1 //===- CoverageMapping.cpp - Code coverage mapping support ----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains support for clang's and llvm's instrumentation based 10 // code coverage. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/ProfileData/Coverage/CoverageMapping.h" 15 #include "llvm/ADT/ArrayRef.h" 16 #include "llvm/ADT/DenseMap.h" 17 #include "llvm/ADT/SmallBitVector.h" 18 #include "llvm/ADT/SmallVector.h" 19 #include "llvm/ADT/StringExtras.h" 20 #include "llvm/ADT/StringRef.h" 21 #include "llvm/Object/BuildID.h" 22 #include "llvm/ProfileData/Coverage/CoverageMappingReader.h" 23 #include "llvm/ProfileData/InstrProfReader.h" 24 #include "llvm/Support/Debug.h" 25 #include "llvm/Support/Errc.h" 26 #include "llvm/Support/Error.h" 27 #include "llvm/Support/ErrorHandling.h" 28 #include "llvm/Support/MemoryBuffer.h" 29 #include "llvm/Support/VirtualFileSystem.h" 30 #include "llvm/Support/raw_ostream.h" 31 #include <algorithm> 32 #include <cassert> 33 #include <cmath> 34 #include <cstdint> 35 #include <iterator> 36 #include <map> 37 #include <memory> 38 #include <optional> 39 #include <string> 40 #include <system_error> 41 #include <utility> 42 #include <vector> 43 44 using namespace llvm; 45 using namespace coverage; 46 47 #define DEBUG_TYPE "coverage-mapping" 48 49 Counter CounterExpressionBuilder::get(const CounterExpression &E) { 50 auto It = ExpressionIndices.find(E); 51 if (It != ExpressionIndices.end()) 52 return Counter::getExpression(It->second); 53 unsigned I = Expressions.size(); 54 Expressions.push_back(E); 55 ExpressionIndices[E] = I; 56 return Counter::getExpression(I); 57 } 58 59 void CounterExpressionBuilder::extractTerms(Counter C, int Factor, 60 SmallVectorImpl<Term> &Terms) { 61 switch (C.getKind()) { 62 case Counter::Zero: 63 break; 64 case Counter::CounterValueReference: 65 Terms.emplace_back(C.getCounterID(), Factor); 66 break; 67 case Counter::Expression: 68 const auto &E = Expressions[C.getExpressionID()]; 69 extractTerms(E.LHS, Factor, Terms); 70 extractTerms( 71 E.RHS, E.Kind == CounterExpression::Subtract ? -Factor : Factor, Terms); 72 break; 73 } 74 } 75 76 Counter CounterExpressionBuilder::simplify(Counter ExpressionTree) { 77 // Gather constant terms. 78 SmallVector<Term, 32> Terms; 79 extractTerms(ExpressionTree, +1, Terms); 80 81 // If there are no terms, this is just a zero. The algorithm below assumes at 82 // least one term. 83 if (Terms.size() == 0) 84 return Counter::getZero(); 85 86 // Group the terms by counter ID. 87 llvm::sort(Terms, [](const Term &LHS, const Term &RHS) { 88 return LHS.CounterID < RHS.CounterID; 89 }); 90 91 // Combine terms by counter ID to eliminate counters that sum to zero. 92 auto Prev = Terms.begin(); 93 for (auto I = Prev + 1, E = Terms.end(); I != E; ++I) { 94 if (I->CounterID == Prev->CounterID) { 95 Prev->Factor += I->Factor; 96 continue; 97 } 98 ++Prev; 99 *Prev = *I; 100 } 101 Terms.erase(++Prev, Terms.end()); 102 103 Counter C; 104 // Create additions. We do this before subtractions to avoid constructs like 105 // ((0 - X) + Y), as opposed to (Y - X). 106 for (auto T : Terms) { 107 if (T.Factor <= 0) 108 continue; 109 for (int I = 0; I < T.Factor; ++I) 110 if (C.isZero()) 111 C = Counter::getCounter(T.CounterID); 112 else 113 C = get(CounterExpression(CounterExpression::Add, C, 114 Counter::getCounter(T.CounterID))); 115 } 116 117 // Create subtractions. 118 for (auto T : Terms) { 119 if (T.Factor >= 0) 120 continue; 121 for (int I = 0; I < -T.Factor; ++I) 122 C = get(CounterExpression(CounterExpression::Subtract, C, 123 Counter::getCounter(T.CounterID))); 124 } 125 return C; 126 } 127 128 Counter CounterExpressionBuilder::add(Counter LHS, Counter RHS, bool Simplify) { 129 auto Cnt = get(CounterExpression(CounterExpression::Add, LHS, RHS)); 130 return Simplify ? simplify(Cnt) : Cnt; 131 } 132 133 Counter CounterExpressionBuilder::subtract(Counter LHS, Counter RHS, 134 bool Simplify) { 135 auto Cnt = get(CounterExpression(CounterExpression::Subtract, LHS, RHS)); 136 return Simplify ? simplify(Cnt) : Cnt; 137 } 138 139 void CounterMappingContext::dump(const Counter &C, raw_ostream &OS) const { 140 switch (C.getKind()) { 141 case Counter::Zero: 142 OS << '0'; 143 return; 144 case Counter::CounterValueReference: 145 OS << '#' << C.getCounterID(); 146 break; 147 case Counter::Expression: { 148 if (C.getExpressionID() >= Expressions.size()) 149 return; 150 const auto &E = Expressions[C.getExpressionID()]; 151 OS << '('; 152 dump(E.LHS, OS); 153 OS << (E.Kind == CounterExpression::Subtract ? " - " : " + "); 154 dump(E.RHS, OS); 155 OS << ')'; 156 break; 157 } 158 } 159 if (CounterValues.empty()) 160 return; 161 Expected<int64_t> Value = evaluate(C); 162 if (auto E = Value.takeError()) { 163 consumeError(std::move(E)); 164 return; 165 } 166 OS << '[' << *Value << ']'; 167 } 168 169 Expected<int64_t> CounterMappingContext::evaluate(const Counter &C) const { 170 struct StackElem { 171 Counter ICounter; 172 int64_t LHS = 0; 173 enum { 174 KNeverVisited = 0, 175 KVisitedOnce = 1, 176 KVisitedTwice = 2, 177 } VisitCount = KNeverVisited; 178 }; 179 180 std::stack<StackElem> CounterStack; 181 CounterStack.push({C}); 182 183 int64_t LastPoppedValue; 184 185 while (!CounterStack.empty()) { 186 StackElem &Current = CounterStack.top(); 187 188 switch (Current.ICounter.getKind()) { 189 case Counter::Zero: 190 LastPoppedValue = 0; 191 CounterStack.pop(); 192 break; 193 case Counter::CounterValueReference: 194 if (Current.ICounter.getCounterID() >= CounterValues.size()) 195 return errorCodeToError(errc::argument_out_of_domain); 196 LastPoppedValue = CounterValues[Current.ICounter.getCounterID()]; 197 CounterStack.pop(); 198 break; 199 case Counter::Expression: { 200 if (Current.ICounter.getExpressionID() >= Expressions.size()) 201 return errorCodeToError(errc::argument_out_of_domain); 202 const auto &E = Expressions[Current.ICounter.getExpressionID()]; 203 if (Current.VisitCount == StackElem::KNeverVisited) { 204 CounterStack.push(StackElem{E.LHS}); 205 Current.VisitCount = StackElem::KVisitedOnce; 206 } else if (Current.VisitCount == StackElem::KVisitedOnce) { 207 Current.LHS = LastPoppedValue; 208 CounterStack.push(StackElem{E.RHS}); 209 Current.VisitCount = StackElem::KVisitedTwice; 210 } else { 211 int64_t LHS = Current.LHS; 212 int64_t RHS = LastPoppedValue; 213 LastPoppedValue = 214 E.Kind == CounterExpression::Subtract ? LHS - RHS : LHS + RHS; 215 CounterStack.pop(); 216 } 217 break; 218 } 219 } 220 } 221 222 return LastPoppedValue; 223 } 224 225 Expected<BitVector> CounterMappingContext::evaluateBitmap( 226 const CounterMappingRegion *MCDCDecision) const { 227 unsigned ID = MCDCDecision->MCDCParams.BitmapIdx; 228 unsigned NC = MCDCDecision->MCDCParams.NumConditions; 229 unsigned SizeInBits = llvm::alignTo(uint64_t(1) << NC, CHAR_BIT); 230 unsigned SizeInBytes = SizeInBits / CHAR_BIT; 231 232 assert(ID + SizeInBytes <= BitmapBytes.size() && "BitmapBytes overrun"); 233 ArrayRef<uint8_t> Bytes(&BitmapBytes[ID], SizeInBytes); 234 235 // Mask each bitmap byte into the BitVector. Go in reverse so that the 236 // bitvector can just be shifted over by one byte on each iteration. 237 BitVector Result(SizeInBits, false); 238 for (auto Byte = std::rbegin(Bytes); Byte != std::rend(Bytes); ++Byte) { 239 uint32_t Data = *Byte; 240 Result <<= CHAR_BIT; 241 Result.setBitsInMask(&Data, 1); 242 } 243 return Result; 244 } 245 246 class MCDCRecordProcessor { 247 /// A bitmap representing the executed test vectors for a boolean expression. 248 /// Each index of the bitmap corresponds to a possible test vector. An index 249 /// with a bit value of '1' indicates that the corresponding Test Vector 250 /// identified by that index was executed. 251 const BitVector &ExecutedTestVectorBitmap; 252 253 /// Decision Region to which the ExecutedTestVectorBitmap applies. 254 const CounterMappingRegion &Region; 255 256 /// Array of branch regions corresponding each conditions in the boolean 257 /// expression. 258 ArrayRef<const CounterMappingRegion *> Branches; 259 260 /// Total number of conditions in the boolean expression. 261 unsigned NumConditions; 262 263 /// Mapping of a condition ID to its corresponding branch region. 264 llvm::DenseMap<unsigned, const CounterMappingRegion *> Map; 265 266 /// Vector used to track whether a condition is constant folded. 267 MCDCRecord::BoolVector Folded; 268 269 /// Mapping of calculated MC/DC Independence Pairs for each condition. 270 MCDCRecord::TVPairMap IndependencePairs; 271 272 /// Total number of possible Test Vectors for the boolean expression. 273 MCDCRecord::TestVectors TestVectors; 274 275 /// Actual executed Test Vectors for the boolean expression, based on 276 /// ExecutedTestVectorBitmap. 277 MCDCRecord::TestVectors ExecVectors; 278 279 public: 280 MCDCRecordProcessor(const BitVector &Bitmap, 281 const CounterMappingRegion &Region, 282 ArrayRef<const CounterMappingRegion *> Branches) 283 : ExecutedTestVectorBitmap(Bitmap), Region(Region), Branches(Branches), 284 NumConditions(Region.MCDCParams.NumConditions), 285 Folded(NumConditions, false), IndependencePairs(NumConditions), 286 TestVectors((size_t)1 << NumConditions) {} 287 288 private: 289 void recordTestVector(MCDCRecord::TestVector &TV, 290 MCDCRecord::CondState Result) { 291 // Calculate an index that is used to identify the test vector in a vector 292 // of test vectors. This index also corresponds to the index values of an 293 // MCDC Region's bitmap (see findExecutedTestVectors()). 294 unsigned Index = 0; 295 for (auto Cond = std::rbegin(TV); Cond != std::rend(TV); ++Cond) { 296 Index <<= 1; 297 Index |= (*Cond == MCDCRecord::MCDC_True) ? 0x1 : 0x0; 298 } 299 300 // Copy the completed test vector to the vector of testvectors. 301 TestVectors[Index] = TV; 302 303 // The final value (T,F) is equal to the last non-dontcare state on the 304 // path (in a short-circuiting system). 305 TestVectors[Index].push_back(Result); 306 } 307 308 void shouldCopyOffTestVectorForTruePath(MCDCRecord::TestVector &TV, 309 unsigned ID) { 310 // Branch regions are hashed based on an ID. 311 const CounterMappingRegion *Branch = Map[ID]; 312 313 TV[ID - 1] = MCDCRecord::MCDC_True; 314 if (Branch->MCDCParams.TrueID > 0) 315 buildTestVector(TV, Branch->MCDCParams.TrueID); 316 else 317 recordTestVector(TV, MCDCRecord::MCDC_True); 318 } 319 320 void shouldCopyOffTestVectorForFalsePath(MCDCRecord::TestVector &TV, 321 unsigned ID) { 322 // Branch regions are hashed based on an ID. 323 const CounterMappingRegion *Branch = Map[ID]; 324 325 TV[ID - 1] = MCDCRecord::MCDC_False; 326 if (Branch->MCDCParams.FalseID > 0) 327 buildTestVector(TV, Branch->MCDCParams.FalseID); 328 else 329 recordTestVector(TV, MCDCRecord::MCDC_False); 330 } 331 332 /// Starting with the base test vector, build a comprehensive list of 333 /// possible test vectors by recursively walking the branch condition IDs 334 /// provided. Once an end node is reached, record the test vector in a vector 335 /// of test vectors that can be matched against during MC/DC analysis, and 336 /// then reset the positions to 'DontCare'. 337 void buildTestVector(MCDCRecord::TestVector &TV, unsigned ID = 1) { 338 shouldCopyOffTestVectorForTruePath(TV, ID); 339 shouldCopyOffTestVectorForFalsePath(TV, ID); 340 341 // Reset back to DontCare. 342 TV[ID - 1] = MCDCRecord::MCDC_DontCare; 343 } 344 345 /// Walk the bits in the bitmap. A bit set to '1' indicates that the test 346 /// vector at the corresponding index was executed during a test run. 347 void findExecutedTestVectors(const BitVector &ExecutedTestVectorBitmap) { 348 for (unsigned Idx = 0; Idx < ExecutedTestVectorBitmap.size(); ++Idx) { 349 if (ExecutedTestVectorBitmap[Idx] == 0) 350 continue; 351 assert(!TestVectors[Idx].empty() && "Test Vector doesn't exist."); 352 ExecVectors.push_back(TestVectors[Idx]); 353 } 354 } 355 356 /// For a given condition and two executed Test Vectors, A and B, see if the 357 /// two test vectors match forming an Independence Pair for the condition. 358 /// For two test vectors to match, the following must be satisfied: 359 /// - The condition's value in each test vector must be opposite. 360 /// - The result's value in each test vector must be opposite. 361 /// - All other conditions' values must be equal or marked as "don't care". 362 bool matchTestVectors(unsigned Aidx, unsigned Bidx, unsigned ConditionIdx) { 363 const MCDCRecord::TestVector &A = ExecVectors[Aidx]; 364 const MCDCRecord::TestVector &B = ExecVectors[Bidx]; 365 366 // If condition values in both A and B aren't opposites, no match. 367 // Because a value can be 0 (false), 1 (true), or -1 (DontCare), a check 368 // that "XOR != 1" will ensure that the values are opposites and that 369 // neither of them is a DontCare. 370 // 1 XOR 0 == 1 | 0 XOR 0 == 0 | -1 XOR 0 == -1 371 // 1 XOR 1 == 0 | 0 XOR 1 == 1 | -1 XOR 1 == -2 372 // 1 XOR -1 == -2 | 0 XOR -1 == -1 | -1 XOR -1 == 0 373 if ((A[ConditionIdx] ^ B[ConditionIdx]) != 1) 374 return false; 375 376 // If the results of both A and B aren't opposites, no match. 377 if ((A[NumConditions] ^ B[NumConditions]) != 1) 378 return false; 379 380 for (unsigned Idx = 0; Idx < NumConditions; ++Idx) { 381 // Look for other conditions that don't match. Skip over the given 382 // Condition as well as any conditions marked as "don't care". 383 const auto ARecordTyForCond = A[Idx]; 384 const auto BRecordTyForCond = B[Idx]; 385 if (Idx == ConditionIdx || 386 ARecordTyForCond == MCDCRecord::MCDC_DontCare || 387 BRecordTyForCond == MCDCRecord::MCDC_DontCare) 388 continue; 389 390 // If there is a condition mismatch with any of the other conditions, 391 // there is no match for the test vectors. 392 if (ARecordTyForCond != BRecordTyForCond) 393 return false; 394 } 395 396 // Otherwise, match. 397 return true; 398 } 399 400 /// Find all possible Independence Pairs for a boolean expression given its 401 /// executed Test Vectors. This process involves looking at each condition 402 /// and attempting to find two Test Vectors that "match", giving us a pair. 403 void findIndependencePairs() { 404 unsigned NumTVs = ExecVectors.size(); 405 406 // For each condition. 407 for (unsigned C = 0; C < NumConditions; ++C) { 408 bool PairFound = false; 409 410 // For each executed test vector. 411 for (unsigned I = 0; !PairFound && I < NumTVs; ++I) { 412 // Compared to every other executed test vector. 413 for (unsigned J = 0; !PairFound && J < NumTVs; ++J) { 414 if (I == J) 415 continue; 416 417 // If a matching pair of vectors is found, record them. 418 if ((PairFound = matchTestVectors(I, J, C))) 419 IndependencePairs[C] = std::make_pair(I + 1, J + 1); 420 } 421 } 422 } 423 } 424 425 public: 426 /// Process the MC/DC Record in order to produce a result for a boolean 427 /// expression. This process includes tracking the conditions that comprise 428 /// the decision region, calculating the list of all possible test vectors, 429 /// marking the executed test vectors, and then finding an Independence Pair 430 /// out of the executed test vectors for each condition in the boolean 431 /// expression. A condition is tracked to ensure that its ID can be mapped to 432 /// its ordinal position in the boolean expression. The condition's source 433 /// location is also tracked, as well as whether it is constant folded (in 434 /// which case it is excuded from the metric). 435 MCDCRecord processMCDCRecord() { 436 unsigned I = 0; 437 MCDCRecord::CondIDMap PosToID; 438 MCDCRecord::LineColPairMap CondLoc; 439 440 // Walk the Record's BranchRegions (representing Conditions) in order to: 441 // - Hash the condition based on its corresponding ID. This will be used to 442 // calculate the test vectors. 443 // - Keep a map of the condition's ordinal position (1, 2, 3, 4) to its 444 // actual ID. This will be used to visualize the conditions in the 445 // correct order. 446 // - Keep track of the condition source location. This will be used to 447 // visualize where the condition is. 448 // - Record whether the condition is constant folded so that we exclude it 449 // from being measured. 450 for (const auto *B : Branches) { 451 Map[B->MCDCParams.ID] = B; 452 PosToID[I] = B->MCDCParams.ID - 1; 453 CondLoc[I] = B->startLoc(); 454 Folded[I++] = (B->Count.isZero() && B->FalseCount.isZero()); 455 } 456 457 // Initialize a base test vector as 'DontCare'. 458 MCDCRecord::TestVector TV(NumConditions, MCDCRecord::MCDC_DontCare); 459 460 // Use the base test vector to build the list of all possible test vectors. 461 buildTestVector(TV); 462 463 // Using Profile Bitmap from runtime, mark the executed test vectors. 464 findExecutedTestVectors(ExecutedTestVectorBitmap); 465 466 // Compare executed test vectors against each other to find an independence 467 // pairs for each condition. This processing takes the most time. 468 findIndependencePairs(); 469 470 // Record Test vectors, executed vectors, and independence pairs. 471 MCDCRecord Res(Region, ExecVectors, IndependencePairs, Folded, PosToID, 472 CondLoc); 473 return Res; 474 } 475 }; 476 477 Expected<MCDCRecord> CounterMappingContext::evaluateMCDCRegion( 478 const CounterMappingRegion &Region, 479 const BitVector &ExecutedTestVectorBitmap, 480 ArrayRef<const CounterMappingRegion *> Branches) { 481 482 MCDCRecordProcessor MCDCProcessor(ExecutedTestVectorBitmap, Region, Branches); 483 return MCDCProcessor.processMCDCRecord(); 484 } 485 486 unsigned CounterMappingContext::getMaxCounterID(const Counter &C) const { 487 struct StackElem { 488 Counter ICounter; 489 int64_t LHS = 0; 490 enum { 491 KNeverVisited = 0, 492 KVisitedOnce = 1, 493 KVisitedTwice = 2, 494 } VisitCount = KNeverVisited; 495 }; 496 497 std::stack<StackElem> CounterStack; 498 CounterStack.push({C}); 499 500 int64_t LastPoppedValue; 501 502 while (!CounterStack.empty()) { 503 StackElem &Current = CounterStack.top(); 504 505 switch (Current.ICounter.getKind()) { 506 case Counter::Zero: 507 LastPoppedValue = 0; 508 CounterStack.pop(); 509 break; 510 case Counter::CounterValueReference: 511 LastPoppedValue = Current.ICounter.getCounterID(); 512 CounterStack.pop(); 513 break; 514 case Counter::Expression: { 515 if (Current.ICounter.getExpressionID() >= Expressions.size()) { 516 LastPoppedValue = 0; 517 CounterStack.pop(); 518 } else { 519 const auto &E = Expressions[Current.ICounter.getExpressionID()]; 520 if (Current.VisitCount == StackElem::KNeverVisited) { 521 CounterStack.push(StackElem{E.LHS}); 522 Current.VisitCount = StackElem::KVisitedOnce; 523 } else if (Current.VisitCount == StackElem::KVisitedOnce) { 524 Current.LHS = LastPoppedValue; 525 CounterStack.push(StackElem{E.RHS}); 526 Current.VisitCount = StackElem::KVisitedTwice; 527 } else { 528 int64_t LHS = Current.LHS; 529 int64_t RHS = LastPoppedValue; 530 LastPoppedValue = std::max(LHS, RHS); 531 CounterStack.pop(); 532 } 533 } 534 break; 535 } 536 } 537 } 538 539 return LastPoppedValue; 540 } 541 542 void FunctionRecordIterator::skipOtherFiles() { 543 while (Current != Records.end() && !Filename.empty() && 544 Filename != Current->Filenames[0]) 545 ++Current; 546 if (Current == Records.end()) 547 *this = FunctionRecordIterator(); 548 } 549 550 ArrayRef<unsigned> CoverageMapping::getImpreciseRecordIndicesForFilename( 551 StringRef Filename) const { 552 size_t FilenameHash = hash_value(Filename); 553 auto RecordIt = FilenameHash2RecordIndices.find(FilenameHash); 554 if (RecordIt == FilenameHash2RecordIndices.end()) 555 return {}; 556 return RecordIt->second; 557 } 558 559 static unsigned getMaxCounterID(const CounterMappingContext &Ctx, 560 const CoverageMappingRecord &Record) { 561 unsigned MaxCounterID = 0; 562 for (const auto &Region : Record.MappingRegions) { 563 MaxCounterID = std::max(MaxCounterID, Ctx.getMaxCounterID(Region.Count)); 564 } 565 return MaxCounterID; 566 } 567 568 static unsigned getMaxBitmapSize(const CounterMappingContext &Ctx, 569 const CoverageMappingRecord &Record) { 570 unsigned MaxBitmapID = 0; 571 unsigned NumConditions = 0; 572 // Scan max(BitmapIdx). 573 // Note that `<=` is used insted of `<`, because `BitmapIdx == 0` is valid 574 // and `MaxBitmapID is `unsigned`. `BitmapIdx` is unique in the record. 575 for (const auto &Region : reverse(Record.MappingRegions)) { 576 if (Region.Kind == CounterMappingRegion::MCDCDecisionRegion && 577 MaxBitmapID <= Region.MCDCParams.BitmapIdx) { 578 MaxBitmapID = Region.MCDCParams.BitmapIdx; 579 NumConditions = Region.MCDCParams.NumConditions; 580 } 581 } 582 unsigned SizeInBits = llvm::alignTo(uint64_t(1) << NumConditions, CHAR_BIT); 583 return MaxBitmapID + (SizeInBits / CHAR_BIT); 584 } 585 586 Error CoverageMapping::loadFunctionRecord( 587 const CoverageMappingRecord &Record, 588 IndexedInstrProfReader &ProfileReader) { 589 StringRef OrigFuncName = Record.FunctionName; 590 if (OrigFuncName.empty()) 591 return make_error<CoverageMapError>(coveragemap_error::malformed, 592 "record function name is empty"); 593 594 if (Record.Filenames.empty()) 595 OrigFuncName = getFuncNameWithoutPrefix(OrigFuncName); 596 else 597 OrigFuncName = getFuncNameWithoutPrefix(OrigFuncName, Record.Filenames[0]); 598 599 CounterMappingContext Ctx(Record.Expressions); 600 601 std::vector<uint64_t> Counts; 602 if (Error E = ProfileReader.getFunctionCounts(Record.FunctionName, 603 Record.FunctionHash, Counts)) { 604 instrprof_error IPE = std::get<0>(InstrProfError::take(std::move(E))); 605 if (IPE == instrprof_error::hash_mismatch) { 606 FuncHashMismatches.emplace_back(std::string(Record.FunctionName), 607 Record.FunctionHash); 608 return Error::success(); 609 } 610 if (IPE != instrprof_error::unknown_function) 611 return make_error<InstrProfError>(IPE); 612 Counts.assign(getMaxCounterID(Ctx, Record) + 1, 0); 613 } 614 Ctx.setCounts(Counts); 615 616 std::vector<uint8_t> BitmapBytes; 617 if (Error E = ProfileReader.getFunctionBitmapBytes( 618 Record.FunctionName, Record.FunctionHash, BitmapBytes)) { 619 instrprof_error IPE = std::get<0>(InstrProfError::take(std::move(E))); 620 if (IPE == instrprof_error::hash_mismatch) { 621 FuncHashMismatches.emplace_back(std::string(Record.FunctionName), 622 Record.FunctionHash); 623 return Error::success(); 624 } 625 if (IPE != instrprof_error::unknown_function) 626 return make_error<InstrProfError>(IPE); 627 BitmapBytes.assign(getMaxBitmapSize(Ctx, Record) + 1, 0); 628 } 629 Ctx.setBitmapBytes(BitmapBytes); 630 631 assert(!Record.MappingRegions.empty() && "Function has no regions"); 632 633 // This coverage record is a zero region for a function that's unused in 634 // some TU, but used in a different TU. Ignore it. The coverage maps from the 635 // the other TU will either be loaded (providing full region counts) or they 636 // won't (in which case we don't unintuitively report functions as uncovered 637 // when they have non-zero counts in the profile). 638 if (Record.MappingRegions.size() == 1 && 639 Record.MappingRegions[0].Count.isZero() && Counts[0] > 0) 640 return Error::success(); 641 642 unsigned NumConds = 0; 643 const CounterMappingRegion *MCDCDecision; 644 std::vector<const CounterMappingRegion *> MCDCBranches; 645 646 FunctionRecord Function(OrigFuncName, Record.Filenames); 647 for (const auto &Region : Record.MappingRegions) { 648 // If an MCDCDecisionRegion is seen, track the BranchRegions that follow 649 // it according to Region.NumConditions. 650 if (Region.Kind == CounterMappingRegion::MCDCDecisionRegion) { 651 assert(NumConds == 0); 652 MCDCDecision = &Region; 653 NumConds = Region.MCDCParams.NumConditions; 654 continue; 655 } 656 Expected<int64_t> ExecutionCount = Ctx.evaluate(Region.Count); 657 if (auto E = ExecutionCount.takeError()) { 658 consumeError(std::move(E)); 659 return Error::success(); 660 } 661 Expected<int64_t> AltExecutionCount = Ctx.evaluate(Region.FalseCount); 662 if (auto E = AltExecutionCount.takeError()) { 663 consumeError(std::move(E)); 664 return Error::success(); 665 } 666 Function.pushRegion(Region, *ExecutionCount, *AltExecutionCount); 667 668 // If a MCDCDecisionRegion was seen, store the BranchRegions that 669 // correspond to it in a vector, according to the number of conditions 670 // recorded for the region (tracked by NumConds). 671 if (NumConds > 0 && Region.Kind == CounterMappingRegion::MCDCBranchRegion) { 672 MCDCBranches.push_back(&Region); 673 674 // As we move through all of the MCDCBranchRegions that follow the 675 // MCDCDecisionRegion, decrement NumConds to make sure we account for 676 // them all before we calculate the bitmap of executed test vectors. 677 if (--NumConds == 0) { 678 // Evaluating the test vector bitmap for the decision region entails 679 // calculating precisely what bits are pertinent to this region alone. 680 // This is calculated based on the recorded offset into the global 681 // profile bitmap; the length is calculated based on the recorded 682 // number of conditions. 683 Expected<BitVector> ExecutedTestVectorBitmap = 684 Ctx.evaluateBitmap(MCDCDecision); 685 if (auto E = ExecutedTestVectorBitmap.takeError()) { 686 consumeError(std::move(E)); 687 return Error::success(); 688 } 689 690 // Since the bitmap identifies the executed test vectors for an MC/DC 691 // DecisionRegion, all of the information is now available to process. 692 // This is where the bulk of the MC/DC progressing takes place. 693 Expected<MCDCRecord> Record = Ctx.evaluateMCDCRegion( 694 *MCDCDecision, *ExecutedTestVectorBitmap, MCDCBranches); 695 if (auto E = Record.takeError()) { 696 consumeError(std::move(E)); 697 return Error::success(); 698 } 699 700 // Save the MC/DC Record so that it can be visualized later. 701 Function.pushMCDCRecord(*Record); 702 MCDCBranches.clear(); 703 } 704 } 705 } 706 707 // Don't create records for (filenames, function) pairs we've already seen. 708 auto FilenamesHash = hash_combine_range(Record.Filenames.begin(), 709 Record.Filenames.end()); 710 if (!RecordProvenance[FilenamesHash].insert(hash_value(OrigFuncName)).second) 711 return Error::success(); 712 713 Functions.push_back(std::move(Function)); 714 715 // Performance optimization: keep track of the indices of the function records 716 // which correspond to each filename. This can be used to substantially speed 717 // up queries for coverage info in a file. 718 unsigned RecordIndex = Functions.size() - 1; 719 for (StringRef Filename : Record.Filenames) { 720 auto &RecordIndices = FilenameHash2RecordIndices[hash_value(Filename)]; 721 // Note that there may be duplicates in the filename set for a function 722 // record, because of e.g. macro expansions in the function in which both 723 // the macro and the function are defined in the same file. 724 if (RecordIndices.empty() || RecordIndices.back() != RecordIndex) 725 RecordIndices.push_back(RecordIndex); 726 } 727 728 return Error::success(); 729 } 730 731 // This function is for memory optimization by shortening the lifetimes 732 // of CoverageMappingReader instances. 733 Error CoverageMapping::loadFromReaders( 734 ArrayRef<std::unique_ptr<CoverageMappingReader>> CoverageReaders, 735 IndexedInstrProfReader &ProfileReader, CoverageMapping &Coverage) { 736 for (const auto &CoverageReader : CoverageReaders) { 737 for (auto RecordOrErr : *CoverageReader) { 738 if (Error E = RecordOrErr.takeError()) 739 return E; 740 const auto &Record = *RecordOrErr; 741 if (Error E = Coverage.loadFunctionRecord(Record, ProfileReader)) 742 return E; 743 } 744 } 745 return Error::success(); 746 } 747 748 Expected<std::unique_ptr<CoverageMapping>> CoverageMapping::load( 749 ArrayRef<std::unique_ptr<CoverageMappingReader>> CoverageReaders, 750 IndexedInstrProfReader &ProfileReader) { 751 auto Coverage = std::unique_ptr<CoverageMapping>(new CoverageMapping()); 752 if (Error E = loadFromReaders(CoverageReaders, ProfileReader, *Coverage)) 753 return std::move(E); 754 return std::move(Coverage); 755 } 756 757 // If E is a no_data_found error, returns success. Otherwise returns E. 758 static Error handleMaybeNoDataFoundError(Error E) { 759 return handleErrors( 760 std::move(E), [](const CoverageMapError &CME) { 761 if (CME.get() == coveragemap_error::no_data_found) 762 return static_cast<Error>(Error::success()); 763 return make_error<CoverageMapError>(CME.get(), CME.getMessage()); 764 }); 765 } 766 767 Error CoverageMapping::loadFromFile( 768 StringRef Filename, StringRef Arch, StringRef CompilationDir, 769 IndexedInstrProfReader &ProfileReader, CoverageMapping &Coverage, 770 bool &DataFound, SmallVectorImpl<object::BuildID> *FoundBinaryIDs) { 771 auto CovMappingBufOrErr = MemoryBuffer::getFileOrSTDIN( 772 Filename, /*IsText=*/false, /*RequiresNullTerminator=*/false); 773 if (std::error_code EC = CovMappingBufOrErr.getError()) 774 return createFileError(Filename, errorCodeToError(EC)); 775 MemoryBufferRef CovMappingBufRef = 776 CovMappingBufOrErr.get()->getMemBufferRef(); 777 SmallVector<std::unique_ptr<MemoryBuffer>, 4> Buffers; 778 779 SmallVector<object::BuildIDRef> BinaryIDs; 780 auto CoverageReadersOrErr = BinaryCoverageReader::create( 781 CovMappingBufRef, Arch, Buffers, CompilationDir, 782 FoundBinaryIDs ? &BinaryIDs : nullptr); 783 if (Error E = CoverageReadersOrErr.takeError()) { 784 E = handleMaybeNoDataFoundError(std::move(E)); 785 if (E) 786 return createFileError(Filename, std::move(E)); 787 return E; 788 } 789 790 SmallVector<std::unique_ptr<CoverageMappingReader>, 4> Readers; 791 for (auto &Reader : CoverageReadersOrErr.get()) 792 Readers.push_back(std::move(Reader)); 793 if (FoundBinaryIDs && !Readers.empty()) { 794 llvm::append_range(*FoundBinaryIDs, 795 llvm::map_range(BinaryIDs, [](object::BuildIDRef BID) { 796 return object::BuildID(BID); 797 })); 798 } 799 DataFound |= !Readers.empty(); 800 if (Error E = loadFromReaders(Readers, ProfileReader, Coverage)) 801 return createFileError(Filename, std::move(E)); 802 return Error::success(); 803 } 804 805 Expected<std::unique_ptr<CoverageMapping>> CoverageMapping::load( 806 ArrayRef<StringRef> ObjectFilenames, StringRef ProfileFilename, 807 vfs::FileSystem &FS, ArrayRef<StringRef> Arches, StringRef CompilationDir, 808 const object::BuildIDFetcher *BIDFetcher, bool CheckBinaryIDs) { 809 auto ProfileReaderOrErr = IndexedInstrProfReader::create(ProfileFilename, FS); 810 if (Error E = ProfileReaderOrErr.takeError()) 811 return createFileError(ProfileFilename, std::move(E)); 812 auto ProfileReader = std::move(ProfileReaderOrErr.get()); 813 auto Coverage = std::unique_ptr<CoverageMapping>(new CoverageMapping()); 814 bool DataFound = false; 815 816 auto GetArch = [&](size_t Idx) { 817 if (Arches.empty()) 818 return StringRef(); 819 if (Arches.size() == 1) 820 return Arches.front(); 821 return Arches[Idx]; 822 }; 823 824 SmallVector<object::BuildID> FoundBinaryIDs; 825 for (const auto &File : llvm::enumerate(ObjectFilenames)) { 826 if (Error E = 827 loadFromFile(File.value(), GetArch(File.index()), CompilationDir, 828 *ProfileReader, *Coverage, DataFound, &FoundBinaryIDs)) 829 return std::move(E); 830 } 831 832 if (BIDFetcher) { 833 std::vector<object::BuildID> ProfileBinaryIDs; 834 if (Error E = ProfileReader->readBinaryIds(ProfileBinaryIDs)) 835 return createFileError(ProfileFilename, std::move(E)); 836 837 SmallVector<object::BuildIDRef> BinaryIDsToFetch; 838 if (!ProfileBinaryIDs.empty()) { 839 const auto &Compare = [](object::BuildIDRef A, object::BuildIDRef B) { 840 return std::lexicographical_compare(A.begin(), A.end(), B.begin(), 841 B.end()); 842 }; 843 llvm::sort(FoundBinaryIDs, Compare); 844 std::set_difference( 845 ProfileBinaryIDs.begin(), ProfileBinaryIDs.end(), 846 FoundBinaryIDs.begin(), FoundBinaryIDs.end(), 847 std::inserter(BinaryIDsToFetch, BinaryIDsToFetch.end()), Compare); 848 } 849 850 for (object::BuildIDRef BinaryID : BinaryIDsToFetch) { 851 std::optional<std::string> PathOpt = BIDFetcher->fetch(BinaryID); 852 if (PathOpt) { 853 std::string Path = std::move(*PathOpt); 854 StringRef Arch = Arches.size() == 1 ? Arches.front() : StringRef(); 855 if (Error E = loadFromFile(Path, Arch, CompilationDir, *ProfileReader, 856 *Coverage, DataFound)) 857 return std::move(E); 858 } else if (CheckBinaryIDs) { 859 return createFileError( 860 ProfileFilename, 861 createStringError(errc::no_such_file_or_directory, 862 "Missing binary ID: " + 863 llvm::toHex(BinaryID, /*LowerCase=*/true))); 864 } 865 } 866 } 867 868 if (!DataFound) 869 return createFileError( 870 join(ObjectFilenames.begin(), ObjectFilenames.end(), ", "), 871 make_error<CoverageMapError>(coveragemap_error::no_data_found)); 872 return std::move(Coverage); 873 } 874 875 namespace { 876 877 /// Distributes functions into instantiation sets. 878 /// 879 /// An instantiation set is a collection of functions that have the same source 880 /// code, ie, template functions specializations. 881 class FunctionInstantiationSetCollector { 882 using MapT = std::map<LineColPair, std::vector<const FunctionRecord *>>; 883 MapT InstantiatedFunctions; 884 885 public: 886 void insert(const FunctionRecord &Function, unsigned FileID) { 887 auto I = Function.CountedRegions.begin(), E = Function.CountedRegions.end(); 888 while (I != E && I->FileID != FileID) 889 ++I; 890 assert(I != E && "function does not cover the given file"); 891 auto &Functions = InstantiatedFunctions[I->startLoc()]; 892 Functions.push_back(&Function); 893 } 894 895 MapT::iterator begin() { return InstantiatedFunctions.begin(); } 896 MapT::iterator end() { return InstantiatedFunctions.end(); } 897 }; 898 899 class SegmentBuilder { 900 std::vector<CoverageSegment> &Segments; 901 SmallVector<const CountedRegion *, 8> ActiveRegions; 902 903 SegmentBuilder(std::vector<CoverageSegment> &Segments) : Segments(Segments) {} 904 905 /// Emit a segment with the count from \p Region starting at \p StartLoc. 906 // 907 /// \p IsRegionEntry: The segment is at the start of a new non-gap region. 908 /// \p EmitSkippedRegion: The segment must be emitted as a skipped region. 909 void startSegment(const CountedRegion &Region, LineColPair StartLoc, 910 bool IsRegionEntry, bool EmitSkippedRegion = false) { 911 bool HasCount = !EmitSkippedRegion && 912 (Region.Kind != CounterMappingRegion::SkippedRegion); 913 914 // If the new segment wouldn't affect coverage rendering, skip it. 915 if (!Segments.empty() && !IsRegionEntry && !EmitSkippedRegion) { 916 const auto &Last = Segments.back(); 917 if (Last.HasCount == HasCount && Last.Count == Region.ExecutionCount && 918 !Last.IsRegionEntry) 919 return; 920 } 921 922 if (HasCount) 923 Segments.emplace_back(StartLoc.first, StartLoc.second, 924 Region.ExecutionCount, IsRegionEntry, 925 Region.Kind == CounterMappingRegion::GapRegion); 926 else 927 Segments.emplace_back(StartLoc.first, StartLoc.second, IsRegionEntry); 928 929 LLVM_DEBUG({ 930 const auto &Last = Segments.back(); 931 dbgs() << "Segment at " << Last.Line << ":" << Last.Col 932 << " (count = " << Last.Count << ")" 933 << (Last.IsRegionEntry ? ", RegionEntry" : "") 934 << (!Last.HasCount ? ", Skipped" : "") 935 << (Last.IsGapRegion ? ", Gap" : "") << "\n"; 936 }); 937 } 938 939 /// Emit segments for active regions which end before \p Loc. 940 /// 941 /// \p Loc: The start location of the next region. If std::nullopt, all active 942 /// regions are completed. 943 /// \p FirstCompletedRegion: Index of the first completed region. 944 void completeRegionsUntil(std::optional<LineColPair> Loc, 945 unsigned FirstCompletedRegion) { 946 // Sort the completed regions by end location. This makes it simple to 947 // emit closing segments in sorted order. 948 auto CompletedRegionsIt = ActiveRegions.begin() + FirstCompletedRegion; 949 std::stable_sort(CompletedRegionsIt, ActiveRegions.end(), 950 [](const CountedRegion *L, const CountedRegion *R) { 951 return L->endLoc() < R->endLoc(); 952 }); 953 954 // Emit segments for all completed regions. 955 for (unsigned I = FirstCompletedRegion + 1, E = ActiveRegions.size(); I < E; 956 ++I) { 957 const auto *CompletedRegion = ActiveRegions[I]; 958 assert((!Loc || CompletedRegion->endLoc() <= *Loc) && 959 "Completed region ends after start of new region"); 960 961 const auto *PrevCompletedRegion = ActiveRegions[I - 1]; 962 auto CompletedSegmentLoc = PrevCompletedRegion->endLoc(); 963 964 // Don't emit any more segments if they start where the new region begins. 965 if (Loc && CompletedSegmentLoc == *Loc) 966 break; 967 968 // Don't emit a segment if the next completed region ends at the same 969 // location as this one. 970 if (CompletedSegmentLoc == CompletedRegion->endLoc()) 971 continue; 972 973 // Use the count from the last completed region which ends at this loc. 974 for (unsigned J = I + 1; J < E; ++J) 975 if (CompletedRegion->endLoc() == ActiveRegions[J]->endLoc()) 976 CompletedRegion = ActiveRegions[J]; 977 978 startSegment(*CompletedRegion, CompletedSegmentLoc, false); 979 } 980 981 auto Last = ActiveRegions.back(); 982 if (FirstCompletedRegion && Last->endLoc() != *Loc) { 983 // If there's a gap after the end of the last completed region and the 984 // start of the new region, use the last active region to fill the gap. 985 startSegment(*ActiveRegions[FirstCompletedRegion - 1], Last->endLoc(), 986 false); 987 } else if (!FirstCompletedRegion && (!Loc || *Loc != Last->endLoc())) { 988 // Emit a skipped segment if there are no more active regions. This 989 // ensures that gaps between functions are marked correctly. 990 startSegment(*Last, Last->endLoc(), false, true); 991 } 992 993 // Pop the completed regions. 994 ActiveRegions.erase(CompletedRegionsIt, ActiveRegions.end()); 995 } 996 997 void buildSegmentsImpl(ArrayRef<CountedRegion> Regions) { 998 for (const auto &CR : enumerate(Regions)) { 999 auto CurStartLoc = CR.value().startLoc(); 1000 1001 // Active regions which end before the current region need to be popped. 1002 auto CompletedRegions = 1003 std::stable_partition(ActiveRegions.begin(), ActiveRegions.end(), 1004 [&](const CountedRegion *Region) { 1005 return !(Region->endLoc() <= CurStartLoc); 1006 }); 1007 if (CompletedRegions != ActiveRegions.end()) { 1008 unsigned FirstCompletedRegion = 1009 std::distance(ActiveRegions.begin(), CompletedRegions); 1010 completeRegionsUntil(CurStartLoc, FirstCompletedRegion); 1011 } 1012 1013 bool GapRegion = CR.value().Kind == CounterMappingRegion::GapRegion; 1014 1015 // Try to emit a segment for the current region. 1016 if (CurStartLoc == CR.value().endLoc()) { 1017 // Avoid making zero-length regions active. If it's the last region, 1018 // emit a skipped segment. Otherwise use its predecessor's count. 1019 const bool Skipped = 1020 (CR.index() + 1) == Regions.size() || 1021 CR.value().Kind == CounterMappingRegion::SkippedRegion; 1022 startSegment(ActiveRegions.empty() ? CR.value() : *ActiveRegions.back(), 1023 CurStartLoc, !GapRegion, Skipped); 1024 // If it is skipped segment, create a segment with last pushed 1025 // regions's count at CurStartLoc. 1026 if (Skipped && !ActiveRegions.empty()) 1027 startSegment(*ActiveRegions.back(), CurStartLoc, false); 1028 continue; 1029 } 1030 if (CR.index() + 1 == Regions.size() || 1031 CurStartLoc != Regions[CR.index() + 1].startLoc()) { 1032 // Emit a segment if the next region doesn't start at the same location 1033 // as this one. 1034 startSegment(CR.value(), CurStartLoc, !GapRegion); 1035 } 1036 1037 // This region is active (i.e not completed). 1038 ActiveRegions.push_back(&CR.value()); 1039 } 1040 1041 // Complete any remaining active regions. 1042 if (!ActiveRegions.empty()) 1043 completeRegionsUntil(std::nullopt, 0); 1044 } 1045 1046 /// Sort a nested sequence of regions from a single file. 1047 static void sortNestedRegions(MutableArrayRef<CountedRegion> Regions) { 1048 llvm::sort(Regions, [](const CountedRegion &LHS, const CountedRegion &RHS) { 1049 if (LHS.startLoc() != RHS.startLoc()) 1050 return LHS.startLoc() < RHS.startLoc(); 1051 if (LHS.endLoc() != RHS.endLoc()) 1052 // When LHS completely contains RHS, we sort LHS first. 1053 return RHS.endLoc() < LHS.endLoc(); 1054 // If LHS and RHS cover the same area, we need to sort them according 1055 // to their kinds so that the most suitable region will become "active" 1056 // in combineRegions(). Because we accumulate counter values only from 1057 // regions of the same kind as the first region of the area, prefer 1058 // CodeRegion to ExpansionRegion and ExpansionRegion to SkippedRegion. 1059 static_assert(CounterMappingRegion::CodeRegion < 1060 CounterMappingRegion::ExpansionRegion && 1061 CounterMappingRegion::ExpansionRegion < 1062 CounterMappingRegion::SkippedRegion, 1063 "Unexpected order of region kind values"); 1064 return LHS.Kind < RHS.Kind; 1065 }); 1066 } 1067 1068 /// Combine counts of regions which cover the same area. 1069 static ArrayRef<CountedRegion> 1070 combineRegions(MutableArrayRef<CountedRegion> Regions) { 1071 if (Regions.empty()) 1072 return Regions; 1073 auto Active = Regions.begin(); 1074 auto End = Regions.end(); 1075 for (auto I = Regions.begin() + 1; I != End; ++I) { 1076 if (Active->startLoc() != I->startLoc() || 1077 Active->endLoc() != I->endLoc()) { 1078 // Shift to the next region. 1079 ++Active; 1080 if (Active != I) 1081 *Active = *I; 1082 continue; 1083 } 1084 // Merge duplicate region. 1085 // If CodeRegions and ExpansionRegions cover the same area, it's probably 1086 // a macro which is fully expanded to another macro. In that case, we need 1087 // to accumulate counts only from CodeRegions, or else the area will be 1088 // counted twice. 1089 // On the other hand, a macro may have a nested macro in its body. If the 1090 // outer macro is used several times, the ExpansionRegion for the nested 1091 // macro will also be added several times. These ExpansionRegions cover 1092 // the same source locations and have to be combined to reach the correct 1093 // value for that area. 1094 // We add counts of the regions of the same kind as the active region 1095 // to handle the both situations. 1096 if (I->Kind == Active->Kind) 1097 Active->ExecutionCount += I->ExecutionCount; 1098 } 1099 return Regions.drop_back(std::distance(++Active, End)); 1100 } 1101 1102 public: 1103 /// Build a sorted list of CoverageSegments from a list of Regions. 1104 static std::vector<CoverageSegment> 1105 buildSegments(MutableArrayRef<CountedRegion> Regions) { 1106 std::vector<CoverageSegment> Segments; 1107 SegmentBuilder Builder(Segments); 1108 1109 sortNestedRegions(Regions); 1110 ArrayRef<CountedRegion> CombinedRegions = combineRegions(Regions); 1111 1112 LLVM_DEBUG({ 1113 dbgs() << "Combined regions:\n"; 1114 for (const auto &CR : CombinedRegions) 1115 dbgs() << " " << CR.LineStart << ":" << CR.ColumnStart << " -> " 1116 << CR.LineEnd << ":" << CR.ColumnEnd 1117 << " (count=" << CR.ExecutionCount << ")\n"; 1118 }); 1119 1120 Builder.buildSegmentsImpl(CombinedRegions); 1121 1122 #ifndef NDEBUG 1123 for (unsigned I = 1, E = Segments.size(); I < E; ++I) { 1124 const auto &L = Segments[I - 1]; 1125 const auto &R = Segments[I]; 1126 if (!(L.Line < R.Line) && !(L.Line == R.Line && L.Col < R.Col)) { 1127 if (L.Line == R.Line && L.Col == R.Col && !L.HasCount) 1128 continue; 1129 LLVM_DEBUG(dbgs() << " ! Segment " << L.Line << ":" << L.Col 1130 << " followed by " << R.Line << ":" << R.Col << "\n"); 1131 assert(false && "Coverage segments not unique or sorted"); 1132 } 1133 } 1134 #endif 1135 1136 return Segments; 1137 } 1138 }; 1139 1140 } // end anonymous namespace 1141 1142 std::vector<StringRef> CoverageMapping::getUniqueSourceFiles() const { 1143 std::vector<StringRef> Filenames; 1144 for (const auto &Function : getCoveredFunctions()) 1145 llvm::append_range(Filenames, Function.Filenames); 1146 llvm::sort(Filenames); 1147 auto Last = std::unique(Filenames.begin(), Filenames.end()); 1148 Filenames.erase(Last, Filenames.end()); 1149 return Filenames; 1150 } 1151 1152 static SmallBitVector gatherFileIDs(StringRef SourceFile, 1153 const FunctionRecord &Function) { 1154 SmallBitVector FilenameEquivalence(Function.Filenames.size(), false); 1155 for (unsigned I = 0, E = Function.Filenames.size(); I < E; ++I) 1156 if (SourceFile == Function.Filenames[I]) 1157 FilenameEquivalence[I] = true; 1158 return FilenameEquivalence; 1159 } 1160 1161 /// Return the ID of the file where the definition of the function is located. 1162 static std::optional<unsigned> 1163 findMainViewFileID(const FunctionRecord &Function) { 1164 SmallBitVector IsNotExpandedFile(Function.Filenames.size(), true); 1165 for (const auto &CR : Function.CountedRegions) 1166 if (CR.Kind == CounterMappingRegion::ExpansionRegion) 1167 IsNotExpandedFile[CR.ExpandedFileID] = false; 1168 int I = IsNotExpandedFile.find_first(); 1169 if (I == -1) 1170 return std::nullopt; 1171 return I; 1172 } 1173 1174 /// Check if SourceFile is the file that contains the definition of 1175 /// the Function. Return the ID of the file in that case or std::nullopt 1176 /// otherwise. 1177 static std::optional<unsigned> 1178 findMainViewFileID(StringRef SourceFile, const FunctionRecord &Function) { 1179 std::optional<unsigned> I = findMainViewFileID(Function); 1180 if (I && SourceFile == Function.Filenames[*I]) 1181 return I; 1182 return std::nullopt; 1183 } 1184 1185 static bool isExpansion(const CountedRegion &R, unsigned FileID) { 1186 return R.Kind == CounterMappingRegion::ExpansionRegion && R.FileID == FileID; 1187 } 1188 1189 CoverageData CoverageMapping::getCoverageForFile(StringRef Filename) const { 1190 CoverageData FileCoverage(Filename); 1191 std::vector<CountedRegion> Regions; 1192 1193 // Look up the function records in the given file. Due to hash collisions on 1194 // the filename, we may get back some records that are not in the file. 1195 ArrayRef<unsigned> RecordIndices = 1196 getImpreciseRecordIndicesForFilename(Filename); 1197 for (unsigned RecordIndex : RecordIndices) { 1198 const FunctionRecord &Function = Functions[RecordIndex]; 1199 auto MainFileID = findMainViewFileID(Filename, Function); 1200 auto FileIDs = gatherFileIDs(Filename, Function); 1201 for (const auto &CR : Function.CountedRegions) 1202 if (FileIDs.test(CR.FileID)) { 1203 Regions.push_back(CR); 1204 if (MainFileID && isExpansion(CR, *MainFileID)) 1205 FileCoverage.Expansions.emplace_back(CR, Function); 1206 } 1207 // Capture branch regions specific to the function (excluding expansions). 1208 for (const auto &CR : Function.CountedBranchRegions) 1209 if (FileIDs.test(CR.FileID) && (CR.FileID == CR.ExpandedFileID)) 1210 FileCoverage.BranchRegions.push_back(CR); 1211 // Capture MCDC records specific to the function. 1212 for (const auto &MR : Function.MCDCRecords) 1213 if (FileIDs.test(MR.getDecisionRegion().FileID)) 1214 FileCoverage.MCDCRecords.push_back(MR); 1215 } 1216 1217 LLVM_DEBUG(dbgs() << "Emitting segments for file: " << Filename << "\n"); 1218 FileCoverage.Segments = SegmentBuilder::buildSegments(Regions); 1219 1220 return FileCoverage; 1221 } 1222 1223 std::vector<InstantiationGroup> 1224 CoverageMapping::getInstantiationGroups(StringRef Filename) const { 1225 FunctionInstantiationSetCollector InstantiationSetCollector; 1226 // Look up the function records in the given file. Due to hash collisions on 1227 // the filename, we may get back some records that are not in the file. 1228 ArrayRef<unsigned> RecordIndices = 1229 getImpreciseRecordIndicesForFilename(Filename); 1230 for (unsigned RecordIndex : RecordIndices) { 1231 const FunctionRecord &Function = Functions[RecordIndex]; 1232 auto MainFileID = findMainViewFileID(Filename, Function); 1233 if (!MainFileID) 1234 continue; 1235 InstantiationSetCollector.insert(Function, *MainFileID); 1236 } 1237 1238 std::vector<InstantiationGroup> Result; 1239 for (auto &InstantiationSet : InstantiationSetCollector) { 1240 InstantiationGroup IG{InstantiationSet.first.first, 1241 InstantiationSet.first.second, 1242 std::move(InstantiationSet.second)}; 1243 Result.emplace_back(std::move(IG)); 1244 } 1245 return Result; 1246 } 1247 1248 CoverageData 1249 CoverageMapping::getCoverageForFunction(const FunctionRecord &Function) const { 1250 auto MainFileID = findMainViewFileID(Function); 1251 if (!MainFileID) 1252 return CoverageData(); 1253 1254 CoverageData FunctionCoverage(Function.Filenames[*MainFileID]); 1255 std::vector<CountedRegion> Regions; 1256 for (const auto &CR : Function.CountedRegions) 1257 if (CR.FileID == *MainFileID) { 1258 Regions.push_back(CR); 1259 if (isExpansion(CR, *MainFileID)) 1260 FunctionCoverage.Expansions.emplace_back(CR, Function); 1261 } 1262 // Capture branch regions specific to the function (excluding expansions). 1263 for (const auto &CR : Function.CountedBranchRegions) 1264 if (CR.FileID == *MainFileID) 1265 FunctionCoverage.BranchRegions.push_back(CR); 1266 1267 // Capture MCDC records specific to the function. 1268 for (const auto &MR : Function.MCDCRecords) 1269 if (MR.getDecisionRegion().FileID == *MainFileID) 1270 FunctionCoverage.MCDCRecords.push_back(MR); 1271 1272 LLVM_DEBUG(dbgs() << "Emitting segments for function: " << Function.Name 1273 << "\n"); 1274 FunctionCoverage.Segments = SegmentBuilder::buildSegments(Regions); 1275 1276 return FunctionCoverage; 1277 } 1278 1279 CoverageData CoverageMapping::getCoverageForExpansion( 1280 const ExpansionRecord &Expansion) const { 1281 CoverageData ExpansionCoverage( 1282 Expansion.Function.Filenames[Expansion.FileID]); 1283 std::vector<CountedRegion> Regions; 1284 for (const auto &CR : Expansion.Function.CountedRegions) 1285 if (CR.FileID == Expansion.FileID) { 1286 Regions.push_back(CR); 1287 if (isExpansion(CR, Expansion.FileID)) 1288 ExpansionCoverage.Expansions.emplace_back(CR, Expansion.Function); 1289 } 1290 for (const auto &CR : Expansion.Function.CountedBranchRegions) 1291 // Capture branch regions that only pertain to the corresponding expansion. 1292 if (CR.FileID == Expansion.FileID) 1293 ExpansionCoverage.BranchRegions.push_back(CR); 1294 1295 LLVM_DEBUG(dbgs() << "Emitting segments for expansion of file " 1296 << Expansion.FileID << "\n"); 1297 ExpansionCoverage.Segments = SegmentBuilder::buildSegments(Regions); 1298 1299 return ExpansionCoverage; 1300 } 1301 1302 LineCoverageStats::LineCoverageStats( 1303 ArrayRef<const CoverageSegment *> LineSegments, 1304 const CoverageSegment *WrappedSegment, unsigned Line) 1305 : ExecutionCount(0), HasMultipleRegions(false), Mapped(false), Line(Line), 1306 LineSegments(LineSegments), WrappedSegment(WrappedSegment) { 1307 // Find the minimum number of regions which start in this line. 1308 unsigned MinRegionCount = 0; 1309 auto isStartOfRegion = [](const CoverageSegment *S) { 1310 return !S->IsGapRegion && S->HasCount && S->IsRegionEntry; 1311 }; 1312 for (unsigned I = 0; I < LineSegments.size() && MinRegionCount < 2; ++I) 1313 if (isStartOfRegion(LineSegments[I])) 1314 ++MinRegionCount; 1315 1316 bool StartOfSkippedRegion = !LineSegments.empty() && 1317 !LineSegments.front()->HasCount && 1318 LineSegments.front()->IsRegionEntry; 1319 1320 HasMultipleRegions = MinRegionCount > 1; 1321 Mapped = 1322 !StartOfSkippedRegion && 1323 ((WrappedSegment && WrappedSegment->HasCount) || (MinRegionCount > 0)); 1324 1325 // if there is any starting segment at this line with a counter, it must be 1326 // mapped 1327 Mapped |= std::any_of( 1328 LineSegments.begin(), LineSegments.end(), 1329 [](const auto *Seq) { return Seq->IsRegionEntry && Seq->HasCount; }); 1330 1331 if (!Mapped) { 1332 return; 1333 } 1334 1335 // Pick the max count from the non-gap, region entry segments and the 1336 // wrapped count. 1337 if (WrappedSegment) 1338 ExecutionCount = WrappedSegment->Count; 1339 if (!MinRegionCount) 1340 return; 1341 for (const auto *LS : LineSegments) 1342 if (isStartOfRegion(LS)) 1343 ExecutionCount = std::max(ExecutionCount, LS->Count); 1344 } 1345 1346 LineCoverageIterator &LineCoverageIterator::operator++() { 1347 if (Next == CD.end()) { 1348 Stats = LineCoverageStats(); 1349 Ended = true; 1350 return *this; 1351 } 1352 if (Segments.size()) 1353 WrappedSegment = Segments.back(); 1354 Segments.clear(); 1355 while (Next != CD.end() && Next->Line == Line) 1356 Segments.push_back(&*Next++); 1357 Stats = LineCoverageStats(Segments, WrappedSegment, Line); 1358 ++Line; 1359 return *this; 1360 } 1361 1362 static std::string getCoverageMapErrString(coveragemap_error Err, 1363 const std::string &ErrMsg = "") { 1364 std::string Msg; 1365 raw_string_ostream OS(Msg); 1366 1367 switch (Err) { 1368 case coveragemap_error::success: 1369 OS << "success"; 1370 break; 1371 case coveragemap_error::eof: 1372 OS << "end of File"; 1373 break; 1374 case coveragemap_error::no_data_found: 1375 OS << "no coverage data found"; 1376 break; 1377 case coveragemap_error::unsupported_version: 1378 OS << "unsupported coverage format version"; 1379 break; 1380 case coveragemap_error::truncated: 1381 OS << "truncated coverage data"; 1382 break; 1383 case coveragemap_error::malformed: 1384 OS << "malformed coverage data"; 1385 break; 1386 case coveragemap_error::decompression_failed: 1387 OS << "failed to decompress coverage data (zlib)"; 1388 break; 1389 case coveragemap_error::invalid_or_missing_arch_specifier: 1390 OS << "`-arch` specifier is invalid or missing for universal binary"; 1391 break; 1392 } 1393 1394 // If optional error message is not empty, append it to the message. 1395 if (!ErrMsg.empty()) 1396 OS << ": " << ErrMsg; 1397 1398 return Msg; 1399 } 1400 1401 namespace { 1402 1403 // FIXME: This class is only here to support the transition to llvm::Error. It 1404 // will be removed once this transition is complete. Clients should prefer to 1405 // deal with the Error value directly, rather than converting to error_code. 1406 class CoverageMappingErrorCategoryType : public std::error_category { 1407 const char *name() const noexcept override { return "llvm.coveragemap"; } 1408 std::string message(int IE) const override { 1409 return getCoverageMapErrString(static_cast<coveragemap_error>(IE)); 1410 } 1411 }; 1412 1413 } // end anonymous namespace 1414 1415 std::string CoverageMapError::message() const { 1416 return getCoverageMapErrString(Err, Msg); 1417 } 1418 1419 const std::error_category &llvm::coverage::coveragemap_category() { 1420 static CoverageMappingErrorCategoryType ErrorCategory; 1421 return ErrorCategory; 1422 } 1423 1424 char CoverageMapError::ID = 0; 1425