1 //===- CoverageMappingReader.cpp - Code coverage mapping reader -*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains support for reading coverage mapping data for 11 // instrumentation based coverage. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/ADT/ArrayRef.h" 16 #include "llvm/ADT/DenseMap.h" 17 #include "llvm/ADT/SmallVector.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/ADT/StringRef.h" 20 #include "llvm/ADT/Triple.h" 21 #include "llvm/Object/Binary.h" 22 #include "llvm/Object/Error.h" 23 #include "llvm/Object/MachOUniversal.h" 24 #include "llvm/Object/ObjectFile.h" 25 #include "llvm/ProfileData/Coverage/CoverageMappingReader.h" 26 #include "llvm/ProfileData/InstrProf.h" 27 #include "llvm/Support/Casting.h" 28 #include "llvm/Support/Debug.h" 29 #include "llvm/Support/Error.h" 30 #include "llvm/Support/ErrorHandling.h" 31 #include "llvm/Support/Endian.h" 32 #include "llvm/Support/LEB128.h" 33 #include "llvm/Support/MathExtras.h" 34 #include "llvm/Support/raw_ostream.h" 35 #include <algorithm> 36 #include <cassert> 37 #include <cstddef> 38 #include <cstdint> 39 #include <limits> 40 #include <memory> 41 #include <utility> 42 #include <vector> 43 44 using namespace llvm; 45 using namespace coverage; 46 using namespace object; 47 48 #define DEBUG_TYPE "coverage-mapping" 49 50 void CoverageMappingIterator::increment() { 51 // Check if all the records were read or if an error occurred while reading 52 // the next record. 53 if (auto E = Reader->readNextRecord(Record)) { 54 handleAllErrors(std::move(E), [&](const CoverageMapError &CME) { 55 if (CME.get() == coveragemap_error::eof) 56 *this = CoverageMappingIterator(); 57 else 58 llvm_unreachable("Unexpected error in coverage mapping iterator"); 59 }); 60 } 61 } 62 63 Error RawCoverageReader::readULEB128(uint64_t &Result) { 64 if (Data.size() < 1) 65 return make_error<CoverageMapError>(coveragemap_error::truncated); 66 unsigned N = 0; 67 Result = decodeULEB128(reinterpret_cast<const uint8_t *>(Data.data()), &N); 68 if (N > Data.size()) 69 return make_error<CoverageMapError>(coveragemap_error::malformed); 70 Data = Data.substr(N); 71 return Error::success(); 72 } 73 74 Error RawCoverageReader::readIntMax(uint64_t &Result, uint64_t MaxPlus1) { 75 if (auto Err = readULEB128(Result)) 76 return Err; 77 if (Result >= MaxPlus1) 78 return make_error<CoverageMapError>(coveragemap_error::malformed); 79 return Error::success(); 80 } 81 82 Error RawCoverageReader::readSize(uint64_t &Result) { 83 if (auto Err = readULEB128(Result)) 84 return Err; 85 // Sanity check the number. 86 if (Result > Data.size()) 87 return make_error<CoverageMapError>(coveragemap_error::malformed); 88 return Error::success(); 89 } 90 91 Error RawCoverageReader::readString(StringRef &Result) { 92 uint64_t Length; 93 if (auto Err = readSize(Length)) 94 return Err; 95 Result = Data.substr(0, Length); 96 Data = Data.substr(Length); 97 return Error::success(); 98 } 99 100 Error RawCoverageFilenamesReader::read() { 101 uint64_t NumFilenames; 102 if (auto Err = readSize(NumFilenames)) 103 return Err; 104 for (size_t I = 0; I < NumFilenames; ++I) { 105 StringRef Filename; 106 if (auto Err = readString(Filename)) 107 return Err; 108 Filenames.push_back(Filename); 109 } 110 return Error::success(); 111 } 112 113 Error RawCoverageMappingReader::decodeCounter(unsigned Value, Counter &C) { 114 auto Tag = Value & Counter::EncodingTagMask; 115 switch (Tag) { 116 case Counter::Zero: 117 C = Counter::getZero(); 118 return Error::success(); 119 case Counter::CounterValueReference: 120 C = Counter::getCounter(Value >> Counter::EncodingTagBits); 121 return Error::success(); 122 default: 123 break; 124 } 125 Tag -= Counter::Expression; 126 switch (Tag) { 127 case CounterExpression::Subtract: 128 case CounterExpression::Add: { 129 auto ID = Value >> Counter::EncodingTagBits; 130 if (ID >= Expressions.size()) 131 return make_error<CoverageMapError>(coveragemap_error::malformed); 132 Expressions[ID].Kind = CounterExpression::ExprKind(Tag); 133 C = Counter::getExpression(ID); 134 break; 135 } 136 default: 137 return make_error<CoverageMapError>(coveragemap_error::malformed); 138 } 139 return Error::success(); 140 } 141 142 Error RawCoverageMappingReader::readCounter(Counter &C) { 143 uint64_t EncodedCounter; 144 if (auto Err = 145 readIntMax(EncodedCounter, std::numeric_limits<unsigned>::max())) 146 return Err; 147 if (auto Err = decodeCounter(EncodedCounter, C)) 148 return Err; 149 return Error::success(); 150 } 151 152 static const unsigned EncodingExpansionRegionBit = 1 153 << Counter::EncodingTagBits; 154 155 /// \brief Read the sub-array of regions for the given inferred file id. 156 /// \param NumFileIDs the number of file ids that are defined for this 157 /// function. 158 Error RawCoverageMappingReader::readMappingRegionsSubArray( 159 std::vector<CounterMappingRegion> &MappingRegions, unsigned InferredFileID, 160 size_t NumFileIDs) { 161 uint64_t NumRegions; 162 if (auto Err = readSize(NumRegions)) 163 return Err; 164 unsigned LineStart = 0; 165 for (size_t I = 0; I < NumRegions; ++I) { 166 Counter C; 167 CounterMappingRegion::RegionKind Kind = CounterMappingRegion::CodeRegion; 168 169 // Read the combined counter + region kind. 170 uint64_t EncodedCounterAndRegion; 171 if (auto Err = readIntMax(EncodedCounterAndRegion, 172 std::numeric_limits<unsigned>::max())) 173 return Err; 174 unsigned Tag = EncodedCounterAndRegion & Counter::EncodingTagMask; 175 uint64_t ExpandedFileID = 0; 176 if (Tag != Counter::Zero) { 177 if (auto Err = decodeCounter(EncodedCounterAndRegion, C)) 178 return Err; 179 } else { 180 // Is it an expansion region? 181 if (EncodedCounterAndRegion & EncodingExpansionRegionBit) { 182 Kind = CounterMappingRegion::ExpansionRegion; 183 ExpandedFileID = EncodedCounterAndRegion >> 184 Counter::EncodingCounterTagAndExpansionRegionTagBits; 185 if (ExpandedFileID >= NumFileIDs) 186 return make_error<CoverageMapError>(coveragemap_error::malformed); 187 } else { 188 switch (EncodedCounterAndRegion >> 189 Counter::EncodingCounterTagAndExpansionRegionTagBits) { 190 case CounterMappingRegion::CodeRegion: 191 // Don't do anything when we have a code region with a zero counter. 192 break; 193 case CounterMappingRegion::SkippedRegion: 194 Kind = CounterMappingRegion::SkippedRegion; 195 break; 196 default: 197 return make_error<CoverageMapError>(coveragemap_error::malformed); 198 } 199 } 200 } 201 202 // Read the source range. 203 uint64_t LineStartDelta, ColumnStart, NumLines, ColumnEnd; 204 if (auto Err = 205 readIntMax(LineStartDelta, std::numeric_limits<unsigned>::max())) 206 return Err; 207 if (auto Err = readULEB128(ColumnStart)) 208 return Err; 209 if (ColumnStart > std::numeric_limits<unsigned>::max()) 210 return make_error<CoverageMapError>(coveragemap_error::malformed); 211 if (auto Err = readIntMax(NumLines, std::numeric_limits<unsigned>::max())) 212 return Err; 213 if (auto Err = readIntMax(ColumnEnd, std::numeric_limits<unsigned>::max())) 214 return Err; 215 LineStart += LineStartDelta; 216 // Adjust the column locations for the empty regions that are supposed to 217 // cover whole lines. Those regions should be encoded with the 218 // column range (1 -> std::numeric_limits<unsigned>::max()), but because 219 // the encoded std::numeric_limits<unsigned>::max() is several bytes long, 220 // we set the column range to (0 -> 0) to ensure that the column start and 221 // column end take up one byte each. 222 // The std::numeric_limits<unsigned>::max() is used to represent a column 223 // position at the end of the line without knowing the length of that line. 224 if (ColumnStart == 0 && ColumnEnd == 0) { 225 ColumnStart = 1; 226 ColumnEnd = std::numeric_limits<unsigned>::max(); 227 } 228 229 DEBUG({ 230 dbgs() << "Counter in file " << InferredFileID << " " << LineStart << ":" 231 << ColumnStart << " -> " << (LineStart + NumLines) << ":" 232 << ColumnEnd << ", "; 233 if (Kind == CounterMappingRegion::ExpansionRegion) 234 dbgs() << "Expands to file " << ExpandedFileID; 235 else 236 CounterMappingContext(Expressions).dump(C, dbgs()); 237 dbgs() << "\n"; 238 }); 239 240 MappingRegions.push_back(CounterMappingRegion( 241 C, InferredFileID, ExpandedFileID, LineStart, ColumnStart, 242 LineStart + NumLines, ColumnEnd, Kind)); 243 } 244 return Error::success(); 245 } 246 247 Error RawCoverageMappingReader::read() { 248 // Read the virtual file mapping. 249 SmallVector<unsigned, 8> VirtualFileMapping; 250 uint64_t NumFileMappings; 251 if (auto Err = readSize(NumFileMappings)) 252 return Err; 253 for (size_t I = 0; I < NumFileMappings; ++I) { 254 uint64_t FilenameIndex; 255 if (auto Err = readIntMax(FilenameIndex, TranslationUnitFilenames.size())) 256 return Err; 257 VirtualFileMapping.push_back(FilenameIndex); 258 } 259 260 // Construct the files using unique filenames and virtual file mapping. 261 for (auto I : VirtualFileMapping) { 262 Filenames.push_back(TranslationUnitFilenames[I]); 263 } 264 265 // Read the expressions. 266 uint64_t NumExpressions; 267 if (auto Err = readSize(NumExpressions)) 268 return Err; 269 // Create an array of dummy expressions that get the proper counters 270 // when the expressions are read, and the proper kinds when the counters 271 // are decoded. 272 Expressions.resize( 273 NumExpressions, 274 CounterExpression(CounterExpression::Subtract, Counter(), Counter())); 275 for (size_t I = 0; I < NumExpressions; ++I) { 276 if (auto Err = readCounter(Expressions[I].LHS)) 277 return Err; 278 if (auto Err = readCounter(Expressions[I].RHS)) 279 return Err; 280 } 281 282 // Read the mapping regions sub-arrays. 283 for (unsigned InferredFileID = 0, S = VirtualFileMapping.size(); 284 InferredFileID < S; ++InferredFileID) { 285 if (auto Err = readMappingRegionsSubArray(MappingRegions, InferredFileID, 286 VirtualFileMapping.size())) 287 return Err; 288 } 289 290 // Set the counters for the expansion regions. 291 // i.e. Counter of expansion region = counter of the first region 292 // from the expanded file. 293 // Perform multiple passes to correctly propagate the counters through 294 // all the nested expansion regions. 295 SmallVector<CounterMappingRegion *, 8> FileIDExpansionRegionMapping; 296 FileIDExpansionRegionMapping.resize(VirtualFileMapping.size(), nullptr); 297 for (unsigned Pass = 1, S = VirtualFileMapping.size(); Pass < S; ++Pass) { 298 for (auto &R : MappingRegions) { 299 if (R.Kind != CounterMappingRegion::ExpansionRegion) 300 continue; 301 assert(!FileIDExpansionRegionMapping[R.ExpandedFileID]); 302 FileIDExpansionRegionMapping[R.ExpandedFileID] = &R; 303 } 304 for (auto &R : MappingRegions) { 305 if (FileIDExpansionRegionMapping[R.FileID]) { 306 FileIDExpansionRegionMapping[R.FileID]->Count = R.Count; 307 FileIDExpansionRegionMapping[R.FileID] = nullptr; 308 } 309 } 310 } 311 312 return Error::success(); 313 } 314 315 Expected<bool> RawCoverageMappingDummyChecker::isDummy() { 316 // A dummy coverage mapping data consists of just one region with zero count. 317 uint64_t NumFileMappings; 318 if (Error Err = readSize(NumFileMappings)) 319 return std::move(Err); 320 if (NumFileMappings != 1) 321 return false; 322 // We don't expect any specific value for the filename index, just skip it. 323 uint64_t FilenameIndex; 324 if (Error Err = 325 readIntMax(FilenameIndex, std::numeric_limits<unsigned>::max())) 326 return std::move(Err); 327 uint64_t NumExpressions; 328 if (Error Err = readSize(NumExpressions)) 329 return std::move(Err); 330 if (NumExpressions != 0) 331 return false; 332 uint64_t NumRegions; 333 if (Error Err = readSize(NumRegions)) 334 return std::move(Err); 335 if (NumRegions != 1) 336 return false; 337 uint64_t EncodedCounterAndRegion; 338 if (Error Err = readIntMax(EncodedCounterAndRegion, 339 std::numeric_limits<unsigned>::max())) 340 return std::move(Err); 341 unsigned Tag = EncodedCounterAndRegion & Counter::EncodingTagMask; 342 return Tag == Counter::Zero; 343 } 344 345 Error InstrProfSymtab::create(SectionRef &Section) { 346 if (auto EC = Section.getContents(Data)) 347 return errorCodeToError(EC); 348 Address = Section.getAddress(); 349 return Error::success(); 350 } 351 352 StringRef InstrProfSymtab::getFuncName(uint64_t Pointer, size_t Size) { 353 if (Pointer < Address) 354 return StringRef(); 355 auto Offset = Pointer - Address; 356 if (Offset + Size > Data.size()) 357 return StringRef(); 358 return Data.substr(Pointer - Address, Size); 359 } 360 361 // Check if the mapping data is a dummy, i.e. is emitted for an unused function. 362 static Expected<bool> isCoverageMappingDummy(uint64_t Hash, StringRef Mapping) { 363 // The hash value of dummy mapping records is always zero. 364 if (Hash) 365 return false; 366 return RawCoverageMappingDummyChecker(Mapping).isDummy(); 367 } 368 369 namespace { 370 371 struct CovMapFuncRecordReader { 372 virtual ~CovMapFuncRecordReader() = default; 373 374 // The interface to read coverage mapping function records for a module. 375 // 376 // \p Buf points to the buffer containing the \c CovHeader of the coverage 377 // mapping data associated with the module. 378 // 379 // Returns a pointer to the next \c CovHeader if it exists, or a pointer 380 // greater than \p End if not. 381 virtual Expected<const char *> readFunctionRecords(const char *Buf, 382 const char *End) = 0; 383 384 template <class IntPtrT, support::endianness Endian> 385 static Expected<std::unique_ptr<CovMapFuncRecordReader>> 386 get(CovMapVersion Version, InstrProfSymtab &P, 387 std::vector<BinaryCoverageReader::ProfileMappingRecord> &R, 388 std::vector<StringRef> &F); 389 }; 390 391 // A class for reading coverage mapping function records for a module. 392 template <CovMapVersion Version, class IntPtrT, support::endianness Endian> 393 class VersionedCovMapFuncRecordReader : public CovMapFuncRecordReader { 394 typedef typename CovMapTraits< 395 Version, IntPtrT>::CovMapFuncRecordType FuncRecordType; 396 typedef typename CovMapTraits<Version, IntPtrT>::NameRefType NameRefType; 397 398 // Maps function's name references to the indexes of their records 399 // in \c Records. 400 DenseMap<NameRefType, size_t> FunctionRecords; 401 InstrProfSymtab &ProfileNames; 402 std::vector<StringRef> &Filenames; 403 std::vector<BinaryCoverageReader::ProfileMappingRecord> &Records; 404 405 // Add the record to the collection if we don't already have a record that 406 // points to the same function name. This is useful to ignore the redundant 407 // records for the functions with ODR linkage. 408 // In addition, prefer records with real coverage mapping data to dummy 409 // records, which were emitted for inline functions which were seen but 410 // not used in the corresponding translation unit. 411 Error insertFunctionRecordIfNeeded(const FuncRecordType *CFR, 412 StringRef Mapping, size_t FilenamesBegin) { 413 uint64_t FuncHash = CFR->template getFuncHash<Endian>(); 414 NameRefType NameRef = CFR->template getFuncNameRef<Endian>(); 415 auto InsertResult = 416 FunctionRecords.insert(std::make_pair(NameRef, Records.size())); 417 if (InsertResult.second) { 418 StringRef FuncName; 419 if (Error Err = CFR->template getFuncName<Endian>(ProfileNames, FuncName)) 420 return Err; 421 Records.emplace_back(Version, FuncName, FuncHash, Mapping, FilenamesBegin, 422 Filenames.size() - FilenamesBegin); 423 return Error::success(); 424 } 425 // Update the existing record if it's a dummy and the new record is real. 426 size_t OldRecordIndex = InsertResult.first->second; 427 BinaryCoverageReader::ProfileMappingRecord &OldRecord = 428 Records[OldRecordIndex]; 429 Expected<bool> OldIsDummyExpected = isCoverageMappingDummy( 430 OldRecord.FunctionHash, OldRecord.CoverageMapping); 431 if (Error Err = OldIsDummyExpected.takeError()) 432 return Err; 433 if (!*OldIsDummyExpected) 434 return Error::success(); 435 Expected<bool> NewIsDummyExpected = 436 isCoverageMappingDummy(FuncHash, Mapping); 437 if (Error Err = NewIsDummyExpected.takeError()) 438 return Err; 439 if (*NewIsDummyExpected) 440 return Error::success(); 441 OldRecord.FunctionHash = FuncHash; 442 OldRecord.CoverageMapping = Mapping; 443 OldRecord.FilenamesBegin = FilenamesBegin; 444 OldRecord.FilenamesSize = Filenames.size() - FilenamesBegin; 445 return Error::success(); 446 } 447 448 public: 449 VersionedCovMapFuncRecordReader( 450 InstrProfSymtab &P, 451 std::vector<BinaryCoverageReader::ProfileMappingRecord> &R, 452 std::vector<StringRef> &F) 453 : ProfileNames(P), Filenames(F), Records(R) {} 454 455 ~VersionedCovMapFuncRecordReader() override = default; 456 457 Expected<const char *> readFunctionRecords(const char *Buf, 458 const char *End) override { 459 using namespace support; 460 461 if (Buf + sizeof(CovMapHeader) > End) 462 return make_error<CoverageMapError>(coveragemap_error::malformed); 463 auto CovHeader = reinterpret_cast<const CovMapHeader *>(Buf); 464 uint32_t NRecords = CovHeader->getNRecords<Endian>(); 465 uint32_t FilenamesSize = CovHeader->getFilenamesSize<Endian>(); 466 uint32_t CoverageSize = CovHeader->getCoverageSize<Endian>(); 467 assert((CovMapVersion)CovHeader->getVersion<Endian>() == Version); 468 Buf = reinterpret_cast<const char *>(CovHeader + 1); 469 470 // Skip past the function records, saving the start and end for later. 471 const char *FunBuf = Buf; 472 Buf += NRecords * sizeof(FuncRecordType); 473 const char *FunEnd = Buf; 474 475 // Get the filenames. 476 if (Buf + FilenamesSize > End) 477 return make_error<CoverageMapError>(coveragemap_error::malformed); 478 size_t FilenamesBegin = Filenames.size(); 479 RawCoverageFilenamesReader Reader(StringRef(Buf, FilenamesSize), Filenames); 480 if (auto Err = Reader.read()) 481 return std::move(Err); 482 Buf += FilenamesSize; 483 484 // We'll read the coverage mapping records in the loop below. 485 const char *CovBuf = Buf; 486 Buf += CoverageSize; 487 const char *CovEnd = Buf; 488 489 if (Buf > End) 490 return make_error<CoverageMapError>(coveragemap_error::malformed); 491 // Each coverage map has an alignment of 8, so we need to adjust alignment 492 // before reading the next map. 493 Buf += alignmentAdjustment(Buf, 8); 494 495 auto CFR = reinterpret_cast<const FuncRecordType *>(FunBuf); 496 while ((const char *)CFR < FunEnd) { 497 // Read the function information 498 uint32_t DataSize = CFR->template getDataSize<Endian>(); 499 500 // Now use that to read the coverage data. 501 if (CovBuf + DataSize > CovEnd) 502 return make_error<CoverageMapError>(coveragemap_error::malformed); 503 auto Mapping = StringRef(CovBuf, DataSize); 504 CovBuf += DataSize; 505 506 if (Error Err = 507 insertFunctionRecordIfNeeded(CFR, Mapping, FilenamesBegin)) 508 return std::move(Err); 509 CFR++; 510 } 511 return Buf; 512 } 513 }; 514 515 } // end anonymous namespace 516 517 template <class IntPtrT, support::endianness Endian> 518 Expected<std::unique_ptr<CovMapFuncRecordReader>> CovMapFuncRecordReader::get( 519 CovMapVersion Version, InstrProfSymtab &P, 520 std::vector<BinaryCoverageReader::ProfileMappingRecord> &R, 521 std::vector<StringRef> &F) { 522 using namespace coverage; 523 524 switch (Version) { 525 case CovMapVersion::Version1: 526 return llvm::make_unique<VersionedCovMapFuncRecordReader< 527 CovMapVersion::Version1, IntPtrT, Endian>>(P, R, F); 528 case CovMapVersion::Version2: 529 // Decompress the name data. 530 if (Error E = P.create(P.getNameData())) 531 return std::move(E); 532 return llvm::make_unique<VersionedCovMapFuncRecordReader< 533 CovMapVersion::Version2, IntPtrT, Endian>>(P, R, F); 534 } 535 llvm_unreachable("Unsupported version"); 536 } 537 538 template <typename T, support::endianness Endian> 539 static Error readCoverageMappingData( 540 InstrProfSymtab &ProfileNames, StringRef Data, 541 std::vector<BinaryCoverageReader::ProfileMappingRecord> &Records, 542 std::vector<StringRef> &Filenames) { 543 using namespace coverage; 544 545 // Read the records in the coverage data section. 546 auto CovHeader = 547 reinterpret_cast<const CovMapHeader *>(Data.data()); 548 CovMapVersion Version = (CovMapVersion)CovHeader->getVersion<Endian>(); 549 if (Version > CovMapVersion::CurrentVersion) 550 return make_error<CoverageMapError>(coveragemap_error::unsupported_version); 551 Expected<std::unique_ptr<CovMapFuncRecordReader>> ReaderExpected = 552 CovMapFuncRecordReader::get<T, Endian>(Version, ProfileNames, Records, 553 Filenames); 554 if (Error E = ReaderExpected.takeError()) 555 return E; 556 auto Reader = std::move(ReaderExpected.get()); 557 for (const char *Buf = Data.data(), *End = Buf + Data.size(); Buf < End;) { 558 auto NextHeaderOrErr = Reader->readFunctionRecords(Buf, End); 559 if (auto E = NextHeaderOrErr.takeError()) 560 return E; 561 Buf = NextHeaderOrErr.get(); 562 } 563 return Error::success(); 564 } 565 566 static const char *TestingFormatMagic = "llvmcovmtestdata"; 567 568 static Error loadTestingFormat(StringRef Data, InstrProfSymtab &ProfileNames, 569 StringRef &CoverageMapping, 570 uint8_t &BytesInAddress, 571 support::endianness &Endian) { 572 BytesInAddress = 8; 573 Endian = support::endianness::little; 574 575 Data = Data.substr(StringRef(TestingFormatMagic).size()); 576 if (Data.size() < 1) 577 return make_error<CoverageMapError>(coveragemap_error::truncated); 578 unsigned N = 0; 579 auto ProfileNamesSize = 580 decodeULEB128(reinterpret_cast<const uint8_t *>(Data.data()), &N); 581 if (N > Data.size()) 582 return make_error<CoverageMapError>(coveragemap_error::malformed); 583 Data = Data.substr(N); 584 if (Data.size() < 1) 585 return make_error<CoverageMapError>(coveragemap_error::truncated); 586 N = 0; 587 uint64_t Address = 588 decodeULEB128(reinterpret_cast<const uint8_t *>(Data.data()), &N); 589 if (N > Data.size()) 590 return make_error<CoverageMapError>(coveragemap_error::malformed); 591 Data = Data.substr(N); 592 if (Data.size() < ProfileNamesSize) 593 return make_error<CoverageMapError>(coveragemap_error::malformed); 594 if (Error E = ProfileNames.create(Data.substr(0, ProfileNamesSize), Address)) 595 return E; 596 CoverageMapping = Data.substr(ProfileNamesSize); 597 // Skip the padding bytes because coverage map data has an alignment of 8. 598 if (CoverageMapping.size() < 1) 599 return make_error<CoverageMapError>(coveragemap_error::truncated); 600 size_t Pad = alignmentAdjustment(CoverageMapping.data(), 8); 601 if (CoverageMapping.size() < Pad) 602 return make_error<CoverageMapError>(coveragemap_error::malformed); 603 CoverageMapping = CoverageMapping.substr(Pad); 604 return Error::success(); 605 } 606 607 static Expected<SectionRef> lookupSection(ObjectFile &OF, StringRef Name) { 608 StringRef FoundName; 609 for (const auto &Section : OF.sections()) { 610 if (auto EC = Section.getName(FoundName)) 611 return errorCodeToError(EC); 612 if (FoundName == Name) 613 return Section; 614 } 615 return make_error<CoverageMapError>(coveragemap_error::no_data_found); 616 } 617 618 static Error loadBinaryFormat(MemoryBufferRef ObjectBuffer, 619 InstrProfSymtab &ProfileNames, 620 StringRef &CoverageMapping, 621 uint8_t &BytesInAddress, 622 support::endianness &Endian, StringRef Arch) { 623 auto BinOrErr = createBinary(ObjectBuffer); 624 if (!BinOrErr) 625 return BinOrErr.takeError(); 626 auto Bin = std::move(BinOrErr.get()); 627 std::unique_ptr<ObjectFile> OF; 628 if (auto *Universal = dyn_cast<MachOUniversalBinary>(Bin.get())) { 629 // If we have a universal binary, try to look up the object for the 630 // appropriate architecture. 631 auto ObjectFileOrErr = Universal->getObjectForArch(Arch); 632 if (!ObjectFileOrErr) 633 return ObjectFileOrErr.takeError(); 634 OF = std::move(ObjectFileOrErr.get()); 635 } else if (isa<ObjectFile>(Bin.get())) { 636 // For any other object file, upcast and take ownership. 637 OF.reset(cast<ObjectFile>(Bin.release())); 638 // If we've asked for a particular arch, make sure they match. 639 if (!Arch.empty() && OF->getArch() != Triple(Arch).getArch()) 640 return errorCodeToError(object_error::arch_not_found); 641 } else 642 // We can only handle object files. 643 return make_error<CoverageMapError>(coveragemap_error::malformed); 644 645 // The coverage uses native pointer sizes for the object it's written in. 646 BytesInAddress = OF->getBytesInAddress(); 647 Endian = OF->isLittleEndian() ? support::endianness::little 648 : support::endianness::big; 649 650 // Look for the sections that we are interested in. 651 auto NamesSection = lookupSection(*OF, getInstrProfNameSectionName(false)); 652 if (auto E = NamesSection.takeError()) 653 return E; 654 auto CoverageSection = 655 lookupSection(*OF, getInstrProfCoverageSectionName(false)); 656 if (auto E = CoverageSection.takeError()) 657 return E; 658 659 // Get the contents of the given sections. 660 if (auto EC = CoverageSection->getContents(CoverageMapping)) 661 return errorCodeToError(EC); 662 if (Error E = ProfileNames.create(*NamesSection)) 663 return E; 664 665 return Error::success(); 666 } 667 668 Expected<std::unique_ptr<BinaryCoverageReader>> 669 BinaryCoverageReader::create(std::unique_ptr<MemoryBuffer> &ObjectBuffer, 670 StringRef Arch) { 671 std::unique_ptr<BinaryCoverageReader> Reader(new BinaryCoverageReader()); 672 673 StringRef Coverage; 674 uint8_t BytesInAddress; 675 support::endianness Endian; 676 Error E = Error::success(); 677 consumeError(std::move(E)); 678 if (ObjectBuffer->getBuffer().startswith(TestingFormatMagic)) 679 // This is a special format used for testing. 680 E = loadTestingFormat(ObjectBuffer->getBuffer(), Reader->ProfileNames, 681 Coverage, BytesInAddress, Endian); 682 else 683 E = loadBinaryFormat(ObjectBuffer->getMemBufferRef(), Reader->ProfileNames, 684 Coverage, BytesInAddress, Endian, Arch); 685 if (E) 686 return std::move(E); 687 688 if (BytesInAddress == 4 && Endian == support::endianness::little) 689 E = readCoverageMappingData<uint32_t, support::endianness::little>( 690 Reader->ProfileNames, Coverage, Reader->MappingRecords, 691 Reader->Filenames); 692 else if (BytesInAddress == 4 && Endian == support::endianness::big) 693 E = readCoverageMappingData<uint32_t, support::endianness::big>( 694 Reader->ProfileNames, Coverage, Reader->MappingRecords, 695 Reader->Filenames); 696 else if (BytesInAddress == 8 && Endian == support::endianness::little) 697 E = readCoverageMappingData<uint64_t, support::endianness::little>( 698 Reader->ProfileNames, Coverage, Reader->MappingRecords, 699 Reader->Filenames); 700 else if (BytesInAddress == 8 && Endian == support::endianness::big) 701 E = readCoverageMappingData<uint64_t, support::endianness::big>( 702 Reader->ProfileNames, Coverage, Reader->MappingRecords, 703 Reader->Filenames); 704 else 705 return make_error<CoverageMapError>(coveragemap_error::malformed); 706 if (E) 707 return std::move(E); 708 return std::move(Reader); 709 } 710 711 Error BinaryCoverageReader::readNextRecord(CoverageMappingRecord &Record) { 712 if (CurrentRecord >= MappingRecords.size()) 713 return make_error<CoverageMapError>(coveragemap_error::eof); 714 715 FunctionsFilenames.clear(); 716 Expressions.clear(); 717 MappingRegions.clear(); 718 auto &R = MappingRecords[CurrentRecord]; 719 RawCoverageMappingReader Reader( 720 R.CoverageMapping, 721 makeArrayRef(Filenames).slice(R.FilenamesBegin, R.FilenamesSize), 722 FunctionsFilenames, Expressions, MappingRegions); 723 if (auto Err = Reader.read()) 724 return Err; 725 726 Record.FunctionName = R.FunctionName; 727 Record.FunctionHash = R.FunctionHash; 728 Record.Filenames = FunctionsFilenames; 729 Record.Expressions = Expressions; 730 Record.MappingRegions = MappingRegions; 731 732 ++CurrentRecord; 733 return Error::success(); 734 } 735