1 //===- CoverageMapping.cpp - Code coverage mapping support ----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains support for clang's and llvm's instrumentation based 10 // code coverage. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/ProfileData/Coverage/CoverageMapping.h" 15 #include "llvm/ADT/ArrayRef.h" 16 #include "llvm/ADT/DenseMap.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/SmallBitVector.h" 19 #include "llvm/ADT/SmallVector.h" 20 #include "llvm/ADT/StringExtras.h" 21 #include "llvm/ADT/StringRef.h" 22 #include "llvm/Object/BuildID.h" 23 #include "llvm/ProfileData/Coverage/CoverageMappingReader.h" 24 #include "llvm/ProfileData/InstrProfReader.h" 25 #include "llvm/Support/Debug.h" 26 #include "llvm/Support/Errc.h" 27 #include "llvm/Support/Error.h" 28 #include "llvm/Support/ErrorHandling.h" 29 #include "llvm/Support/MemoryBuffer.h" 30 #include "llvm/Support/VirtualFileSystem.h" 31 #include "llvm/Support/raw_ostream.h" 32 #include <algorithm> 33 #include <cassert> 34 #include <cmath> 35 #include <cstdint> 36 #include <iterator> 37 #include <map> 38 #include <memory> 39 #include <optional> 40 #include <string> 41 #include <system_error> 42 #include <utility> 43 #include <vector> 44 45 using namespace llvm; 46 using namespace coverage; 47 48 #define DEBUG_TYPE "coverage-mapping" 49 50 Counter CounterExpressionBuilder::get(const CounterExpression &E) { 51 auto It = ExpressionIndices.find(E); 52 if (It != ExpressionIndices.end()) 53 return Counter::getExpression(It->second); 54 unsigned I = Expressions.size(); 55 Expressions.push_back(E); 56 ExpressionIndices[E] = I; 57 return Counter::getExpression(I); 58 } 59 60 void CounterExpressionBuilder::extractTerms(Counter C, int Factor, 61 SmallVectorImpl<Term> &Terms) { 62 switch (C.getKind()) { 63 case Counter::Zero: 64 break; 65 case Counter::CounterValueReference: 66 Terms.emplace_back(C.getCounterID(), Factor); 67 break; 68 case Counter::Expression: 69 const auto &E = Expressions[C.getExpressionID()]; 70 extractTerms(E.LHS, Factor, Terms); 71 extractTerms( 72 E.RHS, E.Kind == CounterExpression::Subtract ? -Factor : Factor, Terms); 73 break; 74 } 75 } 76 77 Counter CounterExpressionBuilder::simplify(Counter ExpressionTree) { 78 // Gather constant terms. 79 SmallVector<Term, 32> Terms; 80 extractTerms(ExpressionTree, +1, Terms); 81 82 // If there are no terms, this is just a zero. The algorithm below assumes at 83 // least one term. 84 if (Terms.size() == 0) 85 return Counter::getZero(); 86 87 // Group the terms by counter ID. 88 llvm::sort(Terms, [](const Term &LHS, const Term &RHS) { 89 return LHS.CounterID < RHS.CounterID; 90 }); 91 92 // Combine terms by counter ID to eliminate counters that sum to zero. 93 auto Prev = Terms.begin(); 94 for (auto I = Prev + 1, E = Terms.end(); I != E; ++I) { 95 if (I->CounterID == Prev->CounterID) { 96 Prev->Factor += I->Factor; 97 continue; 98 } 99 ++Prev; 100 *Prev = *I; 101 } 102 Terms.erase(++Prev, Terms.end()); 103 104 Counter C; 105 // Create additions. We do this before subtractions to avoid constructs like 106 // ((0 - X) + Y), as opposed to (Y - X). 107 for (auto T : Terms) { 108 if (T.Factor <= 0) 109 continue; 110 for (int I = 0; I < T.Factor; ++I) 111 if (C.isZero()) 112 C = Counter::getCounter(T.CounterID); 113 else 114 C = get(CounterExpression(CounterExpression::Add, C, 115 Counter::getCounter(T.CounterID))); 116 } 117 118 // Create subtractions. 119 for (auto T : Terms) { 120 if (T.Factor >= 0) 121 continue; 122 for (int I = 0; I < -T.Factor; ++I) 123 C = get(CounterExpression(CounterExpression::Subtract, C, 124 Counter::getCounter(T.CounterID))); 125 } 126 return C; 127 } 128 129 Counter CounterExpressionBuilder::add(Counter LHS, Counter RHS, bool Simplify) { 130 auto Cnt = get(CounterExpression(CounterExpression::Add, LHS, RHS)); 131 return Simplify ? simplify(Cnt) : Cnt; 132 } 133 134 Counter CounterExpressionBuilder::subtract(Counter LHS, Counter RHS, 135 bool Simplify) { 136 auto Cnt = get(CounterExpression(CounterExpression::Subtract, LHS, RHS)); 137 return Simplify ? simplify(Cnt) : Cnt; 138 } 139 140 void CounterMappingContext::dump(const Counter &C, raw_ostream &OS) const { 141 switch (C.getKind()) { 142 case Counter::Zero: 143 OS << '0'; 144 return; 145 case Counter::CounterValueReference: 146 OS << '#' << C.getCounterID(); 147 break; 148 case Counter::Expression: { 149 if (C.getExpressionID() >= Expressions.size()) 150 return; 151 const auto &E = Expressions[C.getExpressionID()]; 152 OS << '('; 153 dump(E.LHS, OS); 154 OS << (E.Kind == CounterExpression::Subtract ? " - " : " + "); 155 dump(E.RHS, OS); 156 OS << ')'; 157 break; 158 } 159 } 160 if (CounterValues.empty()) 161 return; 162 Expected<int64_t> Value = evaluate(C); 163 if (auto E = Value.takeError()) { 164 consumeError(std::move(E)); 165 return; 166 } 167 OS << '[' << *Value << ']'; 168 } 169 170 Expected<int64_t> CounterMappingContext::evaluate(const Counter &C) const { 171 struct StackElem { 172 Counter ICounter; 173 int64_t LHS = 0; 174 enum { 175 KNeverVisited = 0, 176 KVisitedOnce = 1, 177 KVisitedTwice = 2, 178 } VisitCount = KNeverVisited; 179 }; 180 181 std::stack<StackElem> CounterStack; 182 CounterStack.push({C}); 183 184 int64_t LastPoppedValue; 185 186 while (!CounterStack.empty()) { 187 StackElem &Current = CounterStack.top(); 188 189 switch (Current.ICounter.getKind()) { 190 case Counter::Zero: 191 LastPoppedValue = 0; 192 CounterStack.pop(); 193 break; 194 case Counter::CounterValueReference: 195 if (Current.ICounter.getCounterID() >= CounterValues.size()) 196 return errorCodeToError(errc::argument_out_of_domain); 197 LastPoppedValue = CounterValues[Current.ICounter.getCounterID()]; 198 CounterStack.pop(); 199 break; 200 case Counter::Expression: { 201 if (Current.ICounter.getExpressionID() >= Expressions.size()) 202 return errorCodeToError(errc::argument_out_of_domain); 203 const auto &E = Expressions[Current.ICounter.getExpressionID()]; 204 if (Current.VisitCount == StackElem::KNeverVisited) { 205 CounterStack.push(StackElem{E.LHS}); 206 Current.VisitCount = StackElem::KVisitedOnce; 207 } else if (Current.VisitCount == StackElem::KVisitedOnce) { 208 Current.LHS = LastPoppedValue; 209 CounterStack.push(StackElem{E.RHS}); 210 Current.VisitCount = StackElem::KVisitedTwice; 211 } else { 212 int64_t LHS = Current.LHS; 213 int64_t RHS = LastPoppedValue; 214 LastPoppedValue = 215 E.Kind == CounterExpression::Subtract ? LHS - RHS : LHS + RHS; 216 CounterStack.pop(); 217 } 218 break; 219 } 220 } 221 } 222 223 return LastPoppedValue; 224 } 225 226 mcdc::TVIdxBuilder::TVIdxBuilder(const SmallVectorImpl<ConditionIDs> &NextIDs, 227 int Offset) 228 : Indices(NextIDs.size()) { 229 // Construct Nodes and set up each InCount 230 auto N = NextIDs.size(); 231 SmallVector<MCDCNode> Nodes(N); 232 for (unsigned ID = 0; ID < N; ++ID) { 233 for (unsigned C = 0; C < 2; ++C) { 234 #ifndef NDEBUG 235 Indices[ID][C] = INT_MIN; 236 #endif 237 auto NextID = NextIDs[ID][C]; 238 Nodes[ID].NextIDs[C] = NextID; 239 if (NextID >= 0) 240 ++Nodes[NextID].InCount; 241 } 242 } 243 244 // Sort key ordered by <-Width, Ord> 245 SmallVector<std::tuple<int, /// -Width 246 unsigned, /// Ord 247 int, /// ID 248 unsigned /// Cond (0 or 1) 249 >> 250 Decisions; 251 252 // Traverse Nodes to assign Idx 253 SmallVector<int> Q; 254 assert(Nodes[0].InCount == 0); 255 Nodes[0].Width = 1; 256 Q.push_back(0); 257 258 unsigned Ord = 0; 259 while (!Q.empty()) { 260 auto IID = Q.begin(); 261 int ID = *IID; 262 Q.erase(IID); 263 auto &Node = Nodes[ID]; 264 assert(Node.Width > 0); 265 266 for (unsigned I = 0; I < 2; ++I) { 267 auto NextID = Node.NextIDs[I]; 268 assert(NextID != 0 && "NextID should not point to the top"); 269 if (NextID < 0) { 270 // Decision 271 Decisions.emplace_back(-Node.Width, Ord++, ID, I); 272 assert(Ord == Decisions.size()); 273 continue; 274 } 275 276 // Inter Node 277 auto &NextNode = Nodes[NextID]; 278 assert(NextNode.InCount > 0); 279 280 // Assign Idx 281 assert(Indices[ID][I] == INT_MIN); 282 Indices[ID][I] = NextNode.Width; 283 auto NextWidth = int64_t(NextNode.Width) + Node.Width; 284 if (NextWidth > HardMaxTVs) { 285 NumTestVectors = HardMaxTVs; // Overflow 286 return; 287 } 288 NextNode.Width = NextWidth; 289 290 // Ready if all incomings are processed. 291 // Or NextNode.Width hasn't been confirmed yet. 292 if (--NextNode.InCount == 0) 293 Q.push_back(NextID); 294 } 295 } 296 297 llvm::sort(Decisions); 298 299 // Assign TestVector Indices in Decision Nodes 300 int64_t CurIdx = 0; 301 for (auto [NegWidth, Ord, ID, C] : Decisions) { 302 int Width = -NegWidth; 303 assert(Nodes[ID].Width == Width); 304 assert(Nodes[ID].NextIDs[C] < 0); 305 assert(Indices[ID][C] == INT_MIN); 306 Indices[ID][C] = Offset + CurIdx; 307 CurIdx += Width; 308 if (CurIdx > HardMaxTVs) { 309 NumTestVectors = HardMaxTVs; // Overflow 310 return; 311 } 312 } 313 314 assert(CurIdx < HardMaxTVs); 315 NumTestVectors = CurIdx; 316 317 #ifndef NDEBUG 318 for (const auto &Idxs : Indices) 319 for (auto Idx : Idxs) 320 assert(Idx != INT_MIN); 321 SavedNodes = std::move(Nodes); 322 #endif 323 } 324 325 namespace { 326 327 /// Construct this->NextIDs with Branches for TVIdxBuilder to use it 328 /// before MCDCRecordProcessor(). 329 class NextIDsBuilder { 330 protected: 331 SmallVector<mcdc::ConditionIDs> NextIDs; 332 333 public: 334 NextIDsBuilder(const ArrayRef<const CounterMappingRegion *> Branches) 335 : NextIDs(Branches.size()) { 336 #ifndef NDEBUG 337 DenseSet<mcdc::ConditionID> SeenIDs; 338 #endif 339 for (const auto *Branch : Branches) { 340 const auto &BranchParams = Branch->getBranchParams(); 341 assert(BranchParams.ID >= 0 && "CondID isn't set"); 342 assert(SeenIDs.insert(BranchParams.ID).second && "Duplicate CondID"); 343 NextIDs[BranchParams.ID] = BranchParams.Conds; 344 } 345 assert(SeenIDs.size() == Branches.size()); 346 } 347 }; 348 349 class MCDCRecordProcessor : NextIDsBuilder, mcdc::TVIdxBuilder { 350 /// A bitmap representing the executed test vectors for a boolean expression. 351 /// Each index of the bitmap corresponds to a possible test vector. An index 352 /// with a bit value of '1' indicates that the corresponding Test Vector 353 /// identified by that index was executed. 354 const BitVector &Bitmap; 355 356 /// Decision Region to which the ExecutedTestVectorBitmap applies. 357 const CounterMappingRegion &Region; 358 const mcdc::DecisionParameters &DecisionParams; 359 360 /// Array of branch regions corresponding each conditions in the boolean 361 /// expression. 362 ArrayRef<const CounterMappingRegion *> Branches; 363 364 /// Total number of conditions in the boolean expression. 365 unsigned NumConditions; 366 367 /// Vector used to track whether a condition is constant folded. 368 MCDCRecord::BoolVector Folded; 369 370 /// Mapping of calculated MC/DC Independence Pairs for each condition. 371 MCDCRecord::TVPairMap IndependencePairs; 372 373 /// Actual executed Test Vectors for the boolean expression, based on 374 /// ExecutedTestVectorBitmap. 375 MCDCRecord::TestVectors ExecVectors; 376 377 #ifndef NDEBUG 378 DenseSet<unsigned> TVIdxs; 379 #endif 380 381 public: 382 MCDCRecordProcessor(const BitVector &Bitmap, 383 const CounterMappingRegion &Region, 384 ArrayRef<const CounterMappingRegion *> Branches) 385 : NextIDsBuilder(Branches), TVIdxBuilder(this->NextIDs), Bitmap(Bitmap), 386 Region(Region), DecisionParams(Region.getDecisionParams()), 387 Branches(Branches), NumConditions(DecisionParams.NumConditions), 388 Folded(NumConditions, false), IndependencePairs(NumConditions) {} 389 390 private: 391 // Walk the binary decision diagram and try assigning both false and true to 392 // each node. When a terminal node (ID == 0) is reached, fill in the value in 393 // the truth table. 394 void buildTestVector(MCDCRecord::TestVector &TV, mcdc::ConditionID ID, 395 int TVIdx, unsigned Index) { 396 assert((Index & (1 << ID)) == 0); 397 398 for (auto MCDCCond : {MCDCRecord::MCDC_False, MCDCRecord::MCDC_True}) { 399 static_assert(MCDCRecord::MCDC_False == 0); 400 static_assert(MCDCRecord::MCDC_True == 1); 401 Index |= MCDCCond << ID; 402 TV[ID] = MCDCCond; 403 auto NextID = NextIDs[ID][MCDCCond]; 404 auto NextTVIdx = TVIdx + Indices[ID][MCDCCond]; 405 assert(NextID == SavedNodes[ID].NextIDs[MCDCCond]); 406 if (NextID >= 0) { 407 buildTestVector(TV, NextID, NextTVIdx, Index); 408 continue; 409 } 410 411 assert(TVIdx < SavedNodes[ID].Width); 412 assert(TVIdxs.insert(NextTVIdx).second && "Duplicate TVIdx"); 413 414 if (!Bitmap[DecisionParams.BitmapIdx * CHAR_BIT + Index]) 415 continue; 416 417 // Copy the completed test vector to the vector of testvectors. 418 ExecVectors.push_back(TV); 419 420 // The final value (T,F) is equal to the last non-dontcare state on the 421 // path (in a short-circuiting system). 422 ExecVectors.back().push_back(MCDCCond); 423 } 424 425 // Reset back to DontCare. 426 TV[ID] = MCDCRecord::MCDC_DontCare; 427 } 428 429 /// Walk the bits in the bitmap. A bit set to '1' indicates that the test 430 /// vector at the corresponding index was executed during a test run. 431 void findExecutedTestVectors() { 432 // Walk the binary decision diagram to enumerate all possible test vectors. 433 // We start at the root node (ID == 0) with all values being DontCare. 434 // `TVIdx` starts with 0 and is in the traversal. 435 // `Index` encodes the bitmask of true values and is initially 0. 436 MCDCRecord::TestVector TV(NumConditions, MCDCRecord::MCDC_DontCare); 437 buildTestVector(TV, 0, 0, 0); 438 assert(TVIdxs.size() == unsigned(NumTestVectors) && 439 "TVIdxs wasn't fulfilled"); 440 } 441 442 // Find an independence pair for each condition: 443 // - The condition is true in one test and false in the other. 444 // - The decision outcome is true one test and false in the other. 445 // - All other conditions' values must be equal or marked as "don't care". 446 void findIndependencePairs() { 447 unsigned NumTVs = ExecVectors.size(); 448 for (unsigned I = 1; I < NumTVs; ++I) { 449 const MCDCRecord::TestVector &A = ExecVectors[I]; 450 for (unsigned J = 0; J < I; ++J) { 451 const MCDCRecord::TestVector &B = ExecVectors[J]; 452 // Enumerate two execution vectors whose outcomes are different. 453 if (A[NumConditions] == B[NumConditions]) 454 continue; 455 unsigned Flip = NumConditions, Idx; 456 for (Idx = 0; Idx < NumConditions; ++Idx) { 457 MCDCRecord::CondState ACond = A[Idx], BCond = B[Idx]; 458 if (ACond == BCond || ACond == MCDCRecord::MCDC_DontCare || 459 BCond == MCDCRecord::MCDC_DontCare) 460 continue; 461 if (Flip != NumConditions) 462 break; 463 Flip = Idx; 464 } 465 // If the two vectors differ in exactly one condition, ignoring DontCare 466 // conditions, we have found an independence pair. 467 if (Idx == NumConditions && Flip != NumConditions) 468 IndependencePairs.insert({Flip, std::make_pair(J + 1, I + 1)}); 469 } 470 } 471 } 472 473 public: 474 /// Process the MC/DC Record in order to produce a result for a boolean 475 /// expression. This process includes tracking the conditions that comprise 476 /// the decision region, calculating the list of all possible test vectors, 477 /// marking the executed test vectors, and then finding an Independence Pair 478 /// out of the executed test vectors for each condition in the boolean 479 /// expression. A condition is tracked to ensure that its ID can be mapped to 480 /// its ordinal position in the boolean expression. The condition's source 481 /// location is also tracked, as well as whether it is constant folded (in 482 /// which case it is excuded from the metric). 483 MCDCRecord processMCDCRecord() { 484 unsigned I = 0; 485 MCDCRecord::CondIDMap PosToID; 486 MCDCRecord::LineColPairMap CondLoc; 487 488 // Walk the Record's BranchRegions (representing Conditions) in order to: 489 // - Hash the condition based on its corresponding ID. This will be used to 490 // calculate the test vectors. 491 // - Keep a map of the condition's ordinal position (1, 2, 3, 4) to its 492 // actual ID. This will be used to visualize the conditions in the 493 // correct order. 494 // - Keep track of the condition source location. This will be used to 495 // visualize where the condition is. 496 // - Record whether the condition is constant folded so that we exclude it 497 // from being measured. 498 for (const auto *B : Branches) { 499 const auto &BranchParams = B->getBranchParams(); 500 PosToID[I] = BranchParams.ID; 501 CondLoc[I] = B->startLoc(); 502 Folded[I++] = (B->Count.isZero() && B->FalseCount.isZero()); 503 } 504 505 // Using Profile Bitmap from runtime, mark the executed test vectors. 506 findExecutedTestVectors(); 507 508 // Compare executed test vectors against each other to find an independence 509 // pairs for each condition. This processing takes the most time. 510 findIndependencePairs(); 511 512 // Record Test vectors, executed vectors, and independence pairs. 513 return MCDCRecord(Region, std::move(ExecVectors), 514 std::move(IndependencePairs), std::move(Folded), 515 std::move(PosToID), std::move(CondLoc)); 516 } 517 }; 518 519 } // namespace 520 521 Expected<MCDCRecord> CounterMappingContext::evaluateMCDCRegion( 522 const CounterMappingRegion &Region, 523 ArrayRef<const CounterMappingRegion *> Branches) { 524 525 MCDCRecordProcessor MCDCProcessor(Bitmap, Region, Branches); 526 return MCDCProcessor.processMCDCRecord(); 527 } 528 529 unsigned CounterMappingContext::getMaxCounterID(const Counter &C) const { 530 struct StackElem { 531 Counter ICounter; 532 int64_t LHS = 0; 533 enum { 534 KNeverVisited = 0, 535 KVisitedOnce = 1, 536 KVisitedTwice = 2, 537 } VisitCount = KNeverVisited; 538 }; 539 540 std::stack<StackElem> CounterStack; 541 CounterStack.push({C}); 542 543 int64_t LastPoppedValue; 544 545 while (!CounterStack.empty()) { 546 StackElem &Current = CounterStack.top(); 547 548 switch (Current.ICounter.getKind()) { 549 case Counter::Zero: 550 LastPoppedValue = 0; 551 CounterStack.pop(); 552 break; 553 case Counter::CounterValueReference: 554 LastPoppedValue = Current.ICounter.getCounterID(); 555 CounterStack.pop(); 556 break; 557 case Counter::Expression: { 558 if (Current.ICounter.getExpressionID() >= Expressions.size()) { 559 LastPoppedValue = 0; 560 CounterStack.pop(); 561 } else { 562 const auto &E = Expressions[Current.ICounter.getExpressionID()]; 563 if (Current.VisitCount == StackElem::KNeverVisited) { 564 CounterStack.push(StackElem{E.LHS}); 565 Current.VisitCount = StackElem::KVisitedOnce; 566 } else if (Current.VisitCount == StackElem::KVisitedOnce) { 567 Current.LHS = LastPoppedValue; 568 CounterStack.push(StackElem{E.RHS}); 569 Current.VisitCount = StackElem::KVisitedTwice; 570 } else { 571 int64_t LHS = Current.LHS; 572 int64_t RHS = LastPoppedValue; 573 LastPoppedValue = std::max(LHS, RHS); 574 CounterStack.pop(); 575 } 576 } 577 break; 578 } 579 } 580 } 581 582 return LastPoppedValue; 583 } 584 585 void FunctionRecordIterator::skipOtherFiles() { 586 while (Current != Records.end() && !Filename.empty() && 587 Filename != Current->Filenames[0]) 588 ++Current; 589 if (Current == Records.end()) 590 *this = FunctionRecordIterator(); 591 } 592 593 ArrayRef<unsigned> CoverageMapping::getImpreciseRecordIndicesForFilename( 594 StringRef Filename) const { 595 size_t FilenameHash = hash_value(Filename); 596 auto RecordIt = FilenameHash2RecordIndices.find(FilenameHash); 597 if (RecordIt == FilenameHash2RecordIndices.end()) 598 return {}; 599 return RecordIt->second; 600 } 601 602 static unsigned getMaxCounterID(const CounterMappingContext &Ctx, 603 const CoverageMappingRecord &Record) { 604 unsigned MaxCounterID = 0; 605 for (const auto &Region : Record.MappingRegions) { 606 MaxCounterID = std::max(MaxCounterID, Ctx.getMaxCounterID(Region.Count)); 607 } 608 return MaxCounterID; 609 } 610 611 /// Returns the bit count 612 static unsigned getMaxBitmapSize(const CounterMappingContext &Ctx, 613 const CoverageMappingRecord &Record) { 614 unsigned MaxBitmapIdx = 0; 615 unsigned NumConditions = 0; 616 // Scan max(BitmapIdx). 617 // Note that `<=` is used insted of `<`, because `BitmapIdx == 0` is valid 618 // and `MaxBitmapIdx is `unsigned`. `BitmapIdx` is unique in the record. 619 for (const auto &Region : reverse(Record.MappingRegions)) { 620 if (Region.Kind != CounterMappingRegion::MCDCDecisionRegion) 621 continue; 622 const auto &DecisionParams = Region.getDecisionParams(); 623 if (MaxBitmapIdx <= DecisionParams.BitmapIdx) { 624 MaxBitmapIdx = DecisionParams.BitmapIdx; 625 NumConditions = DecisionParams.NumConditions; 626 } 627 } 628 unsigned SizeInBits = llvm::alignTo(uint64_t(1) << NumConditions, CHAR_BIT); 629 return MaxBitmapIdx * CHAR_BIT + SizeInBits; 630 } 631 632 namespace { 633 634 /// Collect Decisions, Branchs, and Expansions and associate them. 635 class MCDCDecisionRecorder { 636 private: 637 /// This holds the DecisionRegion and MCDCBranches under it. 638 /// Also traverses Expansion(s). 639 /// The Decision has the number of MCDCBranches and will complete 640 /// when it is filled with unique ConditionID of MCDCBranches. 641 struct DecisionRecord { 642 const CounterMappingRegion *DecisionRegion; 643 644 /// They are reflected from DecisionRegion for convenience. 645 mcdc::DecisionParameters DecisionParams; 646 LineColPair DecisionStartLoc; 647 LineColPair DecisionEndLoc; 648 649 /// This is passed to `MCDCRecordProcessor`, so this should be compatible 650 /// to`ArrayRef<const CounterMappingRegion *>`. 651 SmallVector<const CounterMappingRegion *> MCDCBranches; 652 653 /// IDs that are stored in MCDCBranches 654 /// Complete when all IDs (1 to NumConditions) are met. 655 DenseSet<mcdc::ConditionID> ConditionIDs; 656 657 /// Set of IDs of Expansion(s) that are relevant to DecisionRegion 658 /// and its children (via expansions). 659 /// FileID pointed by ExpandedFileID is dedicated to the expansion, so 660 /// the location in the expansion doesn't matter. 661 DenseSet<unsigned> ExpandedFileIDs; 662 663 DecisionRecord(const CounterMappingRegion &Decision) 664 : DecisionRegion(&Decision), 665 DecisionParams(Decision.getDecisionParams()), 666 DecisionStartLoc(Decision.startLoc()), 667 DecisionEndLoc(Decision.endLoc()) { 668 assert(Decision.Kind == CounterMappingRegion::MCDCDecisionRegion); 669 } 670 671 /// Determine whether DecisionRecord dominates `R`. 672 bool dominates(const CounterMappingRegion &R) const { 673 // Determine whether `R` is included in `DecisionRegion`. 674 if (R.FileID == DecisionRegion->FileID && 675 R.startLoc() >= DecisionStartLoc && R.endLoc() <= DecisionEndLoc) 676 return true; 677 678 // Determine whether `R` is pointed by any of Expansions. 679 return ExpandedFileIDs.contains(R.FileID); 680 } 681 682 enum Result { 683 NotProcessed = 0, /// Irrelevant to this Decision 684 Processed, /// Added to this Decision 685 Completed, /// Added and filled this Decision 686 }; 687 688 /// Add Branch into the Decision 689 /// \param Branch expects MCDCBranchRegion 690 /// \returns NotProcessed/Processed/Completed 691 Result addBranch(const CounterMappingRegion &Branch) { 692 assert(Branch.Kind == CounterMappingRegion::MCDCBranchRegion); 693 694 auto ConditionID = Branch.getBranchParams().ID; 695 assert(ConditionID >= 0 && "ConditionID should be positive"); 696 697 if (ConditionIDs.contains(ConditionID) || 698 ConditionID >= DecisionParams.NumConditions) 699 return NotProcessed; 700 701 if (!this->dominates(Branch)) 702 return NotProcessed; 703 704 assert(MCDCBranches.size() < DecisionParams.NumConditions); 705 706 // Put `ID=0` in front of `MCDCBranches` for convenience 707 // even if `MCDCBranches` is not topological. 708 if (ConditionID == 0) 709 MCDCBranches.insert(MCDCBranches.begin(), &Branch); 710 else 711 MCDCBranches.push_back(&Branch); 712 713 // Mark `ID` as `assigned`. 714 ConditionIDs.insert(ConditionID); 715 716 // `Completed` when `MCDCBranches` is full 717 return (MCDCBranches.size() == DecisionParams.NumConditions ? Completed 718 : Processed); 719 } 720 721 /// Record Expansion if it is relevant to this Decision. 722 /// Each `Expansion` may nest. 723 /// \returns true if recorded. 724 bool recordExpansion(const CounterMappingRegion &Expansion) { 725 if (!this->dominates(Expansion)) 726 return false; 727 728 ExpandedFileIDs.insert(Expansion.ExpandedFileID); 729 return true; 730 } 731 }; 732 733 private: 734 /// Decisions in progress 735 /// DecisionRecord is added for each MCDCDecisionRegion. 736 /// DecisionRecord is removed when Decision is completed. 737 SmallVector<DecisionRecord> Decisions; 738 739 public: 740 ~MCDCDecisionRecorder() { 741 assert(Decisions.empty() && "All Decisions have not been resolved"); 742 } 743 744 /// Register Region and start recording. 745 void registerDecision(const CounterMappingRegion &Decision) { 746 Decisions.emplace_back(Decision); 747 } 748 749 void recordExpansion(const CounterMappingRegion &Expansion) { 750 any_of(Decisions, [&Expansion](auto &Decision) { 751 return Decision.recordExpansion(Expansion); 752 }); 753 } 754 755 using DecisionAndBranches = 756 std::pair<const CounterMappingRegion *, /// Decision 757 SmallVector<const CounterMappingRegion *> /// Branches 758 >; 759 760 /// Add MCDCBranchRegion to DecisionRecord. 761 /// \param Branch to be processed 762 /// \returns DecisionsAndBranches if DecisionRecord completed. 763 /// Or returns nullopt. 764 std::optional<DecisionAndBranches> 765 processBranch(const CounterMappingRegion &Branch) { 766 // Seek each Decision and apply Region to it. 767 for (auto DecisionIter = Decisions.begin(), DecisionEnd = Decisions.end(); 768 DecisionIter != DecisionEnd; ++DecisionIter) 769 switch (DecisionIter->addBranch(Branch)) { 770 case DecisionRecord::NotProcessed: 771 continue; 772 case DecisionRecord::Processed: 773 return std::nullopt; 774 case DecisionRecord::Completed: 775 DecisionAndBranches Result = 776 std::make_pair(DecisionIter->DecisionRegion, 777 std::move(DecisionIter->MCDCBranches)); 778 Decisions.erase(DecisionIter); // No longer used. 779 return Result; 780 } 781 782 llvm_unreachable("Branch not found in Decisions"); 783 } 784 }; 785 786 } // namespace 787 788 Error CoverageMapping::loadFunctionRecord( 789 const CoverageMappingRecord &Record, 790 IndexedInstrProfReader &ProfileReader) { 791 StringRef OrigFuncName = Record.FunctionName; 792 if (OrigFuncName.empty()) 793 return make_error<CoverageMapError>(coveragemap_error::malformed, 794 "record function name is empty"); 795 796 if (Record.Filenames.empty()) 797 OrigFuncName = getFuncNameWithoutPrefix(OrigFuncName); 798 else 799 OrigFuncName = getFuncNameWithoutPrefix(OrigFuncName, Record.Filenames[0]); 800 801 CounterMappingContext Ctx(Record.Expressions); 802 803 std::vector<uint64_t> Counts; 804 if (Error E = ProfileReader.getFunctionCounts(Record.FunctionName, 805 Record.FunctionHash, Counts)) { 806 instrprof_error IPE = std::get<0>(InstrProfError::take(std::move(E))); 807 if (IPE == instrprof_error::hash_mismatch) { 808 FuncHashMismatches.emplace_back(std::string(Record.FunctionName), 809 Record.FunctionHash); 810 return Error::success(); 811 } 812 if (IPE != instrprof_error::unknown_function) 813 return make_error<InstrProfError>(IPE); 814 Counts.assign(getMaxCounterID(Ctx, Record) + 1, 0); 815 } 816 Ctx.setCounts(Counts); 817 818 BitVector Bitmap; 819 if (Error E = ProfileReader.getFunctionBitmap(Record.FunctionName, 820 Record.FunctionHash, Bitmap)) { 821 instrprof_error IPE = std::get<0>(InstrProfError::take(std::move(E))); 822 if (IPE == instrprof_error::hash_mismatch) { 823 FuncHashMismatches.emplace_back(std::string(Record.FunctionName), 824 Record.FunctionHash); 825 return Error::success(); 826 } 827 if (IPE != instrprof_error::unknown_function) 828 return make_error<InstrProfError>(IPE); 829 Bitmap = BitVector(getMaxBitmapSize(Ctx, Record)); 830 } 831 Ctx.setBitmap(std::move(Bitmap)); 832 833 assert(!Record.MappingRegions.empty() && "Function has no regions"); 834 835 // This coverage record is a zero region for a function that's unused in 836 // some TU, but used in a different TU. Ignore it. The coverage maps from the 837 // the other TU will either be loaded (providing full region counts) or they 838 // won't (in which case we don't unintuitively report functions as uncovered 839 // when they have non-zero counts in the profile). 840 if (Record.MappingRegions.size() == 1 && 841 Record.MappingRegions[0].Count.isZero() && Counts[0] > 0) 842 return Error::success(); 843 844 MCDCDecisionRecorder MCDCDecisions; 845 FunctionRecord Function(OrigFuncName, Record.Filenames); 846 for (const auto &Region : Record.MappingRegions) { 847 // MCDCDecisionRegion should be handled first since it overlaps with 848 // others inside. 849 if (Region.Kind == CounterMappingRegion::MCDCDecisionRegion) { 850 MCDCDecisions.registerDecision(Region); 851 continue; 852 } 853 Expected<int64_t> ExecutionCount = Ctx.evaluate(Region.Count); 854 if (auto E = ExecutionCount.takeError()) { 855 consumeError(std::move(E)); 856 return Error::success(); 857 } 858 Expected<int64_t> AltExecutionCount = Ctx.evaluate(Region.FalseCount); 859 if (auto E = AltExecutionCount.takeError()) { 860 consumeError(std::move(E)); 861 return Error::success(); 862 } 863 Function.pushRegion(Region, *ExecutionCount, *AltExecutionCount); 864 865 // Record ExpansionRegion. 866 if (Region.Kind == CounterMappingRegion::ExpansionRegion) { 867 MCDCDecisions.recordExpansion(Region); 868 continue; 869 } 870 871 // Do nothing unless MCDCBranchRegion. 872 if (Region.Kind != CounterMappingRegion::MCDCBranchRegion) 873 continue; 874 875 auto Result = MCDCDecisions.processBranch(Region); 876 if (!Result) // Any Decision doesn't complete. 877 continue; 878 879 auto MCDCDecision = Result->first; 880 auto &MCDCBranches = Result->second; 881 882 // Since the bitmap identifies the executed test vectors for an MC/DC 883 // DecisionRegion, all of the information is now available to process. 884 // This is where the bulk of the MC/DC progressing takes place. 885 Expected<MCDCRecord> Record = 886 Ctx.evaluateMCDCRegion(*MCDCDecision, MCDCBranches); 887 if (auto E = Record.takeError()) { 888 consumeError(std::move(E)); 889 return Error::success(); 890 } 891 892 // Save the MC/DC Record so that it can be visualized later. 893 Function.pushMCDCRecord(std::move(*Record)); 894 } 895 896 // Don't create records for (filenames, function) pairs we've already seen. 897 auto FilenamesHash = hash_combine_range(Record.Filenames.begin(), 898 Record.Filenames.end()); 899 if (!RecordProvenance[FilenamesHash].insert(hash_value(OrigFuncName)).second) 900 return Error::success(); 901 902 Functions.push_back(std::move(Function)); 903 904 // Performance optimization: keep track of the indices of the function records 905 // which correspond to each filename. This can be used to substantially speed 906 // up queries for coverage info in a file. 907 unsigned RecordIndex = Functions.size() - 1; 908 for (StringRef Filename : Record.Filenames) { 909 auto &RecordIndices = FilenameHash2RecordIndices[hash_value(Filename)]; 910 // Note that there may be duplicates in the filename set for a function 911 // record, because of e.g. macro expansions in the function in which both 912 // the macro and the function are defined in the same file. 913 if (RecordIndices.empty() || RecordIndices.back() != RecordIndex) 914 RecordIndices.push_back(RecordIndex); 915 } 916 917 return Error::success(); 918 } 919 920 // This function is for memory optimization by shortening the lifetimes 921 // of CoverageMappingReader instances. 922 Error CoverageMapping::loadFromReaders( 923 ArrayRef<std::unique_ptr<CoverageMappingReader>> CoverageReaders, 924 IndexedInstrProfReader &ProfileReader, CoverageMapping &Coverage) { 925 for (const auto &CoverageReader : CoverageReaders) { 926 for (auto RecordOrErr : *CoverageReader) { 927 if (Error E = RecordOrErr.takeError()) 928 return E; 929 const auto &Record = *RecordOrErr; 930 if (Error E = Coverage.loadFunctionRecord(Record, ProfileReader)) 931 return E; 932 } 933 } 934 return Error::success(); 935 } 936 937 Expected<std::unique_ptr<CoverageMapping>> CoverageMapping::load( 938 ArrayRef<std::unique_ptr<CoverageMappingReader>> CoverageReaders, 939 IndexedInstrProfReader &ProfileReader) { 940 auto Coverage = std::unique_ptr<CoverageMapping>(new CoverageMapping()); 941 if (Error E = loadFromReaders(CoverageReaders, ProfileReader, *Coverage)) 942 return std::move(E); 943 return std::move(Coverage); 944 } 945 946 // If E is a no_data_found error, returns success. Otherwise returns E. 947 static Error handleMaybeNoDataFoundError(Error E) { 948 return handleErrors( 949 std::move(E), [](const CoverageMapError &CME) { 950 if (CME.get() == coveragemap_error::no_data_found) 951 return static_cast<Error>(Error::success()); 952 return make_error<CoverageMapError>(CME.get(), CME.getMessage()); 953 }); 954 } 955 956 Error CoverageMapping::loadFromFile( 957 StringRef Filename, StringRef Arch, StringRef CompilationDir, 958 IndexedInstrProfReader &ProfileReader, CoverageMapping &Coverage, 959 bool &DataFound, SmallVectorImpl<object::BuildID> *FoundBinaryIDs) { 960 auto CovMappingBufOrErr = MemoryBuffer::getFileOrSTDIN( 961 Filename, /*IsText=*/false, /*RequiresNullTerminator=*/false); 962 if (std::error_code EC = CovMappingBufOrErr.getError()) 963 return createFileError(Filename, errorCodeToError(EC)); 964 MemoryBufferRef CovMappingBufRef = 965 CovMappingBufOrErr.get()->getMemBufferRef(); 966 SmallVector<std::unique_ptr<MemoryBuffer>, 4> Buffers; 967 968 SmallVector<object::BuildIDRef> BinaryIDs; 969 auto CoverageReadersOrErr = BinaryCoverageReader::create( 970 CovMappingBufRef, Arch, Buffers, CompilationDir, 971 FoundBinaryIDs ? &BinaryIDs : nullptr); 972 if (Error E = CoverageReadersOrErr.takeError()) { 973 E = handleMaybeNoDataFoundError(std::move(E)); 974 if (E) 975 return createFileError(Filename, std::move(E)); 976 return E; 977 } 978 979 SmallVector<std::unique_ptr<CoverageMappingReader>, 4> Readers; 980 for (auto &Reader : CoverageReadersOrErr.get()) 981 Readers.push_back(std::move(Reader)); 982 if (FoundBinaryIDs && !Readers.empty()) { 983 llvm::append_range(*FoundBinaryIDs, 984 llvm::map_range(BinaryIDs, [](object::BuildIDRef BID) { 985 return object::BuildID(BID); 986 })); 987 } 988 DataFound |= !Readers.empty(); 989 if (Error E = loadFromReaders(Readers, ProfileReader, Coverage)) 990 return createFileError(Filename, std::move(E)); 991 return Error::success(); 992 } 993 994 Expected<std::unique_ptr<CoverageMapping>> CoverageMapping::load( 995 ArrayRef<StringRef> ObjectFilenames, StringRef ProfileFilename, 996 vfs::FileSystem &FS, ArrayRef<StringRef> Arches, StringRef CompilationDir, 997 const object::BuildIDFetcher *BIDFetcher, bool CheckBinaryIDs) { 998 auto ProfileReaderOrErr = IndexedInstrProfReader::create(ProfileFilename, FS); 999 if (Error E = ProfileReaderOrErr.takeError()) 1000 return createFileError(ProfileFilename, std::move(E)); 1001 auto ProfileReader = std::move(ProfileReaderOrErr.get()); 1002 auto Coverage = std::unique_ptr<CoverageMapping>(new CoverageMapping()); 1003 bool DataFound = false; 1004 1005 auto GetArch = [&](size_t Idx) { 1006 if (Arches.empty()) 1007 return StringRef(); 1008 if (Arches.size() == 1) 1009 return Arches.front(); 1010 return Arches[Idx]; 1011 }; 1012 1013 SmallVector<object::BuildID> FoundBinaryIDs; 1014 for (const auto &File : llvm::enumerate(ObjectFilenames)) { 1015 if (Error E = 1016 loadFromFile(File.value(), GetArch(File.index()), CompilationDir, 1017 *ProfileReader, *Coverage, DataFound, &FoundBinaryIDs)) 1018 return std::move(E); 1019 } 1020 1021 if (BIDFetcher) { 1022 std::vector<object::BuildID> ProfileBinaryIDs; 1023 if (Error E = ProfileReader->readBinaryIds(ProfileBinaryIDs)) 1024 return createFileError(ProfileFilename, std::move(E)); 1025 1026 SmallVector<object::BuildIDRef> BinaryIDsToFetch; 1027 if (!ProfileBinaryIDs.empty()) { 1028 const auto &Compare = [](object::BuildIDRef A, object::BuildIDRef B) { 1029 return std::lexicographical_compare(A.begin(), A.end(), B.begin(), 1030 B.end()); 1031 }; 1032 llvm::sort(FoundBinaryIDs, Compare); 1033 std::set_difference( 1034 ProfileBinaryIDs.begin(), ProfileBinaryIDs.end(), 1035 FoundBinaryIDs.begin(), FoundBinaryIDs.end(), 1036 std::inserter(BinaryIDsToFetch, BinaryIDsToFetch.end()), Compare); 1037 } 1038 1039 for (object::BuildIDRef BinaryID : BinaryIDsToFetch) { 1040 std::optional<std::string> PathOpt = BIDFetcher->fetch(BinaryID); 1041 if (PathOpt) { 1042 std::string Path = std::move(*PathOpt); 1043 StringRef Arch = Arches.size() == 1 ? Arches.front() : StringRef(); 1044 if (Error E = loadFromFile(Path, Arch, CompilationDir, *ProfileReader, 1045 *Coverage, DataFound)) 1046 return std::move(E); 1047 } else if (CheckBinaryIDs) { 1048 return createFileError( 1049 ProfileFilename, 1050 createStringError(errc::no_such_file_or_directory, 1051 "Missing binary ID: " + 1052 llvm::toHex(BinaryID, /*LowerCase=*/true))); 1053 } 1054 } 1055 } 1056 1057 if (!DataFound) 1058 return createFileError( 1059 join(ObjectFilenames.begin(), ObjectFilenames.end(), ", "), 1060 make_error<CoverageMapError>(coveragemap_error::no_data_found)); 1061 return std::move(Coverage); 1062 } 1063 1064 namespace { 1065 1066 /// Distributes functions into instantiation sets. 1067 /// 1068 /// An instantiation set is a collection of functions that have the same source 1069 /// code, ie, template functions specializations. 1070 class FunctionInstantiationSetCollector { 1071 using MapT = std::map<LineColPair, std::vector<const FunctionRecord *>>; 1072 MapT InstantiatedFunctions; 1073 1074 public: 1075 void insert(const FunctionRecord &Function, unsigned FileID) { 1076 auto I = Function.CountedRegions.begin(), E = Function.CountedRegions.end(); 1077 while (I != E && I->FileID != FileID) 1078 ++I; 1079 assert(I != E && "function does not cover the given file"); 1080 auto &Functions = InstantiatedFunctions[I->startLoc()]; 1081 Functions.push_back(&Function); 1082 } 1083 1084 MapT::iterator begin() { return InstantiatedFunctions.begin(); } 1085 MapT::iterator end() { return InstantiatedFunctions.end(); } 1086 }; 1087 1088 class SegmentBuilder { 1089 std::vector<CoverageSegment> &Segments; 1090 SmallVector<const CountedRegion *, 8> ActiveRegions; 1091 1092 SegmentBuilder(std::vector<CoverageSegment> &Segments) : Segments(Segments) {} 1093 1094 /// Emit a segment with the count from \p Region starting at \p StartLoc. 1095 // 1096 /// \p IsRegionEntry: The segment is at the start of a new non-gap region. 1097 /// \p EmitSkippedRegion: The segment must be emitted as a skipped region. 1098 void startSegment(const CountedRegion &Region, LineColPair StartLoc, 1099 bool IsRegionEntry, bool EmitSkippedRegion = false) { 1100 bool HasCount = !EmitSkippedRegion && 1101 (Region.Kind != CounterMappingRegion::SkippedRegion); 1102 1103 // If the new segment wouldn't affect coverage rendering, skip it. 1104 if (!Segments.empty() && !IsRegionEntry && !EmitSkippedRegion) { 1105 const auto &Last = Segments.back(); 1106 if (Last.HasCount == HasCount && Last.Count == Region.ExecutionCount && 1107 !Last.IsRegionEntry) 1108 return; 1109 } 1110 1111 if (HasCount) 1112 Segments.emplace_back(StartLoc.first, StartLoc.second, 1113 Region.ExecutionCount, IsRegionEntry, 1114 Region.Kind == CounterMappingRegion::GapRegion); 1115 else 1116 Segments.emplace_back(StartLoc.first, StartLoc.second, IsRegionEntry); 1117 1118 LLVM_DEBUG({ 1119 const auto &Last = Segments.back(); 1120 dbgs() << "Segment at " << Last.Line << ":" << Last.Col 1121 << " (count = " << Last.Count << ")" 1122 << (Last.IsRegionEntry ? ", RegionEntry" : "") 1123 << (!Last.HasCount ? ", Skipped" : "") 1124 << (Last.IsGapRegion ? ", Gap" : "") << "\n"; 1125 }); 1126 } 1127 1128 /// Emit segments for active regions which end before \p Loc. 1129 /// 1130 /// \p Loc: The start location of the next region. If std::nullopt, all active 1131 /// regions are completed. 1132 /// \p FirstCompletedRegion: Index of the first completed region. 1133 void completeRegionsUntil(std::optional<LineColPair> Loc, 1134 unsigned FirstCompletedRegion) { 1135 // Sort the completed regions by end location. This makes it simple to 1136 // emit closing segments in sorted order. 1137 auto CompletedRegionsIt = ActiveRegions.begin() + FirstCompletedRegion; 1138 std::stable_sort(CompletedRegionsIt, ActiveRegions.end(), 1139 [](const CountedRegion *L, const CountedRegion *R) { 1140 return L->endLoc() < R->endLoc(); 1141 }); 1142 1143 // Emit segments for all completed regions. 1144 for (unsigned I = FirstCompletedRegion + 1, E = ActiveRegions.size(); I < E; 1145 ++I) { 1146 const auto *CompletedRegion = ActiveRegions[I]; 1147 assert((!Loc || CompletedRegion->endLoc() <= *Loc) && 1148 "Completed region ends after start of new region"); 1149 1150 const auto *PrevCompletedRegion = ActiveRegions[I - 1]; 1151 auto CompletedSegmentLoc = PrevCompletedRegion->endLoc(); 1152 1153 // Don't emit any more segments if they start where the new region begins. 1154 if (Loc && CompletedSegmentLoc == *Loc) 1155 break; 1156 1157 // Don't emit a segment if the next completed region ends at the same 1158 // location as this one. 1159 if (CompletedSegmentLoc == CompletedRegion->endLoc()) 1160 continue; 1161 1162 // Use the count from the last completed region which ends at this loc. 1163 for (unsigned J = I + 1; J < E; ++J) 1164 if (CompletedRegion->endLoc() == ActiveRegions[J]->endLoc()) 1165 CompletedRegion = ActiveRegions[J]; 1166 1167 startSegment(*CompletedRegion, CompletedSegmentLoc, false); 1168 } 1169 1170 auto Last = ActiveRegions.back(); 1171 if (FirstCompletedRegion && Last->endLoc() != *Loc) { 1172 // If there's a gap after the end of the last completed region and the 1173 // start of the new region, use the last active region to fill the gap. 1174 startSegment(*ActiveRegions[FirstCompletedRegion - 1], Last->endLoc(), 1175 false); 1176 } else if (!FirstCompletedRegion && (!Loc || *Loc != Last->endLoc())) { 1177 // Emit a skipped segment if there are no more active regions. This 1178 // ensures that gaps between functions are marked correctly. 1179 startSegment(*Last, Last->endLoc(), false, true); 1180 } 1181 1182 // Pop the completed regions. 1183 ActiveRegions.erase(CompletedRegionsIt, ActiveRegions.end()); 1184 } 1185 1186 void buildSegmentsImpl(ArrayRef<CountedRegion> Regions) { 1187 for (const auto &CR : enumerate(Regions)) { 1188 auto CurStartLoc = CR.value().startLoc(); 1189 1190 // Active regions which end before the current region need to be popped. 1191 auto CompletedRegions = 1192 std::stable_partition(ActiveRegions.begin(), ActiveRegions.end(), 1193 [&](const CountedRegion *Region) { 1194 return !(Region->endLoc() <= CurStartLoc); 1195 }); 1196 if (CompletedRegions != ActiveRegions.end()) { 1197 unsigned FirstCompletedRegion = 1198 std::distance(ActiveRegions.begin(), CompletedRegions); 1199 completeRegionsUntil(CurStartLoc, FirstCompletedRegion); 1200 } 1201 1202 bool GapRegion = CR.value().Kind == CounterMappingRegion::GapRegion; 1203 1204 // Try to emit a segment for the current region. 1205 if (CurStartLoc == CR.value().endLoc()) { 1206 // Avoid making zero-length regions active. If it's the last region, 1207 // emit a skipped segment. Otherwise use its predecessor's count. 1208 const bool Skipped = 1209 (CR.index() + 1) == Regions.size() || 1210 CR.value().Kind == CounterMappingRegion::SkippedRegion; 1211 startSegment(ActiveRegions.empty() ? CR.value() : *ActiveRegions.back(), 1212 CurStartLoc, !GapRegion, Skipped); 1213 // If it is skipped segment, create a segment with last pushed 1214 // regions's count at CurStartLoc. 1215 if (Skipped && !ActiveRegions.empty()) 1216 startSegment(*ActiveRegions.back(), CurStartLoc, false); 1217 continue; 1218 } 1219 if (CR.index() + 1 == Regions.size() || 1220 CurStartLoc != Regions[CR.index() + 1].startLoc()) { 1221 // Emit a segment if the next region doesn't start at the same location 1222 // as this one. 1223 startSegment(CR.value(), CurStartLoc, !GapRegion); 1224 } 1225 1226 // This region is active (i.e not completed). 1227 ActiveRegions.push_back(&CR.value()); 1228 } 1229 1230 // Complete any remaining active regions. 1231 if (!ActiveRegions.empty()) 1232 completeRegionsUntil(std::nullopt, 0); 1233 } 1234 1235 /// Sort a nested sequence of regions from a single file. 1236 static void sortNestedRegions(MutableArrayRef<CountedRegion> Regions) { 1237 llvm::sort(Regions, [](const CountedRegion &LHS, const CountedRegion &RHS) { 1238 if (LHS.startLoc() != RHS.startLoc()) 1239 return LHS.startLoc() < RHS.startLoc(); 1240 if (LHS.endLoc() != RHS.endLoc()) 1241 // When LHS completely contains RHS, we sort LHS first. 1242 return RHS.endLoc() < LHS.endLoc(); 1243 // If LHS and RHS cover the same area, we need to sort them according 1244 // to their kinds so that the most suitable region will become "active" 1245 // in combineRegions(). Because we accumulate counter values only from 1246 // regions of the same kind as the first region of the area, prefer 1247 // CodeRegion to ExpansionRegion and ExpansionRegion to SkippedRegion. 1248 static_assert(CounterMappingRegion::CodeRegion < 1249 CounterMappingRegion::ExpansionRegion && 1250 CounterMappingRegion::ExpansionRegion < 1251 CounterMappingRegion::SkippedRegion, 1252 "Unexpected order of region kind values"); 1253 return LHS.Kind < RHS.Kind; 1254 }); 1255 } 1256 1257 /// Combine counts of regions which cover the same area. 1258 static ArrayRef<CountedRegion> 1259 combineRegions(MutableArrayRef<CountedRegion> Regions) { 1260 if (Regions.empty()) 1261 return Regions; 1262 auto Active = Regions.begin(); 1263 auto End = Regions.end(); 1264 for (auto I = Regions.begin() + 1; I != End; ++I) { 1265 if (Active->startLoc() != I->startLoc() || 1266 Active->endLoc() != I->endLoc()) { 1267 // Shift to the next region. 1268 ++Active; 1269 if (Active != I) 1270 *Active = *I; 1271 continue; 1272 } 1273 // Merge duplicate region. 1274 // If CodeRegions and ExpansionRegions cover the same area, it's probably 1275 // a macro which is fully expanded to another macro. In that case, we need 1276 // to accumulate counts only from CodeRegions, or else the area will be 1277 // counted twice. 1278 // On the other hand, a macro may have a nested macro in its body. If the 1279 // outer macro is used several times, the ExpansionRegion for the nested 1280 // macro will also be added several times. These ExpansionRegions cover 1281 // the same source locations and have to be combined to reach the correct 1282 // value for that area. 1283 // We add counts of the regions of the same kind as the active region 1284 // to handle the both situations. 1285 if (I->Kind == Active->Kind) 1286 Active->ExecutionCount += I->ExecutionCount; 1287 } 1288 return Regions.drop_back(std::distance(++Active, End)); 1289 } 1290 1291 public: 1292 /// Build a sorted list of CoverageSegments from a list of Regions. 1293 static std::vector<CoverageSegment> 1294 buildSegments(MutableArrayRef<CountedRegion> Regions) { 1295 std::vector<CoverageSegment> Segments; 1296 SegmentBuilder Builder(Segments); 1297 1298 sortNestedRegions(Regions); 1299 ArrayRef<CountedRegion> CombinedRegions = combineRegions(Regions); 1300 1301 LLVM_DEBUG({ 1302 dbgs() << "Combined regions:\n"; 1303 for (const auto &CR : CombinedRegions) 1304 dbgs() << " " << CR.LineStart << ":" << CR.ColumnStart << " -> " 1305 << CR.LineEnd << ":" << CR.ColumnEnd 1306 << " (count=" << CR.ExecutionCount << ")\n"; 1307 }); 1308 1309 Builder.buildSegmentsImpl(CombinedRegions); 1310 1311 #ifndef NDEBUG 1312 for (unsigned I = 1, E = Segments.size(); I < E; ++I) { 1313 const auto &L = Segments[I - 1]; 1314 const auto &R = Segments[I]; 1315 if (!(L.Line < R.Line) && !(L.Line == R.Line && L.Col < R.Col)) { 1316 if (L.Line == R.Line && L.Col == R.Col && !L.HasCount) 1317 continue; 1318 LLVM_DEBUG(dbgs() << " ! Segment " << L.Line << ":" << L.Col 1319 << " followed by " << R.Line << ":" << R.Col << "\n"); 1320 assert(false && "Coverage segments not unique or sorted"); 1321 } 1322 } 1323 #endif 1324 1325 return Segments; 1326 } 1327 }; 1328 1329 } // end anonymous namespace 1330 1331 std::vector<StringRef> CoverageMapping::getUniqueSourceFiles() const { 1332 std::vector<StringRef> Filenames; 1333 for (const auto &Function : getCoveredFunctions()) 1334 llvm::append_range(Filenames, Function.Filenames); 1335 llvm::sort(Filenames); 1336 auto Last = std::unique(Filenames.begin(), Filenames.end()); 1337 Filenames.erase(Last, Filenames.end()); 1338 return Filenames; 1339 } 1340 1341 static SmallBitVector gatherFileIDs(StringRef SourceFile, 1342 const FunctionRecord &Function) { 1343 SmallBitVector FilenameEquivalence(Function.Filenames.size(), false); 1344 for (unsigned I = 0, E = Function.Filenames.size(); I < E; ++I) 1345 if (SourceFile == Function.Filenames[I]) 1346 FilenameEquivalence[I] = true; 1347 return FilenameEquivalence; 1348 } 1349 1350 /// Return the ID of the file where the definition of the function is located. 1351 static std::optional<unsigned> 1352 findMainViewFileID(const FunctionRecord &Function) { 1353 SmallBitVector IsNotExpandedFile(Function.Filenames.size(), true); 1354 for (const auto &CR : Function.CountedRegions) 1355 if (CR.Kind == CounterMappingRegion::ExpansionRegion) 1356 IsNotExpandedFile[CR.ExpandedFileID] = false; 1357 int I = IsNotExpandedFile.find_first(); 1358 if (I == -1) 1359 return std::nullopt; 1360 return I; 1361 } 1362 1363 /// Check if SourceFile is the file that contains the definition of 1364 /// the Function. Return the ID of the file in that case or std::nullopt 1365 /// otherwise. 1366 static std::optional<unsigned> 1367 findMainViewFileID(StringRef SourceFile, const FunctionRecord &Function) { 1368 std::optional<unsigned> I = findMainViewFileID(Function); 1369 if (I && SourceFile == Function.Filenames[*I]) 1370 return I; 1371 return std::nullopt; 1372 } 1373 1374 static bool isExpansion(const CountedRegion &R, unsigned FileID) { 1375 return R.Kind == CounterMappingRegion::ExpansionRegion && R.FileID == FileID; 1376 } 1377 1378 CoverageData CoverageMapping::getCoverageForFile(StringRef Filename) const { 1379 CoverageData FileCoverage(Filename); 1380 std::vector<CountedRegion> Regions; 1381 1382 // Look up the function records in the given file. Due to hash collisions on 1383 // the filename, we may get back some records that are not in the file. 1384 ArrayRef<unsigned> RecordIndices = 1385 getImpreciseRecordIndicesForFilename(Filename); 1386 for (unsigned RecordIndex : RecordIndices) { 1387 const FunctionRecord &Function = Functions[RecordIndex]; 1388 auto MainFileID = findMainViewFileID(Filename, Function); 1389 auto FileIDs = gatherFileIDs(Filename, Function); 1390 for (const auto &CR : Function.CountedRegions) 1391 if (FileIDs.test(CR.FileID)) { 1392 Regions.push_back(CR); 1393 if (MainFileID && isExpansion(CR, *MainFileID)) 1394 FileCoverage.Expansions.emplace_back(CR, Function); 1395 } 1396 // Capture branch regions specific to the function (excluding expansions). 1397 for (const auto &CR : Function.CountedBranchRegions) 1398 if (FileIDs.test(CR.FileID) && (CR.FileID == CR.ExpandedFileID)) 1399 FileCoverage.BranchRegions.push_back(CR); 1400 // Capture MCDC records specific to the function. 1401 for (const auto &MR : Function.MCDCRecords) 1402 if (FileIDs.test(MR.getDecisionRegion().FileID)) 1403 FileCoverage.MCDCRecords.push_back(MR); 1404 } 1405 1406 LLVM_DEBUG(dbgs() << "Emitting segments for file: " << Filename << "\n"); 1407 FileCoverage.Segments = SegmentBuilder::buildSegments(Regions); 1408 1409 return FileCoverage; 1410 } 1411 1412 std::vector<InstantiationGroup> 1413 CoverageMapping::getInstantiationGroups(StringRef Filename) const { 1414 FunctionInstantiationSetCollector InstantiationSetCollector; 1415 // Look up the function records in the given file. Due to hash collisions on 1416 // the filename, we may get back some records that are not in the file. 1417 ArrayRef<unsigned> RecordIndices = 1418 getImpreciseRecordIndicesForFilename(Filename); 1419 for (unsigned RecordIndex : RecordIndices) { 1420 const FunctionRecord &Function = Functions[RecordIndex]; 1421 auto MainFileID = findMainViewFileID(Filename, Function); 1422 if (!MainFileID) 1423 continue; 1424 InstantiationSetCollector.insert(Function, *MainFileID); 1425 } 1426 1427 std::vector<InstantiationGroup> Result; 1428 for (auto &InstantiationSet : InstantiationSetCollector) { 1429 InstantiationGroup IG{InstantiationSet.first.first, 1430 InstantiationSet.first.second, 1431 std::move(InstantiationSet.second)}; 1432 Result.emplace_back(std::move(IG)); 1433 } 1434 return Result; 1435 } 1436 1437 CoverageData 1438 CoverageMapping::getCoverageForFunction(const FunctionRecord &Function) const { 1439 auto MainFileID = findMainViewFileID(Function); 1440 if (!MainFileID) 1441 return CoverageData(); 1442 1443 CoverageData FunctionCoverage(Function.Filenames[*MainFileID]); 1444 std::vector<CountedRegion> Regions; 1445 for (const auto &CR : Function.CountedRegions) 1446 if (CR.FileID == *MainFileID) { 1447 Regions.push_back(CR); 1448 if (isExpansion(CR, *MainFileID)) 1449 FunctionCoverage.Expansions.emplace_back(CR, Function); 1450 } 1451 // Capture branch regions specific to the function (excluding expansions). 1452 for (const auto &CR : Function.CountedBranchRegions) 1453 if (CR.FileID == *MainFileID) 1454 FunctionCoverage.BranchRegions.push_back(CR); 1455 1456 // Capture MCDC records specific to the function. 1457 for (const auto &MR : Function.MCDCRecords) 1458 if (MR.getDecisionRegion().FileID == *MainFileID) 1459 FunctionCoverage.MCDCRecords.push_back(MR); 1460 1461 LLVM_DEBUG(dbgs() << "Emitting segments for function: " << Function.Name 1462 << "\n"); 1463 FunctionCoverage.Segments = SegmentBuilder::buildSegments(Regions); 1464 1465 return FunctionCoverage; 1466 } 1467 1468 CoverageData CoverageMapping::getCoverageForExpansion( 1469 const ExpansionRecord &Expansion) const { 1470 CoverageData ExpansionCoverage( 1471 Expansion.Function.Filenames[Expansion.FileID]); 1472 std::vector<CountedRegion> Regions; 1473 for (const auto &CR : Expansion.Function.CountedRegions) 1474 if (CR.FileID == Expansion.FileID) { 1475 Regions.push_back(CR); 1476 if (isExpansion(CR, Expansion.FileID)) 1477 ExpansionCoverage.Expansions.emplace_back(CR, Expansion.Function); 1478 } 1479 for (const auto &CR : Expansion.Function.CountedBranchRegions) 1480 // Capture branch regions that only pertain to the corresponding expansion. 1481 if (CR.FileID == Expansion.FileID) 1482 ExpansionCoverage.BranchRegions.push_back(CR); 1483 1484 LLVM_DEBUG(dbgs() << "Emitting segments for expansion of file " 1485 << Expansion.FileID << "\n"); 1486 ExpansionCoverage.Segments = SegmentBuilder::buildSegments(Regions); 1487 1488 return ExpansionCoverage; 1489 } 1490 1491 LineCoverageStats::LineCoverageStats( 1492 ArrayRef<const CoverageSegment *> LineSegments, 1493 const CoverageSegment *WrappedSegment, unsigned Line) 1494 : ExecutionCount(0), HasMultipleRegions(false), Mapped(false), Line(Line), 1495 LineSegments(LineSegments), WrappedSegment(WrappedSegment) { 1496 // Find the minimum number of regions which start in this line. 1497 unsigned MinRegionCount = 0; 1498 auto isStartOfRegion = [](const CoverageSegment *S) { 1499 return !S->IsGapRegion && S->HasCount && S->IsRegionEntry; 1500 }; 1501 for (unsigned I = 0; I < LineSegments.size() && MinRegionCount < 2; ++I) 1502 if (isStartOfRegion(LineSegments[I])) 1503 ++MinRegionCount; 1504 1505 bool StartOfSkippedRegion = !LineSegments.empty() && 1506 !LineSegments.front()->HasCount && 1507 LineSegments.front()->IsRegionEntry; 1508 1509 HasMultipleRegions = MinRegionCount > 1; 1510 Mapped = 1511 !StartOfSkippedRegion && 1512 ((WrappedSegment && WrappedSegment->HasCount) || (MinRegionCount > 0)); 1513 1514 // if there is any starting segment at this line with a counter, it must be 1515 // mapped 1516 Mapped |= std::any_of( 1517 LineSegments.begin(), LineSegments.end(), 1518 [](const auto *Seq) { return Seq->IsRegionEntry && Seq->HasCount; }); 1519 1520 if (!Mapped) { 1521 return; 1522 } 1523 1524 // Pick the max count from the non-gap, region entry segments and the 1525 // wrapped count. 1526 if (WrappedSegment) 1527 ExecutionCount = WrappedSegment->Count; 1528 if (!MinRegionCount) 1529 return; 1530 for (const auto *LS : LineSegments) 1531 if (isStartOfRegion(LS)) 1532 ExecutionCount = std::max(ExecutionCount, LS->Count); 1533 } 1534 1535 LineCoverageIterator &LineCoverageIterator::operator++() { 1536 if (Next == CD.end()) { 1537 Stats = LineCoverageStats(); 1538 Ended = true; 1539 return *this; 1540 } 1541 if (Segments.size()) 1542 WrappedSegment = Segments.back(); 1543 Segments.clear(); 1544 while (Next != CD.end() && Next->Line == Line) 1545 Segments.push_back(&*Next++); 1546 Stats = LineCoverageStats(Segments, WrappedSegment, Line); 1547 ++Line; 1548 return *this; 1549 } 1550 1551 static std::string getCoverageMapErrString(coveragemap_error Err, 1552 const std::string &ErrMsg = "") { 1553 std::string Msg; 1554 raw_string_ostream OS(Msg); 1555 1556 switch (Err) { 1557 case coveragemap_error::success: 1558 OS << "success"; 1559 break; 1560 case coveragemap_error::eof: 1561 OS << "end of File"; 1562 break; 1563 case coveragemap_error::no_data_found: 1564 OS << "no coverage data found"; 1565 break; 1566 case coveragemap_error::unsupported_version: 1567 OS << "unsupported coverage format version"; 1568 break; 1569 case coveragemap_error::truncated: 1570 OS << "truncated coverage data"; 1571 break; 1572 case coveragemap_error::malformed: 1573 OS << "malformed coverage data"; 1574 break; 1575 case coveragemap_error::decompression_failed: 1576 OS << "failed to decompress coverage data (zlib)"; 1577 break; 1578 case coveragemap_error::invalid_or_missing_arch_specifier: 1579 OS << "`-arch` specifier is invalid or missing for universal binary"; 1580 break; 1581 } 1582 1583 // If optional error message is not empty, append it to the message. 1584 if (!ErrMsg.empty()) 1585 OS << ": " << ErrMsg; 1586 1587 return Msg; 1588 } 1589 1590 namespace { 1591 1592 // FIXME: This class is only here to support the transition to llvm::Error. It 1593 // will be removed once this transition is complete. Clients should prefer to 1594 // deal with the Error value directly, rather than converting to error_code. 1595 class CoverageMappingErrorCategoryType : public std::error_category { 1596 const char *name() const noexcept override { return "llvm.coveragemap"; } 1597 std::string message(int IE) const override { 1598 return getCoverageMapErrString(static_cast<coveragemap_error>(IE)); 1599 } 1600 }; 1601 1602 } // end anonymous namespace 1603 1604 std::string CoverageMapError::message() const { 1605 return getCoverageMapErrString(Err, Msg); 1606 } 1607 1608 const std::error_category &llvm::coverage::coveragemap_category() { 1609 static CoverageMappingErrorCategoryType ErrorCategory; 1610 return ErrorCategory; 1611 } 1612 1613 char CoverageMapError::ID = 0; 1614