xref: /llvm-project/llvm/lib/ProfileData/Coverage/CoverageMappingReader.cpp (revision 157f10ddf2d851125a85a71e530dc9d50cb032a2)
1 //===- CoverageMappingReader.cpp - Code coverage mapping reader -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains support for reading coverage mapping data for
10 // instrumentation based coverage.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/ProfileData/Coverage/CoverageMappingReader.h"
15 #include "llvm/ADT/ArrayRef.h"
16 #include "llvm/ADT/DenseMap.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/SmallVector.h"
19 #include "llvm/ADT/Statistic.h"
20 #include "llvm/ADT/StringRef.h"
21 #include "llvm/Object/Archive.h"
22 #include "llvm/Object/Binary.h"
23 #include "llvm/Object/COFF.h"
24 #include "llvm/Object/Error.h"
25 #include "llvm/Object/MachOUniversal.h"
26 #include "llvm/Object/ObjectFile.h"
27 #include "llvm/ProfileData/InstrProf.h"
28 #include "llvm/Support/Casting.h"
29 #include "llvm/Support/Compression.h"
30 #include "llvm/Support/Debug.h"
31 #include "llvm/Support/Endian.h"
32 #include "llvm/Support/Error.h"
33 #include "llvm/Support/ErrorHandling.h"
34 #include "llvm/Support/LEB128.h"
35 #include "llvm/Support/MathExtras.h"
36 #include "llvm/Support/Path.h"
37 #include "llvm/Support/raw_ostream.h"
38 #include "llvm/TargetParser/Triple.h"
39 #include <vector>
40 
41 using namespace llvm;
42 using namespace coverage;
43 using namespace object;
44 
45 #define DEBUG_TYPE "coverage-mapping"
46 
47 STATISTIC(CovMapNumRecords, "The # of coverage function records");
48 STATISTIC(CovMapNumUsedRecords, "The # of used coverage function records");
49 
50 void CoverageMappingIterator::increment() {
51   if (ReadErr != coveragemap_error::success)
52     return;
53 
54   // Check if all the records were read or if an error occurred while reading
55   // the next record.
56   if (auto E = Reader->readNextRecord(Record))
57     handleAllErrors(std::move(E), [&](const CoverageMapError &CME) {
58       if (CME.get() == coveragemap_error::eof)
59         *this = CoverageMappingIterator();
60       else
61         ReadErr = CME.get();
62     });
63 }
64 
65 Error RawCoverageReader::readULEB128(uint64_t &Result) {
66   if (Data.empty())
67     return make_error<CoverageMapError>(coveragemap_error::truncated);
68   unsigned N = 0;
69   Result = decodeULEB128(Data.bytes_begin(), &N);
70   if (N > Data.size())
71     return make_error<CoverageMapError>(coveragemap_error::malformed,
72                                         "the size of ULEB128 is too big");
73   Data = Data.substr(N);
74   return Error::success();
75 }
76 
77 Error RawCoverageReader::readIntMax(uint64_t &Result, uint64_t MaxPlus1) {
78   if (auto Err = readULEB128(Result))
79     return Err;
80   if (Result >= MaxPlus1)
81     return make_error<CoverageMapError>(
82         coveragemap_error::malformed,
83         "the value of ULEB128 is greater than or equal to MaxPlus1");
84   return Error::success();
85 }
86 
87 Error RawCoverageReader::readSize(uint64_t &Result) {
88   if (auto Err = readULEB128(Result))
89     return Err;
90   if (Result > Data.size())
91     return make_error<CoverageMapError>(coveragemap_error::malformed,
92                                         "the value of ULEB128 is too big");
93   return Error::success();
94 }
95 
96 Error RawCoverageReader::readString(StringRef &Result) {
97   uint64_t Length;
98   if (auto Err = readSize(Length))
99     return Err;
100   Result = Data.substr(0, Length);
101   Data = Data.substr(Length);
102   return Error::success();
103 }
104 
105 Error RawCoverageFilenamesReader::read(CovMapVersion Version) {
106   uint64_t NumFilenames;
107   if (auto Err = readSize(NumFilenames))
108     return Err;
109   if (!NumFilenames)
110     return make_error<CoverageMapError>(coveragemap_error::malformed,
111                                         "number of filenames is zero");
112 
113   if (Version < CovMapVersion::Version4)
114     return readUncompressed(Version, NumFilenames);
115 
116   // The uncompressed length may exceed the size of the encoded filenames.
117   // Skip size validation.
118   uint64_t UncompressedLen;
119   if (auto Err = readULEB128(UncompressedLen))
120     return Err;
121 
122   uint64_t CompressedLen;
123   if (auto Err = readSize(CompressedLen))
124     return Err;
125 
126   if (CompressedLen > 0) {
127     if (!compression::zlib::isAvailable())
128       return make_error<CoverageMapError>(
129           coveragemap_error::decompression_failed);
130 
131     // Allocate memory for the decompressed filenames.
132     SmallVector<uint8_t, 0> StorageBuf;
133 
134     // Read compressed filenames.
135     StringRef CompressedFilenames = Data.substr(0, CompressedLen);
136     Data = Data.substr(CompressedLen);
137     auto Err = compression::zlib::decompress(
138         arrayRefFromStringRef(CompressedFilenames), StorageBuf,
139         UncompressedLen);
140     if (Err) {
141       consumeError(std::move(Err));
142       return make_error<CoverageMapError>(
143           coveragemap_error::decompression_failed);
144     }
145 
146     RawCoverageFilenamesReader Delegate(toStringRef(StorageBuf), Filenames,
147                                         CompilationDir);
148     return Delegate.readUncompressed(Version, NumFilenames);
149   }
150 
151   return readUncompressed(Version, NumFilenames);
152 }
153 
154 Error RawCoverageFilenamesReader::readUncompressed(CovMapVersion Version,
155                                                    uint64_t NumFilenames) {
156   // Read uncompressed filenames.
157   if (Version < CovMapVersion::Version6) {
158     for (size_t I = 0; I < NumFilenames; ++I) {
159       StringRef Filename;
160       if (auto Err = readString(Filename))
161         return Err;
162       Filenames.push_back(Filename.str());
163     }
164   } else {
165     StringRef CWD;
166     if (auto Err = readString(CWD))
167       return Err;
168     Filenames.push_back(CWD.str());
169 
170     for (size_t I = 1; I < NumFilenames; ++I) {
171       StringRef Filename;
172       if (auto Err = readString(Filename))
173         return Err;
174       if (sys::path::is_absolute(Filename)) {
175         Filenames.push_back(Filename.str());
176       } else {
177         SmallString<256> P;
178         if (!CompilationDir.empty())
179           P.assign(CompilationDir);
180         else
181           P.assign(CWD);
182         llvm::sys::path::append(P, Filename);
183         sys::path::remove_dots(P, /*remove_dot_dot=*/true);
184         Filenames.push_back(static_cast<std::string>(P.str()));
185       }
186     }
187   }
188   return Error::success();
189 }
190 
191 Error RawCoverageMappingReader::decodeCounter(unsigned Value, Counter &C) {
192   auto Tag = Value & Counter::EncodingTagMask;
193   switch (Tag) {
194   case Counter::Zero:
195     C = Counter::getZero();
196     return Error::success();
197   case Counter::CounterValueReference:
198     C = Counter::getCounter(Value >> Counter::EncodingTagBits);
199     return Error::success();
200   default:
201     break;
202   }
203   Tag -= Counter::Expression;
204   switch (Tag) {
205   case CounterExpression::Subtract:
206   case CounterExpression::Add: {
207     auto ID = Value >> Counter::EncodingTagBits;
208     if (ID >= Expressions.size())
209       return make_error<CoverageMapError>(coveragemap_error::malformed,
210                                           "counter expression is invalid");
211     Expressions[ID].Kind = CounterExpression::ExprKind(Tag);
212     C = Counter::getExpression(ID);
213     break;
214   }
215   default:
216     return make_error<CoverageMapError>(coveragemap_error::malformed,
217                                         "counter expression kind is invalid");
218   }
219   return Error::success();
220 }
221 
222 Error RawCoverageMappingReader::readCounter(Counter &C) {
223   uint64_t EncodedCounter;
224   if (auto Err =
225           readIntMax(EncodedCounter, std::numeric_limits<unsigned>::max()))
226     return Err;
227   if (auto Err = decodeCounter(EncodedCounter, C))
228     return Err;
229   return Error::success();
230 }
231 
232 static const unsigned EncodingExpansionRegionBit = 1
233                                                    << Counter::EncodingTagBits;
234 
235 /// Read the sub-array of regions for the given inferred file id.
236 /// \param NumFileIDs the number of file ids that are defined for this
237 /// function.
238 Error RawCoverageMappingReader::readMappingRegionsSubArray(
239     std::vector<CounterMappingRegion> &MappingRegions, unsigned InferredFileID,
240     size_t NumFileIDs) {
241   uint64_t NumRegions;
242   if (auto Err = readSize(NumRegions))
243     return Err;
244   unsigned LineStart = 0;
245   for (size_t I = 0; I < NumRegions; ++I) {
246     Counter C, C2;
247     uint64_t BIDX, NC;
248     // They are stored as internal values plus 1 (min is -1)
249     uint64_t ID1, TID1, FID1;
250     mcdc::Parameters Params;
251     CounterMappingRegion::RegionKind Kind = CounterMappingRegion::CodeRegion;
252 
253     // Read the combined counter + region kind.
254     uint64_t EncodedCounterAndRegion;
255     if (auto Err = readIntMax(EncodedCounterAndRegion,
256                               std::numeric_limits<unsigned>::max()))
257       return Err;
258     unsigned Tag = EncodedCounterAndRegion & Counter::EncodingTagMask;
259     uint64_t ExpandedFileID = 0;
260 
261     // If Tag does not represent a ZeroCounter, then it is understood to refer
262     // to a counter or counter expression with region kind assumed to be
263     // "CodeRegion". In that case, EncodedCounterAndRegion actually encodes the
264     // referenced counter or counter expression (and nothing else).
265     //
266     // If Tag represents a ZeroCounter and EncodingExpansionRegionBit is set,
267     // then EncodedCounterAndRegion is interpreted to represent an
268     // ExpansionRegion. In all other cases, EncodedCounterAndRegion is
269     // interpreted to refer to a specific region kind, after which additional
270     // fields may be read (e.g. BranchRegions have two encoded counters that
271     // follow an encoded region kind value).
272     if (Tag != Counter::Zero) {
273       if (auto Err = decodeCounter(EncodedCounterAndRegion, C))
274         return Err;
275     } else {
276       // Is it an expansion region?
277       if (EncodedCounterAndRegion & EncodingExpansionRegionBit) {
278         Kind = CounterMappingRegion::ExpansionRegion;
279         ExpandedFileID = EncodedCounterAndRegion >>
280                          Counter::EncodingCounterTagAndExpansionRegionTagBits;
281         if (ExpandedFileID >= NumFileIDs)
282           return make_error<CoverageMapError>(coveragemap_error::malformed,
283                                               "ExpandedFileID is invalid");
284       } else {
285         switch (EncodedCounterAndRegion >>
286                 Counter::EncodingCounterTagAndExpansionRegionTagBits) {
287         case CounterMappingRegion::CodeRegion:
288           // Don't do anything when we have a code region with a zero counter.
289           break;
290         case CounterMappingRegion::SkippedRegion:
291           Kind = CounterMappingRegion::SkippedRegion;
292           break;
293         case CounterMappingRegion::BranchRegion:
294           // For a Branch Region, read two successive counters.
295           Kind = CounterMappingRegion::BranchRegion;
296           if (auto Err = readCounter(C))
297             return Err;
298           if (auto Err = readCounter(C2))
299             return Err;
300           break;
301         case CounterMappingRegion::MCDCBranchRegion:
302           // For a MCDC Branch Region, read two successive counters and 3 IDs.
303           Kind = CounterMappingRegion::MCDCBranchRegion;
304           if (auto Err = readCounter(C))
305             return Err;
306           if (auto Err = readCounter(C2))
307             return Err;
308           if (auto Err = readIntMax(ID1, std::numeric_limits<int16_t>::max()))
309             return Err;
310           if (auto Err = readIntMax(TID1, std::numeric_limits<int16_t>::max()))
311             return Err;
312           if (auto Err = readIntMax(FID1, std::numeric_limits<int16_t>::max()))
313             return Err;
314           if (ID1 == 0)
315             return make_error<CoverageMapError>(
316                 coveragemap_error::malformed,
317                 "MCDCConditionID shouldn't be zero");
318           Params = mcdc::BranchParameters{
319               static_cast<int16_t>(static_cast<int16_t>(ID1) - 1),
320               {static_cast<int16_t>(static_cast<int16_t>(FID1) - 1),
321                static_cast<int16_t>(static_cast<int16_t>(TID1) - 1)}};
322           break;
323         case CounterMappingRegion::MCDCDecisionRegion:
324           Kind = CounterMappingRegion::MCDCDecisionRegion;
325           if (auto Err = readIntMax(BIDX, std::numeric_limits<unsigned>::max()))
326             return Err;
327           if (auto Err = readIntMax(NC, std::numeric_limits<int16_t>::max()))
328             return Err;
329           Params = mcdc::DecisionParameters{static_cast<unsigned>(BIDX),
330                                             static_cast<uint16_t>(NC)};
331           break;
332         default:
333           return make_error<CoverageMapError>(coveragemap_error::malformed,
334                                               "region kind is incorrect");
335         }
336       }
337     }
338 
339     // Read the source range.
340     uint64_t LineStartDelta, ColumnStart, NumLines, ColumnEnd;
341     if (auto Err =
342             readIntMax(LineStartDelta, std::numeric_limits<unsigned>::max()))
343       return Err;
344     if (auto Err = readULEB128(ColumnStart))
345       return Err;
346     if (ColumnStart > std::numeric_limits<unsigned>::max())
347       return make_error<CoverageMapError>(coveragemap_error::malformed,
348                                           "start column is too big");
349     if (auto Err = readIntMax(NumLines, std::numeric_limits<unsigned>::max()))
350       return Err;
351     if (auto Err = readIntMax(ColumnEnd, std::numeric_limits<unsigned>::max()))
352       return Err;
353     LineStart += LineStartDelta;
354 
355     // If the high bit of ColumnEnd is set, this is a gap region.
356     if (ColumnEnd & (1U << 31)) {
357       Kind = CounterMappingRegion::GapRegion;
358       ColumnEnd &= ~(1U << 31);
359     }
360 
361     // Adjust the column locations for the empty regions that are supposed to
362     // cover whole lines. Those regions should be encoded with the
363     // column range (1 -> std::numeric_limits<unsigned>::max()), but because
364     // the encoded std::numeric_limits<unsigned>::max() is several bytes long,
365     // we set the column range to (0 -> 0) to ensure that the column start and
366     // column end take up one byte each.
367     // The std::numeric_limits<unsigned>::max() is used to represent a column
368     // position at the end of the line without knowing the length of that line.
369     if (ColumnStart == 0 && ColumnEnd == 0) {
370       ColumnStart = 1;
371       ColumnEnd = std::numeric_limits<unsigned>::max();
372     }
373 
374     LLVM_DEBUG({
375       dbgs() << "Counter in file " << InferredFileID << " " << LineStart << ":"
376              << ColumnStart << " -> " << (LineStart + NumLines) << ":"
377              << ColumnEnd << ", ";
378       if (Kind == CounterMappingRegion::ExpansionRegion)
379         dbgs() << "Expands to file " << ExpandedFileID;
380       else
381         CounterMappingContext(Expressions).dump(C, dbgs());
382       dbgs() << "\n";
383     });
384 
385     auto CMR = CounterMappingRegion(
386         C, C2, InferredFileID, ExpandedFileID, LineStart, ColumnStart,
387         LineStart + NumLines, ColumnEnd, Kind, Params);
388     if (CMR.startLoc() > CMR.endLoc())
389       return make_error<CoverageMapError>(
390           coveragemap_error::malformed,
391           "counter mapping region locations are incorrect");
392     MappingRegions.push_back(CMR);
393   }
394   return Error::success();
395 }
396 
397 Error RawCoverageMappingReader::read() {
398   // Read the virtual file mapping.
399   SmallVector<unsigned, 8> VirtualFileMapping;
400   uint64_t NumFileMappings;
401   if (auto Err = readSize(NumFileMappings))
402     return Err;
403   for (size_t I = 0; I < NumFileMappings; ++I) {
404     uint64_t FilenameIndex;
405     if (auto Err = readIntMax(FilenameIndex, TranslationUnitFilenames.size()))
406       return Err;
407     VirtualFileMapping.push_back(FilenameIndex);
408   }
409 
410   // Construct the files using unique filenames and virtual file mapping.
411   for (auto I : VirtualFileMapping) {
412     Filenames.push_back(TranslationUnitFilenames[I]);
413   }
414 
415   // Read the expressions.
416   uint64_t NumExpressions;
417   if (auto Err = readSize(NumExpressions))
418     return Err;
419   // Create an array of dummy expressions that get the proper counters
420   // when the expressions are read, and the proper kinds when the counters
421   // are decoded.
422   Expressions.resize(
423       NumExpressions,
424       CounterExpression(CounterExpression::Subtract, Counter(), Counter()));
425   for (size_t I = 0; I < NumExpressions; ++I) {
426     if (auto Err = readCounter(Expressions[I].LHS))
427       return Err;
428     if (auto Err = readCounter(Expressions[I].RHS))
429       return Err;
430   }
431 
432   // Read the mapping regions sub-arrays.
433   for (unsigned InferredFileID = 0, S = VirtualFileMapping.size();
434        InferredFileID < S; ++InferredFileID) {
435     if (auto Err = readMappingRegionsSubArray(MappingRegions, InferredFileID,
436                                               VirtualFileMapping.size()))
437       return Err;
438   }
439 
440   // Set the counters for the expansion regions.
441   // i.e. Counter of expansion region = counter of the first region
442   // from the expanded file.
443   // Perform multiple passes to correctly propagate the counters through
444   // all the nested expansion regions.
445   SmallVector<CounterMappingRegion *, 8> FileIDExpansionRegionMapping;
446   FileIDExpansionRegionMapping.resize(VirtualFileMapping.size(), nullptr);
447   for (unsigned Pass = 1, S = VirtualFileMapping.size(); Pass < S; ++Pass) {
448     for (auto &R : MappingRegions) {
449       if (R.Kind != CounterMappingRegion::ExpansionRegion)
450         continue;
451       assert(!FileIDExpansionRegionMapping[R.ExpandedFileID]);
452       FileIDExpansionRegionMapping[R.ExpandedFileID] = &R;
453     }
454     for (auto &R : MappingRegions) {
455       if (FileIDExpansionRegionMapping[R.FileID]) {
456         FileIDExpansionRegionMapping[R.FileID]->Count = R.Count;
457         FileIDExpansionRegionMapping[R.FileID] = nullptr;
458       }
459     }
460   }
461 
462   return Error::success();
463 }
464 
465 Expected<bool> RawCoverageMappingDummyChecker::isDummy() {
466   // A dummy coverage mapping data consists of just one region with zero count.
467   uint64_t NumFileMappings;
468   if (Error Err = readSize(NumFileMappings))
469     return std::move(Err);
470   if (NumFileMappings != 1)
471     return false;
472   // We don't expect any specific value for the filename index, just skip it.
473   uint64_t FilenameIndex;
474   if (Error Err =
475           readIntMax(FilenameIndex, std::numeric_limits<unsigned>::max()))
476     return std::move(Err);
477   uint64_t NumExpressions;
478   if (Error Err = readSize(NumExpressions))
479     return std::move(Err);
480   if (NumExpressions != 0)
481     return false;
482   uint64_t NumRegions;
483   if (Error Err = readSize(NumRegions))
484     return std::move(Err);
485   if (NumRegions != 1)
486     return false;
487   uint64_t EncodedCounterAndRegion;
488   if (Error Err = readIntMax(EncodedCounterAndRegion,
489                              std::numeric_limits<unsigned>::max()))
490     return std::move(Err);
491   unsigned Tag = EncodedCounterAndRegion & Counter::EncodingTagMask;
492   return Tag == Counter::Zero;
493 }
494 
495 Error InstrProfSymtab::create(SectionRef &Section) {
496   Expected<StringRef> DataOrErr = Section.getContents();
497   if (!DataOrErr)
498     return DataOrErr.takeError();
499   Data = *DataOrErr;
500   Address = Section.getAddress();
501 
502   // If this is a linked PE/COFF file, then we have to skip over the null byte
503   // that is allocated in the .lprfn$A section in the LLVM profiling runtime.
504   // If the name section is .lprfcovnames, it doesn't have the null byte at the
505   // beginning.
506   const ObjectFile *Obj = Section.getObject();
507   if (isa<COFFObjectFile>(Obj) && !Obj->isRelocatableObject())
508     if (Expected<StringRef> NameOrErr = Section.getName())
509       if (*NameOrErr != getInstrProfSectionName(IPSK_covname, Triple::COFF))
510         Data = Data.drop_front(1);
511 
512   return Error::success();
513 }
514 
515 StringRef InstrProfSymtab::getFuncName(uint64_t Pointer, size_t Size) {
516   if (Pointer < Address)
517     return StringRef();
518   auto Offset = Pointer - Address;
519   if (Offset + Size > Data.size())
520     return StringRef();
521   return Data.substr(Pointer - Address, Size);
522 }
523 
524 // Check if the mapping data is a dummy, i.e. is emitted for an unused function.
525 static Expected<bool> isCoverageMappingDummy(uint64_t Hash, StringRef Mapping) {
526   // The hash value of dummy mapping records is always zero.
527   if (Hash)
528     return false;
529   return RawCoverageMappingDummyChecker(Mapping).isDummy();
530 }
531 
532 /// A range of filename indices. Used to specify the location of a batch of
533 /// filenames in a vector-like container.
534 struct FilenameRange {
535   unsigned StartingIndex;
536   unsigned Length;
537 
538   FilenameRange(unsigned StartingIndex, unsigned Length)
539       : StartingIndex(StartingIndex), Length(Length) {}
540 
541   void markInvalid() { Length = 0; }
542   bool isInvalid() const { return Length == 0; }
543 };
544 
545 namespace {
546 
547 /// The interface to read coverage mapping function records for a module.
548 struct CovMapFuncRecordReader {
549   virtual ~CovMapFuncRecordReader() = default;
550 
551   // Read a coverage header.
552   //
553   // \p CovBuf points to the buffer containing the \c CovHeader of the coverage
554   // mapping data associated with the module.
555   //
556   // Returns a pointer to the next \c CovHeader if it exists, or to an address
557   // greater than \p CovEnd if not.
558   virtual Expected<const char *> readCoverageHeader(const char *CovBuf,
559                                                     const char *CovBufEnd) = 0;
560 
561   // Read function records.
562   //
563   // \p FuncRecBuf points to the buffer containing a batch of function records.
564   // \p FuncRecBufEnd points past the end of the batch of records.
565   //
566   // Prior to Version4, \p OutOfLineFileRange points to a sequence of filenames
567   // associated with the function records. It is unused in Version4.
568   //
569   // Prior to Version4, \p OutOfLineMappingBuf points to a sequence of coverage
570   // mappings associated with the function records. It is unused in Version4.
571   virtual Error
572   readFunctionRecords(const char *FuncRecBuf, const char *FuncRecBufEnd,
573                       std::optional<FilenameRange> OutOfLineFileRange,
574                       const char *OutOfLineMappingBuf,
575                       const char *OutOfLineMappingBufEnd) = 0;
576 
577   template <class IntPtrT, llvm::endianness Endian>
578   static Expected<std::unique_ptr<CovMapFuncRecordReader>>
579   get(CovMapVersion Version, InstrProfSymtab &P,
580       std::vector<BinaryCoverageReader::ProfileMappingRecord> &R, StringRef D,
581       std::vector<std::string> &F);
582 };
583 
584 // A class for reading coverage mapping function records for a module.
585 template <CovMapVersion Version, class IntPtrT, llvm::endianness Endian>
586 class VersionedCovMapFuncRecordReader : public CovMapFuncRecordReader {
587   using FuncRecordType =
588       typename CovMapTraits<Version, IntPtrT>::CovMapFuncRecordType;
589   using NameRefType = typename CovMapTraits<Version, IntPtrT>::NameRefType;
590 
591   // Maps function's name references to the indexes of their records
592   // in \c Records.
593   DenseMap<NameRefType, size_t> FunctionRecords;
594   InstrProfSymtab &ProfileNames;
595   StringRef CompilationDir;
596   std::vector<std::string> &Filenames;
597   std::vector<BinaryCoverageReader::ProfileMappingRecord> &Records;
598 
599   // Maps a hash of the filenames in a TU to a \c FileRange. The range
600   // specifies the location of the hashed filenames in \c Filenames.
601   DenseMap<uint64_t, FilenameRange> FileRangeMap;
602 
603   // Add the record to the collection if we don't already have a record that
604   // points to the same function name. This is useful to ignore the redundant
605   // records for the functions with ODR linkage.
606   // In addition, prefer records with real coverage mapping data to dummy
607   // records, which were emitted for inline functions which were seen but
608   // not used in the corresponding translation unit.
609   Error insertFunctionRecordIfNeeded(const FuncRecordType *CFR,
610                                      StringRef Mapping,
611                                      FilenameRange FileRange) {
612     ++CovMapNumRecords;
613     uint64_t FuncHash = CFR->template getFuncHash<Endian>();
614     NameRefType NameRef = CFR->template getFuncNameRef<Endian>();
615     auto InsertResult =
616         FunctionRecords.insert(std::make_pair(NameRef, Records.size()));
617     if (InsertResult.second) {
618       StringRef FuncName;
619       if (Error Err = CFR->template getFuncName<Endian>(ProfileNames, FuncName))
620         return Err;
621       if (FuncName.empty())
622         return make_error<InstrProfError>(instrprof_error::malformed,
623                                           "function name is empty");
624       ++CovMapNumUsedRecords;
625       Records.emplace_back(Version, FuncName, FuncHash, Mapping,
626                            FileRange.StartingIndex, FileRange.Length);
627       return Error::success();
628     }
629     // Update the existing record if it's a dummy and the new record is real.
630     size_t OldRecordIndex = InsertResult.first->second;
631     BinaryCoverageReader::ProfileMappingRecord &OldRecord =
632         Records[OldRecordIndex];
633     Expected<bool> OldIsDummyExpected = isCoverageMappingDummy(
634         OldRecord.FunctionHash, OldRecord.CoverageMapping);
635     if (Error Err = OldIsDummyExpected.takeError())
636       return Err;
637     if (!*OldIsDummyExpected)
638       return Error::success();
639     Expected<bool> NewIsDummyExpected =
640         isCoverageMappingDummy(FuncHash, Mapping);
641     if (Error Err = NewIsDummyExpected.takeError())
642       return Err;
643     if (*NewIsDummyExpected)
644       return Error::success();
645     ++CovMapNumUsedRecords;
646     OldRecord.FunctionHash = FuncHash;
647     OldRecord.CoverageMapping = Mapping;
648     OldRecord.FilenamesBegin = FileRange.StartingIndex;
649     OldRecord.FilenamesSize = FileRange.Length;
650     return Error::success();
651   }
652 
653 public:
654   VersionedCovMapFuncRecordReader(
655       InstrProfSymtab &P,
656       std::vector<BinaryCoverageReader::ProfileMappingRecord> &R, StringRef D,
657       std::vector<std::string> &F)
658       : ProfileNames(P), CompilationDir(D), Filenames(F), Records(R) {}
659 
660   ~VersionedCovMapFuncRecordReader() override = default;
661 
662   Expected<const char *> readCoverageHeader(const char *CovBuf,
663                                             const char *CovBufEnd) override {
664     using namespace support;
665 
666     if (CovBuf + sizeof(CovMapHeader) > CovBufEnd)
667       return make_error<CoverageMapError>(
668           coveragemap_error::malformed,
669           "coverage mapping header section is larger than buffer size");
670     auto CovHeader = reinterpret_cast<const CovMapHeader *>(CovBuf);
671     uint32_t NRecords = CovHeader->getNRecords<Endian>();
672     uint32_t FilenamesSize = CovHeader->getFilenamesSize<Endian>();
673     uint32_t CoverageSize = CovHeader->getCoverageSize<Endian>();
674     assert((CovMapVersion)CovHeader->getVersion<Endian>() == Version);
675     CovBuf = reinterpret_cast<const char *>(CovHeader + 1);
676 
677     // Skip past the function records, saving the start and end for later.
678     // This is a no-op in Version4 (function records are read after all headers
679     // are read).
680     const char *FuncRecBuf = nullptr;
681     const char *FuncRecBufEnd = nullptr;
682     if (Version < CovMapVersion::Version4)
683       FuncRecBuf = CovBuf;
684     CovBuf += NRecords * sizeof(FuncRecordType);
685     if (Version < CovMapVersion::Version4)
686       FuncRecBufEnd = CovBuf;
687 
688     // Get the filenames.
689     if (CovBuf + FilenamesSize > CovBufEnd)
690       return make_error<CoverageMapError>(
691           coveragemap_error::malformed,
692           "filenames section is larger than buffer size");
693     size_t FilenamesBegin = Filenames.size();
694     StringRef FilenameRegion(CovBuf, FilenamesSize);
695     RawCoverageFilenamesReader Reader(FilenameRegion, Filenames,
696                                       CompilationDir);
697     if (auto Err = Reader.read(Version))
698       return std::move(Err);
699     CovBuf += FilenamesSize;
700     FilenameRange FileRange(FilenamesBegin, Filenames.size() - FilenamesBegin);
701 
702     if (Version >= CovMapVersion::Version4) {
703       // Map a hash of the filenames region to the filename range associated
704       // with this coverage header.
705       int64_t FilenamesRef =
706           llvm::IndexedInstrProf::ComputeHash(FilenameRegion);
707       auto Insert =
708           FileRangeMap.insert(std::make_pair(FilenamesRef, FileRange));
709       if (!Insert.second) {
710         // The same filenames ref was encountered twice. It's possible that
711         // the associated filenames are the same.
712         auto It = Filenames.begin();
713         FilenameRange &OrigRange = Insert.first->getSecond();
714         if (std::equal(It + OrigRange.StartingIndex,
715                        It + OrigRange.StartingIndex + OrigRange.Length,
716                        It + FileRange.StartingIndex,
717                        It + FileRange.StartingIndex + FileRange.Length))
718           // Map the new range to the original one.
719           FileRange = OrigRange;
720         else
721           // This is a hash collision. Mark the filenames ref invalid.
722           OrigRange.markInvalid();
723       }
724     }
725 
726     // We'll read the coverage mapping records in the loop below.
727     // This is a no-op in Version4 (coverage mappings are not affixed to the
728     // coverage header).
729     const char *MappingBuf = CovBuf;
730     if (Version >= CovMapVersion::Version4 && CoverageSize != 0)
731       return make_error<CoverageMapError>(coveragemap_error::malformed,
732                                           "coverage mapping size is not zero");
733     CovBuf += CoverageSize;
734     const char *MappingEnd = CovBuf;
735 
736     if (CovBuf > CovBufEnd)
737       return make_error<CoverageMapError>(
738           coveragemap_error::malformed,
739           "function records section is larger than buffer size");
740 
741     if (Version < CovMapVersion::Version4) {
742       // Read each function record.
743       if (Error E = readFunctionRecords(FuncRecBuf, FuncRecBufEnd, FileRange,
744                                         MappingBuf, MappingEnd))
745         return std::move(E);
746     }
747 
748     // Each coverage map has an alignment of 8, so we need to adjust alignment
749     // before reading the next map.
750     CovBuf += offsetToAlignedAddr(CovBuf, Align(8));
751 
752     return CovBuf;
753   }
754 
755   Error readFunctionRecords(const char *FuncRecBuf, const char *FuncRecBufEnd,
756                             std::optional<FilenameRange> OutOfLineFileRange,
757                             const char *OutOfLineMappingBuf,
758                             const char *OutOfLineMappingBufEnd) override {
759     auto CFR = reinterpret_cast<const FuncRecordType *>(FuncRecBuf);
760     while ((const char *)CFR < FuncRecBufEnd) {
761       // Validate the length of the coverage mapping for this function.
762       const char *NextMappingBuf;
763       const FuncRecordType *NextCFR;
764       std::tie(NextMappingBuf, NextCFR) =
765           CFR->template advanceByOne<Endian>(OutOfLineMappingBuf);
766       if (Version < CovMapVersion::Version4)
767         if (NextMappingBuf > OutOfLineMappingBufEnd)
768           return make_error<CoverageMapError>(
769               coveragemap_error::malformed,
770               "next mapping buffer is larger than buffer size");
771 
772       // Look up the set of filenames associated with this function record.
773       std::optional<FilenameRange> FileRange;
774       if (Version < CovMapVersion::Version4) {
775         FileRange = OutOfLineFileRange;
776       } else {
777         uint64_t FilenamesRef = CFR->template getFilenamesRef<Endian>();
778         auto It = FileRangeMap.find(FilenamesRef);
779         if (It == FileRangeMap.end())
780           return make_error<CoverageMapError>(
781               coveragemap_error::malformed,
782               "no filename found for function with hash=0x" +
783                   Twine::utohexstr(FilenamesRef));
784         else
785           FileRange = It->getSecond();
786       }
787 
788       // Now, read the coverage data.
789       if (FileRange && !FileRange->isInvalid()) {
790         StringRef Mapping =
791             CFR->template getCoverageMapping<Endian>(OutOfLineMappingBuf);
792         if (Version >= CovMapVersion::Version4 &&
793             Mapping.data() + Mapping.size() > FuncRecBufEnd)
794           return make_error<CoverageMapError>(
795               coveragemap_error::malformed,
796               "coverage mapping data is larger than buffer size");
797         if (Error Err = insertFunctionRecordIfNeeded(CFR, Mapping, *FileRange))
798           return Err;
799       }
800 
801       std::tie(OutOfLineMappingBuf, CFR) = std::tie(NextMappingBuf, NextCFR);
802     }
803     return Error::success();
804   }
805 };
806 
807 } // end anonymous namespace
808 
809 template <class IntPtrT, llvm::endianness Endian>
810 Expected<std::unique_ptr<CovMapFuncRecordReader>> CovMapFuncRecordReader::get(
811     CovMapVersion Version, InstrProfSymtab &P,
812     std::vector<BinaryCoverageReader::ProfileMappingRecord> &R, StringRef D,
813     std::vector<std::string> &F) {
814   using namespace coverage;
815 
816   switch (Version) {
817   case CovMapVersion::Version1:
818     return std::make_unique<VersionedCovMapFuncRecordReader<
819         CovMapVersion::Version1, IntPtrT, Endian>>(P, R, D, F);
820   case CovMapVersion::Version2:
821   case CovMapVersion::Version3:
822   case CovMapVersion::Version4:
823   case CovMapVersion::Version5:
824   case CovMapVersion::Version6:
825   case CovMapVersion::Version7:
826     // Decompress the name data.
827     if (Error E = P.create(P.getNameData()))
828       return std::move(E);
829     if (Version == CovMapVersion::Version2)
830       return std::make_unique<VersionedCovMapFuncRecordReader<
831           CovMapVersion::Version2, IntPtrT, Endian>>(P, R, D, F);
832     else if (Version == CovMapVersion::Version3)
833       return std::make_unique<VersionedCovMapFuncRecordReader<
834           CovMapVersion::Version3, IntPtrT, Endian>>(P, R, D, F);
835     else if (Version == CovMapVersion::Version4)
836       return std::make_unique<VersionedCovMapFuncRecordReader<
837           CovMapVersion::Version4, IntPtrT, Endian>>(P, R, D, F);
838     else if (Version == CovMapVersion::Version5)
839       return std::make_unique<VersionedCovMapFuncRecordReader<
840           CovMapVersion::Version5, IntPtrT, Endian>>(P, R, D, F);
841     else if (Version == CovMapVersion::Version6)
842       return std::make_unique<VersionedCovMapFuncRecordReader<
843           CovMapVersion::Version6, IntPtrT, Endian>>(P, R, D, F);
844     else if (Version == CovMapVersion::Version7)
845       return std::make_unique<VersionedCovMapFuncRecordReader<
846           CovMapVersion::Version7, IntPtrT, Endian>>(P, R, D, F);
847   }
848   llvm_unreachable("Unsupported version");
849 }
850 
851 template <typename T, llvm::endianness Endian>
852 static Error readCoverageMappingData(
853     InstrProfSymtab &ProfileNames, StringRef CovMap, StringRef FuncRecords,
854     std::vector<BinaryCoverageReader::ProfileMappingRecord> &Records,
855     StringRef CompilationDir, std::vector<std::string> &Filenames) {
856   using namespace coverage;
857 
858   // Read the records in the coverage data section.
859   auto CovHeader =
860       reinterpret_cast<const CovMapHeader *>(CovMap.data());
861   CovMapVersion Version = (CovMapVersion)CovHeader->getVersion<Endian>();
862   if (Version > CovMapVersion::CurrentVersion)
863     return make_error<CoverageMapError>(coveragemap_error::unsupported_version);
864   Expected<std::unique_ptr<CovMapFuncRecordReader>> ReaderExpected =
865       CovMapFuncRecordReader::get<T, Endian>(Version, ProfileNames, Records,
866                                              CompilationDir, Filenames);
867   if (Error E = ReaderExpected.takeError())
868     return E;
869   auto Reader = std::move(ReaderExpected.get());
870   const char *CovBuf = CovMap.data();
871   const char *CovBufEnd = CovBuf + CovMap.size();
872   const char *FuncRecBuf = FuncRecords.data();
873   const char *FuncRecBufEnd = FuncRecords.data() + FuncRecords.size();
874   while (CovBuf < CovBufEnd) {
875     // Read the current coverage header & filename data.
876     //
877     // Prior to Version4, this also reads all function records affixed to the
878     // header.
879     //
880     // Return a pointer to the next coverage header.
881     auto NextOrErr = Reader->readCoverageHeader(CovBuf, CovBufEnd);
882     if (auto E = NextOrErr.takeError())
883       return E;
884     CovBuf = NextOrErr.get();
885   }
886   // In Version4, function records are not affixed to coverage headers. Read
887   // the records from their dedicated section.
888   if (Version >= CovMapVersion::Version4)
889     return Reader->readFunctionRecords(FuncRecBuf, FuncRecBufEnd, std::nullopt,
890                                        nullptr, nullptr);
891   return Error::success();
892 }
893 
894 Expected<std::unique_ptr<BinaryCoverageReader>>
895 BinaryCoverageReader::createCoverageReaderFromBuffer(
896     StringRef Coverage, FuncRecordsStorage &&FuncRecords,
897     CoverageMapCopyStorage &&CoverageMap,
898     std::unique_ptr<InstrProfSymtab> ProfileNamesPtr, uint8_t BytesInAddress,
899     llvm::endianness Endian, StringRef CompilationDir) {
900   if (ProfileNamesPtr == nullptr)
901     return make_error<CoverageMapError>(coveragemap_error::malformed,
902                                         "Caller must provide ProfileNames");
903   std::unique_ptr<BinaryCoverageReader> Reader(
904       new BinaryCoverageReader(std::move(ProfileNamesPtr),
905                                std::move(FuncRecords), std::move(CoverageMap)));
906   InstrProfSymtab &ProfileNames = *Reader->ProfileNames;
907   StringRef FuncRecordsRef = Reader->FuncRecords->getBuffer();
908   if (BytesInAddress == 4 && Endian == llvm::endianness::little) {
909     if (Error E = readCoverageMappingData<uint32_t, llvm::endianness::little>(
910             ProfileNames, Coverage, FuncRecordsRef, Reader->MappingRecords,
911             CompilationDir, Reader->Filenames))
912       return std::move(E);
913   } else if (BytesInAddress == 4 && Endian == llvm::endianness::big) {
914     if (Error E = readCoverageMappingData<uint32_t, llvm::endianness::big>(
915             ProfileNames, Coverage, FuncRecordsRef, Reader->MappingRecords,
916             CompilationDir, Reader->Filenames))
917       return std::move(E);
918   } else if (BytesInAddress == 8 && Endian == llvm::endianness::little) {
919     if (Error E = readCoverageMappingData<uint64_t, llvm::endianness::little>(
920             ProfileNames, Coverage, FuncRecordsRef, Reader->MappingRecords,
921             CompilationDir, Reader->Filenames))
922       return std::move(E);
923   } else if (BytesInAddress == 8 && Endian == llvm::endianness::big) {
924     if (Error E = readCoverageMappingData<uint64_t, llvm::endianness::big>(
925             ProfileNames, Coverage, FuncRecordsRef, Reader->MappingRecords,
926             CompilationDir, Reader->Filenames))
927       return std::move(E);
928   } else
929     return make_error<CoverageMapError>(
930         coveragemap_error::malformed,
931         "not supported endianness or bytes in address");
932   return std::move(Reader);
933 }
934 
935 static Expected<std::unique_ptr<BinaryCoverageReader>>
936 loadTestingFormat(StringRef Data, StringRef CompilationDir) {
937   uint8_t BytesInAddress = 8;
938   llvm::endianness Endian = llvm::endianness::little;
939 
940   // Read the magic and version.
941   Data = Data.substr(sizeof(TestingFormatMagic));
942   if (Data.size() < sizeof(uint64_t))
943     return make_error<CoverageMapError>(coveragemap_error::malformed,
944                                         "the size of data is too small");
945   auto TestingVersion =
946       support::endian::byte_swap<uint64_t, llvm::endianness::little>(
947           *reinterpret_cast<const uint64_t *>(Data.data()));
948   Data = Data.substr(sizeof(uint64_t));
949 
950   // Read the ProfileNames data.
951   if (Data.empty())
952     return make_error<CoverageMapError>(coveragemap_error::truncated);
953   unsigned N = 0;
954   uint64_t ProfileNamesSize = decodeULEB128(Data.bytes_begin(), &N);
955   if (N > Data.size())
956     return make_error<CoverageMapError>(
957         coveragemap_error::malformed,
958         "the size of TestingFormatMagic is too big");
959   Data = Data.substr(N);
960   if (Data.empty())
961     return make_error<CoverageMapError>(coveragemap_error::truncated);
962   N = 0;
963   uint64_t Address = decodeULEB128(Data.bytes_begin(), &N);
964   if (N > Data.size())
965     return make_error<CoverageMapError>(coveragemap_error::malformed,
966                                         "the size of ULEB128 is too big");
967   Data = Data.substr(N);
968   if (Data.size() < ProfileNamesSize)
969     return make_error<CoverageMapError>(coveragemap_error::malformed,
970                                         "the size of ProfileNames is too big");
971   auto ProfileNames = std::make_unique<InstrProfSymtab>();
972   if (Error E = ProfileNames->create(Data.substr(0, ProfileNamesSize), Address))
973     return std::move(E);
974   Data = Data.substr(ProfileNamesSize);
975 
976   // In Version2, the size of CoverageMapping is stored directly.
977   uint64_t CoverageMappingSize;
978   if (TestingVersion == uint64_t(TestingFormatVersion::Version2)) {
979     N = 0;
980     CoverageMappingSize = decodeULEB128(Data.bytes_begin(), &N);
981     if (N > Data.size())
982       return make_error<CoverageMapError>(coveragemap_error::malformed,
983                                           "the size of ULEB128 is too big");
984     Data = Data.substr(N);
985     if (CoverageMappingSize < sizeof(CovMapHeader))
986       return make_error<CoverageMapError>(
987           coveragemap_error::malformed,
988           "the size of CoverageMapping is teoo small");
989   } else if (TestingVersion != uint64_t(TestingFormatVersion::Version1)) {
990     return make_error<CoverageMapError>(coveragemap_error::unsupported_version);
991   }
992 
993   // Skip the padding bytes because coverage map data has an alignment of 8.
994   auto Pad = offsetToAlignedAddr(Data.data(), Align(8));
995   if (Data.size() < Pad)
996     return make_error<CoverageMapError>(coveragemap_error::malformed,
997                                         "insufficient padding");
998   Data = Data.substr(Pad);
999   if (Data.size() < sizeof(CovMapHeader))
1000     return make_error<CoverageMapError>(
1001         coveragemap_error::malformed,
1002         "coverage mapping header section is larger than data size");
1003   auto const *CovHeader = reinterpret_cast<const CovMapHeader *>(
1004       Data.substr(0, sizeof(CovMapHeader)).data());
1005   auto Version =
1006       CovMapVersion(CovHeader->getVersion<llvm::endianness::little>());
1007 
1008   // In Version1, the size of CoverageMapping is calculated.
1009   if (TestingVersion == uint64_t(TestingFormatVersion::Version1)) {
1010     if (Version < CovMapVersion::Version4) {
1011       CoverageMappingSize = Data.size();
1012     } else {
1013       auto FilenamesSize =
1014           CovHeader->getFilenamesSize<llvm::endianness::little>();
1015       CoverageMappingSize = sizeof(CovMapHeader) + FilenamesSize;
1016     }
1017   }
1018 
1019   auto CoverageMapping = Data.substr(0, CoverageMappingSize);
1020   Data = Data.substr(CoverageMappingSize);
1021 
1022   // Read the CoverageRecords data.
1023   if (Version < CovMapVersion::Version4) {
1024     if (!Data.empty())
1025       return make_error<CoverageMapError>(coveragemap_error::malformed,
1026                                           "data is not empty");
1027   } else {
1028     // Skip the padding bytes because coverage records data has an alignment
1029     // of 8.
1030     Pad = offsetToAlignedAddr(Data.data(), Align(8));
1031     if (Data.size() < Pad)
1032       return make_error<CoverageMapError>(coveragemap_error::malformed,
1033                                           "insufficient padding");
1034     Data = Data.substr(Pad);
1035   }
1036   BinaryCoverageReader::FuncRecordsStorage CoverageRecords =
1037       MemoryBuffer::getMemBuffer(Data);
1038 
1039   return BinaryCoverageReader::createCoverageReaderFromBuffer(
1040       CoverageMapping, std::move(CoverageRecords), nullptr,
1041       std::move(ProfileNames), BytesInAddress, Endian, CompilationDir);
1042 }
1043 
1044 /// Find all sections that match \p IPSK name. There may be more than one if
1045 /// comdats are in use, e.g. for the __llvm_covfun section on ELF.
1046 static Expected<std::vector<SectionRef>>
1047 lookupSections(ObjectFile &OF, InstrProfSectKind IPSK) {
1048   auto ObjFormat = OF.getTripleObjectFormat();
1049   auto Name =
1050       getInstrProfSectionName(IPSK, ObjFormat, /*AddSegmentInfo=*/false);
1051   // On COFF, the object file section name may end in "$M". This tells the
1052   // linker to sort these sections between "$A" and "$Z". The linker removes the
1053   // dollar and everything after it in the final binary. Do the same to match.
1054   bool IsCOFF = isa<COFFObjectFile>(OF);
1055   auto stripSuffix = [IsCOFF](StringRef N) {
1056     return IsCOFF ? N.split('$').first : N;
1057   };
1058   Name = stripSuffix(Name);
1059 
1060   std::vector<SectionRef> Sections;
1061   for (const auto &Section : OF.sections()) {
1062     Expected<StringRef> NameOrErr = Section.getName();
1063     if (!NameOrErr)
1064       return NameOrErr.takeError();
1065     if (stripSuffix(*NameOrErr) == Name) {
1066       // Skip empty profile name section.
1067       // COFF profile name section contains two null bytes indicating the
1068       // start/end of the section. If its size is 2 bytes, it's empty.
1069       if (IPSK == IPSK_name &&
1070           (Section.getSize() == 0 || (IsCOFF && Section.getSize() == 2)))
1071         continue;
1072       Sections.push_back(Section);
1073     }
1074   }
1075   if (Sections.empty())
1076     return make_error<CoverageMapError>(coveragemap_error::no_data_found);
1077   return Sections;
1078 }
1079 
1080 static Expected<std::unique_ptr<BinaryCoverageReader>>
1081 loadBinaryFormat(std::unique_ptr<Binary> Bin, StringRef Arch,
1082                  StringRef CompilationDir = "",
1083                  object::BuildIDRef *BinaryID = nullptr) {
1084   std::unique_ptr<ObjectFile> OF;
1085   if (auto *Universal = dyn_cast<MachOUniversalBinary>(Bin.get())) {
1086     // If we have a universal binary, try to look up the object for the
1087     // appropriate architecture.
1088     auto ObjectFileOrErr = Universal->getMachOObjectForArch(Arch);
1089     if (!ObjectFileOrErr)
1090       return ObjectFileOrErr.takeError();
1091     OF = std::move(ObjectFileOrErr.get());
1092   } else if (isa<ObjectFile>(Bin.get())) {
1093     // For any other object file, upcast and take ownership.
1094     OF.reset(cast<ObjectFile>(Bin.release()));
1095     // If we've asked for a particular arch, make sure they match.
1096     if (!Arch.empty() && OF->getArch() != Triple(Arch).getArch())
1097       return errorCodeToError(object_error::arch_not_found);
1098   } else
1099     // We can only handle object files.
1100     return make_error<CoverageMapError>(coveragemap_error::malformed,
1101                                         "binary is not an object file");
1102 
1103   // The coverage uses native pointer sizes for the object it's written in.
1104   uint8_t BytesInAddress = OF->getBytesInAddress();
1105   llvm::endianness Endian =
1106       OF->isLittleEndian() ? llvm::endianness::little : llvm::endianness::big;
1107 
1108   // Look for the sections that we are interested in.
1109   auto ProfileNames = std::make_unique<InstrProfSymtab>();
1110   std::vector<SectionRef> NamesSectionRefs;
1111   // If IPSK_name is not found, fallback to search for IPK_covname, which is
1112   // used when binary correlation is enabled.
1113   auto NamesSection = lookupSections(*OF, IPSK_name);
1114   if (auto E = NamesSection.takeError()) {
1115     consumeError(std::move(E));
1116     NamesSection = lookupSections(*OF, IPSK_covname);
1117     if (auto E = NamesSection.takeError())
1118       return std::move(E);
1119   }
1120   NamesSectionRefs = *NamesSection;
1121 
1122   if (NamesSectionRefs.size() != 1)
1123     return make_error<CoverageMapError>(
1124         coveragemap_error::malformed,
1125         "the size of coverage mapping section is not one");
1126   if (Error E = ProfileNames->create(NamesSectionRefs.back()))
1127     return std::move(E);
1128 
1129   auto CoverageSection = lookupSections(*OF, IPSK_covmap);
1130   if (auto E = CoverageSection.takeError())
1131     return std::move(E);
1132   std::vector<SectionRef> CoverageSectionRefs = *CoverageSection;
1133   if (CoverageSectionRefs.size() != 1)
1134     return make_error<CoverageMapError>(coveragemap_error::malformed,
1135                                         "the size of name section is not one");
1136   auto CoverageMappingOrErr = CoverageSectionRefs.back().getContents();
1137   if (!CoverageMappingOrErr)
1138     return CoverageMappingOrErr.takeError();
1139   StringRef CoverageMapping = CoverageMappingOrErr.get();
1140 
1141   // If the coverage mapping section is not aligned to 8 bytes, copy it to a
1142   // new buffer that is. Wasm format typically has unaligned section contents
1143   // because it doesn't have a good way to insert padding bytes.
1144   std::unique_ptr<MemoryBuffer> CoverageMapCopy;
1145   if (!isAddrAligned(Align(8), CoverageMapping.data())) {
1146     CoverageMapCopy = MemoryBuffer::getMemBufferCopy(CoverageMapping);
1147     CoverageMapping = CoverageMapCopy->getBuffer();
1148   }
1149 
1150   // Look for the coverage records section (Version4 only).
1151   auto CoverageRecordsSections = lookupSections(*OF, IPSK_covfun);
1152 
1153   BinaryCoverageReader::FuncRecordsStorage FuncRecords;
1154   if (auto E = CoverageRecordsSections.takeError()) {
1155     consumeError(std::move(E));
1156     FuncRecords = MemoryBuffer::getMemBuffer("");
1157   } else {
1158     // Compute the FuncRecordsBuffer of the buffer, taking into account the
1159     // padding between each record, and making sure the first block is aligned
1160     // in memory to maintain consistency between buffer address and size
1161     // alignment.
1162     const Align RecordAlignment(8);
1163     uint64_t FuncRecordsSize = 0;
1164     for (SectionRef Section : *CoverageRecordsSections) {
1165       auto CoverageRecordsOrErr = Section.getContents();
1166       if (!CoverageRecordsOrErr)
1167         return CoverageRecordsOrErr.takeError();
1168       FuncRecordsSize += alignTo(CoverageRecordsOrErr->size(), RecordAlignment);
1169     }
1170     auto WritableBuffer =
1171         WritableMemoryBuffer::getNewUninitMemBuffer(FuncRecordsSize);
1172     char *FuncRecordsBuffer = WritableBuffer->getBufferStart();
1173     assert(isAddrAligned(RecordAlignment, FuncRecordsBuffer) &&
1174            "Allocated memory is correctly aligned");
1175 
1176     for (SectionRef Section : *CoverageRecordsSections) {
1177       auto CoverageRecordsOrErr = Section.getContents();
1178       if (!CoverageRecordsOrErr)
1179         return CoverageRecordsOrErr.takeError();
1180       const auto &CoverageRecords = CoverageRecordsOrErr.get();
1181       FuncRecordsBuffer = std::copy(CoverageRecords.begin(),
1182                                     CoverageRecords.end(), FuncRecordsBuffer);
1183       FuncRecordsBuffer =
1184           std::fill_n(FuncRecordsBuffer,
1185                       alignAddr(FuncRecordsBuffer, RecordAlignment) -
1186                           (uintptr_t)FuncRecordsBuffer,
1187                       '\0');
1188     }
1189     assert(FuncRecordsBuffer == WritableBuffer->getBufferEnd() &&
1190            "consistent init");
1191     FuncRecords = std::move(WritableBuffer);
1192   }
1193 
1194   if (BinaryID)
1195     *BinaryID = getBuildID(OF.get());
1196 
1197   return BinaryCoverageReader::createCoverageReaderFromBuffer(
1198       CoverageMapping, std::move(FuncRecords), std::move(CoverageMapCopy),
1199       std::move(ProfileNames), BytesInAddress, Endian, CompilationDir);
1200 }
1201 
1202 /// Determine whether \p Arch is invalid or empty, given \p Bin.
1203 static bool isArchSpecifierInvalidOrMissing(Binary *Bin, StringRef Arch) {
1204   // If we have a universal binary and Arch doesn't identify any of its slices,
1205   // it's user error.
1206   if (auto *Universal = dyn_cast<MachOUniversalBinary>(Bin)) {
1207     for (auto &ObjForArch : Universal->objects())
1208       if (Arch == ObjForArch.getArchFlagName())
1209         return false;
1210     return true;
1211   }
1212   return false;
1213 }
1214 
1215 Expected<std::vector<std::unique_ptr<BinaryCoverageReader>>>
1216 BinaryCoverageReader::create(
1217     MemoryBufferRef ObjectBuffer, StringRef Arch,
1218     SmallVectorImpl<std::unique_ptr<MemoryBuffer>> &ObjectFileBuffers,
1219     StringRef CompilationDir, SmallVectorImpl<object::BuildIDRef> *BinaryIDs) {
1220   std::vector<std::unique_ptr<BinaryCoverageReader>> Readers;
1221 
1222   if (ObjectBuffer.getBuffer().size() > sizeof(TestingFormatMagic)) {
1223     uint64_t Magic =
1224         support::endian::byte_swap<uint64_t, llvm::endianness::little>(
1225             *reinterpret_cast<const uint64_t *>(ObjectBuffer.getBufferStart()));
1226     if (Magic == TestingFormatMagic) {
1227       // This is a special format used for testing.
1228       auto ReaderOrErr =
1229           loadTestingFormat(ObjectBuffer.getBuffer(), CompilationDir);
1230       if (!ReaderOrErr)
1231         return ReaderOrErr.takeError();
1232       Readers.push_back(std::move(ReaderOrErr.get()));
1233       return std::move(Readers);
1234     }
1235   }
1236 
1237   auto BinOrErr = createBinary(ObjectBuffer);
1238   if (!BinOrErr)
1239     return BinOrErr.takeError();
1240   std::unique_ptr<Binary> Bin = std::move(BinOrErr.get());
1241 
1242   if (isArchSpecifierInvalidOrMissing(Bin.get(), Arch))
1243     return make_error<CoverageMapError>(
1244         coveragemap_error::invalid_or_missing_arch_specifier);
1245 
1246   // MachO universal binaries which contain archives need to be treated as
1247   // archives, not as regular binaries.
1248   if (auto *Universal = dyn_cast<MachOUniversalBinary>(Bin.get())) {
1249     for (auto &ObjForArch : Universal->objects()) {
1250       // Skip slices within the universal binary which target the wrong arch.
1251       std::string ObjArch = ObjForArch.getArchFlagName();
1252       if (Arch != ObjArch)
1253         continue;
1254 
1255       auto ArchiveOrErr = ObjForArch.getAsArchive();
1256       if (!ArchiveOrErr) {
1257         // If this is not an archive, try treating it as a regular object.
1258         consumeError(ArchiveOrErr.takeError());
1259         break;
1260       }
1261 
1262       return BinaryCoverageReader::create(
1263           ArchiveOrErr.get()->getMemoryBufferRef(), Arch, ObjectFileBuffers,
1264           CompilationDir, BinaryIDs);
1265     }
1266   }
1267 
1268   // Load coverage out of archive members.
1269   if (auto *Ar = dyn_cast<Archive>(Bin.get())) {
1270     Error Err = Error::success();
1271     for (auto &Child : Ar->children(Err)) {
1272       Expected<MemoryBufferRef> ChildBufOrErr = Child.getMemoryBufferRef();
1273       if (!ChildBufOrErr)
1274         return ChildBufOrErr.takeError();
1275 
1276       auto ChildReadersOrErr = BinaryCoverageReader::create(
1277           ChildBufOrErr.get(), Arch, ObjectFileBuffers, CompilationDir,
1278           BinaryIDs);
1279       if (!ChildReadersOrErr)
1280         return ChildReadersOrErr.takeError();
1281       for (auto &Reader : ChildReadersOrErr.get())
1282         Readers.push_back(std::move(Reader));
1283     }
1284     if (Err)
1285       return std::move(Err);
1286 
1287     // Thin archives reference object files outside of the archive file, i.e.
1288     // files which reside in memory not owned by the caller. Transfer ownership
1289     // to the caller.
1290     if (Ar->isThin())
1291       for (auto &Buffer : Ar->takeThinBuffers())
1292         ObjectFileBuffers.push_back(std::move(Buffer));
1293 
1294     return std::move(Readers);
1295   }
1296 
1297   object::BuildIDRef BinaryID;
1298   auto ReaderOrErr = loadBinaryFormat(std::move(Bin), Arch, CompilationDir,
1299                                       BinaryIDs ? &BinaryID : nullptr);
1300   if (!ReaderOrErr)
1301     return ReaderOrErr.takeError();
1302   Readers.push_back(std::move(ReaderOrErr.get()));
1303   if (!BinaryID.empty())
1304     BinaryIDs->push_back(BinaryID);
1305   return std::move(Readers);
1306 }
1307 
1308 Error BinaryCoverageReader::readNextRecord(CoverageMappingRecord &Record) {
1309   if (CurrentRecord >= MappingRecords.size())
1310     return make_error<CoverageMapError>(coveragemap_error::eof);
1311 
1312   FunctionsFilenames.clear();
1313   Expressions.clear();
1314   MappingRegions.clear();
1315   auto &R = MappingRecords[CurrentRecord];
1316   auto F = ArrayRef(Filenames).slice(R.FilenamesBegin, R.FilenamesSize);
1317   RawCoverageMappingReader Reader(R.CoverageMapping, F, FunctionsFilenames,
1318                                   Expressions, MappingRegions);
1319   if (auto Err = Reader.read())
1320     return Err;
1321 
1322   Record.FunctionName = R.FunctionName;
1323   Record.FunctionHash = R.FunctionHash;
1324   Record.Filenames = FunctionsFilenames;
1325   Record.Expressions = Expressions;
1326   Record.MappingRegions = MappingRegions;
1327 
1328   ++CurrentRecord;
1329   return Error::success();
1330 }
1331