1 //===- CoverageMapping.cpp - Code coverage mapping support ----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains support for clang's and llvm's instrumentation based 10 // code coverage. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/ProfileData/Coverage/CoverageMapping.h" 15 #include "llvm/ADT/ArrayRef.h" 16 #include "llvm/ADT/DenseMap.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/SmallBitVector.h" 19 #include "llvm/ADT/SmallVector.h" 20 #include "llvm/ADT/StringExtras.h" 21 #include "llvm/ADT/StringRef.h" 22 #include "llvm/Object/BuildID.h" 23 #include "llvm/ProfileData/Coverage/CoverageMappingReader.h" 24 #include "llvm/ProfileData/InstrProfReader.h" 25 #include "llvm/Support/Debug.h" 26 #include "llvm/Support/Errc.h" 27 #include "llvm/Support/Error.h" 28 #include "llvm/Support/ErrorHandling.h" 29 #include "llvm/Support/MemoryBuffer.h" 30 #include "llvm/Support/VirtualFileSystem.h" 31 #include "llvm/Support/raw_ostream.h" 32 #include <algorithm> 33 #include <cassert> 34 #include <cmath> 35 #include <cstdint> 36 #include <iterator> 37 #include <map> 38 #include <memory> 39 #include <optional> 40 #include <string> 41 #include <system_error> 42 #include <utility> 43 #include <vector> 44 45 using namespace llvm; 46 using namespace coverage; 47 48 #define DEBUG_TYPE "coverage-mapping" 49 50 Counter CounterExpressionBuilder::get(const CounterExpression &E) { 51 auto It = ExpressionIndices.find(E); 52 if (It != ExpressionIndices.end()) 53 return Counter::getExpression(It->second); 54 unsigned I = Expressions.size(); 55 Expressions.push_back(E); 56 ExpressionIndices[E] = I; 57 return Counter::getExpression(I); 58 } 59 60 void CounterExpressionBuilder::extractTerms(Counter C, int Factor, 61 SmallVectorImpl<Term> &Terms) { 62 switch (C.getKind()) { 63 case Counter::Zero: 64 break; 65 case Counter::CounterValueReference: 66 Terms.emplace_back(C.getCounterID(), Factor); 67 break; 68 case Counter::Expression: 69 const auto &E = Expressions[C.getExpressionID()]; 70 extractTerms(E.LHS, Factor, Terms); 71 extractTerms( 72 E.RHS, E.Kind == CounterExpression::Subtract ? -Factor : Factor, Terms); 73 break; 74 } 75 } 76 77 Counter CounterExpressionBuilder::simplify(Counter ExpressionTree) { 78 // Gather constant terms. 79 SmallVector<Term, 32> Terms; 80 extractTerms(ExpressionTree, +1, Terms); 81 82 // If there are no terms, this is just a zero. The algorithm below assumes at 83 // least one term. 84 if (Terms.size() == 0) 85 return Counter::getZero(); 86 87 // Group the terms by counter ID. 88 llvm::sort(Terms, [](const Term &LHS, const Term &RHS) { 89 return LHS.CounterID < RHS.CounterID; 90 }); 91 92 // Combine terms by counter ID to eliminate counters that sum to zero. 93 auto Prev = Terms.begin(); 94 for (auto I = Prev + 1, E = Terms.end(); I != E; ++I) { 95 if (I->CounterID == Prev->CounterID) { 96 Prev->Factor += I->Factor; 97 continue; 98 } 99 ++Prev; 100 *Prev = *I; 101 } 102 Terms.erase(++Prev, Terms.end()); 103 104 Counter C; 105 // Create additions. We do this before subtractions to avoid constructs like 106 // ((0 - X) + Y), as opposed to (Y - X). 107 for (auto T : Terms) { 108 if (T.Factor <= 0) 109 continue; 110 for (int I = 0; I < T.Factor; ++I) 111 if (C.isZero()) 112 C = Counter::getCounter(T.CounterID); 113 else 114 C = get(CounterExpression(CounterExpression::Add, C, 115 Counter::getCounter(T.CounterID))); 116 } 117 118 // Create subtractions. 119 for (auto T : Terms) { 120 if (T.Factor >= 0) 121 continue; 122 for (int I = 0; I < -T.Factor; ++I) 123 C = get(CounterExpression(CounterExpression::Subtract, C, 124 Counter::getCounter(T.CounterID))); 125 } 126 return C; 127 } 128 129 Counter CounterExpressionBuilder::add(Counter LHS, Counter RHS, bool Simplify) { 130 auto Cnt = get(CounterExpression(CounterExpression::Add, LHS, RHS)); 131 return Simplify ? simplify(Cnt) : Cnt; 132 } 133 134 Counter CounterExpressionBuilder::subtract(Counter LHS, Counter RHS, 135 bool Simplify) { 136 auto Cnt = get(CounterExpression(CounterExpression::Subtract, LHS, RHS)); 137 return Simplify ? simplify(Cnt) : Cnt; 138 } 139 140 void CounterMappingContext::dump(const Counter &C, raw_ostream &OS) const { 141 switch (C.getKind()) { 142 case Counter::Zero: 143 OS << '0'; 144 return; 145 case Counter::CounterValueReference: 146 OS << '#' << C.getCounterID(); 147 break; 148 case Counter::Expression: { 149 if (C.getExpressionID() >= Expressions.size()) 150 return; 151 const auto &E = Expressions[C.getExpressionID()]; 152 OS << '('; 153 dump(E.LHS, OS); 154 OS << (E.Kind == CounterExpression::Subtract ? " - " : " + "); 155 dump(E.RHS, OS); 156 OS << ')'; 157 break; 158 } 159 } 160 if (CounterValues.empty()) 161 return; 162 Expected<int64_t> Value = evaluate(C); 163 if (auto E = Value.takeError()) { 164 consumeError(std::move(E)); 165 return; 166 } 167 OS << '[' << *Value << ']'; 168 } 169 170 Expected<int64_t> CounterMappingContext::evaluate(const Counter &C) const { 171 struct StackElem { 172 Counter ICounter; 173 int64_t LHS = 0; 174 enum { 175 KNeverVisited = 0, 176 KVisitedOnce = 1, 177 KVisitedTwice = 2, 178 } VisitCount = KNeverVisited; 179 }; 180 181 std::stack<StackElem> CounterStack; 182 CounterStack.push({C}); 183 184 int64_t LastPoppedValue; 185 186 while (!CounterStack.empty()) { 187 StackElem &Current = CounterStack.top(); 188 189 switch (Current.ICounter.getKind()) { 190 case Counter::Zero: 191 LastPoppedValue = 0; 192 CounterStack.pop(); 193 break; 194 case Counter::CounterValueReference: 195 if (Current.ICounter.getCounterID() >= CounterValues.size()) 196 return errorCodeToError(errc::argument_out_of_domain); 197 LastPoppedValue = CounterValues[Current.ICounter.getCounterID()]; 198 CounterStack.pop(); 199 break; 200 case Counter::Expression: { 201 if (Current.ICounter.getExpressionID() >= Expressions.size()) 202 return errorCodeToError(errc::argument_out_of_domain); 203 const auto &E = Expressions[Current.ICounter.getExpressionID()]; 204 if (Current.VisitCount == StackElem::KNeverVisited) { 205 CounterStack.push(StackElem{E.LHS}); 206 Current.VisitCount = StackElem::KVisitedOnce; 207 } else if (Current.VisitCount == StackElem::KVisitedOnce) { 208 Current.LHS = LastPoppedValue; 209 CounterStack.push(StackElem{E.RHS}); 210 Current.VisitCount = StackElem::KVisitedTwice; 211 } else { 212 int64_t LHS = Current.LHS; 213 int64_t RHS = LastPoppedValue; 214 LastPoppedValue = 215 E.Kind == CounterExpression::Subtract ? LHS - RHS : LHS + RHS; 216 CounterStack.pop(); 217 } 218 break; 219 } 220 } 221 } 222 223 return LastPoppedValue; 224 } 225 226 Expected<BitVector> CounterMappingContext::evaluateBitmap( 227 const CounterMappingRegion *MCDCDecision) const { 228 unsigned ID = MCDCDecision->MCDCParams.BitmapIdx; 229 unsigned NC = MCDCDecision->MCDCParams.NumConditions; 230 unsigned SizeInBits = llvm::alignTo(uint64_t(1) << NC, CHAR_BIT); 231 unsigned SizeInBytes = SizeInBits / CHAR_BIT; 232 233 assert(ID + SizeInBytes <= BitmapBytes.size() && "BitmapBytes overrun"); 234 ArrayRef<uint8_t> Bytes(&BitmapBytes[ID], SizeInBytes); 235 236 // Mask each bitmap byte into the BitVector. Go in reverse so that the 237 // bitvector can just be shifted over by one byte on each iteration. 238 BitVector Result(SizeInBits, false); 239 for (auto Byte = std::rbegin(Bytes); Byte != std::rend(Bytes); ++Byte) { 240 uint32_t Data = *Byte; 241 Result <<= CHAR_BIT; 242 Result.setBitsInMask(&Data, 1); 243 } 244 return Result; 245 } 246 247 class MCDCRecordProcessor { 248 /// A bitmap representing the executed test vectors for a boolean expression. 249 /// Each index of the bitmap corresponds to a possible test vector. An index 250 /// with a bit value of '1' indicates that the corresponding Test Vector 251 /// identified by that index was executed. 252 const BitVector &ExecutedTestVectorBitmap; 253 254 /// Decision Region to which the ExecutedTestVectorBitmap applies. 255 const CounterMappingRegion &Region; 256 257 /// Array of branch regions corresponding each conditions in the boolean 258 /// expression. 259 ArrayRef<const CounterMappingRegion *> Branches; 260 261 /// Total number of conditions in the boolean expression. 262 unsigned NumConditions; 263 264 /// Mapping of a condition ID to its corresponding branch region. 265 llvm::DenseMap<unsigned, const CounterMappingRegion *> Map; 266 267 /// Vector used to track whether a condition is constant folded. 268 MCDCRecord::BoolVector Folded; 269 270 /// Mapping of calculated MC/DC Independence Pairs for each condition. 271 MCDCRecord::TVPairMap IndependencePairs; 272 273 /// Total number of possible Test Vectors for the boolean expression. 274 MCDCRecord::TestVectors TestVectors; 275 276 /// Actual executed Test Vectors for the boolean expression, based on 277 /// ExecutedTestVectorBitmap. 278 MCDCRecord::TestVectors ExecVectors; 279 280 public: 281 MCDCRecordProcessor(const BitVector &Bitmap, 282 const CounterMappingRegion &Region, 283 ArrayRef<const CounterMappingRegion *> Branches) 284 : ExecutedTestVectorBitmap(Bitmap), Region(Region), Branches(Branches), 285 NumConditions(Region.MCDCParams.NumConditions), 286 Folded(NumConditions, false), IndependencePairs(NumConditions), 287 TestVectors((size_t)1 << NumConditions) {} 288 289 private: 290 void recordTestVector(MCDCRecord::TestVector &TV, unsigned Index, 291 MCDCRecord::CondState Result) { 292 // Copy the completed test vector to the vector of testvectors. 293 TestVectors[Index] = TV; 294 295 // The final value (T,F) is equal to the last non-dontcare state on the 296 // path (in a short-circuiting system). 297 TestVectors[Index].push_back(Result); 298 } 299 300 // Walk the binary decision diagram and try assigning both false and true to 301 // each node. When a terminal node (ID == 0) is reached, fill in the value in 302 // the truth table. 303 void buildTestVector(MCDCRecord::TestVector &TV, unsigned ID, 304 unsigned Index) { 305 const CounterMappingRegion *Branch = Map[ID]; 306 307 TV[ID - 1] = MCDCRecord::MCDC_False; 308 if (Branch->MCDCParams.FalseID > 0) 309 buildTestVector(TV, Branch->MCDCParams.FalseID, Index); 310 else 311 recordTestVector(TV, Index, MCDCRecord::MCDC_False); 312 313 Index |= 1 << (ID - 1); 314 TV[ID - 1] = MCDCRecord::MCDC_True; 315 if (Branch->MCDCParams.TrueID > 0) 316 buildTestVector(TV, Branch->MCDCParams.TrueID, Index); 317 else 318 recordTestVector(TV, Index, MCDCRecord::MCDC_True); 319 320 // Reset back to DontCare. 321 TV[ID - 1] = MCDCRecord::MCDC_DontCare; 322 } 323 324 /// Walk the bits in the bitmap. A bit set to '1' indicates that the test 325 /// vector at the corresponding index was executed during a test run. 326 void findExecutedTestVectors(const BitVector &ExecutedTestVectorBitmap) { 327 for (unsigned Idx = 0; Idx < ExecutedTestVectorBitmap.size(); ++Idx) { 328 if (ExecutedTestVectorBitmap[Idx] == 0) 329 continue; 330 assert(!TestVectors[Idx].empty() && "Test Vector doesn't exist."); 331 ExecVectors.push_back(TestVectors[Idx]); 332 } 333 } 334 335 // Find an independence pair for each condition: 336 // - The condition is true in one test and false in the other. 337 // - The decision outcome is true one test and false in the other. 338 // - All other conditions' values must be equal or marked as "don't care". 339 void findIndependencePairs() { 340 unsigned NumTVs = ExecVectors.size(); 341 for (unsigned I = 1; I < NumTVs; ++I) { 342 const MCDCRecord::TestVector &A = ExecVectors[I]; 343 for (unsigned J = 0; J < I; ++J) { 344 const MCDCRecord::TestVector &B = ExecVectors[J]; 345 // Enumerate two execution vectors whose outcomes are different. 346 if (A[NumConditions] == B[NumConditions]) 347 continue; 348 unsigned Flip = NumConditions, Idx; 349 for (Idx = 0; Idx < NumConditions; ++Idx) { 350 MCDCRecord::CondState ACond = A[Idx], BCond = B[Idx]; 351 if (ACond == BCond || ACond == MCDCRecord::MCDC_DontCare || 352 BCond == MCDCRecord::MCDC_DontCare) 353 continue; 354 if (Flip != NumConditions) 355 break; 356 Flip = Idx; 357 } 358 // If the two vectors differ in exactly one condition, ignoring DontCare 359 // conditions, we have found an independence pair. 360 if (Idx == NumConditions && Flip != NumConditions) 361 IndependencePairs.insert({Flip, std::make_pair(J + 1, I + 1)}); 362 } 363 } 364 } 365 366 public: 367 /// Process the MC/DC Record in order to produce a result for a boolean 368 /// expression. This process includes tracking the conditions that comprise 369 /// the decision region, calculating the list of all possible test vectors, 370 /// marking the executed test vectors, and then finding an Independence Pair 371 /// out of the executed test vectors for each condition in the boolean 372 /// expression. A condition is tracked to ensure that its ID can be mapped to 373 /// its ordinal position in the boolean expression. The condition's source 374 /// location is also tracked, as well as whether it is constant folded (in 375 /// which case it is excuded from the metric). 376 MCDCRecord processMCDCRecord() { 377 unsigned I = 0; 378 MCDCRecord::CondIDMap PosToID; 379 MCDCRecord::LineColPairMap CondLoc; 380 381 // Walk the Record's BranchRegions (representing Conditions) in order to: 382 // - Hash the condition based on its corresponding ID. This will be used to 383 // calculate the test vectors. 384 // - Keep a map of the condition's ordinal position (1, 2, 3, 4) to its 385 // actual ID. This will be used to visualize the conditions in the 386 // correct order. 387 // - Keep track of the condition source location. This will be used to 388 // visualize where the condition is. 389 // - Record whether the condition is constant folded so that we exclude it 390 // from being measured. 391 for (const auto *B : Branches) { 392 Map[B->MCDCParams.ID] = B; 393 PosToID[I] = B->MCDCParams.ID - 1; 394 CondLoc[I] = B->startLoc(); 395 Folded[I++] = (B->Count.isZero() && B->FalseCount.isZero()); 396 } 397 398 // Walk the binary decision diagram to enumerate all possible test vectors. 399 // We start at the root node (ID == 1) with all values being DontCare. 400 // `Index` encodes the bitmask of true values and is initially 0. 401 MCDCRecord::TestVector TV(NumConditions, MCDCRecord::MCDC_DontCare); 402 buildTestVector(TV, 1, 0); 403 404 // Using Profile Bitmap from runtime, mark the executed test vectors. 405 findExecutedTestVectors(ExecutedTestVectorBitmap); 406 407 // Compare executed test vectors against each other to find an independence 408 // pairs for each condition. This processing takes the most time. 409 findIndependencePairs(); 410 411 // Record Test vectors, executed vectors, and independence pairs. 412 MCDCRecord Res(Region, ExecVectors, IndependencePairs, Folded, PosToID, 413 CondLoc); 414 return Res; 415 } 416 }; 417 418 Expected<MCDCRecord> CounterMappingContext::evaluateMCDCRegion( 419 const CounterMappingRegion &Region, 420 const BitVector &ExecutedTestVectorBitmap, 421 ArrayRef<const CounterMappingRegion *> Branches) { 422 423 MCDCRecordProcessor MCDCProcessor(ExecutedTestVectorBitmap, Region, Branches); 424 return MCDCProcessor.processMCDCRecord(); 425 } 426 427 unsigned CounterMappingContext::getMaxCounterID(const Counter &C) const { 428 struct StackElem { 429 Counter ICounter; 430 int64_t LHS = 0; 431 enum { 432 KNeverVisited = 0, 433 KVisitedOnce = 1, 434 KVisitedTwice = 2, 435 } VisitCount = KNeverVisited; 436 }; 437 438 std::stack<StackElem> CounterStack; 439 CounterStack.push({C}); 440 441 int64_t LastPoppedValue; 442 443 while (!CounterStack.empty()) { 444 StackElem &Current = CounterStack.top(); 445 446 switch (Current.ICounter.getKind()) { 447 case Counter::Zero: 448 LastPoppedValue = 0; 449 CounterStack.pop(); 450 break; 451 case Counter::CounterValueReference: 452 LastPoppedValue = Current.ICounter.getCounterID(); 453 CounterStack.pop(); 454 break; 455 case Counter::Expression: { 456 if (Current.ICounter.getExpressionID() >= Expressions.size()) { 457 LastPoppedValue = 0; 458 CounterStack.pop(); 459 } else { 460 const auto &E = Expressions[Current.ICounter.getExpressionID()]; 461 if (Current.VisitCount == StackElem::KNeverVisited) { 462 CounterStack.push(StackElem{E.LHS}); 463 Current.VisitCount = StackElem::KVisitedOnce; 464 } else if (Current.VisitCount == StackElem::KVisitedOnce) { 465 Current.LHS = LastPoppedValue; 466 CounterStack.push(StackElem{E.RHS}); 467 Current.VisitCount = StackElem::KVisitedTwice; 468 } else { 469 int64_t LHS = Current.LHS; 470 int64_t RHS = LastPoppedValue; 471 LastPoppedValue = std::max(LHS, RHS); 472 CounterStack.pop(); 473 } 474 } 475 break; 476 } 477 } 478 } 479 480 return LastPoppedValue; 481 } 482 483 void FunctionRecordIterator::skipOtherFiles() { 484 while (Current != Records.end() && !Filename.empty() && 485 Filename != Current->Filenames[0]) 486 ++Current; 487 if (Current == Records.end()) 488 *this = FunctionRecordIterator(); 489 } 490 491 ArrayRef<unsigned> CoverageMapping::getImpreciseRecordIndicesForFilename( 492 StringRef Filename) const { 493 size_t FilenameHash = hash_value(Filename); 494 auto RecordIt = FilenameHash2RecordIndices.find(FilenameHash); 495 if (RecordIt == FilenameHash2RecordIndices.end()) 496 return {}; 497 return RecordIt->second; 498 } 499 500 static unsigned getMaxCounterID(const CounterMappingContext &Ctx, 501 const CoverageMappingRecord &Record) { 502 unsigned MaxCounterID = 0; 503 for (const auto &Region : Record.MappingRegions) { 504 MaxCounterID = std::max(MaxCounterID, Ctx.getMaxCounterID(Region.Count)); 505 } 506 return MaxCounterID; 507 } 508 509 static unsigned getMaxBitmapSize(const CounterMappingContext &Ctx, 510 const CoverageMappingRecord &Record) { 511 unsigned MaxBitmapID = 0; 512 unsigned NumConditions = 0; 513 // Scan max(BitmapIdx). 514 // Note that `<=` is used insted of `<`, because `BitmapIdx == 0` is valid 515 // and `MaxBitmapID is `unsigned`. `BitmapIdx` is unique in the record. 516 for (const auto &Region : reverse(Record.MappingRegions)) { 517 if (Region.Kind == CounterMappingRegion::MCDCDecisionRegion && 518 MaxBitmapID <= Region.MCDCParams.BitmapIdx) { 519 MaxBitmapID = Region.MCDCParams.BitmapIdx; 520 NumConditions = Region.MCDCParams.NumConditions; 521 } 522 } 523 unsigned SizeInBits = llvm::alignTo(uint64_t(1) << NumConditions, CHAR_BIT); 524 return MaxBitmapID + (SizeInBits / CHAR_BIT); 525 } 526 527 namespace { 528 529 /// Collect Decisions, Branchs, and Expansions and associate them. 530 class MCDCDecisionRecorder { 531 private: 532 /// This holds the DecisionRegion and MCDCBranches under it. 533 /// Also traverses Expansion(s). 534 /// The Decision has the number of MCDCBranches and will complete 535 /// when it is filled with unique ConditionID of MCDCBranches. 536 struct DecisionRecord { 537 const CounterMappingRegion *DecisionRegion; 538 539 /// They are reflected from DecisionRegion for convenience. 540 LineColPair DecisionStartLoc; 541 LineColPair DecisionEndLoc; 542 543 /// This is passed to `MCDCRecordProcessor`, so this should be compatible 544 /// to`ArrayRef<const CounterMappingRegion *>`. 545 SmallVector<const CounterMappingRegion *> MCDCBranches; 546 547 /// IDs that are stored in MCDCBranches 548 /// Complete when all IDs (1 to NumConditions) are met. 549 DenseSet<CounterMappingRegion::MCDCConditionID> ConditionIDs; 550 551 /// Set of IDs of Expansion(s) that are relevant to DecisionRegion 552 /// and its children (via expansions). 553 /// FileID pointed by ExpandedFileID is dedicated to the expansion, so 554 /// the location in the expansion doesn't matter. 555 DenseSet<unsigned> ExpandedFileIDs; 556 557 DecisionRecord(const CounterMappingRegion &Decision) 558 : DecisionRegion(&Decision), DecisionStartLoc(Decision.startLoc()), 559 DecisionEndLoc(Decision.endLoc()) { 560 assert(Decision.Kind == CounterMappingRegion::MCDCDecisionRegion); 561 } 562 563 /// Determine whether DecisionRecord dominates `R`. 564 bool dominates(const CounterMappingRegion &R) const { 565 // Determine whether `R` is included in `DecisionRegion`. 566 if (R.FileID == DecisionRegion->FileID && 567 R.startLoc() >= DecisionStartLoc && R.endLoc() <= DecisionEndLoc) 568 return true; 569 570 // Determine whether `R` is pointed by any of Expansions. 571 return ExpandedFileIDs.contains(R.FileID); 572 } 573 574 enum Result { 575 NotProcessed = 0, /// Irrelevant to this Decision 576 Processed, /// Added to this Decision 577 Completed, /// Added and filled this Decision 578 }; 579 580 /// Add Branch into the Decision 581 /// \param Branch expects MCDCBranchRegion 582 /// \returns NotProcessed/Processed/Completed 583 Result addBranch(const CounterMappingRegion &Branch) { 584 assert(Branch.Kind == CounterMappingRegion::MCDCBranchRegion); 585 586 auto ConditionID = Branch.MCDCParams.ID; 587 assert(ConditionID > 0 && "ConditionID should begin with 1"); 588 589 if (ConditionIDs.contains(ConditionID) || 590 ConditionID > DecisionRegion->MCDCParams.NumConditions) 591 return NotProcessed; 592 593 if (!this->dominates(Branch)) 594 return NotProcessed; 595 596 assert(MCDCBranches.size() < DecisionRegion->MCDCParams.NumConditions); 597 598 // Put `ID=1` in front of `MCDCBranches` for convenience 599 // even if `MCDCBranches` is not topological. 600 if (ConditionID == 1) 601 MCDCBranches.insert(MCDCBranches.begin(), &Branch); 602 else 603 MCDCBranches.push_back(&Branch); 604 605 // Mark `ID` as `assigned`. 606 ConditionIDs.insert(ConditionID); 607 608 // `Completed` when `MCDCBranches` is full 609 return (MCDCBranches.size() == DecisionRegion->MCDCParams.NumConditions 610 ? Completed 611 : Processed); 612 } 613 614 /// Record Expansion if it is relevant to this Decision. 615 /// Each `Expansion` may nest. 616 /// \returns true if recorded. 617 bool recordExpansion(const CounterMappingRegion &Expansion) { 618 if (!this->dominates(Expansion)) 619 return false; 620 621 ExpandedFileIDs.insert(Expansion.ExpandedFileID); 622 return true; 623 } 624 }; 625 626 private: 627 /// Decisions in progress 628 /// DecisionRecord is added for each MCDCDecisionRegion. 629 /// DecisionRecord is removed when Decision is completed. 630 SmallVector<DecisionRecord> Decisions; 631 632 public: 633 ~MCDCDecisionRecorder() { 634 assert(Decisions.empty() && "All Decisions have not been resolved"); 635 } 636 637 /// Register Region and start recording. 638 void registerDecision(const CounterMappingRegion &Decision) { 639 Decisions.emplace_back(Decision); 640 } 641 642 void recordExpansion(const CounterMappingRegion &Expansion) { 643 any_of(Decisions, [&Expansion](auto &Decision) { 644 return Decision.recordExpansion(Expansion); 645 }); 646 } 647 648 using DecisionAndBranches = 649 std::pair<const CounterMappingRegion *, /// Decision 650 SmallVector<const CounterMappingRegion *> /// Branches 651 >; 652 653 /// Add MCDCBranchRegion to DecisionRecord. 654 /// \param Branch to be processed 655 /// \returns DecisionsAndBranches if DecisionRecord completed. 656 /// Or returns nullopt. 657 std::optional<DecisionAndBranches> 658 processBranch(const CounterMappingRegion &Branch) { 659 // Seek each Decision and apply Region to it. 660 for (auto DecisionIter = Decisions.begin(), DecisionEnd = Decisions.end(); 661 DecisionIter != DecisionEnd; ++DecisionIter) 662 switch (DecisionIter->addBranch(Branch)) { 663 case DecisionRecord::NotProcessed: 664 continue; 665 case DecisionRecord::Processed: 666 return std::nullopt; 667 case DecisionRecord::Completed: 668 DecisionAndBranches Result = 669 std::make_pair(DecisionIter->DecisionRegion, 670 std::move(DecisionIter->MCDCBranches)); 671 Decisions.erase(DecisionIter); // No longer used. 672 return Result; 673 } 674 675 llvm_unreachable("Branch not found in Decisions"); 676 } 677 }; 678 679 } // namespace 680 681 Error CoverageMapping::loadFunctionRecord( 682 const CoverageMappingRecord &Record, 683 IndexedInstrProfReader &ProfileReader) { 684 StringRef OrigFuncName = Record.FunctionName; 685 if (OrigFuncName.empty()) 686 return make_error<CoverageMapError>(coveragemap_error::malformed, 687 "record function name is empty"); 688 689 if (Record.Filenames.empty()) 690 OrigFuncName = getFuncNameWithoutPrefix(OrigFuncName); 691 else 692 OrigFuncName = getFuncNameWithoutPrefix(OrigFuncName, Record.Filenames[0]); 693 694 CounterMappingContext Ctx(Record.Expressions); 695 696 std::vector<uint64_t> Counts; 697 if (Error E = ProfileReader.getFunctionCounts(Record.FunctionName, 698 Record.FunctionHash, Counts)) { 699 instrprof_error IPE = std::get<0>(InstrProfError::take(std::move(E))); 700 if (IPE == instrprof_error::hash_mismatch) { 701 FuncHashMismatches.emplace_back(std::string(Record.FunctionName), 702 Record.FunctionHash); 703 return Error::success(); 704 } 705 if (IPE != instrprof_error::unknown_function) 706 return make_error<InstrProfError>(IPE); 707 Counts.assign(getMaxCounterID(Ctx, Record) + 1, 0); 708 } 709 Ctx.setCounts(Counts); 710 711 std::vector<uint8_t> BitmapBytes; 712 if (Error E = ProfileReader.getFunctionBitmapBytes( 713 Record.FunctionName, Record.FunctionHash, BitmapBytes)) { 714 instrprof_error IPE = std::get<0>(InstrProfError::take(std::move(E))); 715 if (IPE == instrprof_error::hash_mismatch) { 716 FuncHashMismatches.emplace_back(std::string(Record.FunctionName), 717 Record.FunctionHash); 718 return Error::success(); 719 } 720 if (IPE != instrprof_error::unknown_function) 721 return make_error<InstrProfError>(IPE); 722 BitmapBytes.assign(getMaxBitmapSize(Ctx, Record) + 1, 0); 723 } 724 Ctx.setBitmapBytes(BitmapBytes); 725 726 assert(!Record.MappingRegions.empty() && "Function has no regions"); 727 728 // This coverage record is a zero region for a function that's unused in 729 // some TU, but used in a different TU. Ignore it. The coverage maps from the 730 // the other TU will either be loaded (providing full region counts) or they 731 // won't (in which case we don't unintuitively report functions as uncovered 732 // when they have non-zero counts in the profile). 733 if (Record.MappingRegions.size() == 1 && 734 Record.MappingRegions[0].Count.isZero() && Counts[0] > 0) 735 return Error::success(); 736 737 MCDCDecisionRecorder MCDCDecisions; 738 FunctionRecord Function(OrigFuncName, Record.Filenames); 739 for (const auto &Region : Record.MappingRegions) { 740 // MCDCDecisionRegion should be handled first since it overlaps with 741 // others inside. 742 if (Region.Kind == CounterMappingRegion::MCDCDecisionRegion) { 743 MCDCDecisions.registerDecision(Region); 744 continue; 745 } 746 Expected<int64_t> ExecutionCount = Ctx.evaluate(Region.Count); 747 if (auto E = ExecutionCount.takeError()) { 748 consumeError(std::move(E)); 749 return Error::success(); 750 } 751 Expected<int64_t> AltExecutionCount = Ctx.evaluate(Region.FalseCount); 752 if (auto E = AltExecutionCount.takeError()) { 753 consumeError(std::move(E)); 754 return Error::success(); 755 } 756 Function.pushRegion(Region, *ExecutionCount, *AltExecutionCount); 757 758 // Record ExpansionRegion. 759 if (Region.Kind == CounterMappingRegion::ExpansionRegion) { 760 MCDCDecisions.recordExpansion(Region); 761 continue; 762 } 763 764 // Do nothing unless MCDCBranchRegion. 765 if (Region.Kind != CounterMappingRegion::MCDCBranchRegion) 766 continue; 767 768 auto Result = MCDCDecisions.processBranch(Region); 769 if (!Result) // Any Decision doesn't complete. 770 continue; 771 772 auto MCDCDecision = Result->first; 773 auto &MCDCBranches = Result->second; 774 775 // Evaluating the test vector bitmap for the decision region entails 776 // calculating precisely what bits are pertinent to this region alone. 777 // This is calculated based on the recorded offset into the global 778 // profile bitmap; the length is calculated based on the recorded 779 // number of conditions. 780 Expected<BitVector> ExecutedTestVectorBitmap = 781 Ctx.evaluateBitmap(MCDCDecision); 782 if (auto E = ExecutedTestVectorBitmap.takeError()) { 783 consumeError(std::move(E)); 784 return Error::success(); 785 } 786 787 // Since the bitmap identifies the executed test vectors for an MC/DC 788 // DecisionRegion, all of the information is now available to process. 789 // This is where the bulk of the MC/DC progressing takes place. 790 Expected<MCDCRecord> Record = Ctx.evaluateMCDCRegion( 791 *MCDCDecision, *ExecutedTestVectorBitmap, MCDCBranches); 792 if (auto E = Record.takeError()) { 793 consumeError(std::move(E)); 794 return Error::success(); 795 } 796 797 // Save the MC/DC Record so that it can be visualized later. 798 Function.pushMCDCRecord(*Record); 799 } 800 801 // Don't create records for (filenames, function) pairs we've already seen. 802 auto FilenamesHash = hash_combine_range(Record.Filenames.begin(), 803 Record.Filenames.end()); 804 if (!RecordProvenance[FilenamesHash].insert(hash_value(OrigFuncName)).second) 805 return Error::success(); 806 807 Functions.push_back(std::move(Function)); 808 809 // Performance optimization: keep track of the indices of the function records 810 // which correspond to each filename. This can be used to substantially speed 811 // up queries for coverage info in a file. 812 unsigned RecordIndex = Functions.size() - 1; 813 for (StringRef Filename : Record.Filenames) { 814 auto &RecordIndices = FilenameHash2RecordIndices[hash_value(Filename)]; 815 // Note that there may be duplicates in the filename set for a function 816 // record, because of e.g. macro expansions in the function in which both 817 // the macro and the function are defined in the same file. 818 if (RecordIndices.empty() || RecordIndices.back() != RecordIndex) 819 RecordIndices.push_back(RecordIndex); 820 } 821 822 return Error::success(); 823 } 824 825 // This function is for memory optimization by shortening the lifetimes 826 // of CoverageMappingReader instances. 827 Error CoverageMapping::loadFromReaders( 828 ArrayRef<std::unique_ptr<CoverageMappingReader>> CoverageReaders, 829 IndexedInstrProfReader &ProfileReader, CoverageMapping &Coverage) { 830 for (const auto &CoverageReader : CoverageReaders) { 831 for (auto RecordOrErr : *CoverageReader) { 832 if (Error E = RecordOrErr.takeError()) 833 return E; 834 const auto &Record = *RecordOrErr; 835 if (Error E = Coverage.loadFunctionRecord(Record, ProfileReader)) 836 return E; 837 } 838 } 839 return Error::success(); 840 } 841 842 Expected<std::unique_ptr<CoverageMapping>> CoverageMapping::load( 843 ArrayRef<std::unique_ptr<CoverageMappingReader>> CoverageReaders, 844 IndexedInstrProfReader &ProfileReader) { 845 auto Coverage = std::unique_ptr<CoverageMapping>(new CoverageMapping()); 846 if (Error E = loadFromReaders(CoverageReaders, ProfileReader, *Coverage)) 847 return std::move(E); 848 return std::move(Coverage); 849 } 850 851 // If E is a no_data_found error, returns success. Otherwise returns E. 852 static Error handleMaybeNoDataFoundError(Error E) { 853 return handleErrors( 854 std::move(E), [](const CoverageMapError &CME) { 855 if (CME.get() == coveragemap_error::no_data_found) 856 return static_cast<Error>(Error::success()); 857 return make_error<CoverageMapError>(CME.get(), CME.getMessage()); 858 }); 859 } 860 861 Error CoverageMapping::loadFromFile( 862 StringRef Filename, StringRef Arch, StringRef CompilationDir, 863 IndexedInstrProfReader &ProfileReader, CoverageMapping &Coverage, 864 bool &DataFound, SmallVectorImpl<object::BuildID> *FoundBinaryIDs) { 865 auto CovMappingBufOrErr = MemoryBuffer::getFileOrSTDIN( 866 Filename, /*IsText=*/false, /*RequiresNullTerminator=*/false); 867 if (std::error_code EC = CovMappingBufOrErr.getError()) 868 return createFileError(Filename, errorCodeToError(EC)); 869 MemoryBufferRef CovMappingBufRef = 870 CovMappingBufOrErr.get()->getMemBufferRef(); 871 SmallVector<std::unique_ptr<MemoryBuffer>, 4> Buffers; 872 873 SmallVector<object::BuildIDRef> BinaryIDs; 874 auto CoverageReadersOrErr = BinaryCoverageReader::create( 875 CovMappingBufRef, Arch, Buffers, CompilationDir, 876 FoundBinaryIDs ? &BinaryIDs : nullptr); 877 if (Error E = CoverageReadersOrErr.takeError()) { 878 E = handleMaybeNoDataFoundError(std::move(E)); 879 if (E) 880 return createFileError(Filename, std::move(E)); 881 return E; 882 } 883 884 SmallVector<std::unique_ptr<CoverageMappingReader>, 4> Readers; 885 for (auto &Reader : CoverageReadersOrErr.get()) 886 Readers.push_back(std::move(Reader)); 887 if (FoundBinaryIDs && !Readers.empty()) { 888 llvm::append_range(*FoundBinaryIDs, 889 llvm::map_range(BinaryIDs, [](object::BuildIDRef BID) { 890 return object::BuildID(BID); 891 })); 892 } 893 DataFound |= !Readers.empty(); 894 if (Error E = loadFromReaders(Readers, ProfileReader, Coverage)) 895 return createFileError(Filename, std::move(E)); 896 return Error::success(); 897 } 898 899 Expected<std::unique_ptr<CoverageMapping>> CoverageMapping::load( 900 ArrayRef<StringRef> ObjectFilenames, StringRef ProfileFilename, 901 vfs::FileSystem &FS, ArrayRef<StringRef> Arches, StringRef CompilationDir, 902 const object::BuildIDFetcher *BIDFetcher, bool CheckBinaryIDs) { 903 auto ProfileReaderOrErr = IndexedInstrProfReader::create(ProfileFilename, FS); 904 if (Error E = ProfileReaderOrErr.takeError()) 905 return createFileError(ProfileFilename, std::move(E)); 906 auto ProfileReader = std::move(ProfileReaderOrErr.get()); 907 auto Coverage = std::unique_ptr<CoverageMapping>(new CoverageMapping()); 908 bool DataFound = false; 909 910 auto GetArch = [&](size_t Idx) { 911 if (Arches.empty()) 912 return StringRef(); 913 if (Arches.size() == 1) 914 return Arches.front(); 915 return Arches[Idx]; 916 }; 917 918 SmallVector<object::BuildID> FoundBinaryIDs; 919 for (const auto &File : llvm::enumerate(ObjectFilenames)) { 920 if (Error E = 921 loadFromFile(File.value(), GetArch(File.index()), CompilationDir, 922 *ProfileReader, *Coverage, DataFound, &FoundBinaryIDs)) 923 return std::move(E); 924 } 925 926 if (BIDFetcher) { 927 std::vector<object::BuildID> ProfileBinaryIDs; 928 if (Error E = ProfileReader->readBinaryIds(ProfileBinaryIDs)) 929 return createFileError(ProfileFilename, std::move(E)); 930 931 SmallVector<object::BuildIDRef> BinaryIDsToFetch; 932 if (!ProfileBinaryIDs.empty()) { 933 const auto &Compare = [](object::BuildIDRef A, object::BuildIDRef B) { 934 return std::lexicographical_compare(A.begin(), A.end(), B.begin(), 935 B.end()); 936 }; 937 llvm::sort(FoundBinaryIDs, Compare); 938 std::set_difference( 939 ProfileBinaryIDs.begin(), ProfileBinaryIDs.end(), 940 FoundBinaryIDs.begin(), FoundBinaryIDs.end(), 941 std::inserter(BinaryIDsToFetch, BinaryIDsToFetch.end()), Compare); 942 } 943 944 for (object::BuildIDRef BinaryID : BinaryIDsToFetch) { 945 std::optional<std::string> PathOpt = BIDFetcher->fetch(BinaryID); 946 if (PathOpt) { 947 std::string Path = std::move(*PathOpt); 948 StringRef Arch = Arches.size() == 1 ? Arches.front() : StringRef(); 949 if (Error E = loadFromFile(Path, Arch, CompilationDir, *ProfileReader, 950 *Coverage, DataFound)) 951 return std::move(E); 952 } else if (CheckBinaryIDs) { 953 return createFileError( 954 ProfileFilename, 955 createStringError(errc::no_such_file_or_directory, 956 "Missing binary ID: " + 957 llvm::toHex(BinaryID, /*LowerCase=*/true))); 958 } 959 } 960 } 961 962 if (!DataFound) 963 return createFileError( 964 join(ObjectFilenames.begin(), ObjectFilenames.end(), ", "), 965 make_error<CoverageMapError>(coveragemap_error::no_data_found)); 966 return std::move(Coverage); 967 } 968 969 namespace { 970 971 /// Distributes functions into instantiation sets. 972 /// 973 /// An instantiation set is a collection of functions that have the same source 974 /// code, ie, template functions specializations. 975 class FunctionInstantiationSetCollector { 976 using MapT = std::map<LineColPair, std::vector<const FunctionRecord *>>; 977 MapT InstantiatedFunctions; 978 979 public: 980 void insert(const FunctionRecord &Function, unsigned FileID) { 981 auto I = Function.CountedRegions.begin(), E = Function.CountedRegions.end(); 982 while (I != E && I->FileID != FileID) 983 ++I; 984 assert(I != E && "function does not cover the given file"); 985 auto &Functions = InstantiatedFunctions[I->startLoc()]; 986 Functions.push_back(&Function); 987 } 988 989 MapT::iterator begin() { return InstantiatedFunctions.begin(); } 990 MapT::iterator end() { return InstantiatedFunctions.end(); } 991 }; 992 993 class SegmentBuilder { 994 std::vector<CoverageSegment> &Segments; 995 SmallVector<const CountedRegion *, 8> ActiveRegions; 996 997 SegmentBuilder(std::vector<CoverageSegment> &Segments) : Segments(Segments) {} 998 999 /// Emit a segment with the count from \p Region starting at \p StartLoc. 1000 // 1001 /// \p IsRegionEntry: The segment is at the start of a new non-gap region. 1002 /// \p EmitSkippedRegion: The segment must be emitted as a skipped region. 1003 void startSegment(const CountedRegion &Region, LineColPair StartLoc, 1004 bool IsRegionEntry, bool EmitSkippedRegion = false) { 1005 bool HasCount = !EmitSkippedRegion && 1006 (Region.Kind != CounterMappingRegion::SkippedRegion); 1007 1008 // If the new segment wouldn't affect coverage rendering, skip it. 1009 if (!Segments.empty() && !IsRegionEntry && !EmitSkippedRegion) { 1010 const auto &Last = Segments.back(); 1011 if (Last.HasCount == HasCount && Last.Count == Region.ExecutionCount && 1012 !Last.IsRegionEntry) 1013 return; 1014 } 1015 1016 if (HasCount) 1017 Segments.emplace_back(StartLoc.first, StartLoc.second, 1018 Region.ExecutionCount, IsRegionEntry, 1019 Region.Kind == CounterMappingRegion::GapRegion); 1020 else 1021 Segments.emplace_back(StartLoc.first, StartLoc.second, IsRegionEntry); 1022 1023 LLVM_DEBUG({ 1024 const auto &Last = Segments.back(); 1025 dbgs() << "Segment at " << Last.Line << ":" << Last.Col 1026 << " (count = " << Last.Count << ")" 1027 << (Last.IsRegionEntry ? ", RegionEntry" : "") 1028 << (!Last.HasCount ? ", Skipped" : "") 1029 << (Last.IsGapRegion ? ", Gap" : "") << "\n"; 1030 }); 1031 } 1032 1033 /// Emit segments for active regions which end before \p Loc. 1034 /// 1035 /// \p Loc: The start location of the next region. If std::nullopt, all active 1036 /// regions are completed. 1037 /// \p FirstCompletedRegion: Index of the first completed region. 1038 void completeRegionsUntil(std::optional<LineColPair> Loc, 1039 unsigned FirstCompletedRegion) { 1040 // Sort the completed regions by end location. This makes it simple to 1041 // emit closing segments in sorted order. 1042 auto CompletedRegionsIt = ActiveRegions.begin() + FirstCompletedRegion; 1043 std::stable_sort(CompletedRegionsIt, ActiveRegions.end(), 1044 [](const CountedRegion *L, const CountedRegion *R) { 1045 return L->endLoc() < R->endLoc(); 1046 }); 1047 1048 // Emit segments for all completed regions. 1049 for (unsigned I = FirstCompletedRegion + 1, E = ActiveRegions.size(); I < E; 1050 ++I) { 1051 const auto *CompletedRegion = ActiveRegions[I]; 1052 assert((!Loc || CompletedRegion->endLoc() <= *Loc) && 1053 "Completed region ends after start of new region"); 1054 1055 const auto *PrevCompletedRegion = ActiveRegions[I - 1]; 1056 auto CompletedSegmentLoc = PrevCompletedRegion->endLoc(); 1057 1058 // Don't emit any more segments if they start where the new region begins. 1059 if (Loc && CompletedSegmentLoc == *Loc) 1060 break; 1061 1062 // Don't emit a segment if the next completed region ends at the same 1063 // location as this one. 1064 if (CompletedSegmentLoc == CompletedRegion->endLoc()) 1065 continue; 1066 1067 // Use the count from the last completed region which ends at this loc. 1068 for (unsigned J = I + 1; J < E; ++J) 1069 if (CompletedRegion->endLoc() == ActiveRegions[J]->endLoc()) 1070 CompletedRegion = ActiveRegions[J]; 1071 1072 startSegment(*CompletedRegion, CompletedSegmentLoc, false); 1073 } 1074 1075 auto Last = ActiveRegions.back(); 1076 if (FirstCompletedRegion && Last->endLoc() != *Loc) { 1077 // If there's a gap after the end of the last completed region and the 1078 // start of the new region, use the last active region to fill the gap. 1079 startSegment(*ActiveRegions[FirstCompletedRegion - 1], Last->endLoc(), 1080 false); 1081 } else if (!FirstCompletedRegion && (!Loc || *Loc != Last->endLoc())) { 1082 // Emit a skipped segment if there are no more active regions. This 1083 // ensures that gaps between functions are marked correctly. 1084 startSegment(*Last, Last->endLoc(), false, true); 1085 } 1086 1087 // Pop the completed regions. 1088 ActiveRegions.erase(CompletedRegionsIt, ActiveRegions.end()); 1089 } 1090 1091 void buildSegmentsImpl(ArrayRef<CountedRegion> Regions) { 1092 for (const auto &CR : enumerate(Regions)) { 1093 auto CurStartLoc = CR.value().startLoc(); 1094 1095 // Active regions which end before the current region need to be popped. 1096 auto CompletedRegions = 1097 std::stable_partition(ActiveRegions.begin(), ActiveRegions.end(), 1098 [&](const CountedRegion *Region) { 1099 return !(Region->endLoc() <= CurStartLoc); 1100 }); 1101 if (CompletedRegions != ActiveRegions.end()) { 1102 unsigned FirstCompletedRegion = 1103 std::distance(ActiveRegions.begin(), CompletedRegions); 1104 completeRegionsUntil(CurStartLoc, FirstCompletedRegion); 1105 } 1106 1107 bool GapRegion = CR.value().Kind == CounterMappingRegion::GapRegion; 1108 1109 // Try to emit a segment for the current region. 1110 if (CurStartLoc == CR.value().endLoc()) { 1111 // Avoid making zero-length regions active. If it's the last region, 1112 // emit a skipped segment. Otherwise use its predecessor's count. 1113 const bool Skipped = 1114 (CR.index() + 1) == Regions.size() || 1115 CR.value().Kind == CounterMappingRegion::SkippedRegion; 1116 startSegment(ActiveRegions.empty() ? CR.value() : *ActiveRegions.back(), 1117 CurStartLoc, !GapRegion, Skipped); 1118 // If it is skipped segment, create a segment with last pushed 1119 // regions's count at CurStartLoc. 1120 if (Skipped && !ActiveRegions.empty()) 1121 startSegment(*ActiveRegions.back(), CurStartLoc, false); 1122 continue; 1123 } 1124 if (CR.index() + 1 == Regions.size() || 1125 CurStartLoc != Regions[CR.index() + 1].startLoc()) { 1126 // Emit a segment if the next region doesn't start at the same location 1127 // as this one. 1128 startSegment(CR.value(), CurStartLoc, !GapRegion); 1129 } 1130 1131 // This region is active (i.e not completed). 1132 ActiveRegions.push_back(&CR.value()); 1133 } 1134 1135 // Complete any remaining active regions. 1136 if (!ActiveRegions.empty()) 1137 completeRegionsUntil(std::nullopt, 0); 1138 } 1139 1140 /// Sort a nested sequence of regions from a single file. 1141 static void sortNestedRegions(MutableArrayRef<CountedRegion> Regions) { 1142 llvm::sort(Regions, [](const CountedRegion &LHS, const CountedRegion &RHS) { 1143 if (LHS.startLoc() != RHS.startLoc()) 1144 return LHS.startLoc() < RHS.startLoc(); 1145 if (LHS.endLoc() != RHS.endLoc()) 1146 // When LHS completely contains RHS, we sort LHS first. 1147 return RHS.endLoc() < LHS.endLoc(); 1148 // If LHS and RHS cover the same area, we need to sort them according 1149 // to their kinds so that the most suitable region will become "active" 1150 // in combineRegions(). Because we accumulate counter values only from 1151 // regions of the same kind as the first region of the area, prefer 1152 // CodeRegion to ExpansionRegion and ExpansionRegion to SkippedRegion. 1153 static_assert(CounterMappingRegion::CodeRegion < 1154 CounterMappingRegion::ExpansionRegion && 1155 CounterMappingRegion::ExpansionRegion < 1156 CounterMappingRegion::SkippedRegion, 1157 "Unexpected order of region kind values"); 1158 return LHS.Kind < RHS.Kind; 1159 }); 1160 } 1161 1162 /// Combine counts of regions which cover the same area. 1163 static ArrayRef<CountedRegion> 1164 combineRegions(MutableArrayRef<CountedRegion> Regions) { 1165 if (Regions.empty()) 1166 return Regions; 1167 auto Active = Regions.begin(); 1168 auto End = Regions.end(); 1169 for (auto I = Regions.begin() + 1; I != End; ++I) { 1170 if (Active->startLoc() != I->startLoc() || 1171 Active->endLoc() != I->endLoc()) { 1172 // Shift to the next region. 1173 ++Active; 1174 if (Active != I) 1175 *Active = *I; 1176 continue; 1177 } 1178 // Merge duplicate region. 1179 // If CodeRegions and ExpansionRegions cover the same area, it's probably 1180 // a macro which is fully expanded to another macro. In that case, we need 1181 // to accumulate counts only from CodeRegions, or else the area will be 1182 // counted twice. 1183 // On the other hand, a macro may have a nested macro in its body. If the 1184 // outer macro is used several times, the ExpansionRegion for the nested 1185 // macro will also be added several times. These ExpansionRegions cover 1186 // the same source locations and have to be combined to reach the correct 1187 // value for that area. 1188 // We add counts of the regions of the same kind as the active region 1189 // to handle the both situations. 1190 if (I->Kind == Active->Kind) 1191 Active->ExecutionCount += I->ExecutionCount; 1192 } 1193 return Regions.drop_back(std::distance(++Active, End)); 1194 } 1195 1196 public: 1197 /// Build a sorted list of CoverageSegments from a list of Regions. 1198 static std::vector<CoverageSegment> 1199 buildSegments(MutableArrayRef<CountedRegion> Regions) { 1200 std::vector<CoverageSegment> Segments; 1201 SegmentBuilder Builder(Segments); 1202 1203 sortNestedRegions(Regions); 1204 ArrayRef<CountedRegion> CombinedRegions = combineRegions(Regions); 1205 1206 LLVM_DEBUG({ 1207 dbgs() << "Combined regions:\n"; 1208 for (const auto &CR : CombinedRegions) 1209 dbgs() << " " << CR.LineStart << ":" << CR.ColumnStart << " -> " 1210 << CR.LineEnd << ":" << CR.ColumnEnd 1211 << " (count=" << CR.ExecutionCount << ")\n"; 1212 }); 1213 1214 Builder.buildSegmentsImpl(CombinedRegions); 1215 1216 #ifndef NDEBUG 1217 for (unsigned I = 1, E = Segments.size(); I < E; ++I) { 1218 const auto &L = Segments[I - 1]; 1219 const auto &R = Segments[I]; 1220 if (!(L.Line < R.Line) && !(L.Line == R.Line && L.Col < R.Col)) { 1221 if (L.Line == R.Line && L.Col == R.Col && !L.HasCount) 1222 continue; 1223 LLVM_DEBUG(dbgs() << " ! Segment " << L.Line << ":" << L.Col 1224 << " followed by " << R.Line << ":" << R.Col << "\n"); 1225 assert(false && "Coverage segments not unique or sorted"); 1226 } 1227 } 1228 #endif 1229 1230 return Segments; 1231 } 1232 }; 1233 1234 } // end anonymous namespace 1235 1236 std::vector<StringRef> CoverageMapping::getUniqueSourceFiles() const { 1237 std::vector<StringRef> Filenames; 1238 for (const auto &Function : getCoveredFunctions()) 1239 llvm::append_range(Filenames, Function.Filenames); 1240 llvm::sort(Filenames); 1241 auto Last = std::unique(Filenames.begin(), Filenames.end()); 1242 Filenames.erase(Last, Filenames.end()); 1243 return Filenames; 1244 } 1245 1246 static SmallBitVector gatherFileIDs(StringRef SourceFile, 1247 const FunctionRecord &Function) { 1248 SmallBitVector FilenameEquivalence(Function.Filenames.size(), false); 1249 for (unsigned I = 0, E = Function.Filenames.size(); I < E; ++I) 1250 if (SourceFile == Function.Filenames[I]) 1251 FilenameEquivalence[I] = true; 1252 return FilenameEquivalence; 1253 } 1254 1255 /// Return the ID of the file where the definition of the function is located. 1256 static std::optional<unsigned> 1257 findMainViewFileID(const FunctionRecord &Function) { 1258 SmallBitVector IsNotExpandedFile(Function.Filenames.size(), true); 1259 for (const auto &CR : Function.CountedRegions) 1260 if (CR.Kind == CounterMappingRegion::ExpansionRegion) 1261 IsNotExpandedFile[CR.ExpandedFileID] = false; 1262 int I = IsNotExpandedFile.find_first(); 1263 if (I == -1) 1264 return std::nullopt; 1265 return I; 1266 } 1267 1268 /// Check if SourceFile is the file that contains the definition of 1269 /// the Function. Return the ID of the file in that case or std::nullopt 1270 /// otherwise. 1271 static std::optional<unsigned> 1272 findMainViewFileID(StringRef SourceFile, const FunctionRecord &Function) { 1273 std::optional<unsigned> I = findMainViewFileID(Function); 1274 if (I && SourceFile == Function.Filenames[*I]) 1275 return I; 1276 return std::nullopt; 1277 } 1278 1279 static bool isExpansion(const CountedRegion &R, unsigned FileID) { 1280 return R.Kind == CounterMappingRegion::ExpansionRegion && R.FileID == FileID; 1281 } 1282 1283 CoverageData CoverageMapping::getCoverageForFile(StringRef Filename) const { 1284 CoverageData FileCoverage(Filename); 1285 std::vector<CountedRegion> Regions; 1286 1287 // Look up the function records in the given file. Due to hash collisions on 1288 // the filename, we may get back some records that are not in the file. 1289 ArrayRef<unsigned> RecordIndices = 1290 getImpreciseRecordIndicesForFilename(Filename); 1291 for (unsigned RecordIndex : RecordIndices) { 1292 const FunctionRecord &Function = Functions[RecordIndex]; 1293 auto MainFileID = findMainViewFileID(Filename, Function); 1294 auto FileIDs = gatherFileIDs(Filename, Function); 1295 for (const auto &CR : Function.CountedRegions) 1296 if (FileIDs.test(CR.FileID)) { 1297 Regions.push_back(CR); 1298 if (MainFileID && isExpansion(CR, *MainFileID)) 1299 FileCoverage.Expansions.emplace_back(CR, Function); 1300 } 1301 // Capture branch regions specific to the function (excluding expansions). 1302 for (const auto &CR : Function.CountedBranchRegions) 1303 if (FileIDs.test(CR.FileID) && (CR.FileID == CR.ExpandedFileID)) 1304 FileCoverage.BranchRegions.push_back(CR); 1305 // Capture MCDC records specific to the function. 1306 for (const auto &MR : Function.MCDCRecords) 1307 if (FileIDs.test(MR.getDecisionRegion().FileID)) 1308 FileCoverage.MCDCRecords.push_back(MR); 1309 } 1310 1311 LLVM_DEBUG(dbgs() << "Emitting segments for file: " << Filename << "\n"); 1312 FileCoverage.Segments = SegmentBuilder::buildSegments(Regions); 1313 1314 return FileCoverage; 1315 } 1316 1317 std::vector<InstantiationGroup> 1318 CoverageMapping::getInstantiationGroups(StringRef Filename) const { 1319 FunctionInstantiationSetCollector InstantiationSetCollector; 1320 // Look up the function records in the given file. Due to hash collisions on 1321 // the filename, we may get back some records that are not in the file. 1322 ArrayRef<unsigned> RecordIndices = 1323 getImpreciseRecordIndicesForFilename(Filename); 1324 for (unsigned RecordIndex : RecordIndices) { 1325 const FunctionRecord &Function = Functions[RecordIndex]; 1326 auto MainFileID = findMainViewFileID(Filename, Function); 1327 if (!MainFileID) 1328 continue; 1329 InstantiationSetCollector.insert(Function, *MainFileID); 1330 } 1331 1332 std::vector<InstantiationGroup> Result; 1333 for (auto &InstantiationSet : InstantiationSetCollector) { 1334 InstantiationGroup IG{InstantiationSet.first.first, 1335 InstantiationSet.first.second, 1336 std::move(InstantiationSet.second)}; 1337 Result.emplace_back(std::move(IG)); 1338 } 1339 return Result; 1340 } 1341 1342 CoverageData 1343 CoverageMapping::getCoverageForFunction(const FunctionRecord &Function) const { 1344 auto MainFileID = findMainViewFileID(Function); 1345 if (!MainFileID) 1346 return CoverageData(); 1347 1348 CoverageData FunctionCoverage(Function.Filenames[*MainFileID]); 1349 std::vector<CountedRegion> Regions; 1350 for (const auto &CR : Function.CountedRegions) 1351 if (CR.FileID == *MainFileID) { 1352 Regions.push_back(CR); 1353 if (isExpansion(CR, *MainFileID)) 1354 FunctionCoverage.Expansions.emplace_back(CR, Function); 1355 } 1356 // Capture branch regions specific to the function (excluding expansions). 1357 for (const auto &CR : Function.CountedBranchRegions) 1358 if (CR.FileID == *MainFileID) 1359 FunctionCoverage.BranchRegions.push_back(CR); 1360 1361 // Capture MCDC records specific to the function. 1362 for (const auto &MR : Function.MCDCRecords) 1363 if (MR.getDecisionRegion().FileID == *MainFileID) 1364 FunctionCoverage.MCDCRecords.push_back(MR); 1365 1366 LLVM_DEBUG(dbgs() << "Emitting segments for function: " << Function.Name 1367 << "\n"); 1368 FunctionCoverage.Segments = SegmentBuilder::buildSegments(Regions); 1369 1370 return FunctionCoverage; 1371 } 1372 1373 CoverageData CoverageMapping::getCoverageForExpansion( 1374 const ExpansionRecord &Expansion) const { 1375 CoverageData ExpansionCoverage( 1376 Expansion.Function.Filenames[Expansion.FileID]); 1377 std::vector<CountedRegion> Regions; 1378 for (const auto &CR : Expansion.Function.CountedRegions) 1379 if (CR.FileID == Expansion.FileID) { 1380 Regions.push_back(CR); 1381 if (isExpansion(CR, Expansion.FileID)) 1382 ExpansionCoverage.Expansions.emplace_back(CR, Expansion.Function); 1383 } 1384 for (const auto &CR : Expansion.Function.CountedBranchRegions) 1385 // Capture branch regions that only pertain to the corresponding expansion. 1386 if (CR.FileID == Expansion.FileID) 1387 ExpansionCoverage.BranchRegions.push_back(CR); 1388 1389 LLVM_DEBUG(dbgs() << "Emitting segments for expansion of file " 1390 << Expansion.FileID << "\n"); 1391 ExpansionCoverage.Segments = SegmentBuilder::buildSegments(Regions); 1392 1393 return ExpansionCoverage; 1394 } 1395 1396 LineCoverageStats::LineCoverageStats( 1397 ArrayRef<const CoverageSegment *> LineSegments, 1398 const CoverageSegment *WrappedSegment, unsigned Line) 1399 : ExecutionCount(0), HasMultipleRegions(false), Mapped(false), Line(Line), 1400 LineSegments(LineSegments), WrappedSegment(WrappedSegment) { 1401 // Find the minimum number of regions which start in this line. 1402 unsigned MinRegionCount = 0; 1403 auto isStartOfRegion = [](const CoverageSegment *S) { 1404 return !S->IsGapRegion && S->HasCount && S->IsRegionEntry; 1405 }; 1406 for (unsigned I = 0; I < LineSegments.size() && MinRegionCount < 2; ++I) 1407 if (isStartOfRegion(LineSegments[I])) 1408 ++MinRegionCount; 1409 1410 bool StartOfSkippedRegion = !LineSegments.empty() && 1411 !LineSegments.front()->HasCount && 1412 LineSegments.front()->IsRegionEntry; 1413 1414 HasMultipleRegions = MinRegionCount > 1; 1415 Mapped = 1416 !StartOfSkippedRegion && 1417 ((WrappedSegment && WrappedSegment->HasCount) || (MinRegionCount > 0)); 1418 1419 // if there is any starting segment at this line with a counter, it must be 1420 // mapped 1421 Mapped |= std::any_of( 1422 LineSegments.begin(), LineSegments.end(), 1423 [](const auto *Seq) { return Seq->IsRegionEntry && Seq->HasCount; }); 1424 1425 if (!Mapped) { 1426 return; 1427 } 1428 1429 // Pick the max count from the non-gap, region entry segments and the 1430 // wrapped count. 1431 if (WrappedSegment) 1432 ExecutionCount = WrappedSegment->Count; 1433 if (!MinRegionCount) 1434 return; 1435 for (const auto *LS : LineSegments) 1436 if (isStartOfRegion(LS)) 1437 ExecutionCount = std::max(ExecutionCount, LS->Count); 1438 } 1439 1440 LineCoverageIterator &LineCoverageIterator::operator++() { 1441 if (Next == CD.end()) { 1442 Stats = LineCoverageStats(); 1443 Ended = true; 1444 return *this; 1445 } 1446 if (Segments.size()) 1447 WrappedSegment = Segments.back(); 1448 Segments.clear(); 1449 while (Next != CD.end() && Next->Line == Line) 1450 Segments.push_back(&*Next++); 1451 Stats = LineCoverageStats(Segments, WrappedSegment, Line); 1452 ++Line; 1453 return *this; 1454 } 1455 1456 static std::string getCoverageMapErrString(coveragemap_error Err, 1457 const std::string &ErrMsg = "") { 1458 std::string Msg; 1459 raw_string_ostream OS(Msg); 1460 1461 switch (Err) { 1462 case coveragemap_error::success: 1463 OS << "success"; 1464 break; 1465 case coveragemap_error::eof: 1466 OS << "end of File"; 1467 break; 1468 case coveragemap_error::no_data_found: 1469 OS << "no coverage data found"; 1470 break; 1471 case coveragemap_error::unsupported_version: 1472 OS << "unsupported coverage format version"; 1473 break; 1474 case coveragemap_error::truncated: 1475 OS << "truncated coverage data"; 1476 break; 1477 case coveragemap_error::malformed: 1478 OS << "malformed coverage data"; 1479 break; 1480 case coveragemap_error::decompression_failed: 1481 OS << "failed to decompress coverage data (zlib)"; 1482 break; 1483 case coveragemap_error::invalid_or_missing_arch_specifier: 1484 OS << "`-arch` specifier is invalid or missing for universal binary"; 1485 break; 1486 } 1487 1488 // If optional error message is not empty, append it to the message. 1489 if (!ErrMsg.empty()) 1490 OS << ": " << ErrMsg; 1491 1492 return Msg; 1493 } 1494 1495 namespace { 1496 1497 // FIXME: This class is only here to support the transition to llvm::Error. It 1498 // will be removed once this transition is complete. Clients should prefer to 1499 // deal with the Error value directly, rather than converting to error_code. 1500 class CoverageMappingErrorCategoryType : public std::error_category { 1501 const char *name() const noexcept override { return "llvm.coveragemap"; } 1502 std::string message(int IE) const override { 1503 return getCoverageMapErrString(static_cast<coveragemap_error>(IE)); 1504 } 1505 }; 1506 1507 } // end anonymous namespace 1508 1509 std::string CoverageMapError::message() const { 1510 return getCoverageMapErrString(Err, Msg); 1511 } 1512 1513 const std::error_category &llvm::coverage::coveragemap_category() { 1514 static CoverageMappingErrorCategoryType ErrorCategory; 1515 return ErrorCategory; 1516 } 1517 1518 char CoverageMapError::ID = 0; 1519