1 //===- CoverageMappingReader.cpp - Code coverage mapping reader -----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains support for reading coverage mapping data for 10 // instrumentation based coverage. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/ProfileData/Coverage/CoverageMappingReader.h" 15 #include "llvm/ADT/ArrayRef.h" 16 #include "llvm/ADT/DenseMap.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/SmallVector.h" 19 #include "llvm/ADT/Statistic.h" 20 #include "llvm/ADT/StringRef.h" 21 #include "llvm/Object/Archive.h" 22 #include "llvm/Object/Binary.h" 23 #include "llvm/Object/COFF.h" 24 #include "llvm/Object/Error.h" 25 #include "llvm/Object/MachOUniversal.h" 26 #include "llvm/Object/ObjectFile.h" 27 #include "llvm/ProfileData/InstrProf.h" 28 #include "llvm/Support/Casting.h" 29 #include "llvm/Support/Compression.h" 30 #include "llvm/Support/Debug.h" 31 #include "llvm/Support/Endian.h" 32 #include "llvm/Support/Error.h" 33 #include "llvm/Support/ErrorHandling.h" 34 #include "llvm/Support/LEB128.h" 35 #include "llvm/Support/MathExtras.h" 36 #include "llvm/Support/Path.h" 37 #include "llvm/Support/raw_ostream.h" 38 #include "llvm/TargetParser/Triple.h" 39 #include <vector> 40 41 using namespace llvm; 42 using namespace coverage; 43 using namespace object; 44 45 #define DEBUG_TYPE "coverage-mapping" 46 47 STATISTIC(CovMapNumRecords, "The # of coverage function records"); 48 STATISTIC(CovMapNumUsedRecords, "The # of used coverage function records"); 49 50 void CoverageMappingIterator::increment() { 51 if (ReadErr != coveragemap_error::success) 52 return; 53 54 // Check if all the records were read or if an error occurred while reading 55 // the next record. 56 if (auto E = Reader->readNextRecord(Record)) 57 handleAllErrors(std::move(E), [&](const CoverageMapError &CME) { 58 if (CME.get() == coveragemap_error::eof) 59 *this = CoverageMappingIterator(); 60 else 61 ReadErr = CME.get(); 62 }); 63 } 64 65 Error RawCoverageReader::readULEB128(uint64_t &Result) { 66 if (Data.empty()) 67 return make_error<CoverageMapError>(coveragemap_error::truncated); 68 unsigned N = 0; 69 Result = decodeULEB128(Data.bytes_begin(), &N); 70 if (N > Data.size()) 71 return make_error<CoverageMapError>(coveragemap_error::malformed, 72 "the size of ULEB128 is too big"); 73 Data = Data.substr(N); 74 return Error::success(); 75 } 76 77 Error RawCoverageReader::readIntMax(uint64_t &Result, uint64_t MaxPlus1) { 78 if (auto Err = readULEB128(Result)) 79 return Err; 80 if (Result >= MaxPlus1) 81 return make_error<CoverageMapError>( 82 coveragemap_error::malformed, 83 "the value of ULEB128 is greater than or equal to MaxPlus1"); 84 return Error::success(); 85 } 86 87 Error RawCoverageReader::readSize(uint64_t &Result) { 88 if (auto Err = readULEB128(Result)) 89 return Err; 90 if (Result > Data.size()) 91 return make_error<CoverageMapError>(coveragemap_error::malformed, 92 "the value of ULEB128 is too big"); 93 return Error::success(); 94 } 95 96 Error RawCoverageReader::readString(StringRef &Result) { 97 uint64_t Length; 98 if (auto Err = readSize(Length)) 99 return Err; 100 Result = Data.substr(0, Length); 101 Data = Data.substr(Length); 102 return Error::success(); 103 } 104 105 Error RawCoverageFilenamesReader::read(CovMapVersion Version) { 106 uint64_t NumFilenames; 107 if (auto Err = readSize(NumFilenames)) 108 return Err; 109 if (!NumFilenames) 110 return make_error<CoverageMapError>(coveragemap_error::malformed, 111 "number of filenames is zero"); 112 113 if (Version < CovMapVersion::Version4) 114 return readUncompressed(Version, NumFilenames); 115 116 // The uncompressed length may exceed the size of the encoded filenames. 117 // Skip size validation. 118 uint64_t UncompressedLen; 119 if (auto Err = readULEB128(UncompressedLen)) 120 return Err; 121 122 uint64_t CompressedLen; 123 if (auto Err = readSize(CompressedLen)) 124 return Err; 125 126 if (CompressedLen > 0) { 127 if (!compression::zlib::isAvailable()) 128 return make_error<CoverageMapError>( 129 coveragemap_error::decompression_failed); 130 131 // Allocate memory for the decompressed filenames. 132 SmallVector<uint8_t, 0> StorageBuf; 133 134 // Read compressed filenames. 135 StringRef CompressedFilenames = Data.substr(0, CompressedLen); 136 Data = Data.substr(CompressedLen); 137 auto Err = compression::zlib::decompress( 138 arrayRefFromStringRef(CompressedFilenames), StorageBuf, 139 UncompressedLen); 140 if (Err) { 141 consumeError(std::move(Err)); 142 return make_error<CoverageMapError>( 143 coveragemap_error::decompression_failed); 144 } 145 146 RawCoverageFilenamesReader Delegate(toStringRef(StorageBuf), Filenames, 147 CompilationDir); 148 return Delegate.readUncompressed(Version, NumFilenames); 149 } 150 151 return readUncompressed(Version, NumFilenames); 152 } 153 154 Error RawCoverageFilenamesReader::readUncompressed(CovMapVersion Version, 155 uint64_t NumFilenames) { 156 // Read uncompressed filenames. 157 if (Version < CovMapVersion::Version6) { 158 for (size_t I = 0; I < NumFilenames; ++I) { 159 StringRef Filename; 160 if (auto Err = readString(Filename)) 161 return Err; 162 Filenames.push_back(Filename.str()); 163 } 164 } else { 165 StringRef CWD; 166 if (auto Err = readString(CWD)) 167 return Err; 168 Filenames.push_back(CWD.str()); 169 170 for (size_t I = 1; I < NumFilenames; ++I) { 171 StringRef Filename; 172 if (auto Err = readString(Filename)) 173 return Err; 174 if (sys::path::is_absolute(Filename)) { 175 Filenames.push_back(Filename.str()); 176 } else { 177 SmallString<256> P; 178 if (!CompilationDir.empty()) 179 P.assign(CompilationDir); 180 else 181 P.assign(CWD); 182 llvm::sys::path::append(P, Filename); 183 sys::path::remove_dots(P, /*remove_dot_dot=*/true); 184 Filenames.push_back(static_cast<std::string>(P.str())); 185 } 186 } 187 } 188 return Error::success(); 189 } 190 191 Error RawCoverageMappingReader::decodeCounter(unsigned Value, Counter &C) { 192 auto Tag = Value & Counter::EncodingTagMask; 193 switch (Tag) { 194 case Counter::Zero: 195 C = Counter::getZero(); 196 return Error::success(); 197 case Counter::CounterValueReference: 198 C = Counter::getCounter(Value >> Counter::EncodingTagBits); 199 return Error::success(); 200 default: 201 break; 202 } 203 Tag -= Counter::Expression; 204 switch (Tag) { 205 case CounterExpression::Subtract: 206 case CounterExpression::Add: { 207 auto ID = Value >> Counter::EncodingTagBits; 208 if (ID >= Expressions.size()) 209 return make_error<CoverageMapError>(coveragemap_error::malformed, 210 "counter expression is invalid"); 211 Expressions[ID].Kind = CounterExpression::ExprKind(Tag); 212 C = Counter::getExpression(ID); 213 break; 214 } 215 default: 216 return make_error<CoverageMapError>(coveragemap_error::malformed, 217 "counter expression kind is invalid"); 218 } 219 return Error::success(); 220 } 221 222 Error RawCoverageMappingReader::readCounter(Counter &C) { 223 uint64_t EncodedCounter; 224 if (auto Err = 225 readIntMax(EncodedCounter, std::numeric_limits<unsigned>::max())) 226 return Err; 227 if (auto Err = decodeCounter(EncodedCounter, C)) 228 return Err; 229 return Error::success(); 230 } 231 232 static const unsigned EncodingExpansionRegionBit = 1 233 << Counter::EncodingTagBits; 234 235 /// Read the sub-array of regions for the given inferred file id. 236 /// \param NumFileIDs the number of file ids that are defined for this 237 /// function. 238 Error RawCoverageMappingReader::readMappingRegionsSubArray( 239 std::vector<CounterMappingRegion> &MappingRegions, unsigned InferredFileID, 240 size_t NumFileIDs) { 241 uint64_t NumRegions; 242 if (auto Err = readSize(NumRegions)) 243 return Err; 244 unsigned LineStart = 0; 245 for (size_t I = 0; I < NumRegions; ++I) { 246 Counter C, C2; 247 uint64_t BIDX = 0, NC = 0, ID = 0, TID = 0, FID = 0; 248 CounterMappingRegion::RegionKind Kind = CounterMappingRegion::CodeRegion; 249 250 // Read the combined counter + region kind. 251 uint64_t EncodedCounterAndRegion; 252 if (auto Err = readIntMax(EncodedCounterAndRegion, 253 std::numeric_limits<unsigned>::max())) 254 return Err; 255 unsigned Tag = EncodedCounterAndRegion & Counter::EncodingTagMask; 256 uint64_t ExpandedFileID = 0; 257 258 // If Tag does not represent a ZeroCounter, then it is understood to refer 259 // to a counter or counter expression with region kind assumed to be 260 // "CodeRegion". In that case, EncodedCounterAndRegion actually encodes the 261 // referenced counter or counter expression (and nothing else). 262 // 263 // If Tag represents a ZeroCounter and EncodingExpansionRegionBit is set, 264 // then EncodedCounterAndRegion is interpreted to represent an 265 // ExpansionRegion. In all other cases, EncodedCounterAndRegion is 266 // interpreted to refer to a specific region kind, after which additional 267 // fields may be read (e.g. BranchRegions have two encoded counters that 268 // follow an encoded region kind value). 269 if (Tag != Counter::Zero) { 270 if (auto Err = decodeCounter(EncodedCounterAndRegion, C)) 271 return Err; 272 } else { 273 // Is it an expansion region? 274 if (EncodedCounterAndRegion & EncodingExpansionRegionBit) { 275 Kind = CounterMappingRegion::ExpansionRegion; 276 ExpandedFileID = EncodedCounterAndRegion >> 277 Counter::EncodingCounterTagAndExpansionRegionTagBits; 278 if (ExpandedFileID >= NumFileIDs) 279 return make_error<CoverageMapError>(coveragemap_error::malformed, 280 "ExpandedFileID is invalid"); 281 } else { 282 switch (EncodedCounterAndRegion >> 283 Counter::EncodingCounterTagAndExpansionRegionTagBits) { 284 case CounterMappingRegion::CodeRegion: 285 // Don't do anything when we have a code region with a zero counter. 286 break; 287 case CounterMappingRegion::SkippedRegion: 288 Kind = CounterMappingRegion::SkippedRegion; 289 break; 290 case CounterMappingRegion::BranchRegion: 291 // For a Branch Region, read two successive counters. 292 Kind = CounterMappingRegion::BranchRegion; 293 if (auto Err = readCounter(C)) 294 return Err; 295 if (auto Err = readCounter(C2)) 296 return Err; 297 break; 298 case CounterMappingRegion::MCDCBranchRegion: 299 // For a MCDC Branch Region, read two successive counters and 3 IDs. 300 Kind = CounterMappingRegion::MCDCBranchRegion; 301 if (auto Err = readCounter(C)) 302 return Err; 303 if (auto Err = readCounter(C2)) 304 return Err; 305 if (auto Err = readIntMax(ID, std::numeric_limits<unsigned>::max())) 306 return Err; 307 if (auto Err = readIntMax(TID, std::numeric_limits<unsigned>::max())) 308 return Err; 309 if (auto Err = readIntMax(FID, std::numeric_limits<unsigned>::max())) 310 return Err; 311 if (ID == 0) 312 return make_error<CoverageMapError>( 313 coveragemap_error::malformed, 314 "MCDCConditionID shouldn't be zero"); 315 break; 316 case CounterMappingRegion::MCDCDecisionRegion: 317 Kind = CounterMappingRegion::MCDCDecisionRegion; 318 if (auto Err = readIntMax(BIDX, std::numeric_limits<unsigned>::max())) 319 return Err; 320 if (auto Err = readIntMax(NC, std::numeric_limits<unsigned>::max())) 321 return Err; 322 break; 323 default: 324 return make_error<CoverageMapError>(coveragemap_error::malformed, 325 "region kind is incorrect"); 326 } 327 } 328 } 329 330 // Read the source range. 331 uint64_t LineStartDelta, ColumnStart, NumLines, ColumnEnd; 332 if (auto Err = 333 readIntMax(LineStartDelta, std::numeric_limits<unsigned>::max())) 334 return Err; 335 if (auto Err = readULEB128(ColumnStart)) 336 return Err; 337 if (ColumnStart > std::numeric_limits<unsigned>::max()) 338 return make_error<CoverageMapError>(coveragemap_error::malformed, 339 "start column is too big"); 340 if (auto Err = readIntMax(NumLines, std::numeric_limits<unsigned>::max())) 341 return Err; 342 if (auto Err = readIntMax(ColumnEnd, std::numeric_limits<unsigned>::max())) 343 return Err; 344 LineStart += LineStartDelta; 345 346 // If the high bit of ColumnEnd is set, this is a gap region. 347 if (ColumnEnd & (1U << 31)) { 348 Kind = CounterMappingRegion::GapRegion; 349 ColumnEnd &= ~(1U << 31); 350 } 351 352 // Adjust the column locations for the empty regions that are supposed to 353 // cover whole lines. Those regions should be encoded with the 354 // column range (1 -> std::numeric_limits<unsigned>::max()), but because 355 // the encoded std::numeric_limits<unsigned>::max() is several bytes long, 356 // we set the column range to (0 -> 0) to ensure that the column start and 357 // column end take up one byte each. 358 // The std::numeric_limits<unsigned>::max() is used to represent a column 359 // position at the end of the line without knowing the length of that line. 360 if (ColumnStart == 0 && ColumnEnd == 0) { 361 ColumnStart = 1; 362 ColumnEnd = std::numeric_limits<unsigned>::max(); 363 } 364 365 LLVM_DEBUG({ 366 dbgs() << "Counter in file " << InferredFileID << " " << LineStart << ":" 367 << ColumnStart << " -> " << (LineStart + NumLines) << ":" 368 << ColumnEnd << ", "; 369 if (Kind == CounterMappingRegion::ExpansionRegion) 370 dbgs() << "Expands to file " << ExpandedFileID; 371 else 372 CounterMappingContext(Expressions).dump(C, dbgs()); 373 dbgs() << "\n"; 374 }); 375 376 auto CMR = CounterMappingRegion( 377 C, C2, 378 mcdc::Parameters{static_cast<unsigned>(BIDX), static_cast<unsigned>(NC), 379 static_cast<unsigned>(ID), static_cast<unsigned>(TID), 380 static_cast<unsigned>(FID)}, 381 InferredFileID, ExpandedFileID, LineStart, ColumnStart, 382 LineStart + NumLines, ColumnEnd, Kind); 383 if (CMR.startLoc() > CMR.endLoc()) 384 return make_error<CoverageMapError>( 385 coveragemap_error::malformed, 386 "counter mapping region locations are incorrect"); 387 MappingRegions.push_back(CMR); 388 } 389 return Error::success(); 390 } 391 392 Error RawCoverageMappingReader::read() { 393 // Read the virtual file mapping. 394 SmallVector<unsigned, 8> VirtualFileMapping; 395 uint64_t NumFileMappings; 396 if (auto Err = readSize(NumFileMappings)) 397 return Err; 398 for (size_t I = 0; I < NumFileMappings; ++I) { 399 uint64_t FilenameIndex; 400 if (auto Err = readIntMax(FilenameIndex, TranslationUnitFilenames.size())) 401 return Err; 402 VirtualFileMapping.push_back(FilenameIndex); 403 } 404 405 // Construct the files using unique filenames and virtual file mapping. 406 for (auto I : VirtualFileMapping) { 407 Filenames.push_back(TranslationUnitFilenames[I]); 408 } 409 410 // Read the expressions. 411 uint64_t NumExpressions; 412 if (auto Err = readSize(NumExpressions)) 413 return Err; 414 // Create an array of dummy expressions that get the proper counters 415 // when the expressions are read, and the proper kinds when the counters 416 // are decoded. 417 Expressions.resize( 418 NumExpressions, 419 CounterExpression(CounterExpression::Subtract, Counter(), Counter())); 420 for (size_t I = 0; I < NumExpressions; ++I) { 421 if (auto Err = readCounter(Expressions[I].LHS)) 422 return Err; 423 if (auto Err = readCounter(Expressions[I].RHS)) 424 return Err; 425 } 426 427 // Read the mapping regions sub-arrays. 428 for (unsigned InferredFileID = 0, S = VirtualFileMapping.size(); 429 InferredFileID < S; ++InferredFileID) { 430 if (auto Err = readMappingRegionsSubArray(MappingRegions, InferredFileID, 431 VirtualFileMapping.size())) 432 return Err; 433 } 434 435 // Set the counters for the expansion regions. 436 // i.e. Counter of expansion region = counter of the first region 437 // from the expanded file. 438 // Perform multiple passes to correctly propagate the counters through 439 // all the nested expansion regions. 440 SmallVector<CounterMappingRegion *, 8> FileIDExpansionRegionMapping; 441 FileIDExpansionRegionMapping.resize(VirtualFileMapping.size(), nullptr); 442 for (unsigned Pass = 1, S = VirtualFileMapping.size(); Pass < S; ++Pass) { 443 for (auto &R : MappingRegions) { 444 if (R.Kind != CounterMappingRegion::ExpansionRegion) 445 continue; 446 assert(!FileIDExpansionRegionMapping[R.ExpandedFileID]); 447 FileIDExpansionRegionMapping[R.ExpandedFileID] = &R; 448 } 449 for (auto &R : MappingRegions) { 450 if (FileIDExpansionRegionMapping[R.FileID]) { 451 FileIDExpansionRegionMapping[R.FileID]->Count = R.Count; 452 FileIDExpansionRegionMapping[R.FileID] = nullptr; 453 } 454 } 455 } 456 457 return Error::success(); 458 } 459 460 Expected<bool> RawCoverageMappingDummyChecker::isDummy() { 461 // A dummy coverage mapping data consists of just one region with zero count. 462 uint64_t NumFileMappings; 463 if (Error Err = readSize(NumFileMappings)) 464 return std::move(Err); 465 if (NumFileMappings != 1) 466 return false; 467 // We don't expect any specific value for the filename index, just skip it. 468 uint64_t FilenameIndex; 469 if (Error Err = 470 readIntMax(FilenameIndex, std::numeric_limits<unsigned>::max())) 471 return std::move(Err); 472 uint64_t NumExpressions; 473 if (Error Err = readSize(NumExpressions)) 474 return std::move(Err); 475 if (NumExpressions != 0) 476 return false; 477 uint64_t NumRegions; 478 if (Error Err = readSize(NumRegions)) 479 return std::move(Err); 480 if (NumRegions != 1) 481 return false; 482 uint64_t EncodedCounterAndRegion; 483 if (Error Err = readIntMax(EncodedCounterAndRegion, 484 std::numeric_limits<unsigned>::max())) 485 return std::move(Err); 486 unsigned Tag = EncodedCounterAndRegion & Counter::EncodingTagMask; 487 return Tag == Counter::Zero; 488 } 489 490 Error InstrProfSymtab::create(SectionRef &Section) { 491 Expected<StringRef> DataOrErr = Section.getContents(); 492 if (!DataOrErr) 493 return DataOrErr.takeError(); 494 Data = *DataOrErr; 495 Address = Section.getAddress(); 496 497 // If this is a linked PE/COFF file, then we have to skip over the null byte 498 // that is allocated in the .lprfn$A section in the LLVM profiling runtime. 499 // If the name section is .lprfcovnames, it doesn't have the null byte at the 500 // beginning. 501 const ObjectFile *Obj = Section.getObject(); 502 if (isa<COFFObjectFile>(Obj) && !Obj->isRelocatableObject()) 503 if (Expected<StringRef> NameOrErr = Section.getName()) 504 if (*NameOrErr != getInstrProfSectionName(IPSK_covname, Triple::COFF)) 505 Data = Data.drop_front(1); 506 507 return Error::success(); 508 } 509 510 StringRef InstrProfSymtab::getFuncName(uint64_t Pointer, size_t Size) { 511 if (Pointer < Address) 512 return StringRef(); 513 auto Offset = Pointer - Address; 514 if (Offset + Size > Data.size()) 515 return StringRef(); 516 return Data.substr(Pointer - Address, Size); 517 } 518 519 // Check if the mapping data is a dummy, i.e. is emitted for an unused function. 520 static Expected<bool> isCoverageMappingDummy(uint64_t Hash, StringRef Mapping) { 521 // The hash value of dummy mapping records is always zero. 522 if (Hash) 523 return false; 524 return RawCoverageMappingDummyChecker(Mapping).isDummy(); 525 } 526 527 /// A range of filename indices. Used to specify the location of a batch of 528 /// filenames in a vector-like container. 529 struct FilenameRange { 530 unsigned StartingIndex; 531 unsigned Length; 532 533 FilenameRange(unsigned StartingIndex, unsigned Length) 534 : StartingIndex(StartingIndex), Length(Length) {} 535 536 void markInvalid() { Length = 0; } 537 bool isInvalid() const { return Length == 0; } 538 }; 539 540 namespace { 541 542 /// The interface to read coverage mapping function records for a module. 543 struct CovMapFuncRecordReader { 544 virtual ~CovMapFuncRecordReader() = default; 545 546 // Read a coverage header. 547 // 548 // \p CovBuf points to the buffer containing the \c CovHeader of the coverage 549 // mapping data associated with the module. 550 // 551 // Returns a pointer to the next \c CovHeader if it exists, or to an address 552 // greater than \p CovEnd if not. 553 virtual Expected<const char *> readCoverageHeader(const char *CovBuf, 554 const char *CovBufEnd) = 0; 555 556 // Read function records. 557 // 558 // \p FuncRecBuf points to the buffer containing a batch of function records. 559 // \p FuncRecBufEnd points past the end of the batch of records. 560 // 561 // Prior to Version4, \p OutOfLineFileRange points to a sequence of filenames 562 // associated with the function records. It is unused in Version4. 563 // 564 // Prior to Version4, \p OutOfLineMappingBuf points to a sequence of coverage 565 // mappings associated with the function records. It is unused in Version4. 566 virtual Error 567 readFunctionRecords(const char *FuncRecBuf, const char *FuncRecBufEnd, 568 std::optional<FilenameRange> OutOfLineFileRange, 569 const char *OutOfLineMappingBuf, 570 const char *OutOfLineMappingBufEnd) = 0; 571 572 template <class IntPtrT, llvm::endianness Endian> 573 static Expected<std::unique_ptr<CovMapFuncRecordReader>> 574 get(CovMapVersion Version, InstrProfSymtab &P, 575 std::vector<BinaryCoverageReader::ProfileMappingRecord> &R, StringRef D, 576 std::vector<std::string> &F); 577 }; 578 579 // A class for reading coverage mapping function records for a module. 580 template <CovMapVersion Version, class IntPtrT, llvm::endianness Endian> 581 class VersionedCovMapFuncRecordReader : public CovMapFuncRecordReader { 582 using FuncRecordType = 583 typename CovMapTraits<Version, IntPtrT>::CovMapFuncRecordType; 584 using NameRefType = typename CovMapTraits<Version, IntPtrT>::NameRefType; 585 586 // Maps function's name references to the indexes of their records 587 // in \c Records. 588 DenseMap<NameRefType, size_t> FunctionRecords; 589 InstrProfSymtab &ProfileNames; 590 StringRef CompilationDir; 591 std::vector<std::string> &Filenames; 592 std::vector<BinaryCoverageReader::ProfileMappingRecord> &Records; 593 594 // Maps a hash of the filenames in a TU to a \c FileRange. The range 595 // specifies the location of the hashed filenames in \c Filenames. 596 DenseMap<uint64_t, FilenameRange> FileRangeMap; 597 598 // Add the record to the collection if we don't already have a record that 599 // points to the same function name. This is useful to ignore the redundant 600 // records for the functions with ODR linkage. 601 // In addition, prefer records with real coverage mapping data to dummy 602 // records, which were emitted for inline functions which were seen but 603 // not used in the corresponding translation unit. 604 Error insertFunctionRecordIfNeeded(const FuncRecordType *CFR, 605 StringRef Mapping, 606 FilenameRange FileRange) { 607 ++CovMapNumRecords; 608 uint64_t FuncHash = CFR->template getFuncHash<Endian>(); 609 NameRefType NameRef = CFR->template getFuncNameRef<Endian>(); 610 auto InsertResult = 611 FunctionRecords.insert(std::make_pair(NameRef, Records.size())); 612 if (InsertResult.second) { 613 StringRef FuncName; 614 if (Error Err = CFR->template getFuncName<Endian>(ProfileNames, FuncName)) 615 return Err; 616 if (FuncName.empty()) 617 return make_error<InstrProfError>(instrprof_error::malformed, 618 "function name is empty"); 619 ++CovMapNumUsedRecords; 620 Records.emplace_back(Version, FuncName, FuncHash, Mapping, 621 FileRange.StartingIndex, FileRange.Length); 622 return Error::success(); 623 } 624 // Update the existing record if it's a dummy and the new record is real. 625 size_t OldRecordIndex = InsertResult.first->second; 626 BinaryCoverageReader::ProfileMappingRecord &OldRecord = 627 Records[OldRecordIndex]; 628 Expected<bool> OldIsDummyExpected = isCoverageMappingDummy( 629 OldRecord.FunctionHash, OldRecord.CoverageMapping); 630 if (Error Err = OldIsDummyExpected.takeError()) 631 return Err; 632 if (!*OldIsDummyExpected) 633 return Error::success(); 634 Expected<bool> NewIsDummyExpected = 635 isCoverageMappingDummy(FuncHash, Mapping); 636 if (Error Err = NewIsDummyExpected.takeError()) 637 return Err; 638 if (*NewIsDummyExpected) 639 return Error::success(); 640 ++CovMapNumUsedRecords; 641 OldRecord.FunctionHash = FuncHash; 642 OldRecord.CoverageMapping = Mapping; 643 OldRecord.FilenamesBegin = FileRange.StartingIndex; 644 OldRecord.FilenamesSize = FileRange.Length; 645 return Error::success(); 646 } 647 648 public: 649 VersionedCovMapFuncRecordReader( 650 InstrProfSymtab &P, 651 std::vector<BinaryCoverageReader::ProfileMappingRecord> &R, StringRef D, 652 std::vector<std::string> &F) 653 : ProfileNames(P), CompilationDir(D), Filenames(F), Records(R) {} 654 655 ~VersionedCovMapFuncRecordReader() override = default; 656 657 Expected<const char *> readCoverageHeader(const char *CovBuf, 658 const char *CovBufEnd) override { 659 using namespace support; 660 661 if (CovBuf + sizeof(CovMapHeader) > CovBufEnd) 662 return make_error<CoverageMapError>( 663 coveragemap_error::malformed, 664 "coverage mapping header section is larger than buffer size"); 665 auto CovHeader = reinterpret_cast<const CovMapHeader *>(CovBuf); 666 uint32_t NRecords = CovHeader->getNRecords<Endian>(); 667 uint32_t FilenamesSize = CovHeader->getFilenamesSize<Endian>(); 668 uint32_t CoverageSize = CovHeader->getCoverageSize<Endian>(); 669 assert((CovMapVersion)CovHeader->getVersion<Endian>() == Version); 670 CovBuf = reinterpret_cast<const char *>(CovHeader + 1); 671 672 // Skip past the function records, saving the start and end for later. 673 // This is a no-op in Version4 (function records are read after all headers 674 // are read). 675 const char *FuncRecBuf = nullptr; 676 const char *FuncRecBufEnd = nullptr; 677 if (Version < CovMapVersion::Version4) 678 FuncRecBuf = CovBuf; 679 CovBuf += NRecords * sizeof(FuncRecordType); 680 if (Version < CovMapVersion::Version4) 681 FuncRecBufEnd = CovBuf; 682 683 // Get the filenames. 684 if (CovBuf + FilenamesSize > CovBufEnd) 685 return make_error<CoverageMapError>( 686 coveragemap_error::malformed, 687 "filenames section is larger than buffer size"); 688 size_t FilenamesBegin = Filenames.size(); 689 StringRef FilenameRegion(CovBuf, FilenamesSize); 690 RawCoverageFilenamesReader Reader(FilenameRegion, Filenames, 691 CompilationDir); 692 if (auto Err = Reader.read(Version)) 693 return std::move(Err); 694 CovBuf += FilenamesSize; 695 FilenameRange FileRange(FilenamesBegin, Filenames.size() - FilenamesBegin); 696 697 if (Version >= CovMapVersion::Version4) { 698 // Map a hash of the filenames region to the filename range associated 699 // with this coverage header. 700 int64_t FilenamesRef = 701 llvm::IndexedInstrProf::ComputeHash(FilenameRegion); 702 auto Insert = 703 FileRangeMap.insert(std::make_pair(FilenamesRef, FileRange)); 704 if (!Insert.second) { 705 // The same filenames ref was encountered twice. It's possible that 706 // the associated filenames are the same. 707 auto It = Filenames.begin(); 708 FilenameRange &OrigRange = Insert.first->getSecond(); 709 if (std::equal(It + OrigRange.StartingIndex, 710 It + OrigRange.StartingIndex + OrigRange.Length, 711 It + FileRange.StartingIndex, 712 It + FileRange.StartingIndex + FileRange.Length)) 713 // Map the new range to the original one. 714 FileRange = OrigRange; 715 else 716 // This is a hash collision. Mark the filenames ref invalid. 717 OrigRange.markInvalid(); 718 } 719 } 720 721 // We'll read the coverage mapping records in the loop below. 722 // This is a no-op in Version4 (coverage mappings are not affixed to the 723 // coverage header). 724 const char *MappingBuf = CovBuf; 725 if (Version >= CovMapVersion::Version4 && CoverageSize != 0) 726 return make_error<CoverageMapError>(coveragemap_error::malformed, 727 "coverage mapping size is not zero"); 728 CovBuf += CoverageSize; 729 const char *MappingEnd = CovBuf; 730 731 if (CovBuf > CovBufEnd) 732 return make_error<CoverageMapError>( 733 coveragemap_error::malformed, 734 "function records section is larger than buffer size"); 735 736 if (Version < CovMapVersion::Version4) { 737 // Read each function record. 738 if (Error E = readFunctionRecords(FuncRecBuf, FuncRecBufEnd, FileRange, 739 MappingBuf, MappingEnd)) 740 return std::move(E); 741 } 742 743 // Each coverage map has an alignment of 8, so we need to adjust alignment 744 // before reading the next map. 745 CovBuf += offsetToAlignedAddr(CovBuf, Align(8)); 746 747 return CovBuf; 748 } 749 750 Error readFunctionRecords(const char *FuncRecBuf, const char *FuncRecBufEnd, 751 std::optional<FilenameRange> OutOfLineFileRange, 752 const char *OutOfLineMappingBuf, 753 const char *OutOfLineMappingBufEnd) override { 754 auto CFR = reinterpret_cast<const FuncRecordType *>(FuncRecBuf); 755 while ((const char *)CFR < FuncRecBufEnd) { 756 // Validate the length of the coverage mapping for this function. 757 const char *NextMappingBuf; 758 const FuncRecordType *NextCFR; 759 std::tie(NextMappingBuf, NextCFR) = 760 CFR->template advanceByOne<Endian>(OutOfLineMappingBuf); 761 if (Version < CovMapVersion::Version4) 762 if (NextMappingBuf > OutOfLineMappingBufEnd) 763 return make_error<CoverageMapError>( 764 coveragemap_error::malformed, 765 "next mapping buffer is larger than buffer size"); 766 767 // Look up the set of filenames associated with this function record. 768 std::optional<FilenameRange> FileRange; 769 if (Version < CovMapVersion::Version4) { 770 FileRange = OutOfLineFileRange; 771 } else { 772 uint64_t FilenamesRef = CFR->template getFilenamesRef<Endian>(); 773 auto It = FileRangeMap.find(FilenamesRef); 774 if (It == FileRangeMap.end()) 775 return make_error<CoverageMapError>( 776 coveragemap_error::malformed, 777 "no filename found for function with hash=0x" + 778 Twine::utohexstr(FilenamesRef)); 779 else 780 FileRange = It->getSecond(); 781 } 782 783 // Now, read the coverage data. 784 if (FileRange && !FileRange->isInvalid()) { 785 StringRef Mapping = 786 CFR->template getCoverageMapping<Endian>(OutOfLineMappingBuf); 787 if (Version >= CovMapVersion::Version4 && 788 Mapping.data() + Mapping.size() > FuncRecBufEnd) 789 return make_error<CoverageMapError>( 790 coveragemap_error::malformed, 791 "coverage mapping data is larger than buffer size"); 792 if (Error Err = insertFunctionRecordIfNeeded(CFR, Mapping, *FileRange)) 793 return Err; 794 } 795 796 std::tie(OutOfLineMappingBuf, CFR) = std::tie(NextMappingBuf, NextCFR); 797 } 798 return Error::success(); 799 } 800 }; 801 802 } // end anonymous namespace 803 804 template <class IntPtrT, llvm::endianness Endian> 805 Expected<std::unique_ptr<CovMapFuncRecordReader>> CovMapFuncRecordReader::get( 806 CovMapVersion Version, InstrProfSymtab &P, 807 std::vector<BinaryCoverageReader::ProfileMappingRecord> &R, StringRef D, 808 std::vector<std::string> &F) { 809 using namespace coverage; 810 811 switch (Version) { 812 case CovMapVersion::Version1: 813 return std::make_unique<VersionedCovMapFuncRecordReader< 814 CovMapVersion::Version1, IntPtrT, Endian>>(P, R, D, F); 815 case CovMapVersion::Version2: 816 case CovMapVersion::Version3: 817 case CovMapVersion::Version4: 818 case CovMapVersion::Version5: 819 case CovMapVersion::Version6: 820 case CovMapVersion::Version7: 821 // Decompress the name data. 822 if (Error E = P.create(P.getNameData())) 823 return std::move(E); 824 if (Version == CovMapVersion::Version2) 825 return std::make_unique<VersionedCovMapFuncRecordReader< 826 CovMapVersion::Version2, IntPtrT, Endian>>(P, R, D, F); 827 else if (Version == CovMapVersion::Version3) 828 return std::make_unique<VersionedCovMapFuncRecordReader< 829 CovMapVersion::Version3, IntPtrT, Endian>>(P, R, D, F); 830 else if (Version == CovMapVersion::Version4) 831 return std::make_unique<VersionedCovMapFuncRecordReader< 832 CovMapVersion::Version4, IntPtrT, Endian>>(P, R, D, F); 833 else if (Version == CovMapVersion::Version5) 834 return std::make_unique<VersionedCovMapFuncRecordReader< 835 CovMapVersion::Version5, IntPtrT, Endian>>(P, R, D, F); 836 else if (Version == CovMapVersion::Version6) 837 return std::make_unique<VersionedCovMapFuncRecordReader< 838 CovMapVersion::Version6, IntPtrT, Endian>>(P, R, D, F); 839 else if (Version == CovMapVersion::Version7) 840 return std::make_unique<VersionedCovMapFuncRecordReader< 841 CovMapVersion::Version7, IntPtrT, Endian>>(P, R, D, F); 842 } 843 llvm_unreachable("Unsupported version"); 844 } 845 846 template <typename T, llvm::endianness Endian> 847 static Error readCoverageMappingData( 848 InstrProfSymtab &ProfileNames, StringRef CovMap, StringRef FuncRecords, 849 std::vector<BinaryCoverageReader::ProfileMappingRecord> &Records, 850 StringRef CompilationDir, std::vector<std::string> &Filenames) { 851 using namespace coverage; 852 853 // Read the records in the coverage data section. 854 auto CovHeader = 855 reinterpret_cast<const CovMapHeader *>(CovMap.data()); 856 CovMapVersion Version = (CovMapVersion)CovHeader->getVersion<Endian>(); 857 if (Version > CovMapVersion::CurrentVersion) 858 return make_error<CoverageMapError>(coveragemap_error::unsupported_version); 859 Expected<std::unique_ptr<CovMapFuncRecordReader>> ReaderExpected = 860 CovMapFuncRecordReader::get<T, Endian>(Version, ProfileNames, Records, 861 CompilationDir, Filenames); 862 if (Error E = ReaderExpected.takeError()) 863 return E; 864 auto Reader = std::move(ReaderExpected.get()); 865 const char *CovBuf = CovMap.data(); 866 const char *CovBufEnd = CovBuf + CovMap.size(); 867 const char *FuncRecBuf = FuncRecords.data(); 868 const char *FuncRecBufEnd = FuncRecords.data() + FuncRecords.size(); 869 while (CovBuf < CovBufEnd) { 870 // Read the current coverage header & filename data. 871 // 872 // Prior to Version4, this also reads all function records affixed to the 873 // header. 874 // 875 // Return a pointer to the next coverage header. 876 auto NextOrErr = Reader->readCoverageHeader(CovBuf, CovBufEnd); 877 if (auto E = NextOrErr.takeError()) 878 return E; 879 CovBuf = NextOrErr.get(); 880 } 881 // In Version4, function records are not affixed to coverage headers. Read 882 // the records from their dedicated section. 883 if (Version >= CovMapVersion::Version4) 884 return Reader->readFunctionRecords(FuncRecBuf, FuncRecBufEnd, std::nullopt, 885 nullptr, nullptr); 886 return Error::success(); 887 } 888 889 Expected<std::unique_ptr<BinaryCoverageReader>> 890 BinaryCoverageReader::createCoverageReaderFromBuffer( 891 StringRef Coverage, FuncRecordsStorage &&FuncRecords, 892 InstrProfSymtab &&ProfileNames, uint8_t BytesInAddress, 893 llvm::endianness Endian, StringRef CompilationDir) { 894 std::unique_ptr<BinaryCoverageReader> Reader( 895 new BinaryCoverageReader(std::move(FuncRecords))); 896 Reader->ProfileNames = std::move(ProfileNames); 897 StringRef FuncRecordsRef = Reader->FuncRecords->getBuffer(); 898 if (BytesInAddress == 4 && Endian == llvm::endianness::little) { 899 if (Error E = readCoverageMappingData<uint32_t, llvm::endianness::little>( 900 Reader->ProfileNames, Coverage, FuncRecordsRef, 901 Reader->MappingRecords, CompilationDir, Reader->Filenames)) 902 return std::move(E); 903 } else if (BytesInAddress == 4 && Endian == llvm::endianness::big) { 904 if (Error E = readCoverageMappingData<uint32_t, llvm::endianness::big>( 905 Reader->ProfileNames, Coverage, FuncRecordsRef, 906 Reader->MappingRecords, CompilationDir, Reader->Filenames)) 907 return std::move(E); 908 } else if (BytesInAddress == 8 && Endian == llvm::endianness::little) { 909 if (Error E = readCoverageMappingData<uint64_t, llvm::endianness::little>( 910 Reader->ProfileNames, Coverage, FuncRecordsRef, 911 Reader->MappingRecords, CompilationDir, Reader->Filenames)) 912 return std::move(E); 913 } else if (BytesInAddress == 8 && Endian == llvm::endianness::big) { 914 if (Error E = readCoverageMappingData<uint64_t, llvm::endianness::big>( 915 Reader->ProfileNames, Coverage, FuncRecordsRef, 916 Reader->MappingRecords, CompilationDir, Reader->Filenames)) 917 return std::move(E); 918 } else 919 return make_error<CoverageMapError>( 920 coveragemap_error::malformed, 921 "not supported endianness or bytes in address"); 922 return std::move(Reader); 923 } 924 925 static Expected<std::unique_ptr<BinaryCoverageReader>> 926 loadTestingFormat(StringRef Data, StringRef CompilationDir) { 927 uint8_t BytesInAddress = 8; 928 llvm::endianness Endian = llvm::endianness::little; 929 930 // Read the magic and version. 931 Data = Data.substr(sizeof(TestingFormatMagic)); 932 if (Data.size() < sizeof(uint64_t)) 933 return make_error<CoverageMapError>(coveragemap_error::malformed, 934 "the size of data is too small"); 935 auto TestingVersion = 936 support::endian::byte_swap<uint64_t, llvm::endianness::little>( 937 *reinterpret_cast<const uint64_t *>(Data.data())); 938 Data = Data.substr(sizeof(uint64_t)); 939 940 // Read the ProfileNames data. 941 if (Data.empty()) 942 return make_error<CoverageMapError>(coveragemap_error::truncated); 943 unsigned N = 0; 944 uint64_t ProfileNamesSize = decodeULEB128(Data.bytes_begin(), &N); 945 if (N > Data.size()) 946 return make_error<CoverageMapError>( 947 coveragemap_error::malformed, 948 "the size of TestingFormatMagic is too big"); 949 Data = Data.substr(N); 950 if (Data.empty()) 951 return make_error<CoverageMapError>(coveragemap_error::truncated); 952 N = 0; 953 uint64_t Address = decodeULEB128(Data.bytes_begin(), &N); 954 if (N > Data.size()) 955 return make_error<CoverageMapError>(coveragemap_error::malformed, 956 "the size of ULEB128 is too big"); 957 Data = Data.substr(N); 958 if (Data.size() < ProfileNamesSize) 959 return make_error<CoverageMapError>(coveragemap_error::malformed, 960 "the size of ProfileNames is too big"); 961 InstrProfSymtab ProfileNames; 962 if (Error E = ProfileNames.create(Data.substr(0, ProfileNamesSize), Address)) 963 return std::move(E); 964 Data = Data.substr(ProfileNamesSize); 965 966 // In Version2, the size of CoverageMapping is stored directly. 967 uint64_t CoverageMappingSize; 968 if (TestingVersion == uint64_t(TestingFormatVersion::Version2)) { 969 N = 0; 970 CoverageMappingSize = decodeULEB128(Data.bytes_begin(), &N); 971 if (N > Data.size()) 972 return make_error<CoverageMapError>(coveragemap_error::malformed, 973 "the size of ULEB128 is too big"); 974 Data = Data.substr(N); 975 if (CoverageMappingSize < sizeof(CovMapHeader)) 976 return make_error<CoverageMapError>( 977 coveragemap_error::malformed, 978 "the size of CoverageMapping is teoo small"); 979 } else if (TestingVersion != uint64_t(TestingFormatVersion::Version1)) { 980 return make_error<CoverageMapError>(coveragemap_error::unsupported_version); 981 } 982 983 // Skip the padding bytes because coverage map data has an alignment of 8. 984 auto Pad = offsetToAlignedAddr(Data.data(), Align(8)); 985 if (Data.size() < Pad) 986 return make_error<CoverageMapError>(coveragemap_error::malformed, 987 "insufficient padding"); 988 Data = Data.substr(Pad); 989 if (Data.size() < sizeof(CovMapHeader)) 990 return make_error<CoverageMapError>( 991 coveragemap_error::malformed, 992 "coverage mapping header section is larger than data size"); 993 auto const *CovHeader = reinterpret_cast<const CovMapHeader *>( 994 Data.substr(0, sizeof(CovMapHeader)).data()); 995 auto Version = 996 CovMapVersion(CovHeader->getVersion<llvm::endianness::little>()); 997 998 // In Version1, the size of CoverageMapping is calculated. 999 if (TestingVersion == uint64_t(TestingFormatVersion::Version1)) { 1000 if (Version < CovMapVersion::Version4) { 1001 CoverageMappingSize = Data.size(); 1002 } else { 1003 auto FilenamesSize = 1004 CovHeader->getFilenamesSize<llvm::endianness::little>(); 1005 CoverageMappingSize = sizeof(CovMapHeader) + FilenamesSize; 1006 } 1007 } 1008 1009 auto CoverageMapping = Data.substr(0, CoverageMappingSize); 1010 Data = Data.substr(CoverageMappingSize); 1011 1012 // Read the CoverageRecords data. 1013 if (Version < CovMapVersion::Version4) { 1014 if (!Data.empty()) 1015 return make_error<CoverageMapError>(coveragemap_error::malformed, 1016 "data is not empty"); 1017 } else { 1018 // Skip the padding bytes because coverage records data has an alignment 1019 // of 8. 1020 Pad = offsetToAlignedAddr(Data.data(), Align(8)); 1021 if (Data.size() < Pad) 1022 return make_error<CoverageMapError>(coveragemap_error::malformed, 1023 "insufficient padding"); 1024 Data = Data.substr(Pad); 1025 } 1026 BinaryCoverageReader::FuncRecordsStorage CoverageRecords = 1027 MemoryBuffer::getMemBuffer(Data); 1028 1029 return BinaryCoverageReader::createCoverageReaderFromBuffer( 1030 CoverageMapping, std::move(CoverageRecords), std::move(ProfileNames), 1031 BytesInAddress, Endian, CompilationDir); 1032 } 1033 1034 /// Find all sections that match \p IPSK name. There may be more than one if 1035 /// comdats are in use, e.g. for the __llvm_covfun section on ELF. 1036 static Expected<std::vector<SectionRef>> 1037 lookupSections(ObjectFile &OF, InstrProfSectKind IPSK) { 1038 auto ObjFormat = OF.getTripleObjectFormat(); 1039 auto Name = 1040 getInstrProfSectionName(IPSK, ObjFormat, /*AddSegmentInfo=*/false); 1041 // On COFF, the object file section name may end in "$M". This tells the 1042 // linker to sort these sections between "$A" and "$Z". The linker removes the 1043 // dollar and everything after it in the final binary. Do the same to match. 1044 bool IsCOFF = isa<COFFObjectFile>(OF); 1045 auto stripSuffix = [IsCOFF](StringRef N) { 1046 return IsCOFF ? N.split('$').first : N; 1047 }; 1048 Name = stripSuffix(Name); 1049 1050 std::vector<SectionRef> Sections; 1051 for (const auto &Section : OF.sections()) { 1052 Expected<StringRef> NameOrErr = Section.getName(); 1053 if (!NameOrErr) 1054 return NameOrErr.takeError(); 1055 if (stripSuffix(*NameOrErr) == Name) { 1056 // COFF profile name section contains two null bytes indicating the 1057 // start/end of the section. If its size is 2 bytes, it's empty. 1058 if (IsCOFF && IPSK == IPSK_name && Section.getSize() == 2) 1059 continue; 1060 Sections.push_back(Section); 1061 } 1062 } 1063 if (Sections.empty()) 1064 return make_error<CoverageMapError>(coveragemap_error::no_data_found); 1065 return Sections; 1066 } 1067 1068 static Expected<std::unique_ptr<BinaryCoverageReader>> 1069 loadBinaryFormat(std::unique_ptr<Binary> Bin, StringRef Arch, 1070 StringRef CompilationDir = "", 1071 object::BuildIDRef *BinaryID = nullptr) { 1072 std::unique_ptr<ObjectFile> OF; 1073 if (auto *Universal = dyn_cast<MachOUniversalBinary>(Bin.get())) { 1074 // If we have a universal binary, try to look up the object for the 1075 // appropriate architecture. 1076 auto ObjectFileOrErr = Universal->getMachOObjectForArch(Arch); 1077 if (!ObjectFileOrErr) 1078 return ObjectFileOrErr.takeError(); 1079 OF = std::move(ObjectFileOrErr.get()); 1080 } else if (isa<ObjectFile>(Bin.get())) { 1081 // For any other object file, upcast and take ownership. 1082 OF.reset(cast<ObjectFile>(Bin.release())); 1083 // If we've asked for a particular arch, make sure they match. 1084 if (!Arch.empty() && OF->getArch() != Triple(Arch).getArch()) 1085 return errorCodeToError(object_error::arch_not_found); 1086 } else 1087 // We can only handle object files. 1088 return make_error<CoverageMapError>(coveragemap_error::malformed, 1089 "binary is not an object file"); 1090 1091 // The coverage uses native pointer sizes for the object it's written in. 1092 uint8_t BytesInAddress = OF->getBytesInAddress(); 1093 llvm::endianness Endian = 1094 OF->isLittleEndian() ? llvm::endianness::little : llvm::endianness::big; 1095 1096 // Look for the sections that we are interested in. 1097 InstrProfSymtab ProfileNames; 1098 std::vector<SectionRef> NamesSectionRefs; 1099 // If IPSK_name is not found, fallback to search for IPK_covname, which is 1100 // used when binary correlation is enabled. 1101 auto NamesSection = lookupSections(*OF, IPSK_name); 1102 if (auto E = NamesSection.takeError()) { 1103 consumeError(std::move(E)); 1104 NamesSection = lookupSections(*OF, IPSK_covname); 1105 if (auto E = NamesSection.takeError()) 1106 return std::move(E); 1107 } 1108 NamesSectionRefs = *NamesSection; 1109 1110 if (NamesSectionRefs.size() != 1) 1111 return make_error<CoverageMapError>( 1112 coveragemap_error::malformed, 1113 "the size of coverage mapping section is not one"); 1114 if (Error E = ProfileNames.create(NamesSectionRefs.back())) 1115 return std::move(E); 1116 1117 auto CoverageSection = lookupSections(*OF, IPSK_covmap); 1118 if (auto E = CoverageSection.takeError()) 1119 return std::move(E); 1120 std::vector<SectionRef> CoverageSectionRefs = *CoverageSection; 1121 if (CoverageSectionRefs.size() != 1) 1122 return make_error<CoverageMapError>(coveragemap_error::malformed, 1123 "the size of name section is not one"); 1124 auto CoverageMappingOrErr = CoverageSectionRefs.back().getContents(); 1125 if (!CoverageMappingOrErr) 1126 return CoverageMappingOrErr.takeError(); 1127 StringRef CoverageMapping = CoverageMappingOrErr.get(); 1128 1129 // Look for the coverage records section (Version4 only). 1130 auto CoverageRecordsSections = lookupSections(*OF, IPSK_covfun); 1131 1132 BinaryCoverageReader::FuncRecordsStorage FuncRecords; 1133 if (auto E = CoverageRecordsSections.takeError()) { 1134 consumeError(std::move(E)); 1135 FuncRecords = MemoryBuffer::getMemBuffer(""); 1136 } else { 1137 // Compute the FuncRecordsBuffer of the buffer, taking into account the 1138 // padding between each record, and making sure the first block is aligned 1139 // in memory to maintain consistency between buffer address and size 1140 // alignment. 1141 const Align RecordAlignment(8); 1142 uint64_t FuncRecordsSize = 0; 1143 for (SectionRef Section : *CoverageRecordsSections) { 1144 auto CoverageRecordsOrErr = Section.getContents(); 1145 if (!CoverageRecordsOrErr) 1146 return CoverageRecordsOrErr.takeError(); 1147 FuncRecordsSize += alignTo(CoverageRecordsOrErr->size(), RecordAlignment); 1148 } 1149 auto WritableBuffer = 1150 WritableMemoryBuffer::getNewUninitMemBuffer(FuncRecordsSize); 1151 char *FuncRecordsBuffer = WritableBuffer->getBufferStart(); 1152 assert(isAddrAligned(RecordAlignment, FuncRecordsBuffer) && 1153 "Allocated memory is correctly aligned"); 1154 1155 for (SectionRef Section : *CoverageRecordsSections) { 1156 auto CoverageRecordsOrErr = Section.getContents(); 1157 if (!CoverageRecordsOrErr) 1158 return CoverageRecordsOrErr.takeError(); 1159 const auto &CoverageRecords = CoverageRecordsOrErr.get(); 1160 FuncRecordsBuffer = std::copy(CoverageRecords.begin(), 1161 CoverageRecords.end(), FuncRecordsBuffer); 1162 FuncRecordsBuffer = 1163 std::fill_n(FuncRecordsBuffer, 1164 alignAddr(FuncRecordsBuffer, RecordAlignment) - 1165 (uintptr_t)FuncRecordsBuffer, 1166 '\0'); 1167 } 1168 assert(FuncRecordsBuffer == WritableBuffer->getBufferEnd() && 1169 "consistent init"); 1170 FuncRecords = std::move(WritableBuffer); 1171 } 1172 1173 if (BinaryID) 1174 *BinaryID = getBuildID(OF.get()); 1175 1176 return BinaryCoverageReader::createCoverageReaderFromBuffer( 1177 CoverageMapping, std::move(FuncRecords), std::move(ProfileNames), 1178 BytesInAddress, Endian, CompilationDir); 1179 } 1180 1181 /// Determine whether \p Arch is invalid or empty, given \p Bin. 1182 static bool isArchSpecifierInvalidOrMissing(Binary *Bin, StringRef Arch) { 1183 // If we have a universal binary and Arch doesn't identify any of its slices, 1184 // it's user error. 1185 if (auto *Universal = dyn_cast<MachOUniversalBinary>(Bin)) { 1186 for (auto &ObjForArch : Universal->objects()) 1187 if (Arch == ObjForArch.getArchFlagName()) 1188 return false; 1189 return true; 1190 } 1191 return false; 1192 } 1193 1194 Expected<std::vector<std::unique_ptr<BinaryCoverageReader>>> 1195 BinaryCoverageReader::create( 1196 MemoryBufferRef ObjectBuffer, StringRef Arch, 1197 SmallVectorImpl<std::unique_ptr<MemoryBuffer>> &ObjectFileBuffers, 1198 StringRef CompilationDir, SmallVectorImpl<object::BuildIDRef> *BinaryIDs) { 1199 std::vector<std::unique_ptr<BinaryCoverageReader>> Readers; 1200 1201 if (ObjectBuffer.getBuffer().size() > sizeof(TestingFormatMagic)) { 1202 uint64_t Magic = 1203 support::endian::byte_swap<uint64_t, llvm::endianness::little>( 1204 *reinterpret_cast<const uint64_t *>(ObjectBuffer.getBufferStart())); 1205 if (Magic == TestingFormatMagic) { 1206 // This is a special format used for testing. 1207 auto ReaderOrErr = 1208 loadTestingFormat(ObjectBuffer.getBuffer(), CompilationDir); 1209 if (!ReaderOrErr) 1210 return ReaderOrErr.takeError(); 1211 Readers.push_back(std::move(ReaderOrErr.get())); 1212 return std::move(Readers); 1213 } 1214 } 1215 1216 auto BinOrErr = createBinary(ObjectBuffer); 1217 if (!BinOrErr) 1218 return BinOrErr.takeError(); 1219 std::unique_ptr<Binary> Bin = std::move(BinOrErr.get()); 1220 1221 if (isArchSpecifierInvalidOrMissing(Bin.get(), Arch)) 1222 return make_error<CoverageMapError>( 1223 coveragemap_error::invalid_or_missing_arch_specifier); 1224 1225 // MachO universal binaries which contain archives need to be treated as 1226 // archives, not as regular binaries. 1227 if (auto *Universal = dyn_cast<MachOUniversalBinary>(Bin.get())) { 1228 for (auto &ObjForArch : Universal->objects()) { 1229 // Skip slices within the universal binary which target the wrong arch. 1230 std::string ObjArch = ObjForArch.getArchFlagName(); 1231 if (Arch != ObjArch) 1232 continue; 1233 1234 auto ArchiveOrErr = ObjForArch.getAsArchive(); 1235 if (!ArchiveOrErr) { 1236 // If this is not an archive, try treating it as a regular object. 1237 consumeError(ArchiveOrErr.takeError()); 1238 break; 1239 } 1240 1241 return BinaryCoverageReader::create( 1242 ArchiveOrErr.get()->getMemoryBufferRef(), Arch, ObjectFileBuffers, 1243 CompilationDir, BinaryIDs); 1244 } 1245 } 1246 1247 // Load coverage out of archive members. 1248 if (auto *Ar = dyn_cast<Archive>(Bin.get())) { 1249 Error Err = Error::success(); 1250 for (auto &Child : Ar->children(Err)) { 1251 Expected<MemoryBufferRef> ChildBufOrErr = Child.getMemoryBufferRef(); 1252 if (!ChildBufOrErr) 1253 return ChildBufOrErr.takeError(); 1254 1255 auto ChildReadersOrErr = BinaryCoverageReader::create( 1256 ChildBufOrErr.get(), Arch, ObjectFileBuffers, CompilationDir, 1257 BinaryIDs); 1258 if (!ChildReadersOrErr) 1259 return ChildReadersOrErr.takeError(); 1260 for (auto &Reader : ChildReadersOrErr.get()) 1261 Readers.push_back(std::move(Reader)); 1262 } 1263 if (Err) 1264 return std::move(Err); 1265 1266 // Thin archives reference object files outside of the archive file, i.e. 1267 // files which reside in memory not owned by the caller. Transfer ownership 1268 // to the caller. 1269 if (Ar->isThin()) 1270 for (auto &Buffer : Ar->takeThinBuffers()) 1271 ObjectFileBuffers.push_back(std::move(Buffer)); 1272 1273 return std::move(Readers); 1274 } 1275 1276 object::BuildIDRef BinaryID; 1277 auto ReaderOrErr = loadBinaryFormat(std::move(Bin), Arch, CompilationDir, 1278 BinaryIDs ? &BinaryID : nullptr); 1279 if (!ReaderOrErr) 1280 return ReaderOrErr.takeError(); 1281 Readers.push_back(std::move(ReaderOrErr.get())); 1282 if (!BinaryID.empty()) 1283 BinaryIDs->push_back(BinaryID); 1284 return std::move(Readers); 1285 } 1286 1287 Error BinaryCoverageReader::readNextRecord(CoverageMappingRecord &Record) { 1288 if (CurrentRecord >= MappingRecords.size()) 1289 return make_error<CoverageMapError>(coveragemap_error::eof); 1290 1291 FunctionsFilenames.clear(); 1292 Expressions.clear(); 1293 MappingRegions.clear(); 1294 auto &R = MappingRecords[CurrentRecord]; 1295 auto F = ArrayRef(Filenames).slice(R.FilenamesBegin, R.FilenamesSize); 1296 RawCoverageMappingReader Reader(R.CoverageMapping, F, FunctionsFilenames, 1297 Expressions, MappingRegions); 1298 if (auto Err = Reader.read()) 1299 return Err; 1300 1301 Record.FunctionName = R.FunctionName; 1302 Record.FunctionHash = R.FunctionHash; 1303 Record.Filenames = FunctionsFilenames; 1304 Record.Expressions = Expressions; 1305 Record.MappingRegions = MappingRegions; 1306 1307 ++CurrentRecord; 1308 return Error::success(); 1309 } 1310