199 return Error::success(); 200 default: 201 break; 202 } 203 Tag -= Counter::Expression; 204 switch (Tag) { 205 case CounterExpression::Subtract: 206 case CounterExpression::Add: { 207 auto ID = Value >> Counter::EncodingTagBits; 208 if (ID >= Expressions.size()) 209 return make_error<CoverageMapError>(coveragemap_error::malformed, 210 "counter expression is invalid"); 211 Expressions[ID].Kind = CounterExpression::ExprKind(Tag); 212 C = Counter::getExpression(ID); 213 break; 214 } 215 default: 216 return make_error<CoverageMapError>(coveragemap_error::malformed, 217 "counter expression kind is invalid"); 218 } 219 return Error::success(); 220 } 221 222 Error RawCoverageMappingReader::readCounter(Counter &C) { 223 uint64_t EncodedCounter; 224 if (auto Err = 225 readIntMax(EncodedCounter, std::numeric_limits<unsigned>::max())) 226 return Err; 227 if (auto Err = decodeCounter(EncodedCounter, C)) 228 return Err; 229 return Error::success(); 230 } 231 232 static const unsigned EncodingExpansionRegionBit = 1 233 << Counter::EncodingTagBits; 234 235 /// Read the sub-array of regions for the given inferred file id. 236 /// \param NumFileIDs the number of file ids that are defined for this 237 /// function. 238 Error RawCoverageMappingReader::readMappingRegionsSubArray( 239 std::vector<CounterMappingRegion> &MappingRegions, unsigned InferredFileID, 240 size_t NumFileIDs) { 241 uint64_t NumRegions; 242 if (auto Err = readSize(NumRegions)) 243 return Err; 244 unsigned LineStart = 0; 245 for (size_t I = 0; I < NumRegions; ++I) { 246 Counter C, C2; 247 uint64_t BIDX = 0, NC = 0, ID = 0, TID = 0, FID = 0; 248 CounterMappingRegion::RegionKind Kind = CounterMappingRegion::CodeRegion; 249 250 // Read the combined counter + region kind. 251 uint64_t EncodedCounterAndRegion; 252 if (auto Err = readIntMax(EncodedCounterAndRegion, 253 std::numeric_limits<unsigned>::max())) 254 return Err; 255 unsigned Tag = EncodedCounterAndRegion & Counter::EncodingTagMask; 256 uint64_t ExpandedFileID = 0; 257 258 // If Tag does not represent a ZeroCounter, then it is understood to refer 259 // to a counter or counter expression with region kind assumed to be 260 // "CodeRegion". In that case, EncodedCounterAndRegion actually encodes the 261 // referenced counter or counter expression (and nothing else). 262 // 263 // If Tag represents a ZeroCounter and EncodingExpansionRegionBit is set, 264 // then EncodedCounterAndRegion is interpreted to represent an 265 // ExpansionRegion. In all other cases, EncodedCounterAndRegion is 266 // interpreted to refer to a specific region kind, after which additional 267 // fields may be read (e.g. BranchRegions have two encoded counters that 268 // follow an encoded region kind value). 269 if (Tag != Counter::Zero) { 270 if (auto Err = decodeCounter(EncodedCounterAndRegion, C)) 271 return Err; 272 } else { 273 // Is it an expansion region? 274 if (EncodedCounterAndRegion & EncodingExpansionRegionBit) { 275 Kind = CounterMappingRegion::ExpansionRegion; 276 ExpandedFileID = EncodedCounterAndRegion >> 277 Counter::EncodingCounterTagAndExpansionRegionTagBits; 278 if (ExpandedFileID >= NumFileIDs) 279 return make_error<CoverageMapError>(coveragemap_error::malformed, 280 "ExpandedFileID is invalid"); 281 } else { 282 switch (EncodedCounterAndRegion >> 283 Counter::EncodingCounterTagAndExpansionRegionTagBits) { 284 case CounterMappingRegion::CodeRegion: 285 // Don't do anything when we have a code region with a zero counter. 286 break; 287 case CounterMappingRegion::SkippedRegion: 288 Kind = CounterMappingRegion::SkippedRegion; 289 break; 290 case CounterMappingRegion::BranchRegion: 291 // For a Branch Region, read two successive counters. 292 Kind = CounterMappingRegion::BranchRegion; 293 if (auto Err = readCounter(C)) 294 return Err; 295 if (auto Err = readCounter(C2)) 296 return Err; 297 break; 298 case CounterMappingRegion::MCDCBranchRegion: 299 // For a MCDC Branch Region, read two successive counters and 3 IDs. 300 Kind = CounterMappingRegion::MCDCBranchRegion; 301 if (auto Err = readCounter(C)) 302 return Err; 303 if (auto Err = readCounter(C2)) 304 return Err; 305 if (auto Err = readIntMax(ID, std::numeric_limits<unsigned>::max())) 306 return Err; 307 if (auto Err = readIntMax(TID, std::numeric_limits<unsigned>::max())) 308 return Err; 309 if (auto Err = readIntMax(FID, std::numeric_limits<unsigned>::max())) 310 return Err; 311 break; 312 case CounterMappingRegion::MCDCDecisionRegion: 313 Kind = CounterMappingRegion::MCDCDecisionRegion; 314 if (auto Err = readIntMax(BIDX, std::numeric_limits<unsigned>::max())) 315 return Err; 316 if (auto Err = readIntMax(NC, std::numeric_limits<unsigned>::max())) 317 return Err; 318 break; 319 default: 320 return make_error<CoverageMapError>(coveragemap_error::malformed, 321 "region kind is incorrect"); 322 } 323 } 324 } 325 326 // Read the source range. 327 uint64_t LineStartDelta, ColumnStart, NumLines, ColumnEnd; 328 if (auto Err = 329 readIntMax(LineStartDelta, std::numeric_limits<unsigned>::max())) 330 return Err; 331 if (auto Err = readULEB128(ColumnStart)) 332 return Err; 333 if (ColumnStart > std::numeric_limits<unsigned>::max()) 334 return make_error<CoverageMapError>(coveragemap_error::malformed, 335 "start column is too big"); 336 if (auto Err = readIntMax(NumLines, std::numeric_limits<unsigned>::max())) 337 return Err; 338 if (auto Err = readIntMax(ColumnEnd, std::numeric_limits<unsigned>::max())) 339 return Err; 340 LineStart += LineStartDelta; 341 342 // If the high bit of ColumnEnd is set, this is a gap region. 343 if (ColumnEnd & (1U << 31)) { 344 Kind = CounterMappingRegion::GapRegion; 345 ColumnEnd &= ~(1U << 31); 346 } 347 348 // Adjust the column locations for the empty regions that are supposed to 349 // cover whole lines. Those regions should be encoded with the 350 // column range (1 -> std::numeric_limits<unsigned>::max()), but because 351 // the encoded std::numeric_limits<unsigned>::max() is several bytes long, 352 // we set the column range to (0 -> 0) to ensure that the column start and 353 // column end take up one byte each. 354 // The std::numeric_limits<unsigned>::max() is used to represent a column 355 // position at the end of the line without knowing the length of that line. 356 if (ColumnStart == 0 && ColumnEnd == 0) { 357 ColumnStart = 1; 358 ColumnEnd = std::numeric_limits<unsigned>::max(); 359 } 360 361 LLVM_DEBUG({ 362 dbgs() << "Counter in file " << InferredFileID << " " << LineStart << ":" 363 << ColumnStart << " -> " << (LineStart + NumLines) << ":" 364 << ColumnEnd << ", "; 365 if (Kind == CounterMappingRegion::ExpansionRegion) 366 dbgs() << "Expands to file " << ExpandedFileID; 367 else 368 CounterMappingContext(Expressions).dump(C, dbgs()); 369 dbgs() << "\n"; 370 }); 371 372 auto CMR = CounterMappingRegion( 373 C, C2, 374 mcdc::Parameters{static_cast<unsigned>(BIDX), static_cast<unsigned>(NC), 375 static_cast<unsigned>(ID), static_cast<unsigned>(TID), 376 static_cast<unsigned>(FID)}, 377 InferredFileID, ExpandedFileID, LineStart, ColumnStart, 378 LineStart + NumLines, ColumnEnd, Kind); 379 if (CMR.startLoc() > CMR.endLoc()) 380 return make_error<CoverageMapError>( 381 coveragemap_error::malformed, 382 "counter mapping region locations are incorrect"); 383 MappingRegions.push_back(CMR); 384 } 385 return Error::success(); 386 } 387 388 Error RawCoverageMappingReader::read() { 389 // Read the virtual file mapping. 390 SmallVector<unsigned, 8> VirtualFileMapping; 391 uint64_t NumFileMappings; 392 if (auto Err = readSize(NumFileMappings)) 393 return Err; 394 for (size_t I = 0; I < NumFileMappings; ++I) { 395 uint64_t FilenameIndex; 396 if (auto Err = readIntMax(FilenameIndex, TranslationUnitFilenames.size())) 397 return Err; 398 VirtualFileMapping.push_back(FilenameIndex); 399 } 400 401 // Construct the files using unique filenames and virtual file mapping. 402 for (auto I : VirtualFileMapping) { 403 Filenames.push_back(TranslationUnitFilenames[I]); 404 } 405 406 // Read the expressions. 407 uint64_t NumExpressions; 408 if (auto Err = readSize(NumExpressions)) 409 return Err; 410 // Create an array of dummy expressions that get the proper counters 411 // when the expressions are read, and the proper kinds when the counters 412 // are decoded. 413 Expressions.resize( 414 NumExpressions, 415 CounterExpression(CounterExpression::Subtract, Counter(), Counter())); 416 for (size_t I = 0; I < NumExpressions; ++I) { 417 if (auto Err = readCounter(Expressions[I].LHS)) 418 return Err; 419 if (auto Err = readCounter(Expressions[I].RHS)) 420 return Err; 421 } 422 423 // Read the mapping regions sub-arrays. 424 for (unsigned InferredFileID = 0, S = VirtualFileMapping.size(); 425 InferredFileID < S; ++InferredFileID) { 426 if (auto Err = readMappingRegionsSubArray(MappingRegions, InferredFileID, 427 VirtualFileMapping.size())) 428 return Err; 429 } 430 431 // Set the counters for the expansion regions. 432 // i.e. Counter of expansion region = counter of the first region 433 // from the expanded file. 434 // Perform multiple passes to correctly propagate the counters through 435 // all the nested expansion regions. 436 SmallVector<CounterMappingRegion *, 8> FileIDExpansionRegionMapping; 437 FileIDExpansionRegionMapping.resize(VirtualFileMapping.size(), nullptr); 438 for (unsigned Pass = 1, S = VirtualFileMapping.size(); Pass < S; ++Pass) { 439 for (auto &R : MappingRegions) { 440 if (R.Kind != CounterMappingRegion::ExpansionRegion) 441 continue; 442 assert(!FileIDExpansionRegionMapping[R.ExpandedFileID]); 443 FileIDExpansionRegionMapping[R.ExpandedFileID] = &R; 444 } 445 for (auto &R : MappingRegions) { 446 if (FileIDExpansionRegionMapping[R.FileID]) { 447 FileIDExpansionRegionMapping[R.FileID]->Count = R.Count; 448 FileIDExpansionRegionMapping[R.FileID] = nullptr; 449 } 450 } 451 } 452 453 return Error::success(); 454 } 455 456 Expected<bool> RawCoverageMappingDummyChecker::isDummy() { 457 // A dummy coverage mapping data consists of just one region with zero count. 458 uint64_t NumFileMappings; 459 if (Error Err = readSize(NumFileMappings)) 460 return std::move(Err); 461 if (NumFileMappings != 1) 462 return false; 463 // We don't expect any specific value for the filename index, just skip it. 464 uint64_t FilenameIndex; 465 if (Error Err = 466 readIntMax(FilenameIndex, std::numeric_limits<unsigned>::max())) 467 return std::move(Err); 468 uint64_t NumExpressions; 469 if (Error Err = readSize(NumExpressions)) 470 return std::move(Err); 471 if (NumExpressions != 0) 472 return false; 473 uint64_t NumRegions; 474 if (Error Err = readSize(NumRegions)) 475 return std::move(Err); 476 if (NumRegions != 1) 477 return false; 478 uint64_t EncodedCounterAndRegion; 479 if (Error Err = readIntMax(EncodedCounterAndRegion, 480 std::numeric_limits<unsigned>::max())) 481 return std::move(Err); 482 unsigned Tag = EncodedCounterAndRegion & Counter::EncodingTagMask; 483 return Tag == Counter::Zero; 484 } 485 486 Error InstrProfSymtab::create(SectionRef &Section) { 487 Expected<StringRef> DataOrErr = Section.getContents(); 488 if (!DataOrErr) 489 return DataOrErr.takeError(); 490 Data = *DataOrErr; 491 Address = Section.getAddress(); 492 493 // If this is a linked PE/COFF file, then we have to skip over the null byte 494 // that is allocated in the .lprfn$A section in the LLVM profiling runtime. 495 // If the name section is .lprfcovnames, it doesn't have the null byte at the 496 // beginning. 497 const ObjectFile *Obj = Section.getObject(); 498 if (isa<COFFObjectFile>(Obj) && !Obj->isRelocatableObject()) 499 if (Expected<StringRef> NameOrErr = Section.getName()) 500 if (*NameOrErr != getInstrProfSectionName(IPSK_covname, Triple::COFF)) 501 Data = Data.drop_front(1); 502 503 return Error::success(); 504 } 505 506 StringRef InstrProfSymtab::getFuncName(uint64_t Pointer, size_t Size) { 507 if (Pointer < Address) 508 return StringRef(); 509 auto Offset = Pointer - Address; 510 if (Offset + Size > Data.size()) 511 return StringRef(); 512 return Data.substr(Pointer - Address, Size); 513 } 514 515 // Check if the mapping data is a dummy, i.e. is emitted for an unused function. 516 static Expected<bool> isCoverageMappingDummy(uint64_t Hash, StringRef Mapping) { 517 // The hash value of dummy mapping records is always zero. 518 if (Hash) 519 return false; 520 return RawCoverageMappingDummyChecker(Mapping).isDummy(); 521 } 522 523 /// A range of filename indices. Used to specify the location of a batch of 524 /// filenames in a vector-like container. 525 struct FilenameRange { 526 unsigned StartingIndex; 527 unsigned Length; 528 529 FilenameRange(unsigned StartingIndex, unsigned Length) 530 : StartingIndex(StartingIndex), Length(Length) {} 531 532 void markInvalid() { Length = 0; } 533 bool isInvalid() const { return Length == 0; } 534 }; 535 536 namespace { 537 538 /// The interface to read coverage mapping function records for a module. 539 struct CovMapFuncRecordReader { 540 virtual ~CovMapFuncRecordReader() = default; 541 542 // Read a coverage header. 543 // 544 // \p CovBuf points to the buffer containing the \c CovHeader of the coverage 545 // mapping data associated with the module. 546 // 547 // Returns a pointer to the next \c CovHeader if it exists, or to an address 548 // greater than \p CovEnd if not. 549 virtual Expected<const char *> readCoverageHeader(const char *CovBuf, 550 const char *CovBufEnd) = 0; 551 552 // Read function records. 553 // 554 // \p FuncRecBuf points to the buffer containing a batch of function records. 555 // \p FuncRecBufEnd points past the end of the batch of records. 556 // 557 // Prior to Version4, \p OutOfLineFileRange points to a sequence of filenames 558 // associated with the function records. It is unused in Version4. 559 // 560 // Prior to Version4, \p OutOfLineMappingBuf points to a sequence of coverage 561 // mappings associated with the function records. It is unused in Version4. 562 virtual Error 563 readFunctionRecords(const char *FuncRecBuf, const char *FuncRecBufEnd, 564 std::optional<FilenameRange> OutOfLineFileRange, 565 const char *OutOfLineMappingBuf, 566 const char *OutOfLineMappingBufEnd) = 0; 567 568 template <class IntPtrT, llvm::endianness Endian> 569 static Expected<std::unique_ptr<CovMapFuncRecordReader>> 570 get(CovMapVersion Version, InstrProfSymtab &P, 571 std::vector<BinaryCoverageReader::ProfileMappingRecord> &R, StringRef D, 572 std::vector<std::string> &F); 573 }; 574 575 // A class for reading coverage mapping function records for a module. 576 template <CovMapVersion Version, class IntPtrT, llvm::endianness Endian> 577 class VersionedCovMapFuncRecordReader : public CovMapFuncRecordReader { 578 using FuncRecordType = 579 typename CovMapTraits<Version, IntPtrT>::CovMapFuncRecordType; 580 using NameRefType = typename CovMapTraits<Version, IntPtrT>::NameRefType; 581 582 // Maps function's name references to the indexes of their records 583 // in \c Records. 584 DenseMap<NameRefType, size_t> FunctionRecords; 585 InstrProfSymtab &ProfileNames; 586 StringRef CompilationDir; 587 std::vector<std::string> &Filenames; 588 std::vector<BinaryCoverageReader::ProfileMappingRecord> &Records; 589 590 // Maps a hash of the filenames in a TU to a \c FileRange. The range 591 // specifies the location of the hashed filenames in \c Filenames. 592 DenseMap<uint64_t, FilenameRange> FileRangeMap; 593 594 // Add the record to the collection if we don't already have a record that 595 // points to the same function name. This is useful to ignore the redundant 596 // records for the functions with ODR linkage. 597 // In addition, prefer records with real coverage mapping data to dummy 598 // records, which were emitted for inline functions which were seen but 599 // not used in the corresponding translation unit. 600 Error insertFunctionRecordIfNeeded(const FuncRecordType *CFR, 601 StringRef Mapping, 602 FilenameRange FileRange) { 603 ++CovMapNumRecords; 604 uint64_t FuncHash = CFR->template getFuncHash<Endian>(); 605 NameRefType NameRef = CFR->template getFuncNameRef<Endian>(); 606 auto InsertResult = 607 FunctionRecords.insert(std::make_pair(NameRef, Records.size())); 608 if (InsertResult.second) { 609 StringRef FuncName; 610 if (Error Err = CFR->template getFuncName<Endian>(ProfileNames, FuncName)) 611 return Err; 612 if (FuncName.empty()) 613 return make_error<InstrProfError>(instrprof_error::malformed, 614 "function name is empty"); 615 ++CovMapNumUsedRecords; 616 Records.emplace_back(Version, FuncName, FuncHash, Mapping, 617 FileRange.StartingIndex, FileRange.Length); 618 return Error::success(); 619 } 620 // Update the existing record if it's a dummy and the new record is real. 621 size_t OldRecordIndex = InsertResult.first->second; 622 BinaryCoverageReader::ProfileMappingRecord &OldRecord = 623 Records[OldRecordIndex]; 624 Expected<bool> OldIsDummyExpected = isCoverageMappingDummy( 625 OldRecord.FunctionHash, OldRecord.CoverageMapping); 626 if (Error Err = OldIsDummyExpected.takeError()) 627 return Err; 628 if (!*OldIsDummyExpected) 629 return Error::success(); 630 Expected<bool> NewIsDummyExpected = 631 isCoverageMappingDummy(FuncHash, Mapping); 632 if (Error Err = NewIsDummyExpected.takeError()) 633 return Err; 634 if (*NewIsDummyExpected) 635 return Error::success(); 636 ++CovMapNumUsedRecords; 637 OldRecord.FunctionHash = FuncHash; 638 OldRecord.CoverageMapping = Mapping; 639 OldRecord.FilenamesBegin = FileRange.StartingIndex; 640 OldRecord.FilenamesSize = FileRange.Length; 641 return Error::success(); 642 } 643 644 public: 645 VersionedCovMapFuncRecordReader( 646 InstrProfSymtab &P, 647 std::vector<BinaryCoverageReader::ProfileMappingRecord> &R, StringRef D, 648 std::vector<std::string> &F) 649 : ProfileNames(P), CompilationDir(D), Filenames(F), Records(R) {} 650 651 ~VersionedCovMapFuncRecordReader() override = default; 652 653 Expected<const char *> readCoverageHeader(const char *CovBuf, 654 const char *CovBufEnd) override { 655 using namespace support; 656 657 if (CovBuf + sizeof(CovMapHeader) > CovBufEnd) 658 return make_error<CoverageMapError>( 659 coveragemap_error::malformed, 660 "coverage mapping header section is larger than buffer size"); 661 auto CovHeader = reinterpret_cast<const CovMapHeader *>(CovBuf); 662 uint32_t NRecords = CovHeader->getNRecords<Endian>(); 663 uint32_t FilenamesSize = CovHeader->getFilenamesSize<Endian>(); 664 uint32_t CoverageSize = CovHeader->getCoverageSize<Endian>(); 665 assert((CovMapVersion)CovHeader->getVersion<Endian>() == Version); 666 CovBuf = reinterpret_cast<const char *>(CovHeader + 1); 667 668 // Skip past the function records, saving the start and end for later. 669 // This is a no-op in Version4 (function records are read after all headers 670 // are read). 671 const char *FuncRecBuf = nullptr; 672 const char *FuncRecBufEnd = nullptr; 673 if (Version < CovMapVersion::Version4) 674 FuncRecBuf = CovBuf; 675 CovBuf += NRecords * sizeof(FuncRecordType); 676 if (Version < CovMapVersion::Version4) 677 FuncRecBufEnd = CovBuf; 678 679 // Get the filenames. 680 if (CovBuf + FilenamesSize > CovBufEnd) 681 return make_error<CoverageMapError>( 682 coveragemap_error::malformed, 683 "filenames section is larger than buffer size"); 684 size_t FilenamesBegin = Filenames.size(); 685 StringRef FilenameRegion(CovBuf, FilenamesSize); 686 RawCoverageFilenamesReader Reader(FilenameRegion, Filenames, 687 CompilationDir); 688 if (auto Err = Reader.read(Version)) 689 return std::move(Err); 690 CovBuf += FilenamesSize; 691 FilenameRange FileRange(FilenamesBegin, Filenames.size() - FilenamesBegin); 692 693 if (Version >= CovMapVersion::Version4) { 694 // Map a hash of the filenames region to the filename range associated 695 // with this coverage header. 696 int64_t FilenamesRef = 697 llvm::IndexedInstrProf::ComputeHash(FilenameRegion); 698 auto Insert = 699 FileRangeMap.insert(std::make_pair(FilenamesRef, FileRange)); 700 if (!Insert.second) { 701 // The same filenames ref was encountered twice. It's possible that 702 // the associated filenames are the same. 703 auto It = Filenames.begin(); 704 FilenameRange &OrigRange = Insert.first->getSecond(); 705 if (std::equal(It + OrigRange.StartingIndex, 706 It + OrigRange.StartingIndex + OrigRange.Length, 707 It + FileRange.StartingIndex, 708 It + FileRange.StartingIndex + FileRange.Length)) 709 // Map the new range to the original one. 710 FileRange = OrigRange; 711 else 712 // This is a hash collision. Mark the filenames ref invalid. 713 OrigRange.markInvalid(); 714 } 715 } 716 717 // We'll read the coverage mapping records in the loop below. 718 // This is a no-op in Version4 (coverage mappings are not affixed to the 719 // coverage header). 720 const char *MappingBuf = CovBuf; 721 if (Version >= CovMapVersion::Version4 && CoverageSize != 0) 722 return make_error<CoverageMapError>(coveragemap_error::malformed, 723 "coverage mapping size is not zero"); 724 CovBuf += CoverageSize; 725 const char *MappingEnd = CovBuf; 726 727 if (CovBuf > CovBufEnd) 728 return make_error<CoverageMapError>( 729 coveragemap_error::malformed, 730 "function records section is larger than buffer size"); 731 732 if (Version < CovMapVersion::Version4) { 733 // Read each function record. 734 if (Error E = readFunctionRecords(FuncRecBuf, FuncRecBufEnd, FileRange, 735 MappingBuf, MappingEnd)) 736 return std::move(E); 737 } 738 739 // Each coverage map has an alignment of 8, so we need to adjust alignment 740 // before reading the next map. 741 CovBuf += offsetToAlignedAddr(CovBuf, Align(8)); 742 743 return CovBuf; 744 } 745 746 Error readFunctionRecords(const char *FuncRecBuf, const char *FuncRecBufEnd, 747 std::optional<FilenameRange> OutOfLineFileRange, 748 const char *OutOfLineMappingBuf, 749 const char *OutOfLineMappingBufEnd) override { 750 auto CFR = reinterpret_cast<const FuncRecordType *>(FuncRecBuf); 751 while ((const char *)CFR < FuncRecBufEnd) { 752 // Validate the length of the coverage mapping for this function. 753 const char *NextMappingBuf; 754 const FuncRecordType *NextCFR; 755 std::tie(NextMappingBuf, NextCFR) = 756 CFR->template advanceByOne<Endian>(OutOfLineMappingBuf); 757 if (Version < CovMapVersion::Version4) 758 if (NextMappingBuf > OutOfLineMappingBufEnd) 759 return make_error<CoverageMapError>( 760 coveragemap_error::malformed, 761 "next mapping buffer is larger than buffer size"); 762 763 // Look up the set of filenames associated with this function record. 764 std::optional<FilenameRange> FileRange; 765 if (Version < CovMapVersion::Version4) { 766 FileRange = OutOfLineFileRange; 767 } else { 768 uint64_t FilenamesRef = CFR->template getFilenamesRef<Endian>(); 769 auto It = FileRangeMap.find(FilenamesRef); 770 if (It == FileRangeMap.end()) 771 return make_error<CoverageMapError>( 772 coveragemap_error::malformed, 773 "no filename found for function with hash=0x" + 774 Twine::utohexstr(FilenamesRef)); 775 else 776 FileRange = It->getSecond(); 777 } 778 779 // Now, read the coverage data. 780 if (FileRange && !FileRange->isInvalid()) { 781 StringRef Mapping = 782 CFR->template getCoverageMapping<Endian>(OutOfLineMappingBuf); 783 if (Version >= CovMapVersion::Version4 && 784 Mapping.data() + Mapping.size() > FuncRecBufEnd) 785 return make_error<CoverageMapError>( 786 coveragemap_error::malformed, 787 "coverage mapping data is larger than buffer size"); 788 if (Error Err = insertFunctionRecordIfNeeded(CFR, Mapping, *FileRange)) 789 return Err; 790 } 791 792 std::tie(OutOfLineMappingBuf, CFR) = std::tie(NextMappingBuf, NextCFR); 793 } 794 return Error::success(); 795 } 796 }; 797 798 } // end anonymous namespace 799 800 template <class IntPtrT, llvm::endianness Endian> 801 Expected<std::unique_ptr<CovMapFuncRecordReader>> CovMapFuncRecordReader::get( 802 CovMapVersion Version, InstrProfSymtab &P, 803 std::vector<BinaryCoverageReader::ProfileMappingRecord> &R, StringRef D, 804 std::vector<std::string> &F) { 805 using namespace coverage; 806 807 switch (Version) { 808 case CovMapVersion::Version1: 809 return std::make_unique<VersionedCovMapFuncRecordReader< 810 CovMapVersion::Version1, IntPtrT, Endian>>(P, R, D, F); 811 case CovMapVersion::Version2: 812 case CovMapVersion::Version3: 813 case CovMapVersion::Version4: 814 case CovMapVersion::Version5: 815 case CovMapVersion::Version6: 816 case CovMapVersion::Version7: 817 // Decompress the name data. 818 if (Error E = P.create(P.getNameData())) 819 return std::move(E); 820 if (Version == CovMapVersion::Version2) 821 return std::make_unique<VersionedCovMapFuncRecordReader< 822 CovMapVersion::Version2, IntPtrT, Endian>>(P, R, D, F); 823 else if (Version == CovMapVersion::Version3) 824 return std::make_unique<VersionedCovMapFuncRecordReader< 825 CovMapVersion::Version3, IntPtrT, Endian>>(P, R, D, F); 826 else if (Version == CovMapVersion::Version4) 827 return std::make_unique<VersionedCovMapFuncRecordReader< 828 CovMapVersion::Version4, IntPtrT, Endian>>(P, R, D, F); 829 else if (Version == CovMapVersion::Version5) 830 return std::make_unique<VersionedCovMapFuncRecordReader< 831 CovMapVersion::Version5, IntPtrT, Endian>>(P, R, D, F); 832 else if (Version == CovMapVersion::Version6) 833 return std::make_unique<VersionedCovMapFuncRecordReader< 834 CovMapVersion::Version6, IntPtrT, Endian>>(P, R, D, F); 835 else if (Version == CovMapVersion::Version7) 836 return std::make_unique<VersionedCovMapFuncRecordReader< 837 CovMapVersion::Version7, IntPtrT, Endian>>(P, R, D, F); 838 } 839 llvm_unreachable("Unsupported version"); 840 } 841 842 template <typename T, llvm::endianness Endian> 843 static Error readCoverageMappingData( 844 InstrProfSymtab &ProfileNames, StringRef CovMap, StringRef FuncRecords, 845 std::vector<BinaryCoverageReader::ProfileMappingRecord> &Records, 846 StringRef CompilationDir, std::vector<std::string> &Filenames) { 847 using namespace coverage; 848 849 // Read the records in the coverage data section. 850 auto CovHeader = 851 reinterpret_cast<const CovMapHeader *>(CovMap.data()); 852 CovMapVersion Version = (CovMapVersion)CovHeader->getVersion<Endian>(); 853 if (Version > CovMapVersion::CurrentVersion) 854 return make_error<CoverageMapError>(coveragemap_error::unsupported_version); 855 Expected<std::unique_ptr<CovMapFuncRecordReader>> ReaderExpected = 856 CovMapFuncRecordReader::get<T, Endian>(Version, ProfileNames, Records, 857 CompilationDir, Filenames); 858 if (Error E = ReaderExpected.takeError()) 859 return E; 860 auto Reader = std::move(ReaderExpected.get()); 861 const char *CovBuf = CovMap.data(); 862 const char *CovBufEnd = CovBuf + CovMap.size(); 863 const char *FuncRecBuf = FuncRecords.data(); 864 const char *FuncRecBufEnd = FuncRecords.data() + FuncRecords.size(); 865 while (CovBuf < CovBufEnd) { 866 // Read the current coverage header & filename data. 867 // 868 // Prior to Version4, this also reads all function records affixed to the 869 // header. 870 // 871 // Return a pointer to the next coverage header. 872 auto NextOrErr = Reader->readCoverageHeader(CovBuf, CovBufEnd); 873 if (auto E = NextOrErr.takeError()) 874 return E; 875 CovBuf = NextOrErr.get(); 876 } 877 // In Version4, function records are not affixed to coverage headers. Read 878 // the records from their dedicated section. 879 if (Version >= CovMapVersion::Version4) 880 return Reader->readFunctionRecords(FuncRecBuf, FuncRecBufEnd, std::nullopt, 881 nullptr, nullptr); 882 return Error::success(); 883 } 884 885 Expected<std::unique_ptr<BinaryCoverageReader>> 886 BinaryCoverageReader::createCoverageReaderFromBuffer( 887 StringRef Coverage, FuncRecordsStorage &&FuncRecords, 888 InstrProfSymtab &&ProfileNames, uint8_t BytesInAddress, 889 llvm::endianness Endian, StringRef CompilationDir) { 890 std::unique_ptr<BinaryCoverageReader> Reader( 891 new BinaryCoverageReader(std::move(FuncRecords))); 892 Reader->ProfileNames = std::move(ProfileNames); 893 StringRef FuncRecordsRef = Reader->FuncRecords->getBuffer(); 894 if (BytesInAddress == 4 && Endian == llvm::endianness::little) { 895 if (Error E = readCoverageMappingData<uint32_t, llvm::endianness::little>( 896 Reader->ProfileNames, Coverage, FuncRecordsRef, 897 Reader->MappingRecords, CompilationDir, Reader->Filenames)) 898 return std::move(E); 899 } else if (BytesInAddress == 4 && Endian == llvm::endianness::big) { 900 if (Error E = readCoverageMappingData<uint32_t, llvm::endianness::big>( 901 Reader->ProfileNames, Coverage, FuncRecordsRef, 902 Reader->MappingRecords, CompilationDir, Reader->Filenames)) 903 return std::move(E); 904 } else if (BytesInAddress == 8 && Endian == llvm::endianness::little) { 905 if (Error E = readCoverageMappingData<uint64_t, llvm::endianness::little>( 906 Reader->ProfileNames, Coverage, FuncRecordsRef, 907 Reader->MappingRecords, CompilationDir, Reader->Filenames)) 908 return std::move(E); 909 } else if (BytesInAddress == 8 && Endian == llvm::endianness::big) { 910 if (Error E = readCoverageMappingData<uint64_t, llvm::endianness::big>( 911 Reader->ProfileNames, Coverage, FuncRecordsRef, 912 Reader->MappingRecords, CompilationDir, Reader->Filenames)) 913 return std::move(E); 914 } else 915 return make_error<CoverageMapError>( 916 coveragemap_error::malformed, 917 "not supported endianness or bytes in address"); 918 return std::move(Reader); 919 } 920 921 static Expected<std::unique_ptr<BinaryCoverageReader>> 922 loadTestingFormat(StringRef Data, StringRef CompilationDir) { 923 uint8_t BytesInAddress = 8; 924 llvm::endianness Endian = llvm::endianness::little; 925 926 // Read the magic and version. 927 Data = Data.substr(sizeof(TestingFormatMagic)); 928 if (Data.size() < sizeof(uint64_t)) 929 return make_error<CoverageMapError>(coveragemap_error::malformed, 930 "the size of data is too small"); 931 auto TestingVersion = 932 support::endian::byte_swap<uint64_t, llvm::endianness::little>( 933 *reinterpret_cast<const uint64_t *>(Data.data())); 934 Data = Data.substr(sizeof(uint64_t)); 935 936 // Read the ProfileNames data. 937 if (Data.empty()) 938 return make_error<CoverageMapError>(coveragemap_error::truncated); 939 unsigned N = 0; 940 uint64_t ProfileNamesSize = decodeULEB128(Data.bytes_begin(), &N); 941 if (N > Data.size()) 942 return make_error<CoverageMapError>( 943 coveragemap_error::malformed, 944 "the size of TestingFormatMagic is too big"); 945 Data = Data.substr(N); 946 if (Data.empty()) 947 return make_error<CoverageMapError>(coveragemap_error::truncated); 948 N = 0; 949 uint64_t Address = decodeULEB128(Data.bytes_begin(), &N); 950 if (N > Data.size()) 951 return make_error<CoverageMapError>(coveragemap_error::malformed, 952 "the size of ULEB128 is too big"); 953 Data = Data.substr(N); 954 if (Data.size() < ProfileNamesSize) 955 return make_error<CoverageMapError>(coveragemap_error::malformed, 956 "the size of ProfileNames is too big"); 957 InstrProfSymtab ProfileNames; 958 if (Error E = ProfileNames.create(Data.substr(0, ProfileNamesSize), Address)) 959 return std::move(E); 960 Data = Data.substr(ProfileNamesSize); 961 962 // In Version2, the size of CoverageMapping is stored directly. 963 uint64_t CoverageMappingSize; 964 if (TestingVersion == uint64_t(TestingFormatVersion::Version2)) { 965 N = 0; 966 CoverageMappingSize = decodeULEB128(Data.bytes_begin(), &N); 967 if (N > Data.size()) 968 return make_error<CoverageMapError>(coveragemap_error::malformed, 969 "the size of ULEB128 is too big"); 970 Data = Data.substr(N); 971 if (CoverageMappingSize < sizeof(CovMapHeader)) 972 return make_error<CoverageMapError>( 973 coveragemap_error::malformed, 974 "the size of CoverageMapping is teoo small"); 975 } else if (TestingVersion != uint64_t(TestingFormatVersion::Version1)) { 976 return make_error<CoverageMapError>(coveragemap_error::unsupported_version); 977 } 978 979 // Skip the padding bytes because coverage map data has an alignment of 8. 980 auto Pad = offsetToAlignedAddr(Data.data(), Align(8)); 981 if (Data.size() < Pad) 982 return make_error<CoverageMapError>(coveragemap_error::malformed, 983 "insufficient padding"); 984 Data = Data.substr(Pad); 985 if (Data.size() < sizeof(CovMapHeader)) 986 return make_error<CoverageMapError>( 987 coveragemap_error::malformed, 988 "coverage mapping header section is larger than data size"); 989 auto const *CovHeader = reinterpret_cast<const CovMapHeader *>( 990 Data.substr(0, sizeof(CovMapHeader)).data()); 991 auto Version = 992 CovMapVersion(CovHeader->getVersion<llvm::endianness::little>()); 993 994 // In Version1, the size of CoverageMapping is calculated. 995 if (TestingVersion == uint64_t(TestingFormatVersion::Version1)) { 996 if (Version < CovMapVersion::Version4) { 997 CoverageMappingSize = Data.size(); 998 } else { 999 auto FilenamesSize = 1000 CovHeader->getFilenamesSize<llvm::endianness::little>(); 1001 CoverageMappingSize = sizeof(CovMapHeader) + FilenamesSize; 1002 } 1003 } 1004 1005 auto CoverageMapping = Data.substr(0, CoverageMappingSize); 1006 Data = Data.substr(CoverageMappingSize); 1007 1008 // Read the CoverageRecords data. 1009 if (Version < CovMapVersion::Version4) { 1010 if (!Data.empty()) 1011 return make_error<CoverageMapError>(coveragemap_error::malformed, 1012 "data is not empty"); 1013 } else { 1014 // Skip the padding bytes because coverage records data has an alignment 1015 // of 8. 1016 Pad = offsetToAlignedAddr(Data.data(), Align(8)); 1017 if (Data.size() < Pad) 1018 return make_error<CoverageMapError>(coveragemap_error::malformed, 1019 "insufficient padding"); 1020 Data = Data.substr(Pad); 1021 } 1022 BinaryCoverageReader::FuncRecordsStorage CoverageRecords = 1023 MemoryBuffer::getMemBuffer(Data); 1024 1025 return BinaryCoverageReader::createCoverageReaderFromBuffer( 1026 CoverageMapping, std::move(CoverageRecords), std::move(ProfileNames), 1027 BytesInAddress, Endian, CompilationDir); 1028 } 1029 1030 /// Find all sections that match \p IPSK name. There may be more than one if 1031 /// comdats are in use, e.g. for the __llvm_covfun section on ELF. 1032 static Expected<std::vector<SectionRef>> 1033 lookupSections(ObjectFile &OF, InstrProfSectKind IPSK) { 1034 auto ObjFormat = OF.getTripleObjectFormat(); 1035 auto Name = 1036 getInstrProfSectionName(IPSK, ObjFormat, /*AddSegmentInfo=*/false); 1037 // On COFF, the object file section name may end in "$M". This tells the 1038 // linker to sort these sections between "$A" and "$Z". The linker removes the 1039 // dollar and everything after it in the final binary. Do the same to match. 1040 bool IsCOFF = isa<COFFObjectFile>(OF); 1041 auto stripSuffix = [IsCOFF](StringRef N) { 1042 return IsCOFF ? N.split('$').first : N; 1043 }; 1044 Name = stripSuffix(Name); 1045 1046 std::vector<SectionRef> Sections; 1047 for (const auto &Section : OF.sections()) { 1048 Expected<StringRef> NameOrErr = Section.getName(); 1049 if (!NameOrErr) 1050 return NameOrErr.takeError(); 1051 if (stripSuffix(*NameOrErr) == Name) { 1052 // COFF profile name section contains two null bytes indicating the 1053 // start/end of the section. If its size is 2 bytes, it's empty. 1054 if (IsCOFF && IPSK == IPSK_name && Section.getSize() == 2) 1055 continue; 1056 Sections.push_back(Section); 1057 } 1058 } 1059 if (Sections.empty()) 1060 return make_error<CoverageMapError>(coveragemap_error::no_data_found); 1061 return Sections; 1062 } 1063 1064 static Expected<std::unique_ptr<BinaryCoverageReader>> 1065 loadBinaryFormat(std::unique_ptr<Binary> Bin, StringRef Arch, 1066 StringRef CompilationDir = "", 1067 object::BuildIDRef *BinaryID = nullptr) { 1068 std::unique_ptr<ObjectFile> OF; 1069 if (auto *Universal = dyn_cast<MachOUniversalBinary>(Bin.get())) { 1070 // If we have a universal binary, try to look up the object for the 1071 // appropriate architecture. 1072 auto ObjectFileOrErr = Universal->getMachOObjectForArch(Arch); 1073 if (!ObjectFileOrErr) 1074 return ObjectFileOrErr.takeError(); 1075 OF = std::move(ObjectFileOrErr.get()); 1076 } else if (isa<ObjectFile>(Bin.get())) { 1077 // For any other object file, upcast and take ownership. 1078 OF.reset(cast<ObjectFile>(Bin.release())); 1079 // If we've asked for a particular arch, make sure they match. 1080 if (!Arch.empty() && OF->getArch() != Triple(Arch).getArch()) 1081 return errorCodeToError(object_error::arch_not_found); 1082 } else 1083 // We can only handle object files. 1084 return make_error<CoverageMapError>(coveragemap_error::malformed, 1085 "binary is not an object file"); 1086 1087 // The coverage uses native pointer sizes for the object it's written in. 1088 uint8_t BytesInAddress = OF->getBytesInAddress(); 1089 llvm::endianness Endian = 1090 OF->isLittleEndian() ? llvm::endianness::little : llvm::endianness::big; 1091 1092 // Look for the sections that we are interested in. 1093 InstrProfSymtab ProfileNames; 1094 std::vector<SectionRef> NamesSectionRefs; 1095 // If IPSK_name is not found, fallback to search for IPK_covname, which is 1096 // used when binary correlation is enabled. 1097 auto NamesSection = lookupSections(*OF, IPSK_name); 1098 if (auto E = NamesSection.takeError()) { 1099 consumeError(std::move(E)); 1100 NamesSection = lookupSections(*OF, IPSK_covname); 1101 if (auto E = NamesSection.takeError()) 1102 return std::move(E); 1103 } 1104 NamesSectionRefs = *NamesSection; 1105 1106 if (NamesSectionRefs.size() != 1) 1107 return make_error<CoverageMapError>( 1108 coveragemap_error::malformed, 1109 "the size of coverage mapping section is not one"); 1110 if (Error E = ProfileNames.create(NamesSectionRefs.back())) 1111 return std::move(E); 1112 1113 auto CoverageSection = lookupSections(*OF, IPSK_covmap); 1114 if (auto E = CoverageSection.takeError()) 1115 return std::move(E); 1116 std::vector<SectionRef> CoverageSectionRefs = *CoverageSection; 1117 if (CoverageSectionRefs.size() != 1) 1118 return make_error<CoverageMapError>(coveragemap_error::malformed, 1119 "the size of name section is not one"); 1120 auto CoverageMappingOrErr = CoverageSectionRefs.back().getContents(); 1121 if (!CoverageMappingOrErr) 1122 return CoverageMappingOrErr.takeError(); 1123 StringRef CoverageMapping = CoverageMappingOrErr.get(); 1124 1125 // Look for the coverage records section (Version4 only). 1126 auto CoverageRecordsSections = lookupSections(*OF, IPSK_covfun); 1127 1128 BinaryCoverageReader::FuncRecordsStorage FuncRecords; 1129 if (auto E = CoverageRecordsSections.takeError()) { 1130 consumeError(std::move(E)); 1131 FuncRecords = MemoryBuffer::getMemBuffer(""); 1132 } else { 1133 // Compute the FuncRecordsBuffer of the buffer, taking into account the 1134 // padding between each record, and making sure the first block is aligned 1135 // in memory to maintain consistency between buffer address and size 1136 // alignment. 1137 const Align RecordAlignment(8); 1138 uint64_t FuncRecordsSize = 0; 1139 for (SectionRef Section : *CoverageRecordsSections) { 1140 auto CoverageRecordsOrErr = Section.getContents(); 1141 if (!CoverageRecordsOrErr) 1142 return CoverageRecordsOrErr.takeError(); 1143 FuncRecordsSize += alignTo(CoverageRecordsOrErr->size(), RecordAlignment); 1144 } 1145 auto WritableBuffer = 1146 WritableMemoryBuffer::getNewUninitMemBuffer(FuncRecordsSize); 1147 char *FuncRecordsBuffer = WritableBuffer->getBufferStart(); 1148 assert(isAddrAligned(RecordAlignment, FuncRecordsBuffer) && 1149 "Allocated memory is correctly aligned"); 1150 1151 for (SectionRef Section : *CoverageRecordsSections) { 1152 auto CoverageRecordsOrErr = Section.getContents(); 1153 if (!CoverageRecordsOrErr) 1154 return CoverageRecordsOrErr.takeError(); 1155 const auto &CoverageRecords = CoverageRecordsOrErr.get(); 1156 FuncRecordsBuffer = std::copy(CoverageRecords.begin(), 1157 CoverageRecords.end(), FuncRecordsBuffer); 1158 FuncRecordsBuffer = 1159 std::fill_n(FuncRecordsBuffer, 1160 alignAddr(FuncRecordsBuffer, RecordAlignment) - 1161 (uintptr_t)FuncRecordsBuffer, 1162 '\0'); 1163 } 1164 assert(FuncRecordsBuffer == WritableBuffer->getBufferEnd() && 1165 "consistent init"); 1166 FuncRecords = std::move(WritableBuffer); 1167 } 1168 1169 if (BinaryID) 1170 *BinaryID = getBuildID(OF.get()); 1171 1172 return BinaryCoverageReader::createCoverageReaderFromBuffer( 1173 CoverageMapping, std::move(FuncRecords), std::move(ProfileNames), 1174 BytesInAddress, Endian, CompilationDir); 1175 } 1176 1177 /// Determine whether \p Arch is invalid or empty, given \p Bin. 1178 static bool isArchSpecifierInvalidOrMissing(Binary *Bin, StringRef Arch) { 1179 // If we have a universal binary and Arch doesn't identify any of its slices, 1180 // it's user error. 1181 if (auto *Universal = dyn_cast<MachOUniversalBinary>(Bin)) { 1182 for (auto &ObjForArch : Universal->objects()) 1183 if (Arch == ObjForArch.getArchFlagName()) 1184 return false; 1185 return true; 1186 } 1187 return false; 1188 } 1189 1190 Expected<std::vector<std::unique_ptr<BinaryCoverageReader>>> 1191 BinaryCoverageReader::create( 1192 MemoryBufferRef ObjectBuffer, StringRef Arch, 1193 SmallVectorImpl<std::unique_ptr<MemoryBuffer>> &ObjectFileBuffers, 1194 StringRef CompilationDir, SmallVectorImpl<object::BuildIDRef> *BinaryIDs) { 1195 std::vector<std::unique_ptr<BinaryCoverageReader>> Readers; 1196 1197 if (ObjectBuffer.getBuffer().size() > sizeof(TestingFormatMagic)) { 1198 uint64_t Magic = 1199 support::endian::byte_swap<uint64_t, llvm::endianness::little>( 1200 *reinterpret_cast<const uint64_t *>(ObjectBuffer.getBufferStart())); 1201 if (Magic == TestingFormatMagic) { 1202 // This is a special format used for testing. 1203 auto ReaderOrErr = 1204 loadTestingFormat(ObjectBuffer.getBuffer(), CompilationDir); 1205 if (!ReaderOrErr) 1206 return ReaderOrErr.takeError(); 1207 Readers.push_back(std::move(ReaderOrErr.get())); 1208 return std::move(Readers); 1209 } 1210 } 1211 1212 auto BinOrErr = createBinary(ObjectBuffer); 1213 if (!BinOrErr) 1214 return BinOrErr.takeError(); 1215 std::unique_ptr<Binary> Bin = std::move(BinOrErr.get()); 1216 1217 if (isArchSpecifierInvalidOrMissing(Bin.get(), Arch)) 1218 return make_error<CoverageMapError>( 1219 coveragemap_error::invalid_or_missing_arch_specifier); 1220 1221 // MachO universal binaries which contain archives need to be treated as 1222 // archives, not as regular binaries. 1223 if (auto *Universal = dyn_cast<MachOUniversalBinary>(Bin.get())) { 1224 for (auto &ObjForArch : Universal->objects()) { 1225 // Skip slices within the universal binary which target the wrong arch. 1226 std::string ObjArch = ObjForArch.getArchFlagName(); 1227 if (Arch != ObjArch) 1228 continue; 1229 1230 auto ArchiveOrErr = ObjForArch.getAsArchive(); 1231 if (!ArchiveOrErr) { 1232 // If this is not an archive, try treating it as a regular object. 1233 consumeError(ArchiveOrErr.takeError()); 1234 break; 1235 } 1236 1237 return BinaryCoverageReader::create( 1238 ArchiveOrErr.get()->getMemoryBufferRef(), Arch, ObjectFileBuffers, 1239 CompilationDir, BinaryIDs); 1240 } 1241 } 1242 1243 // Load coverage out of archive members. 1244 if (auto *Ar = dyn_cast<Archive>(Bin.get())) { 1245 Error Err = Error::success(); 1246 for (auto &Child : Ar->children(Err)) { 1247 Expected<MemoryBufferRef> ChildBufOrErr = Child.getMemoryBufferRef(); 1248 if (!ChildBufOrErr) 1249 return ChildBufOrErr.takeError(); 1250 1251 auto ChildReadersOrErr = BinaryCoverageReader::create( 1252 ChildBufOrErr.get(), Arch, ObjectFileBuffers, CompilationDir, 1253 BinaryIDs); 1254 if (!ChildReadersOrErr) 1255 return ChildReadersOrErr.takeError(); 1256 for (auto &Reader : ChildReadersOrErr.get()) 1257 Readers.push_back(std::move(Reader)); 1258 } 1259 if (Err) 1260 return std::move(Err); 1261 1262 // Thin archives reference object files outside of the archive file, i.e. 1263 // files which reside in memory not owned by the caller. Transfer ownership 1264 // to the caller. 1265 if (Ar->isThin()) 1266 for (auto &Buffer : Ar->takeThinBuffers()) 1267 ObjectFileBuffers.push_back(std::move(Buffer)); 1268 1269 return std::move(Readers); 1270 } 1271 1272 object::BuildIDRef BinaryID; 1273 auto ReaderOrErr = loadBinaryFormat(std::move(Bin), Arch, CompilationDir, 1274 BinaryIDs ? &BinaryID : nullptr); 1275 if (!ReaderOrErr) 1276 return ReaderOrErr.takeError(); 1277 Readers.push_back(std::move(ReaderOrErr.get())); 1278 if (!BinaryID.empty()) 1279 BinaryIDs->push_back(BinaryID); 1280 return std::move(Readers); 1281 } 1282 1283 Error BinaryCoverageReader::readNextRecord(CoverageMappingRecord &Record) { 1284 if (CurrentRecord >= MappingRecords.size()) 1285 return make_error<CoverageMapError>(coveragemap_error::eof); 1286 1287 FunctionsFilenames.clear(); 1288 Expressions.clear(); 1289 MappingRegions.clear(); 1290 auto &R = MappingRecords[CurrentRecord]; 1291 auto F = ArrayRef(Filenames).slice(R.FilenamesBegin, R.FilenamesSize); 1292 RawCoverageMappingReader Reader(R.CoverageMapping, F, FunctionsFilenames, 1293 Expressions, MappingRegions); 1294 if (auto Err = Reader.read()) 1295 return Err; 1296 1297 Record.FunctionName = R.FunctionName; 1298 Record.FunctionHash = R.FunctionHash; 1299 Record.Filenames = FunctionsFilenames; 1300 Record.Expressions = Expressions; 1301 Record.MappingRegions = MappingRegions; 1302 1303 ++CurrentRecord; 1304 return Error::success(); 1305 } 1306