1 //===- CoverageMapping.cpp - Code coverage mapping support ----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains support for clang's and llvm's instrumentation based 10 // code coverage. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/ProfileData/Coverage/CoverageMapping.h" 15 #include "llvm/ADT/ArrayRef.h" 16 #include "llvm/ADT/DenseMap.h" 17 #include "llvm/ADT/SmallBitVector.h" 18 #include "llvm/ADT/SmallString.h" 19 #include "llvm/ADT/SmallVector.h" 20 #include "llvm/ADT/StringExtras.h" 21 #include "llvm/ADT/StringRef.h" 22 #include "llvm/Object/BuildID.h" 23 #include "llvm/ProfileData/Coverage/CoverageMappingReader.h" 24 #include "llvm/ProfileData/InstrProfReader.h" 25 #include "llvm/Support/Debug.h" 26 #include "llvm/Support/Errc.h" 27 #include "llvm/Support/Error.h" 28 #include "llvm/Support/ErrorHandling.h" 29 #include "llvm/Support/MemoryBuffer.h" 30 #include "llvm/Support/VirtualFileSystem.h" 31 #include "llvm/Support/raw_ostream.h" 32 #include <algorithm> 33 #include <cassert> 34 #include <cstdint> 35 #include <iterator> 36 #include <map> 37 #include <memory> 38 #include <optional> 39 #include <string> 40 #include <system_error> 41 #include <utility> 42 #include <vector> 43 44 using namespace llvm; 45 using namespace coverage; 46 47 #define DEBUG_TYPE "coverage-mapping" 48 49 Counter CounterExpressionBuilder::get(const CounterExpression &E) { 50 auto It = ExpressionIndices.find(E); 51 if (It != ExpressionIndices.end()) 52 return Counter::getExpression(It->second); 53 unsigned I = Expressions.size(); 54 Expressions.push_back(E); 55 ExpressionIndices[E] = I; 56 return Counter::getExpression(I); 57 } 58 59 void CounterExpressionBuilder::extractTerms(Counter C, int Factor, 60 SmallVectorImpl<Term> &Terms) { 61 switch (C.getKind()) { 62 case Counter::Zero: 63 break; 64 case Counter::CounterValueReference: 65 Terms.emplace_back(C.getCounterID(), Factor); 66 break; 67 case Counter::Expression: 68 const auto &E = Expressions[C.getExpressionID()]; 69 extractTerms(E.LHS, Factor, Terms); 70 extractTerms( 71 E.RHS, E.Kind == CounterExpression::Subtract ? -Factor : Factor, Terms); 72 break; 73 } 74 } 75 76 Counter CounterExpressionBuilder::simplify(Counter ExpressionTree) { 77 // Gather constant terms. 78 SmallVector<Term, 32> Terms; 79 extractTerms(ExpressionTree, +1, Terms); 80 81 // If there are no terms, this is just a zero. The algorithm below assumes at 82 // least one term. 83 if (Terms.size() == 0) 84 return Counter::getZero(); 85 86 // Group the terms by counter ID. 87 llvm::sort(Terms, [](const Term &LHS, const Term &RHS) { 88 return LHS.CounterID < RHS.CounterID; 89 }); 90 91 // Combine terms by counter ID to eliminate counters that sum to zero. 92 auto Prev = Terms.begin(); 93 for (auto I = Prev + 1, E = Terms.end(); I != E; ++I) { 94 if (I->CounterID == Prev->CounterID) { 95 Prev->Factor += I->Factor; 96 continue; 97 } 98 ++Prev; 99 *Prev = *I; 100 } 101 Terms.erase(++Prev, Terms.end()); 102 103 Counter C; 104 // Create additions. We do this before subtractions to avoid constructs like 105 // ((0 - X) + Y), as opposed to (Y - X). 106 for (auto T : Terms) { 107 if (T.Factor <= 0) 108 continue; 109 for (int I = 0; I < T.Factor; ++I) 110 if (C.isZero()) 111 C = Counter::getCounter(T.CounterID); 112 else 113 C = get(CounterExpression(CounterExpression::Add, C, 114 Counter::getCounter(T.CounterID))); 115 } 116 117 // Create subtractions. 118 for (auto T : Terms) { 119 if (T.Factor >= 0) 120 continue; 121 for (int I = 0; I < -T.Factor; ++I) 122 C = get(CounterExpression(CounterExpression::Subtract, C, 123 Counter::getCounter(T.CounterID))); 124 } 125 return C; 126 } 127 128 Counter CounterExpressionBuilder::add(Counter LHS, Counter RHS, bool Simplify) { 129 auto Cnt = get(CounterExpression(CounterExpression::Add, LHS, RHS)); 130 return Simplify ? simplify(Cnt) : Cnt; 131 } 132 133 Counter CounterExpressionBuilder::subtract(Counter LHS, Counter RHS, 134 bool Simplify) { 135 auto Cnt = get(CounterExpression(CounterExpression::Subtract, LHS, RHS)); 136 return Simplify ? simplify(Cnt) : Cnt; 137 } 138 139 void CounterMappingContext::dump(const Counter &C, raw_ostream &OS) const { 140 switch (C.getKind()) { 141 case Counter::Zero: 142 OS << '0'; 143 return; 144 case Counter::CounterValueReference: 145 OS << '#' << C.getCounterID(); 146 break; 147 case Counter::Expression: { 148 if (C.getExpressionID() >= Expressions.size()) 149 return; 150 const auto &E = Expressions[C.getExpressionID()]; 151 OS << '('; 152 dump(E.LHS, OS); 153 OS << (E.Kind == CounterExpression::Subtract ? " - " : " + "); 154 dump(E.RHS, OS); 155 OS << ')'; 156 break; 157 } 158 } 159 if (CounterValues.empty()) 160 return; 161 Expected<int64_t> Value = evaluate(C); 162 if (auto E = Value.takeError()) { 163 consumeError(std::move(E)); 164 return; 165 } 166 OS << '[' << *Value << ']'; 167 } 168 169 Expected<int64_t> CounterMappingContext::evaluate(const Counter &C) const { 170 struct StackElem { 171 Counter ICounter; 172 int64_t LHS = 0; 173 enum { 174 KNeverVisited = 0, 175 KVisitedOnce = 1, 176 KVisitedTwice = 2, 177 } VisitCount = KNeverVisited; 178 }; 179 180 std::stack<StackElem> CounterStack; 181 CounterStack.push({C}); 182 183 int64_t LastPoppedValue; 184 185 while (!CounterStack.empty()) { 186 StackElem &Current = CounterStack.top(); 187 188 switch (Current.ICounter.getKind()) { 189 case Counter::Zero: 190 LastPoppedValue = 0; 191 CounterStack.pop(); 192 break; 193 case Counter::CounterValueReference: 194 if (Current.ICounter.getCounterID() >= CounterValues.size()) 195 return errorCodeToError(errc::argument_out_of_domain); 196 LastPoppedValue = CounterValues[Current.ICounter.getCounterID()]; 197 CounterStack.pop(); 198 break; 199 case Counter::Expression: { 200 if (Current.ICounter.getExpressionID() >= Expressions.size()) 201 return errorCodeToError(errc::argument_out_of_domain); 202 const auto &E = Expressions[Current.ICounter.getExpressionID()]; 203 if (Current.VisitCount == StackElem::KNeverVisited) { 204 CounterStack.push(StackElem{E.LHS}); 205 Current.VisitCount = StackElem::KVisitedOnce; 206 } else if (Current.VisitCount == StackElem::KVisitedOnce) { 207 Current.LHS = LastPoppedValue; 208 CounterStack.push(StackElem{E.RHS}); 209 Current.VisitCount = StackElem::KVisitedTwice; 210 } else { 211 int64_t LHS = Current.LHS; 212 int64_t RHS = LastPoppedValue; 213 LastPoppedValue = 214 E.Kind == CounterExpression::Subtract ? LHS - RHS : LHS + RHS; 215 CounterStack.pop(); 216 } 217 break; 218 } 219 } 220 } 221 222 return LastPoppedValue; 223 } 224 225 unsigned CounterMappingContext::getMaxCounterID(const Counter &C) const { 226 switch (C.getKind()) { 227 case Counter::Zero: 228 return 0; 229 case Counter::CounterValueReference: 230 return C.getCounterID(); 231 case Counter::Expression: { 232 if (C.getExpressionID() >= Expressions.size()) 233 return 0; 234 const auto &E = Expressions[C.getExpressionID()]; 235 return std::max(getMaxCounterID(E.LHS), getMaxCounterID(E.RHS)); 236 } 237 } 238 llvm_unreachable("Unhandled CounterKind"); 239 } 240 241 void FunctionRecordIterator::skipOtherFiles() { 242 while (Current != Records.end() && !Filename.empty() && 243 Filename != Current->Filenames[0]) 244 ++Current; 245 if (Current == Records.end()) 246 *this = FunctionRecordIterator(); 247 } 248 249 ArrayRef<unsigned> CoverageMapping::getImpreciseRecordIndicesForFilename( 250 StringRef Filename) const { 251 size_t FilenameHash = hash_value(Filename); 252 auto RecordIt = FilenameHash2RecordIndices.find(FilenameHash); 253 if (RecordIt == FilenameHash2RecordIndices.end()) 254 return {}; 255 return RecordIt->second; 256 } 257 258 static unsigned getMaxCounterID(const CounterMappingContext &Ctx, 259 const CoverageMappingRecord &Record) { 260 unsigned MaxCounterID = 0; 261 for (const auto &Region : Record.MappingRegions) { 262 MaxCounterID = std::max(MaxCounterID, Ctx.getMaxCounterID(Region.Count)); 263 } 264 return MaxCounterID; 265 } 266 267 Error CoverageMapping::loadFunctionRecord( 268 const CoverageMappingRecord &Record, 269 IndexedInstrProfReader &ProfileReader) { 270 StringRef OrigFuncName = Record.FunctionName; 271 if (OrigFuncName.empty()) 272 return make_error<CoverageMapError>(coveragemap_error::malformed, 273 "record function name is empty"); 274 275 if (Record.Filenames.empty()) 276 OrigFuncName = getFuncNameWithoutPrefix(OrigFuncName); 277 else 278 OrigFuncName = getFuncNameWithoutPrefix(OrigFuncName, Record.Filenames[0]); 279 280 CounterMappingContext Ctx(Record.Expressions); 281 282 std::vector<uint64_t> Counts; 283 if (Error E = ProfileReader.getFunctionCounts(Record.FunctionName, 284 Record.FunctionHash, Counts)) { 285 instrprof_error IPE = std::get<0>(InstrProfError::take(std::move(E))); 286 if (IPE == instrprof_error::hash_mismatch) { 287 FuncHashMismatches.emplace_back(std::string(Record.FunctionName), 288 Record.FunctionHash); 289 return Error::success(); 290 } else if (IPE != instrprof_error::unknown_function) 291 return make_error<InstrProfError>(IPE); 292 Counts.assign(getMaxCounterID(Ctx, Record) + 1, 0); 293 } 294 Ctx.setCounts(Counts); 295 296 assert(!Record.MappingRegions.empty() && "Function has no regions"); 297 298 // This coverage record is a zero region for a function that's unused in 299 // some TU, but used in a different TU. Ignore it. The coverage maps from the 300 // the other TU will either be loaded (providing full region counts) or they 301 // won't (in which case we don't unintuitively report functions as uncovered 302 // when they have non-zero counts in the profile). 303 if (Record.MappingRegions.size() == 1 && 304 Record.MappingRegions[0].Count.isZero() && Counts[0] > 0) 305 return Error::success(); 306 307 FunctionRecord Function(OrigFuncName, Record.Filenames); 308 for (const auto &Region : Record.MappingRegions) { 309 Expected<int64_t> ExecutionCount = Ctx.evaluate(Region.Count); 310 if (auto E = ExecutionCount.takeError()) { 311 consumeError(std::move(E)); 312 return Error::success(); 313 } 314 Expected<int64_t> AltExecutionCount = Ctx.evaluate(Region.FalseCount); 315 if (auto E = AltExecutionCount.takeError()) { 316 consumeError(std::move(E)); 317 return Error::success(); 318 } 319 Function.pushRegion(Region, *ExecutionCount, *AltExecutionCount); 320 } 321 322 // Don't create records for (filenames, function) pairs we've already seen. 323 auto FilenamesHash = hash_combine_range(Record.Filenames.begin(), 324 Record.Filenames.end()); 325 if (!RecordProvenance[FilenamesHash].insert(hash_value(OrigFuncName)).second) 326 return Error::success(); 327 328 Functions.push_back(std::move(Function)); 329 330 // Performance optimization: keep track of the indices of the function records 331 // which correspond to each filename. This can be used to substantially speed 332 // up queries for coverage info in a file. 333 unsigned RecordIndex = Functions.size() - 1; 334 for (StringRef Filename : Record.Filenames) { 335 auto &RecordIndices = FilenameHash2RecordIndices[hash_value(Filename)]; 336 // Note that there may be duplicates in the filename set for a function 337 // record, because of e.g. macro expansions in the function in which both 338 // the macro and the function are defined in the same file. 339 if (RecordIndices.empty() || RecordIndices.back() != RecordIndex) 340 RecordIndices.push_back(RecordIndex); 341 } 342 343 return Error::success(); 344 } 345 346 // This function is for memory optimization by shortening the lifetimes 347 // of CoverageMappingReader instances. 348 Error CoverageMapping::loadFromReaders( 349 ArrayRef<std::unique_ptr<CoverageMappingReader>> CoverageReaders, 350 IndexedInstrProfReader &ProfileReader, CoverageMapping &Coverage) { 351 for (const auto &CoverageReader : CoverageReaders) { 352 for (auto RecordOrErr : *CoverageReader) { 353 if (Error E = RecordOrErr.takeError()) 354 return E; 355 const auto &Record = *RecordOrErr; 356 if (Error E = Coverage.loadFunctionRecord(Record, ProfileReader)) 357 return E; 358 } 359 } 360 return Error::success(); 361 } 362 363 Expected<std::unique_ptr<CoverageMapping>> CoverageMapping::load( 364 ArrayRef<std::unique_ptr<CoverageMappingReader>> CoverageReaders, 365 IndexedInstrProfReader &ProfileReader) { 366 auto Coverage = std::unique_ptr<CoverageMapping>(new CoverageMapping()); 367 if (Error E = loadFromReaders(CoverageReaders, ProfileReader, *Coverage)) 368 return std::move(E); 369 return std::move(Coverage); 370 } 371 372 // If E is a no_data_found error, returns success. Otherwise returns E. 373 static Error handleMaybeNoDataFoundError(Error E) { 374 return handleErrors( 375 std::move(E), [](const CoverageMapError &CME) { 376 if (CME.get() == coveragemap_error::no_data_found) 377 return static_cast<Error>(Error::success()); 378 return make_error<CoverageMapError>(CME.get(), CME.getMessage()); 379 }); 380 } 381 382 Error CoverageMapping::loadFromFile( 383 StringRef Filename, StringRef Arch, StringRef CompilationDir, 384 IndexedInstrProfReader &ProfileReader, CoverageMapping &Coverage, 385 bool &DataFound, SmallVectorImpl<object::BuildID> *FoundBinaryIDs) { 386 auto CovMappingBufOrErr = MemoryBuffer::getFileOrSTDIN( 387 Filename, /*IsText=*/false, /*RequiresNullTerminator=*/false); 388 if (std::error_code EC = CovMappingBufOrErr.getError()) 389 return createFileError(Filename, errorCodeToError(EC)); 390 MemoryBufferRef CovMappingBufRef = 391 CovMappingBufOrErr.get()->getMemBufferRef(); 392 SmallVector<std::unique_ptr<MemoryBuffer>, 4> Buffers; 393 InstrProfSymtab &ProfSymTab = ProfileReader.getSymtab(); 394 395 SmallVector<object::BuildIDRef> BinaryIDs; 396 auto CoverageReadersOrErr = BinaryCoverageReader::create( 397 CovMappingBufRef, Arch, Buffers, ProfSymTab, 398 CompilationDir, FoundBinaryIDs ? &BinaryIDs : nullptr); 399 if (Error E = CoverageReadersOrErr.takeError()) { 400 E = handleMaybeNoDataFoundError(std::move(E)); 401 if (E) 402 return createFileError(Filename, std::move(E)); 403 return E; 404 } 405 406 SmallVector<std::unique_ptr<CoverageMappingReader>, 4> Readers; 407 for (auto &Reader : CoverageReadersOrErr.get()) 408 Readers.push_back(std::move(Reader)); 409 if (FoundBinaryIDs && !Readers.empty()) { 410 llvm::append_range(*FoundBinaryIDs, 411 llvm::map_range(BinaryIDs, [](object::BuildIDRef BID) { 412 return object::BuildID(BID); 413 })); 414 } 415 DataFound |= !Readers.empty(); 416 if (Error E = loadFromReaders(Readers, ProfileReader, Coverage)) 417 return createFileError(Filename, std::move(E)); 418 return Error::success(); 419 } 420 421 Expected<std::unique_ptr<CoverageMapping>> CoverageMapping::load( 422 ArrayRef<StringRef> ObjectFilenames, StringRef ProfileFilename, 423 vfs::FileSystem &FS, ArrayRef<StringRef> Arches, StringRef CompilationDir, 424 const object::BuildIDFetcher *BIDFetcher, bool CheckBinaryIDs) { 425 auto ProfileReaderOrErr = IndexedInstrProfReader::create(ProfileFilename, FS); 426 if (Error E = ProfileReaderOrErr.takeError()) 427 return createFileError(ProfileFilename, std::move(E)); 428 auto ProfileReader = std::move(ProfileReaderOrErr.get()); 429 auto Coverage = std::unique_ptr<CoverageMapping>(new CoverageMapping()); 430 bool DataFound = false; 431 432 auto GetArch = [&](size_t Idx) { 433 if (Arches.empty()) 434 return StringRef(); 435 if (Arches.size() == 1) 436 return Arches.front(); 437 return Arches[Idx]; 438 }; 439 440 SmallVector<object::BuildID> FoundBinaryIDs; 441 for (const auto &File : llvm::enumerate(ObjectFilenames)) { 442 if (Error E = 443 loadFromFile(File.value(), GetArch(File.index()), CompilationDir, 444 *ProfileReader, *Coverage, DataFound, &FoundBinaryIDs)) 445 return std::move(E); 446 } 447 448 if (BIDFetcher) { 449 std::vector<object::BuildID> ProfileBinaryIDs; 450 if (Error E = ProfileReader->readBinaryIds(ProfileBinaryIDs)) 451 return createFileError(ProfileFilename, std::move(E)); 452 453 SmallVector<object::BuildIDRef> BinaryIDsToFetch; 454 if (!ProfileBinaryIDs.empty()) { 455 const auto &Compare = [](object::BuildIDRef A, object::BuildIDRef B) { 456 return std::lexicographical_compare(A.begin(), A.end(), B.begin(), 457 B.end()); 458 }; 459 llvm::sort(FoundBinaryIDs, Compare); 460 std::set_difference( 461 ProfileBinaryIDs.begin(), ProfileBinaryIDs.end(), 462 FoundBinaryIDs.begin(), FoundBinaryIDs.end(), 463 std::inserter(BinaryIDsToFetch, BinaryIDsToFetch.end()), Compare); 464 } 465 466 for (object::BuildIDRef BinaryID : BinaryIDsToFetch) { 467 std::optional<std::string> PathOpt = BIDFetcher->fetch(BinaryID); 468 if (PathOpt) { 469 std::string Path = std::move(*PathOpt); 470 StringRef Arch = Arches.size() == 1 ? Arches.front() : StringRef(); 471 if (Error E = loadFromFile(Path, Arch, CompilationDir, *ProfileReader, 472 *Coverage, DataFound)) 473 return std::move(E); 474 } else if (CheckBinaryIDs) { 475 return createFileError( 476 ProfileFilename, 477 createStringError(errc::no_such_file_or_directory, 478 "Missing binary ID: " + 479 llvm::toHex(BinaryID, /*LowerCase=*/true))); 480 } 481 } 482 } 483 484 if (!DataFound) 485 return createFileError( 486 join(ObjectFilenames.begin(), ObjectFilenames.end(), ", "), 487 make_error<CoverageMapError>(coveragemap_error::no_data_found)); 488 return std::move(Coverage); 489 } 490 491 namespace { 492 493 /// Distributes functions into instantiation sets. 494 /// 495 /// An instantiation set is a collection of functions that have the same source 496 /// code, ie, template functions specializations. 497 class FunctionInstantiationSetCollector { 498 using MapT = std::map<LineColPair, std::vector<const FunctionRecord *>>; 499 MapT InstantiatedFunctions; 500 501 public: 502 void insert(const FunctionRecord &Function, unsigned FileID) { 503 auto I = Function.CountedRegions.begin(), E = Function.CountedRegions.end(); 504 while (I != E && I->FileID != FileID) 505 ++I; 506 assert(I != E && "function does not cover the given file"); 507 auto &Functions = InstantiatedFunctions[I->startLoc()]; 508 Functions.push_back(&Function); 509 } 510 511 MapT::iterator begin() { return InstantiatedFunctions.begin(); } 512 MapT::iterator end() { return InstantiatedFunctions.end(); } 513 }; 514 515 class SegmentBuilder { 516 std::vector<CoverageSegment> &Segments; 517 SmallVector<const CountedRegion *, 8> ActiveRegions; 518 519 SegmentBuilder(std::vector<CoverageSegment> &Segments) : Segments(Segments) {} 520 521 /// Emit a segment with the count from \p Region starting at \p StartLoc. 522 // 523 /// \p IsRegionEntry: The segment is at the start of a new non-gap region. 524 /// \p EmitSkippedRegion: The segment must be emitted as a skipped region. 525 void startSegment(const CountedRegion &Region, LineColPair StartLoc, 526 bool IsRegionEntry, bool EmitSkippedRegion = false) { 527 bool HasCount = !EmitSkippedRegion && 528 (Region.Kind != CounterMappingRegion::SkippedRegion); 529 530 // If the new segment wouldn't affect coverage rendering, skip it. 531 if (!Segments.empty() && !IsRegionEntry && !EmitSkippedRegion) { 532 const auto &Last = Segments.back(); 533 if (Last.HasCount == HasCount && Last.Count == Region.ExecutionCount && 534 !Last.IsRegionEntry) 535 return; 536 } 537 538 if (HasCount) 539 Segments.emplace_back(StartLoc.first, StartLoc.second, 540 Region.ExecutionCount, IsRegionEntry, 541 Region.Kind == CounterMappingRegion::GapRegion); 542 else 543 Segments.emplace_back(StartLoc.first, StartLoc.second, IsRegionEntry); 544 545 LLVM_DEBUG({ 546 const auto &Last = Segments.back(); 547 dbgs() << "Segment at " << Last.Line << ":" << Last.Col 548 << " (count = " << Last.Count << ")" 549 << (Last.IsRegionEntry ? ", RegionEntry" : "") 550 << (!Last.HasCount ? ", Skipped" : "") 551 << (Last.IsGapRegion ? ", Gap" : "") << "\n"; 552 }); 553 } 554 555 /// Emit segments for active regions which end before \p Loc. 556 /// 557 /// \p Loc: The start location of the next region. If std::nullopt, all active 558 /// regions are completed. 559 /// \p FirstCompletedRegion: Index of the first completed region. 560 void completeRegionsUntil(std::optional<LineColPair> Loc, 561 unsigned FirstCompletedRegion) { 562 // Sort the completed regions by end location. This makes it simple to 563 // emit closing segments in sorted order. 564 auto CompletedRegionsIt = ActiveRegions.begin() + FirstCompletedRegion; 565 std::stable_sort(CompletedRegionsIt, ActiveRegions.end(), 566 [](const CountedRegion *L, const CountedRegion *R) { 567 return L->endLoc() < R->endLoc(); 568 }); 569 570 // Emit segments for all completed regions. 571 for (unsigned I = FirstCompletedRegion + 1, E = ActiveRegions.size(); I < E; 572 ++I) { 573 const auto *CompletedRegion = ActiveRegions[I]; 574 assert((!Loc || CompletedRegion->endLoc() <= *Loc) && 575 "Completed region ends after start of new region"); 576 577 const auto *PrevCompletedRegion = ActiveRegions[I - 1]; 578 auto CompletedSegmentLoc = PrevCompletedRegion->endLoc(); 579 580 // Don't emit any more segments if they start where the new region begins. 581 if (Loc && CompletedSegmentLoc == *Loc) 582 break; 583 584 // Don't emit a segment if the next completed region ends at the same 585 // location as this one. 586 if (CompletedSegmentLoc == CompletedRegion->endLoc()) 587 continue; 588 589 // Use the count from the last completed region which ends at this loc. 590 for (unsigned J = I + 1; J < E; ++J) 591 if (CompletedRegion->endLoc() == ActiveRegions[J]->endLoc()) 592 CompletedRegion = ActiveRegions[J]; 593 594 startSegment(*CompletedRegion, CompletedSegmentLoc, false); 595 } 596 597 auto Last = ActiveRegions.back(); 598 if (FirstCompletedRegion && Last->endLoc() != *Loc) { 599 // If there's a gap after the end of the last completed region and the 600 // start of the new region, use the last active region to fill the gap. 601 startSegment(*ActiveRegions[FirstCompletedRegion - 1], Last->endLoc(), 602 false); 603 } else if (!FirstCompletedRegion && (!Loc || *Loc != Last->endLoc())) { 604 // Emit a skipped segment if there are no more active regions. This 605 // ensures that gaps between functions are marked correctly. 606 startSegment(*Last, Last->endLoc(), false, true); 607 } 608 609 // Pop the completed regions. 610 ActiveRegions.erase(CompletedRegionsIt, ActiveRegions.end()); 611 } 612 613 void buildSegmentsImpl(ArrayRef<CountedRegion> Regions) { 614 for (const auto &CR : enumerate(Regions)) { 615 auto CurStartLoc = CR.value().startLoc(); 616 617 // Active regions which end before the current region need to be popped. 618 auto CompletedRegions = 619 std::stable_partition(ActiveRegions.begin(), ActiveRegions.end(), 620 [&](const CountedRegion *Region) { 621 return !(Region->endLoc() <= CurStartLoc); 622 }); 623 if (CompletedRegions != ActiveRegions.end()) { 624 unsigned FirstCompletedRegion = 625 std::distance(ActiveRegions.begin(), CompletedRegions); 626 completeRegionsUntil(CurStartLoc, FirstCompletedRegion); 627 } 628 629 bool GapRegion = CR.value().Kind == CounterMappingRegion::GapRegion; 630 631 // Try to emit a segment for the current region. 632 if (CurStartLoc == CR.value().endLoc()) { 633 // Avoid making zero-length regions active. If it's the last region, 634 // emit a skipped segment. Otherwise use its predecessor's count. 635 const bool Skipped = 636 (CR.index() + 1) == Regions.size() || 637 CR.value().Kind == CounterMappingRegion::SkippedRegion; 638 startSegment(ActiveRegions.empty() ? CR.value() : *ActiveRegions.back(), 639 CurStartLoc, !GapRegion, Skipped); 640 // If it is skipped segment, create a segment with last pushed 641 // regions's count at CurStartLoc. 642 if (Skipped && !ActiveRegions.empty()) 643 startSegment(*ActiveRegions.back(), CurStartLoc, false); 644 continue; 645 } 646 if (CR.index() + 1 == Regions.size() || 647 CurStartLoc != Regions[CR.index() + 1].startLoc()) { 648 // Emit a segment if the next region doesn't start at the same location 649 // as this one. 650 startSegment(CR.value(), CurStartLoc, !GapRegion); 651 } 652 653 // This region is active (i.e not completed). 654 ActiveRegions.push_back(&CR.value()); 655 } 656 657 // Complete any remaining active regions. 658 if (!ActiveRegions.empty()) 659 completeRegionsUntil(std::nullopt, 0); 660 } 661 662 /// Sort a nested sequence of regions from a single file. 663 static void sortNestedRegions(MutableArrayRef<CountedRegion> Regions) { 664 llvm::sort(Regions, [](const CountedRegion &LHS, const CountedRegion &RHS) { 665 if (LHS.startLoc() != RHS.startLoc()) 666 return LHS.startLoc() < RHS.startLoc(); 667 if (LHS.endLoc() != RHS.endLoc()) 668 // When LHS completely contains RHS, we sort LHS first. 669 return RHS.endLoc() < LHS.endLoc(); 670 // If LHS and RHS cover the same area, we need to sort them according 671 // to their kinds so that the most suitable region will become "active" 672 // in combineRegions(). Because we accumulate counter values only from 673 // regions of the same kind as the first region of the area, prefer 674 // CodeRegion to ExpansionRegion and ExpansionRegion to SkippedRegion. 675 static_assert(CounterMappingRegion::CodeRegion < 676 CounterMappingRegion::ExpansionRegion && 677 CounterMappingRegion::ExpansionRegion < 678 CounterMappingRegion::SkippedRegion, 679 "Unexpected order of region kind values"); 680 return LHS.Kind < RHS.Kind; 681 }); 682 } 683 684 /// Combine counts of regions which cover the same area. 685 static ArrayRef<CountedRegion> 686 combineRegions(MutableArrayRef<CountedRegion> Regions) { 687 if (Regions.empty()) 688 return Regions; 689 auto Active = Regions.begin(); 690 auto End = Regions.end(); 691 for (auto I = Regions.begin() + 1; I != End; ++I) { 692 if (Active->startLoc() != I->startLoc() || 693 Active->endLoc() != I->endLoc()) { 694 // Shift to the next region. 695 ++Active; 696 if (Active != I) 697 *Active = *I; 698 continue; 699 } 700 // Merge duplicate region. 701 // If CodeRegions and ExpansionRegions cover the same area, it's probably 702 // a macro which is fully expanded to another macro. In that case, we need 703 // to accumulate counts only from CodeRegions, or else the area will be 704 // counted twice. 705 // On the other hand, a macro may have a nested macro in its body. If the 706 // outer macro is used several times, the ExpansionRegion for the nested 707 // macro will also be added several times. These ExpansionRegions cover 708 // the same source locations and have to be combined to reach the correct 709 // value for that area. 710 // We add counts of the regions of the same kind as the active region 711 // to handle the both situations. 712 if (I->Kind == Active->Kind) 713 Active->ExecutionCount += I->ExecutionCount; 714 } 715 return Regions.drop_back(std::distance(++Active, End)); 716 } 717 718 public: 719 /// Build a sorted list of CoverageSegments from a list of Regions. 720 static std::vector<CoverageSegment> 721 buildSegments(MutableArrayRef<CountedRegion> Regions) { 722 std::vector<CoverageSegment> Segments; 723 SegmentBuilder Builder(Segments); 724 725 sortNestedRegions(Regions); 726 ArrayRef<CountedRegion> CombinedRegions = combineRegions(Regions); 727 728 LLVM_DEBUG({ 729 dbgs() << "Combined regions:\n"; 730 for (const auto &CR : CombinedRegions) 731 dbgs() << " " << CR.LineStart << ":" << CR.ColumnStart << " -> " 732 << CR.LineEnd << ":" << CR.ColumnEnd 733 << " (count=" << CR.ExecutionCount << ")\n"; 734 }); 735 736 Builder.buildSegmentsImpl(CombinedRegions); 737 738 #ifndef NDEBUG 739 for (unsigned I = 1, E = Segments.size(); I < E; ++I) { 740 const auto &L = Segments[I - 1]; 741 const auto &R = Segments[I]; 742 if (!(L.Line < R.Line) && !(L.Line == R.Line && L.Col < R.Col)) { 743 if (L.Line == R.Line && L.Col == R.Col && !L.HasCount) 744 continue; 745 LLVM_DEBUG(dbgs() << " ! Segment " << L.Line << ":" << L.Col 746 << " followed by " << R.Line << ":" << R.Col << "\n"); 747 assert(false && "Coverage segments not unique or sorted"); 748 } 749 } 750 #endif 751 752 return Segments; 753 } 754 }; 755 756 } // end anonymous namespace 757 758 std::vector<StringRef> CoverageMapping::getUniqueSourceFiles() const { 759 std::vector<StringRef> Filenames; 760 for (const auto &Function : getCoveredFunctions()) 761 llvm::append_range(Filenames, Function.Filenames); 762 llvm::sort(Filenames); 763 auto Last = std::unique(Filenames.begin(), Filenames.end()); 764 Filenames.erase(Last, Filenames.end()); 765 return Filenames; 766 } 767 768 static SmallBitVector gatherFileIDs(StringRef SourceFile, 769 const FunctionRecord &Function) { 770 SmallBitVector FilenameEquivalence(Function.Filenames.size(), false); 771 for (unsigned I = 0, E = Function.Filenames.size(); I < E; ++I) 772 if (SourceFile == Function.Filenames[I]) 773 FilenameEquivalence[I] = true; 774 return FilenameEquivalence; 775 } 776 777 /// Return the ID of the file where the definition of the function is located. 778 static std::optional<unsigned> 779 findMainViewFileID(const FunctionRecord &Function) { 780 SmallBitVector IsNotExpandedFile(Function.Filenames.size(), true); 781 for (const auto &CR : Function.CountedRegions) 782 if (CR.Kind == CounterMappingRegion::ExpansionRegion) 783 IsNotExpandedFile[CR.ExpandedFileID] = false; 784 int I = IsNotExpandedFile.find_first(); 785 if (I == -1) 786 return std::nullopt; 787 return I; 788 } 789 790 /// Check if SourceFile is the file that contains the definition of 791 /// the Function. Return the ID of the file in that case or std::nullopt 792 /// otherwise. 793 static std::optional<unsigned> 794 findMainViewFileID(StringRef SourceFile, const FunctionRecord &Function) { 795 std::optional<unsigned> I = findMainViewFileID(Function); 796 if (I && SourceFile == Function.Filenames[*I]) 797 return I; 798 return std::nullopt; 799 } 800 801 static bool isExpansion(const CountedRegion &R, unsigned FileID) { 802 return R.Kind == CounterMappingRegion::ExpansionRegion && R.FileID == FileID; 803 } 804 805 CoverageData CoverageMapping::getCoverageForFile(StringRef Filename) const { 806 CoverageData FileCoverage(Filename); 807 std::vector<CountedRegion> Regions; 808 809 // Look up the function records in the given file. Due to hash collisions on 810 // the filename, we may get back some records that are not in the file. 811 ArrayRef<unsigned> RecordIndices = 812 getImpreciseRecordIndicesForFilename(Filename); 813 for (unsigned RecordIndex : RecordIndices) { 814 const FunctionRecord &Function = Functions[RecordIndex]; 815 auto MainFileID = findMainViewFileID(Filename, Function); 816 auto FileIDs = gatherFileIDs(Filename, Function); 817 for (const auto &CR : Function.CountedRegions) 818 if (FileIDs.test(CR.FileID)) { 819 Regions.push_back(CR); 820 if (MainFileID && isExpansion(CR, *MainFileID)) 821 FileCoverage.Expansions.emplace_back(CR, Function); 822 } 823 // Capture branch regions specific to the function (excluding expansions). 824 for (const auto &CR : Function.CountedBranchRegions) 825 if (FileIDs.test(CR.FileID) && (CR.FileID == CR.ExpandedFileID)) 826 FileCoverage.BranchRegions.push_back(CR); 827 } 828 829 LLVM_DEBUG(dbgs() << "Emitting segments for file: " << Filename << "\n"); 830 FileCoverage.Segments = SegmentBuilder::buildSegments(Regions); 831 832 return FileCoverage; 833 } 834 835 std::vector<InstantiationGroup> 836 CoverageMapping::getInstantiationGroups(StringRef Filename) const { 837 FunctionInstantiationSetCollector InstantiationSetCollector; 838 // Look up the function records in the given file. Due to hash collisions on 839 // the filename, we may get back some records that are not in the file. 840 ArrayRef<unsigned> RecordIndices = 841 getImpreciseRecordIndicesForFilename(Filename); 842 for (unsigned RecordIndex : RecordIndices) { 843 const FunctionRecord &Function = Functions[RecordIndex]; 844 auto MainFileID = findMainViewFileID(Filename, Function); 845 if (!MainFileID) 846 continue; 847 InstantiationSetCollector.insert(Function, *MainFileID); 848 } 849 850 std::vector<InstantiationGroup> Result; 851 for (auto &InstantiationSet : InstantiationSetCollector) { 852 InstantiationGroup IG{InstantiationSet.first.first, 853 InstantiationSet.first.second, 854 std::move(InstantiationSet.second)}; 855 Result.emplace_back(std::move(IG)); 856 } 857 return Result; 858 } 859 860 CoverageData 861 CoverageMapping::getCoverageForFunction(const FunctionRecord &Function) const { 862 auto MainFileID = findMainViewFileID(Function); 863 if (!MainFileID) 864 return CoverageData(); 865 866 CoverageData FunctionCoverage(Function.Filenames[*MainFileID]); 867 std::vector<CountedRegion> Regions; 868 for (const auto &CR : Function.CountedRegions) 869 if (CR.FileID == *MainFileID) { 870 Regions.push_back(CR); 871 if (isExpansion(CR, *MainFileID)) 872 FunctionCoverage.Expansions.emplace_back(CR, Function); 873 } 874 // Capture branch regions specific to the function (excluding expansions). 875 for (const auto &CR : Function.CountedBranchRegions) 876 if (CR.FileID == *MainFileID) 877 FunctionCoverage.BranchRegions.push_back(CR); 878 879 LLVM_DEBUG(dbgs() << "Emitting segments for function: " << Function.Name 880 << "\n"); 881 FunctionCoverage.Segments = SegmentBuilder::buildSegments(Regions); 882 883 return FunctionCoverage; 884 } 885 886 CoverageData CoverageMapping::getCoverageForExpansion( 887 const ExpansionRecord &Expansion) const { 888 CoverageData ExpansionCoverage( 889 Expansion.Function.Filenames[Expansion.FileID]); 890 std::vector<CountedRegion> Regions; 891 for (const auto &CR : Expansion.Function.CountedRegions) 892 if (CR.FileID == Expansion.FileID) { 893 Regions.push_back(CR); 894 if (isExpansion(CR, Expansion.FileID)) 895 ExpansionCoverage.Expansions.emplace_back(CR, Expansion.Function); 896 } 897 for (const auto &CR : Expansion.Function.CountedBranchRegions) 898 // Capture branch regions that only pertain to the corresponding expansion. 899 if (CR.FileID == Expansion.FileID) 900 ExpansionCoverage.BranchRegions.push_back(CR); 901 902 LLVM_DEBUG(dbgs() << "Emitting segments for expansion of file " 903 << Expansion.FileID << "\n"); 904 ExpansionCoverage.Segments = SegmentBuilder::buildSegments(Regions); 905 906 return ExpansionCoverage; 907 } 908 909 LineCoverageStats::LineCoverageStats( 910 ArrayRef<const CoverageSegment *> LineSegments, 911 const CoverageSegment *WrappedSegment, unsigned Line) 912 : ExecutionCount(0), HasMultipleRegions(false), Mapped(false), Line(Line), 913 LineSegments(LineSegments), WrappedSegment(WrappedSegment) { 914 // Find the minimum number of regions which start in this line. 915 unsigned MinRegionCount = 0; 916 auto isStartOfRegion = [](const CoverageSegment *S) { 917 return !S->IsGapRegion && S->HasCount && S->IsRegionEntry; 918 }; 919 for (unsigned I = 0; I < LineSegments.size() && MinRegionCount < 2; ++I) 920 if (isStartOfRegion(LineSegments[I])) 921 ++MinRegionCount; 922 923 bool StartOfSkippedRegion = !LineSegments.empty() && 924 !LineSegments.front()->HasCount && 925 LineSegments.front()->IsRegionEntry; 926 927 HasMultipleRegions = MinRegionCount > 1; 928 Mapped = 929 !StartOfSkippedRegion && 930 ((WrappedSegment && WrappedSegment->HasCount) || (MinRegionCount > 0)); 931 932 if (!Mapped) 933 return; 934 935 // Pick the max count from the non-gap, region entry segments and the 936 // wrapped count. 937 if (WrappedSegment) 938 ExecutionCount = WrappedSegment->Count; 939 if (!MinRegionCount) 940 return; 941 for (const auto *LS : LineSegments) 942 if (isStartOfRegion(LS)) 943 ExecutionCount = std::max(ExecutionCount, LS->Count); 944 } 945 946 LineCoverageIterator &LineCoverageIterator::operator++() { 947 if (Next == CD.end()) { 948 Stats = LineCoverageStats(); 949 Ended = true; 950 return *this; 951 } 952 if (Segments.size()) 953 WrappedSegment = Segments.back(); 954 Segments.clear(); 955 while (Next != CD.end() && Next->Line == Line) 956 Segments.push_back(&*Next++); 957 Stats = LineCoverageStats(Segments, WrappedSegment, Line); 958 ++Line; 959 return *this; 960 } 961 962 static std::string getCoverageMapErrString(coveragemap_error Err, 963 const std::string &ErrMsg = "") { 964 std::string Msg; 965 raw_string_ostream OS(Msg); 966 967 switch (Err) { 968 case coveragemap_error::success: 969 OS << "success"; 970 break; 971 case coveragemap_error::eof: 972 OS << "end of File"; 973 break; 974 case coveragemap_error::no_data_found: 975 OS << "no coverage data found"; 976 break; 977 case coveragemap_error::unsupported_version: 978 OS << "unsupported coverage format version"; 979 break; 980 case coveragemap_error::truncated: 981 OS << "truncated coverage data"; 982 break; 983 case coveragemap_error::malformed: 984 OS << "malformed coverage data"; 985 break; 986 case coveragemap_error::decompression_failed: 987 OS << "failed to decompress coverage data (zlib)"; 988 break; 989 case coveragemap_error::invalid_or_missing_arch_specifier: 990 OS << "`-arch` specifier is invalid or missing for universal binary"; 991 break; 992 } 993 994 // If optional error message is not empty, append it to the message. 995 if (!ErrMsg.empty()) 996 OS << ": " << ErrMsg; 997 998 return Msg; 999 } 1000 1001 namespace { 1002 1003 // FIXME: This class is only here to support the transition to llvm::Error. It 1004 // will be removed once this transition is complete. Clients should prefer to 1005 // deal with the Error value directly, rather than converting to error_code. 1006 class CoverageMappingErrorCategoryType : public std::error_category { 1007 const char *name() const noexcept override { return "llvm.coveragemap"; } 1008 std::string message(int IE) const override { 1009 return getCoverageMapErrString(static_cast<coveragemap_error>(IE)); 1010 } 1011 }; 1012 1013 } // end anonymous namespace 1014 1015 std::string CoverageMapError::message() const { 1016 return getCoverageMapErrString(Err, Msg); 1017 } 1018 1019 const std::error_category &llvm::coverage::coveragemap_category() { 1020 static CoverageMappingErrorCategoryType ErrorCategory; 1021 return ErrorCategory; 1022 } 1023 1024 char CoverageMapError::ID = 0; 1025