1 //===- CoverageMapping.cpp - Code coverage mapping support ----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains support for clang's and llvm's instrumentation based 10 // code coverage. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/ProfileData/Coverage/CoverageMapping.h" 15 #include "llvm/ADT/ArrayRef.h" 16 #include "llvm/ADT/DenseMap.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/SmallBitVector.h" 19 #include "llvm/ADT/SmallVector.h" 20 #include "llvm/ADT/StringExtras.h" 21 #include "llvm/ADT/StringRef.h" 22 #include "llvm/Object/BuildID.h" 23 #include "llvm/ProfileData/Coverage/CoverageMappingReader.h" 24 #include "llvm/ProfileData/InstrProfReader.h" 25 #include "llvm/Support/Debug.h" 26 #include "llvm/Support/Errc.h" 27 #include "llvm/Support/Error.h" 28 #include "llvm/Support/ErrorHandling.h" 29 #include "llvm/Support/MemoryBuffer.h" 30 #include "llvm/Support/VirtualFileSystem.h" 31 #include "llvm/Support/raw_ostream.h" 32 #include <algorithm> 33 #include <cassert> 34 #include <cmath> 35 #include <cstdint> 36 #include <iterator> 37 #include <map> 38 #include <memory> 39 #include <optional> 40 #include <string> 41 #include <system_error> 42 #include <utility> 43 #include <vector> 44 45 using namespace llvm; 46 using namespace coverage; 47 48 #define DEBUG_TYPE "coverage-mapping" 49 50 Counter CounterExpressionBuilder::get(const CounterExpression &E) { 51 auto It = ExpressionIndices.find(E); 52 if (It != ExpressionIndices.end()) 53 return Counter::getExpression(It->second); 54 unsigned I = Expressions.size(); 55 Expressions.push_back(E); 56 ExpressionIndices[E] = I; 57 return Counter::getExpression(I); 58 } 59 60 void CounterExpressionBuilder::extractTerms(Counter C, int Factor, 61 SmallVectorImpl<Term> &Terms) { 62 switch (C.getKind()) { 63 case Counter::Zero: 64 break; 65 case Counter::CounterValueReference: 66 Terms.emplace_back(C.getCounterID(), Factor); 67 break; 68 case Counter::Expression: 69 const auto &E = Expressions[C.getExpressionID()]; 70 extractTerms(E.LHS, Factor, Terms); 71 extractTerms( 72 E.RHS, E.Kind == CounterExpression::Subtract ? -Factor : Factor, Terms); 73 break; 74 } 75 } 76 77 Counter CounterExpressionBuilder::simplify(Counter ExpressionTree) { 78 // Gather constant terms. 79 SmallVector<Term, 32> Terms; 80 extractTerms(ExpressionTree, +1, Terms); 81 82 // If there are no terms, this is just a zero. The algorithm below assumes at 83 // least one term. 84 if (Terms.size() == 0) 85 return Counter::getZero(); 86 87 // Group the terms by counter ID. 88 llvm::sort(Terms, [](const Term &LHS, const Term &RHS) { 89 return LHS.CounterID < RHS.CounterID; 90 }); 91 92 // Combine terms by counter ID to eliminate counters that sum to zero. 93 auto Prev = Terms.begin(); 94 for (auto I = Prev + 1, E = Terms.end(); I != E; ++I) { 95 if (I->CounterID == Prev->CounterID) { 96 Prev->Factor += I->Factor; 97 continue; 98 } 99 ++Prev; 100 *Prev = *I; 101 } 102 Terms.erase(++Prev, Terms.end()); 103 104 Counter C; 105 // Create additions. We do this before subtractions to avoid constructs like 106 // ((0 - X) + Y), as opposed to (Y - X). 107 for (auto T : Terms) { 108 if (T.Factor <= 0) 109 continue; 110 for (int I = 0; I < T.Factor; ++I) 111 if (C.isZero()) 112 C = Counter::getCounter(T.CounterID); 113 else 114 C = get(CounterExpression(CounterExpression::Add, C, 115 Counter::getCounter(T.CounterID))); 116 } 117 118 // Create subtractions. 119 for (auto T : Terms) { 120 if (T.Factor >= 0) 121 continue; 122 for (int I = 0; I < -T.Factor; ++I) 123 C = get(CounterExpression(CounterExpression::Subtract, C, 124 Counter::getCounter(T.CounterID))); 125 } 126 return C; 127 } 128 129 Counter CounterExpressionBuilder::add(Counter LHS, Counter RHS, bool Simplify) { 130 auto Cnt = get(CounterExpression(CounterExpression::Add, LHS, RHS)); 131 return Simplify ? simplify(Cnt) : Cnt; 132 } 133 134 Counter CounterExpressionBuilder::subtract(Counter LHS, Counter RHS, 135 bool Simplify) { 136 auto Cnt = get(CounterExpression(CounterExpression::Subtract, LHS, RHS)); 137 return Simplify ? simplify(Cnt) : Cnt; 138 } 139 140 void CounterMappingContext::dump(const Counter &C, raw_ostream &OS) const { 141 switch (C.getKind()) { 142 case Counter::Zero: 143 OS << '0'; 144 return; 145 case Counter::CounterValueReference: 146 OS << '#' << C.getCounterID(); 147 break; 148 case Counter::Expression: { 149 if (C.getExpressionID() >= Expressions.size()) 150 return; 151 const auto &E = Expressions[C.getExpressionID()]; 152 OS << '('; 153 dump(E.LHS, OS); 154 OS << (E.Kind == CounterExpression::Subtract ? " - " : " + "); 155 dump(E.RHS, OS); 156 OS << ')'; 157 break; 158 } 159 } 160 if (CounterValues.empty()) 161 return; 162 Expected<int64_t> Value = evaluate(C); 163 if (auto E = Value.takeError()) { 164 consumeError(std::move(E)); 165 return; 166 } 167 OS << '[' << *Value << ']'; 168 } 169 170 Expected<int64_t> CounterMappingContext::evaluate(const Counter &C) const { 171 struct StackElem { 172 Counter ICounter; 173 int64_t LHS = 0; 174 enum { 175 KNeverVisited = 0, 176 KVisitedOnce = 1, 177 KVisitedTwice = 2, 178 } VisitCount = KNeverVisited; 179 }; 180 181 std::stack<StackElem> CounterStack; 182 CounterStack.push({C}); 183 184 int64_t LastPoppedValue; 185 186 while (!CounterStack.empty()) { 187 StackElem &Current = CounterStack.top(); 188 189 switch (Current.ICounter.getKind()) { 190 case Counter::Zero: 191 LastPoppedValue = 0; 192 CounterStack.pop(); 193 break; 194 case Counter::CounterValueReference: 195 if (Current.ICounter.getCounterID() >= CounterValues.size()) 196 return errorCodeToError(errc::argument_out_of_domain); 197 LastPoppedValue = CounterValues[Current.ICounter.getCounterID()]; 198 CounterStack.pop(); 199 break; 200 case Counter::Expression: { 201 if (Current.ICounter.getExpressionID() >= Expressions.size()) 202 return errorCodeToError(errc::argument_out_of_domain); 203 const auto &E = Expressions[Current.ICounter.getExpressionID()]; 204 if (Current.VisitCount == StackElem::KNeverVisited) { 205 CounterStack.push(StackElem{E.LHS}); 206 Current.VisitCount = StackElem::KVisitedOnce; 207 } else if (Current.VisitCount == StackElem::KVisitedOnce) { 208 Current.LHS = LastPoppedValue; 209 CounterStack.push(StackElem{E.RHS}); 210 Current.VisitCount = StackElem::KVisitedTwice; 211 } else { 212 int64_t LHS = Current.LHS; 213 int64_t RHS = LastPoppedValue; 214 LastPoppedValue = 215 E.Kind == CounterExpression::Subtract ? LHS - RHS : LHS + RHS; 216 CounterStack.pop(); 217 } 218 break; 219 } 220 } 221 } 222 223 return LastPoppedValue; 224 } 225 226 namespace { 227 228 class MCDCRecordProcessor { 229 /// A bitmap representing the executed test vectors for a boolean expression. 230 /// Each index of the bitmap corresponds to a possible test vector. An index 231 /// with a bit value of '1' indicates that the corresponding Test Vector 232 /// identified by that index was executed. 233 const BitVector &Bitmap; 234 235 /// Decision Region to which the ExecutedTestVectorBitmap applies. 236 const CounterMappingRegion &Region; 237 const mcdc::DecisionParameters &DecisionParams; 238 239 /// Array of branch regions corresponding each conditions in the boolean 240 /// expression. 241 ArrayRef<const CounterMappingRegion *> Branches; 242 243 /// Total number of conditions in the boolean expression. 244 unsigned NumConditions; 245 246 unsigned BitmapIdx; 247 248 /// Mapping of a condition ID to its corresponding branch params. 249 llvm::DenseMap<unsigned, const mcdc::BranchParameters *> BranchParamsMap; 250 251 /// Vector used to track whether a condition is constant folded. 252 MCDCRecord::BoolVector Folded; 253 254 /// Mapping of calculated MC/DC Independence Pairs for each condition. 255 MCDCRecord::TVPairMap IndependencePairs; 256 257 /// Actual executed Test Vectors for the boolean expression, based on 258 /// ExecutedTestVectorBitmap. 259 MCDCRecord::TestVectors ExecVectors; 260 261 public: 262 MCDCRecordProcessor(const BitVector &Bitmap, 263 const CounterMappingRegion &Region, 264 ArrayRef<const CounterMappingRegion *> Branches) 265 : Bitmap(Bitmap), Region(Region), 266 DecisionParams(Region.getDecisionParams()), Branches(Branches), 267 NumConditions(DecisionParams.NumConditions), 268 BitmapIdx(DecisionParams.BitmapIdx * CHAR_BIT), 269 Folded(NumConditions, false), IndependencePairs(NumConditions) {} 270 271 private: 272 void recordTestVector(MCDCRecord::TestVector &TV, unsigned Index, 273 MCDCRecord::CondState Result) { 274 if (!Bitmap[BitmapIdx + Index]) 275 return; 276 277 // Copy the completed test vector to the vector of testvectors. 278 ExecVectors.push_back(TV); 279 280 // The final value (T,F) is equal to the last non-dontcare state on the 281 // path (in a short-circuiting system). 282 ExecVectors.back().push_back(Result); 283 } 284 285 // Walk the binary decision diagram and try assigning both false and true to 286 // each node. When a terminal node (ID == 0) is reached, fill in the value in 287 // the truth table. 288 void buildTestVector(MCDCRecord::TestVector &TV, unsigned ID, 289 unsigned Index) { 290 auto [UnusedID, TrueID, FalseID] = *BranchParamsMap[ID]; 291 292 TV[ID - 1] = MCDCRecord::MCDC_False; 293 if (FalseID > 0) 294 buildTestVector(TV, FalseID, Index); 295 else 296 recordTestVector(TV, Index, MCDCRecord::MCDC_False); 297 298 Index |= 1 << (ID - 1); 299 TV[ID - 1] = MCDCRecord::MCDC_True; 300 if (TrueID > 0) 301 buildTestVector(TV, TrueID, Index); 302 else 303 recordTestVector(TV, Index, MCDCRecord::MCDC_True); 304 305 // Reset back to DontCare. 306 TV[ID - 1] = MCDCRecord::MCDC_DontCare; 307 } 308 309 /// Walk the bits in the bitmap. A bit set to '1' indicates that the test 310 /// vector at the corresponding index was executed during a test run. 311 void findExecutedTestVectors() { 312 // Walk the binary decision diagram to enumerate all possible test vectors. 313 // We start at the root node (ID == 1) with all values being DontCare. 314 // `Index` encodes the bitmask of true values and is initially 0. 315 MCDCRecord::TestVector TV(NumConditions, MCDCRecord::MCDC_DontCare); 316 buildTestVector(TV, 1, 0); 317 } 318 319 // Find an independence pair for each condition: 320 // - The condition is true in one test and false in the other. 321 // - The decision outcome is true one test and false in the other. 322 // - All other conditions' values must be equal or marked as "don't care". 323 void findIndependencePairs() { 324 unsigned NumTVs = ExecVectors.size(); 325 for (unsigned I = 1; I < NumTVs; ++I) { 326 const MCDCRecord::TestVector &A = ExecVectors[I]; 327 for (unsigned J = 0; J < I; ++J) { 328 const MCDCRecord::TestVector &B = ExecVectors[J]; 329 // Enumerate two execution vectors whose outcomes are different. 330 if (A[NumConditions] == B[NumConditions]) 331 continue; 332 unsigned Flip = NumConditions, Idx; 333 for (Idx = 0; Idx < NumConditions; ++Idx) { 334 MCDCRecord::CondState ACond = A[Idx], BCond = B[Idx]; 335 if (ACond == BCond || ACond == MCDCRecord::MCDC_DontCare || 336 BCond == MCDCRecord::MCDC_DontCare) 337 continue; 338 if (Flip != NumConditions) 339 break; 340 Flip = Idx; 341 } 342 // If the two vectors differ in exactly one condition, ignoring DontCare 343 // conditions, we have found an independence pair. 344 if (Idx == NumConditions && Flip != NumConditions) 345 IndependencePairs.insert({Flip, std::make_pair(J + 1, I + 1)}); 346 } 347 } 348 } 349 350 public: 351 /// Process the MC/DC Record in order to produce a result for a boolean 352 /// expression. This process includes tracking the conditions that comprise 353 /// the decision region, calculating the list of all possible test vectors, 354 /// marking the executed test vectors, and then finding an Independence Pair 355 /// out of the executed test vectors for each condition in the boolean 356 /// expression. A condition is tracked to ensure that its ID can be mapped to 357 /// its ordinal position in the boolean expression. The condition's source 358 /// location is also tracked, as well as whether it is constant folded (in 359 /// which case it is excuded from the metric). 360 MCDCRecord processMCDCRecord() { 361 unsigned I = 0; 362 MCDCRecord::CondIDMap PosToID; 363 MCDCRecord::LineColPairMap CondLoc; 364 365 // Walk the Record's BranchRegions (representing Conditions) in order to: 366 // - Hash the condition based on its corresponding ID. This will be used to 367 // calculate the test vectors. 368 // - Keep a map of the condition's ordinal position (1, 2, 3, 4) to its 369 // actual ID. This will be used to visualize the conditions in the 370 // correct order. 371 // - Keep track of the condition source location. This will be used to 372 // visualize where the condition is. 373 // - Record whether the condition is constant folded so that we exclude it 374 // from being measured. 375 for (const auto *B : Branches) { 376 const auto &BranchParams = B->getBranchParams(); 377 BranchParamsMap[BranchParams.ID] = &BranchParams; 378 PosToID[I] = BranchParams.ID - 1; 379 CondLoc[I] = B->startLoc(); 380 Folded[I++] = (B->Count.isZero() && B->FalseCount.isZero()); 381 } 382 383 // Using Profile Bitmap from runtime, mark the executed test vectors. 384 findExecutedTestVectors(); 385 386 // Compare executed test vectors against each other to find an independence 387 // pairs for each condition. This processing takes the most time. 388 findIndependencePairs(); 389 390 // Record Test vectors, executed vectors, and independence pairs. 391 return MCDCRecord(Region, std::move(ExecVectors), 392 std::move(IndependencePairs), std::move(Folded), 393 std::move(PosToID), std::move(CondLoc)); 394 } 395 }; 396 397 } // namespace 398 399 Expected<MCDCRecord> CounterMappingContext::evaluateMCDCRegion( 400 const CounterMappingRegion &Region, 401 ArrayRef<const CounterMappingRegion *> Branches) { 402 403 MCDCRecordProcessor MCDCProcessor(Bitmap, Region, Branches); 404 return MCDCProcessor.processMCDCRecord(); 405 } 406 407 unsigned CounterMappingContext::getMaxCounterID(const Counter &C) const { 408 struct StackElem { 409 Counter ICounter; 410 int64_t LHS = 0; 411 enum { 412 KNeverVisited = 0, 413 KVisitedOnce = 1, 414 KVisitedTwice = 2, 415 } VisitCount = KNeverVisited; 416 }; 417 418 std::stack<StackElem> CounterStack; 419 CounterStack.push({C}); 420 421 int64_t LastPoppedValue; 422 423 while (!CounterStack.empty()) { 424 StackElem &Current = CounterStack.top(); 425 426 switch (Current.ICounter.getKind()) { 427 case Counter::Zero: 428 LastPoppedValue = 0; 429 CounterStack.pop(); 430 break; 431 case Counter::CounterValueReference: 432 LastPoppedValue = Current.ICounter.getCounterID(); 433 CounterStack.pop(); 434 break; 435 case Counter::Expression: { 436 if (Current.ICounter.getExpressionID() >= Expressions.size()) { 437 LastPoppedValue = 0; 438 CounterStack.pop(); 439 } else { 440 const auto &E = Expressions[Current.ICounter.getExpressionID()]; 441 if (Current.VisitCount == StackElem::KNeverVisited) { 442 CounterStack.push(StackElem{E.LHS}); 443 Current.VisitCount = StackElem::KVisitedOnce; 444 } else if (Current.VisitCount == StackElem::KVisitedOnce) { 445 Current.LHS = LastPoppedValue; 446 CounterStack.push(StackElem{E.RHS}); 447 Current.VisitCount = StackElem::KVisitedTwice; 448 } else { 449 int64_t LHS = Current.LHS; 450 int64_t RHS = LastPoppedValue; 451 LastPoppedValue = std::max(LHS, RHS); 452 CounterStack.pop(); 453 } 454 } 455 break; 456 } 457 } 458 } 459 460 return LastPoppedValue; 461 } 462 463 void FunctionRecordIterator::skipOtherFiles() { 464 while (Current != Records.end() && !Filename.empty() && 465 Filename != Current->Filenames[0]) 466 ++Current; 467 if (Current == Records.end()) 468 *this = FunctionRecordIterator(); 469 } 470 471 ArrayRef<unsigned> CoverageMapping::getImpreciseRecordIndicesForFilename( 472 StringRef Filename) const { 473 size_t FilenameHash = hash_value(Filename); 474 auto RecordIt = FilenameHash2RecordIndices.find(FilenameHash); 475 if (RecordIt == FilenameHash2RecordIndices.end()) 476 return {}; 477 return RecordIt->second; 478 } 479 480 static unsigned getMaxCounterID(const CounterMappingContext &Ctx, 481 const CoverageMappingRecord &Record) { 482 unsigned MaxCounterID = 0; 483 for (const auto &Region : Record.MappingRegions) { 484 MaxCounterID = std::max(MaxCounterID, Ctx.getMaxCounterID(Region.Count)); 485 } 486 return MaxCounterID; 487 } 488 489 /// Returns the bit count 490 static unsigned getMaxBitmapSize(const CounterMappingContext &Ctx, 491 const CoverageMappingRecord &Record) { 492 unsigned MaxBitmapIdx = 0; 493 unsigned NumConditions = 0; 494 // Scan max(BitmapIdx). 495 // Note that `<=` is used insted of `<`, because `BitmapIdx == 0` is valid 496 // and `MaxBitmapIdx is `unsigned`. `BitmapIdx` is unique in the record. 497 for (const auto &Region : reverse(Record.MappingRegions)) { 498 if (Region.Kind != CounterMappingRegion::MCDCDecisionRegion) 499 continue; 500 const auto &DecisionParams = Region.getDecisionParams(); 501 if (MaxBitmapIdx <= DecisionParams.BitmapIdx) { 502 MaxBitmapIdx = DecisionParams.BitmapIdx; 503 NumConditions = DecisionParams.NumConditions; 504 } 505 } 506 unsigned SizeInBits = llvm::alignTo(uint64_t(1) << NumConditions, CHAR_BIT); 507 return MaxBitmapIdx * CHAR_BIT + SizeInBits; 508 } 509 510 namespace { 511 512 /// Collect Decisions, Branchs, and Expansions and associate them. 513 class MCDCDecisionRecorder { 514 private: 515 /// This holds the DecisionRegion and MCDCBranches under it. 516 /// Also traverses Expansion(s). 517 /// The Decision has the number of MCDCBranches and will complete 518 /// when it is filled with unique ConditionID of MCDCBranches. 519 struct DecisionRecord { 520 const CounterMappingRegion *DecisionRegion; 521 522 /// They are reflected from DecisionRegion for convenience. 523 mcdc::DecisionParameters DecisionParams; 524 LineColPair DecisionStartLoc; 525 LineColPair DecisionEndLoc; 526 527 /// This is passed to `MCDCRecordProcessor`, so this should be compatible 528 /// to`ArrayRef<const CounterMappingRegion *>`. 529 SmallVector<const CounterMappingRegion *> MCDCBranches; 530 531 /// IDs that are stored in MCDCBranches 532 /// Complete when all IDs (1 to NumConditions) are met. 533 DenseSet<mcdc::ConditionID> ConditionIDs; 534 535 /// Set of IDs of Expansion(s) that are relevant to DecisionRegion 536 /// and its children (via expansions). 537 /// FileID pointed by ExpandedFileID is dedicated to the expansion, so 538 /// the location in the expansion doesn't matter. 539 DenseSet<unsigned> ExpandedFileIDs; 540 541 DecisionRecord(const CounterMappingRegion &Decision) 542 : DecisionRegion(&Decision), 543 DecisionParams(Decision.getDecisionParams()), 544 DecisionStartLoc(Decision.startLoc()), 545 DecisionEndLoc(Decision.endLoc()) { 546 assert(Decision.Kind == CounterMappingRegion::MCDCDecisionRegion); 547 } 548 549 /// Determine whether DecisionRecord dominates `R`. 550 bool dominates(const CounterMappingRegion &R) const { 551 // Determine whether `R` is included in `DecisionRegion`. 552 if (R.FileID == DecisionRegion->FileID && 553 R.startLoc() >= DecisionStartLoc && R.endLoc() <= DecisionEndLoc) 554 return true; 555 556 // Determine whether `R` is pointed by any of Expansions. 557 return ExpandedFileIDs.contains(R.FileID); 558 } 559 560 enum Result { 561 NotProcessed = 0, /// Irrelevant to this Decision 562 Processed, /// Added to this Decision 563 Completed, /// Added and filled this Decision 564 }; 565 566 /// Add Branch into the Decision 567 /// \param Branch expects MCDCBranchRegion 568 /// \returns NotProcessed/Processed/Completed 569 Result addBranch(const CounterMappingRegion &Branch) { 570 assert(Branch.Kind == CounterMappingRegion::MCDCBranchRegion); 571 572 auto ConditionID = Branch.getBranchParams().ID; 573 assert(ConditionID > 0 && "ConditionID should begin with 1"); 574 575 if (ConditionIDs.contains(ConditionID) || 576 ConditionID > DecisionParams.NumConditions) 577 return NotProcessed; 578 579 if (!this->dominates(Branch)) 580 return NotProcessed; 581 582 assert(MCDCBranches.size() < DecisionParams.NumConditions); 583 584 // Put `ID=1` in front of `MCDCBranches` for convenience 585 // even if `MCDCBranches` is not topological. 586 if (ConditionID == 1) 587 MCDCBranches.insert(MCDCBranches.begin(), &Branch); 588 else 589 MCDCBranches.push_back(&Branch); 590 591 // Mark `ID` as `assigned`. 592 ConditionIDs.insert(ConditionID); 593 594 // `Completed` when `MCDCBranches` is full 595 return (MCDCBranches.size() == DecisionParams.NumConditions ? Completed 596 : Processed); 597 } 598 599 /// Record Expansion if it is relevant to this Decision. 600 /// Each `Expansion` may nest. 601 /// \returns true if recorded. 602 bool recordExpansion(const CounterMappingRegion &Expansion) { 603 if (!this->dominates(Expansion)) 604 return false; 605 606 ExpandedFileIDs.insert(Expansion.ExpandedFileID); 607 return true; 608 } 609 }; 610 611 private: 612 /// Decisions in progress 613 /// DecisionRecord is added for each MCDCDecisionRegion. 614 /// DecisionRecord is removed when Decision is completed. 615 SmallVector<DecisionRecord> Decisions; 616 617 public: 618 ~MCDCDecisionRecorder() { 619 assert(Decisions.empty() && "All Decisions have not been resolved"); 620 } 621 622 /// Register Region and start recording. 623 void registerDecision(const CounterMappingRegion &Decision) { 624 Decisions.emplace_back(Decision); 625 } 626 627 void recordExpansion(const CounterMappingRegion &Expansion) { 628 any_of(Decisions, [&Expansion](auto &Decision) { 629 return Decision.recordExpansion(Expansion); 630 }); 631 } 632 633 using DecisionAndBranches = 634 std::pair<const CounterMappingRegion *, /// Decision 635 SmallVector<const CounterMappingRegion *> /// Branches 636 >; 637 638 /// Add MCDCBranchRegion to DecisionRecord. 639 /// \param Branch to be processed 640 /// \returns DecisionsAndBranches if DecisionRecord completed. 641 /// Or returns nullopt. 642 std::optional<DecisionAndBranches> 643 processBranch(const CounterMappingRegion &Branch) { 644 // Seek each Decision and apply Region to it. 645 for (auto DecisionIter = Decisions.begin(), DecisionEnd = Decisions.end(); 646 DecisionIter != DecisionEnd; ++DecisionIter) 647 switch (DecisionIter->addBranch(Branch)) { 648 case DecisionRecord::NotProcessed: 649 continue; 650 case DecisionRecord::Processed: 651 return std::nullopt; 652 case DecisionRecord::Completed: 653 DecisionAndBranches Result = 654 std::make_pair(DecisionIter->DecisionRegion, 655 std::move(DecisionIter->MCDCBranches)); 656 Decisions.erase(DecisionIter); // No longer used. 657 return Result; 658 } 659 660 llvm_unreachable("Branch not found in Decisions"); 661 } 662 }; 663 664 } // namespace 665 666 Error CoverageMapping::loadFunctionRecord( 667 const CoverageMappingRecord &Record, 668 IndexedInstrProfReader &ProfileReader) { 669 StringRef OrigFuncName = Record.FunctionName; 670 if (OrigFuncName.empty()) 671 return make_error<CoverageMapError>(coveragemap_error::malformed, 672 "record function name is empty"); 673 674 if (Record.Filenames.empty()) 675 OrigFuncName = getFuncNameWithoutPrefix(OrigFuncName); 676 else 677 OrigFuncName = getFuncNameWithoutPrefix(OrigFuncName, Record.Filenames[0]); 678 679 CounterMappingContext Ctx(Record.Expressions); 680 681 std::vector<uint64_t> Counts; 682 if (Error E = ProfileReader.getFunctionCounts(Record.FunctionName, 683 Record.FunctionHash, Counts)) { 684 instrprof_error IPE = std::get<0>(InstrProfError::take(std::move(E))); 685 if (IPE == instrprof_error::hash_mismatch) { 686 FuncHashMismatches.emplace_back(std::string(Record.FunctionName), 687 Record.FunctionHash); 688 return Error::success(); 689 } 690 if (IPE != instrprof_error::unknown_function) 691 return make_error<InstrProfError>(IPE); 692 Counts.assign(getMaxCounterID(Ctx, Record) + 1, 0); 693 } 694 Ctx.setCounts(Counts); 695 696 BitVector Bitmap; 697 if (Error E = ProfileReader.getFunctionBitmap(Record.FunctionName, 698 Record.FunctionHash, Bitmap)) { 699 instrprof_error IPE = std::get<0>(InstrProfError::take(std::move(E))); 700 if (IPE == instrprof_error::hash_mismatch) { 701 FuncHashMismatches.emplace_back(std::string(Record.FunctionName), 702 Record.FunctionHash); 703 return Error::success(); 704 } 705 if (IPE != instrprof_error::unknown_function) 706 return make_error<InstrProfError>(IPE); 707 Bitmap = BitVector(getMaxBitmapSize(Ctx, Record)); 708 } 709 Ctx.setBitmap(std::move(Bitmap)); 710 711 assert(!Record.MappingRegions.empty() && "Function has no regions"); 712 713 // This coverage record is a zero region for a function that's unused in 714 // some TU, but used in a different TU. Ignore it. The coverage maps from the 715 // the other TU will either be loaded (providing full region counts) or they 716 // won't (in which case we don't unintuitively report functions as uncovered 717 // when they have non-zero counts in the profile). 718 if (Record.MappingRegions.size() == 1 && 719 Record.MappingRegions[0].Count.isZero() && Counts[0] > 0) 720 return Error::success(); 721 722 MCDCDecisionRecorder MCDCDecisions; 723 FunctionRecord Function(OrigFuncName, Record.Filenames); 724 for (const auto &Region : Record.MappingRegions) { 725 // MCDCDecisionRegion should be handled first since it overlaps with 726 // others inside. 727 if (Region.Kind == CounterMappingRegion::MCDCDecisionRegion) { 728 MCDCDecisions.registerDecision(Region); 729 continue; 730 } 731 Expected<int64_t> ExecutionCount = Ctx.evaluate(Region.Count); 732 if (auto E = ExecutionCount.takeError()) { 733 consumeError(std::move(E)); 734 return Error::success(); 735 } 736 Expected<int64_t> AltExecutionCount = Ctx.evaluate(Region.FalseCount); 737 if (auto E = AltExecutionCount.takeError()) { 738 consumeError(std::move(E)); 739 return Error::success(); 740 } 741 Function.pushRegion(Region, *ExecutionCount, *AltExecutionCount); 742 743 // Record ExpansionRegion. 744 if (Region.Kind == CounterMappingRegion::ExpansionRegion) { 745 MCDCDecisions.recordExpansion(Region); 746 continue; 747 } 748 749 // Do nothing unless MCDCBranchRegion. 750 if (Region.Kind != CounterMappingRegion::MCDCBranchRegion) 751 continue; 752 753 auto Result = MCDCDecisions.processBranch(Region); 754 if (!Result) // Any Decision doesn't complete. 755 continue; 756 757 auto MCDCDecision = Result->first; 758 auto &MCDCBranches = Result->second; 759 760 // Since the bitmap identifies the executed test vectors for an MC/DC 761 // DecisionRegion, all of the information is now available to process. 762 // This is where the bulk of the MC/DC progressing takes place. 763 Expected<MCDCRecord> Record = 764 Ctx.evaluateMCDCRegion(*MCDCDecision, MCDCBranches); 765 if (auto E = Record.takeError()) { 766 consumeError(std::move(E)); 767 return Error::success(); 768 } 769 770 // Save the MC/DC Record so that it can be visualized later. 771 Function.pushMCDCRecord(std::move(*Record)); 772 } 773 774 // Don't create records for (filenames, function) pairs we've already seen. 775 auto FilenamesHash = hash_combine_range(Record.Filenames.begin(), 776 Record.Filenames.end()); 777 if (!RecordProvenance[FilenamesHash].insert(hash_value(OrigFuncName)).second) 778 return Error::success(); 779 780 Functions.push_back(std::move(Function)); 781 782 // Performance optimization: keep track of the indices of the function records 783 // which correspond to each filename. This can be used to substantially speed 784 // up queries for coverage info in a file. 785 unsigned RecordIndex = Functions.size() - 1; 786 for (StringRef Filename : Record.Filenames) { 787 auto &RecordIndices = FilenameHash2RecordIndices[hash_value(Filename)]; 788 // Note that there may be duplicates in the filename set for a function 789 // record, because of e.g. macro expansions in the function in which both 790 // the macro and the function are defined in the same file. 791 if (RecordIndices.empty() || RecordIndices.back() != RecordIndex) 792 RecordIndices.push_back(RecordIndex); 793 } 794 795 return Error::success(); 796 } 797 798 // This function is for memory optimization by shortening the lifetimes 799 // of CoverageMappingReader instances. 800 Error CoverageMapping::loadFromReaders( 801 ArrayRef<std::unique_ptr<CoverageMappingReader>> CoverageReaders, 802 IndexedInstrProfReader &ProfileReader, CoverageMapping &Coverage) { 803 for (const auto &CoverageReader : CoverageReaders) { 804 for (auto RecordOrErr : *CoverageReader) { 805 if (Error E = RecordOrErr.takeError()) 806 return E; 807 const auto &Record = *RecordOrErr; 808 if (Error E = Coverage.loadFunctionRecord(Record, ProfileReader)) 809 return E; 810 } 811 } 812 return Error::success(); 813 } 814 815 Expected<std::unique_ptr<CoverageMapping>> CoverageMapping::load( 816 ArrayRef<std::unique_ptr<CoverageMappingReader>> CoverageReaders, 817 IndexedInstrProfReader &ProfileReader) { 818 auto Coverage = std::unique_ptr<CoverageMapping>(new CoverageMapping()); 819 if (Error E = loadFromReaders(CoverageReaders, ProfileReader, *Coverage)) 820 return std::move(E); 821 return std::move(Coverage); 822 } 823 824 // If E is a no_data_found error, returns success. Otherwise returns E. 825 static Error handleMaybeNoDataFoundError(Error E) { 826 return handleErrors( 827 std::move(E), [](const CoverageMapError &CME) { 828 if (CME.get() == coveragemap_error::no_data_found) 829 return static_cast<Error>(Error::success()); 830 return make_error<CoverageMapError>(CME.get(), CME.getMessage()); 831 }); 832 } 833 834 Error CoverageMapping::loadFromFile( 835 StringRef Filename, StringRef Arch, StringRef CompilationDir, 836 IndexedInstrProfReader &ProfileReader, CoverageMapping &Coverage, 837 bool &DataFound, SmallVectorImpl<object::BuildID> *FoundBinaryIDs) { 838 auto CovMappingBufOrErr = MemoryBuffer::getFileOrSTDIN( 839 Filename, /*IsText=*/false, /*RequiresNullTerminator=*/false); 840 if (std::error_code EC = CovMappingBufOrErr.getError()) 841 return createFileError(Filename, errorCodeToError(EC)); 842 MemoryBufferRef CovMappingBufRef = 843 CovMappingBufOrErr.get()->getMemBufferRef(); 844 SmallVector<std::unique_ptr<MemoryBuffer>, 4> Buffers; 845 846 SmallVector<object::BuildIDRef> BinaryIDs; 847 auto CoverageReadersOrErr = BinaryCoverageReader::create( 848 CovMappingBufRef, Arch, Buffers, CompilationDir, 849 FoundBinaryIDs ? &BinaryIDs : nullptr); 850 if (Error E = CoverageReadersOrErr.takeError()) { 851 E = handleMaybeNoDataFoundError(std::move(E)); 852 if (E) 853 return createFileError(Filename, std::move(E)); 854 return E; 855 } 856 857 SmallVector<std::unique_ptr<CoverageMappingReader>, 4> Readers; 858 for (auto &Reader : CoverageReadersOrErr.get()) 859 Readers.push_back(std::move(Reader)); 860 if (FoundBinaryIDs && !Readers.empty()) { 861 llvm::append_range(*FoundBinaryIDs, 862 llvm::map_range(BinaryIDs, [](object::BuildIDRef BID) { 863 return object::BuildID(BID); 864 })); 865 } 866 DataFound |= !Readers.empty(); 867 if (Error E = loadFromReaders(Readers, ProfileReader, Coverage)) 868 return createFileError(Filename, std::move(E)); 869 return Error::success(); 870 } 871 872 Expected<std::unique_ptr<CoverageMapping>> CoverageMapping::load( 873 ArrayRef<StringRef> ObjectFilenames, StringRef ProfileFilename, 874 vfs::FileSystem &FS, ArrayRef<StringRef> Arches, StringRef CompilationDir, 875 const object::BuildIDFetcher *BIDFetcher, bool CheckBinaryIDs) { 876 auto ProfileReaderOrErr = IndexedInstrProfReader::create(ProfileFilename, FS); 877 if (Error E = ProfileReaderOrErr.takeError()) 878 return createFileError(ProfileFilename, std::move(E)); 879 auto ProfileReader = std::move(ProfileReaderOrErr.get()); 880 auto Coverage = std::unique_ptr<CoverageMapping>(new CoverageMapping()); 881 bool DataFound = false; 882 883 auto GetArch = [&](size_t Idx) { 884 if (Arches.empty()) 885 return StringRef(); 886 if (Arches.size() == 1) 887 return Arches.front(); 888 return Arches[Idx]; 889 }; 890 891 SmallVector<object::BuildID> FoundBinaryIDs; 892 for (const auto &File : llvm::enumerate(ObjectFilenames)) { 893 if (Error E = 894 loadFromFile(File.value(), GetArch(File.index()), CompilationDir, 895 *ProfileReader, *Coverage, DataFound, &FoundBinaryIDs)) 896 return std::move(E); 897 } 898 899 if (BIDFetcher) { 900 std::vector<object::BuildID> ProfileBinaryIDs; 901 if (Error E = ProfileReader->readBinaryIds(ProfileBinaryIDs)) 902 return createFileError(ProfileFilename, std::move(E)); 903 904 SmallVector<object::BuildIDRef> BinaryIDsToFetch; 905 if (!ProfileBinaryIDs.empty()) { 906 const auto &Compare = [](object::BuildIDRef A, object::BuildIDRef B) { 907 return std::lexicographical_compare(A.begin(), A.end(), B.begin(), 908 B.end()); 909 }; 910 llvm::sort(FoundBinaryIDs, Compare); 911 std::set_difference( 912 ProfileBinaryIDs.begin(), ProfileBinaryIDs.end(), 913 FoundBinaryIDs.begin(), FoundBinaryIDs.end(), 914 std::inserter(BinaryIDsToFetch, BinaryIDsToFetch.end()), Compare); 915 } 916 917 for (object::BuildIDRef BinaryID : BinaryIDsToFetch) { 918 std::optional<std::string> PathOpt = BIDFetcher->fetch(BinaryID); 919 if (PathOpt) { 920 std::string Path = std::move(*PathOpt); 921 StringRef Arch = Arches.size() == 1 ? Arches.front() : StringRef(); 922 if (Error E = loadFromFile(Path, Arch, CompilationDir, *ProfileReader, 923 *Coverage, DataFound)) 924 return std::move(E); 925 } else if (CheckBinaryIDs) { 926 return createFileError( 927 ProfileFilename, 928 createStringError(errc::no_such_file_or_directory, 929 "Missing binary ID: " + 930 llvm::toHex(BinaryID, /*LowerCase=*/true))); 931 } 932 } 933 } 934 935 if (!DataFound) 936 return createFileError( 937 join(ObjectFilenames.begin(), ObjectFilenames.end(), ", "), 938 make_error<CoverageMapError>(coveragemap_error::no_data_found)); 939 return std::move(Coverage); 940 } 941 942 namespace { 943 944 /// Distributes functions into instantiation sets. 945 /// 946 /// An instantiation set is a collection of functions that have the same source 947 /// code, ie, template functions specializations. 948 class FunctionInstantiationSetCollector { 949 using MapT = std::map<LineColPair, std::vector<const FunctionRecord *>>; 950 MapT InstantiatedFunctions; 951 952 public: 953 void insert(const FunctionRecord &Function, unsigned FileID) { 954 auto I = Function.CountedRegions.begin(), E = Function.CountedRegions.end(); 955 while (I != E && I->FileID != FileID) 956 ++I; 957 assert(I != E && "function does not cover the given file"); 958 auto &Functions = InstantiatedFunctions[I->startLoc()]; 959 Functions.push_back(&Function); 960 } 961 962 MapT::iterator begin() { return InstantiatedFunctions.begin(); } 963 MapT::iterator end() { return InstantiatedFunctions.end(); } 964 }; 965 966 class SegmentBuilder { 967 std::vector<CoverageSegment> &Segments; 968 SmallVector<const CountedRegion *, 8> ActiveRegions; 969 970 SegmentBuilder(std::vector<CoverageSegment> &Segments) : Segments(Segments) {} 971 972 /// Emit a segment with the count from \p Region starting at \p StartLoc. 973 // 974 /// \p IsRegionEntry: The segment is at the start of a new non-gap region. 975 /// \p EmitSkippedRegion: The segment must be emitted as a skipped region. 976 void startSegment(const CountedRegion &Region, LineColPair StartLoc, 977 bool IsRegionEntry, bool EmitSkippedRegion = false) { 978 bool HasCount = !EmitSkippedRegion && 979 (Region.Kind != CounterMappingRegion::SkippedRegion); 980 981 // If the new segment wouldn't affect coverage rendering, skip it. 982 if (!Segments.empty() && !IsRegionEntry && !EmitSkippedRegion) { 983 const auto &Last = Segments.back(); 984 if (Last.HasCount == HasCount && Last.Count == Region.ExecutionCount && 985 !Last.IsRegionEntry) 986 return; 987 } 988 989 if (HasCount) 990 Segments.emplace_back(StartLoc.first, StartLoc.second, 991 Region.ExecutionCount, IsRegionEntry, 992 Region.Kind == CounterMappingRegion::GapRegion); 993 else 994 Segments.emplace_back(StartLoc.first, StartLoc.second, IsRegionEntry); 995 996 LLVM_DEBUG({ 997 const auto &Last = Segments.back(); 998 dbgs() << "Segment at " << Last.Line << ":" << Last.Col 999 << " (count = " << Last.Count << ")" 1000 << (Last.IsRegionEntry ? ", RegionEntry" : "") 1001 << (!Last.HasCount ? ", Skipped" : "") 1002 << (Last.IsGapRegion ? ", Gap" : "") << "\n"; 1003 }); 1004 } 1005 1006 /// Emit segments for active regions which end before \p Loc. 1007 /// 1008 /// \p Loc: The start location of the next region. If std::nullopt, all active 1009 /// regions are completed. 1010 /// \p FirstCompletedRegion: Index of the first completed region. 1011 void completeRegionsUntil(std::optional<LineColPair> Loc, 1012 unsigned FirstCompletedRegion) { 1013 // Sort the completed regions by end location. This makes it simple to 1014 // emit closing segments in sorted order. 1015 auto CompletedRegionsIt = ActiveRegions.begin() + FirstCompletedRegion; 1016 std::stable_sort(CompletedRegionsIt, ActiveRegions.end(), 1017 [](const CountedRegion *L, const CountedRegion *R) { 1018 return L->endLoc() < R->endLoc(); 1019 }); 1020 1021 // Emit segments for all completed regions. 1022 for (unsigned I = FirstCompletedRegion + 1, E = ActiveRegions.size(); I < E; 1023 ++I) { 1024 const auto *CompletedRegion = ActiveRegions[I]; 1025 assert((!Loc || CompletedRegion->endLoc() <= *Loc) && 1026 "Completed region ends after start of new region"); 1027 1028 const auto *PrevCompletedRegion = ActiveRegions[I - 1]; 1029 auto CompletedSegmentLoc = PrevCompletedRegion->endLoc(); 1030 1031 // Don't emit any more segments if they start where the new region begins. 1032 if (Loc && CompletedSegmentLoc == *Loc) 1033 break; 1034 1035 // Don't emit a segment if the next completed region ends at the same 1036 // location as this one. 1037 if (CompletedSegmentLoc == CompletedRegion->endLoc()) 1038 continue; 1039 1040 // Use the count from the last completed region which ends at this loc. 1041 for (unsigned J = I + 1; J < E; ++J) 1042 if (CompletedRegion->endLoc() == ActiveRegions[J]->endLoc()) 1043 CompletedRegion = ActiveRegions[J]; 1044 1045 startSegment(*CompletedRegion, CompletedSegmentLoc, false); 1046 } 1047 1048 auto Last = ActiveRegions.back(); 1049 if (FirstCompletedRegion && Last->endLoc() != *Loc) { 1050 // If there's a gap after the end of the last completed region and the 1051 // start of the new region, use the last active region to fill the gap. 1052 startSegment(*ActiveRegions[FirstCompletedRegion - 1], Last->endLoc(), 1053 false); 1054 } else if (!FirstCompletedRegion && (!Loc || *Loc != Last->endLoc())) { 1055 // Emit a skipped segment if there are no more active regions. This 1056 // ensures that gaps between functions are marked correctly. 1057 startSegment(*Last, Last->endLoc(), false, true); 1058 } 1059 1060 // Pop the completed regions. 1061 ActiveRegions.erase(CompletedRegionsIt, ActiveRegions.end()); 1062 } 1063 1064 void buildSegmentsImpl(ArrayRef<CountedRegion> Regions) { 1065 for (const auto &CR : enumerate(Regions)) { 1066 auto CurStartLoc = CR.value().startLoc(); 1067 1068 // Active regions which end before the current region need to be popped. 1069 auto CompletedRegions = 1070 std::stable_partition(ActiveRegions.begin(), ActiveRegions.end(), 1071 [&](const CountedRegion *Region) { 1072 return !(Region->endLoc() <= CurStartLoc); 1073 }); 1074 if (CompletedRegions != ActiveRegions.end()) { 1075 unsigned FirstCompletedRegion = 1076 std::distance(ActiveRegions.begin(), CompletedRegions); 1077 completeRegionsUntil(CurStartLoc, FirstCompletedRegion); 1078 } 1079 1080 bool GapRegion = CR.value().Kind == CounterMappingRegion::GapRegion; 1081 1082 // Try to emit a segment for the current region. 1083 if (CurStartLoc == CR.value().endLoc()) { 1084 // Avoid making zero-length regions active. If it's the last region, 1085 // emit a skipped segment. Otherwise use its predecessor's count. 1086 const bool Skipped = 1087 (CR.index() + 1) == Regions.size() || 1088 CR.value().Kind == CounterMappingRegion::SkippedRegion; 1089 startSegment(ActiveRegions.empty() ? CR.value() : *ActiveRegions.back(), 1090 CurStartLoc, !GapRegion, Skipped); 1091 // If it is skipped segment, create a segment with last pushed 1092 // regions's count at CurStartLoc. 1093 if (Skipped && !ActiveRegions.empty()) 1094 startSegment(*ActiveRegions.back(), CurStartLoc, false); 1095 continue; 1096 } 1097 if (CR.index() + 1 == Regions.size() || 1098 CurStartLoc != Regions[CR.index() + 1].startLoc()) { 1099 // Emit a segment if the next region doesn't start at the same location 1100 // as this one. 1101 startSegment(CR.value(), CurStartLoc, !GapRegion); 1102 } 1103 1104 // This region is active (i.e not completed). 1105 ActiveRegions.push_back(&CR.value()); 1106 } 1107 1108 // Complete any remaining active regions. 1109 if (!ActiveRegions.empty()) 1110 completeRegionsUntil(std::nullopt, 0); 1111 } 1112 1113 /// Sort a nested sequence of regions from a single file. 1114 static void sortNestedRegions(MutableArrayRef<CountedRegion> Regions) { 1115 llvm::sort(Regions, [](const CountedRegion &LHS, const CountedRegion &RHS) { 1116 if (LHS.startLoc() != RHS.startLoc()) 1117 return LHS.startLoc() < RHS.startLoc(); 1118 if (LHS.endLoc() != RHS.endLoc()) 1119 // When LHS completely contains RHS, we sort LHS first. 1120 return RHS.endLoc() < LHS.endLoc(); 1121 // If LHS and RHS cover the same area, we need to sort them according 1122 // to their kinds so that the most suitable region will become "active" 1123 // in combineRegions(). Because we accumulate counter values only from 1124 // regions of the same kind as the first region of the area, prefer 1125 // CodeRegion to ExpansionRegion and ExpansionRegion to SkippedRegion. 1126 static_assert(CounterMappingRegion::CodeRegion < 1127 CounterMappingRegion::ExpansionRegion && 1128 CounterMappingRegion::ExpansionRegion < 1129 CounterMappingRegion::SkippedRegion, 1130 "Unexpected order of region kind values"); 1131 return LHS.Kind < RHS.Kind; 1132 }); 1133 } 1134 1135 /// Combine counts of regions which cover the same area. 1136 static ArrayRef<CountedRegion> 1137 combineRegions(MutableArrayRef<CountedRegion> Regions) { 1138 if (Regions.empty()) 1139 return Regions; 1140 auto Active = Regions.begin(); 1141 auto End = Regions.end(); 1142 for (auto I = Regions.begin() + 1; I != End; ++I) { 1143 if (Active->startLoc() != I->startLoc() || 1144 Active->endLoc() != I->endLoc()) { 1145 // Shift to the next region. 1146 ++Active; 1147 if (Active != I) 1148 *Active = *I; 1149 continue; 1150 } 1151 // Merge duplicate region. 1152 // If CodeRegions and ExpansionRegions cover the same area, it's probably 1153 // a macro which is fully expanded to another macro. In that case, we need 1154 // to accumulate counts only from CodeRegions, or else the area will be 1155 // counted twice. 1156 // On the other hand, a macro may have a nested macro in its body. If the 1157 // outer macro is used several times, the ExpansionRegion for the nested 1158 // macro will also be added several times. These ExpansionRegions cover 1159 // the same source locations and have to be combined to reach the correct 1160 // value for that area. 1161 // We add counts of the regions of the same kind as the active region 1162 // to handle the both situations. 1163 if (I->Kind == Active->Kind) 1164 Active->ExecutionCount += I->ExecutionCount; 1165 } 1166 return Regions.drop_back(std::distance(++Active, End)); 1167 } 1168 1169 public: 1170 /// Build a sorted list of CoverageSegments from a list of Regions. 1171 static std::vector<CoverageSegment> 1172 buildSegments(MutableArrayRef<CountedRegion> Regions) { 1173 std::vector<CoverageSegment> Segments; 1174 SegmentBuilder Builder(Segments); 1175 1176 sortNestedRegions(Regions); 1177 ArrayRef<CountedRegion> CombinedRegions = combineRegions(Regions); 1178 1179 LLVM_DEBUG({ 1180 dbgs() << "Combined regions:\n"; 1181 for (const auto &CR : CombinedRegions) 1182 dbgs() << " " << CR.LineStart << ":" << CR.ColumnStart << " -> " 1183 << CR.LineEnd << ":" << CR.ColumnEnd 1184 << " (count=" << CR.ExecutionCount << ")\n"; 1185 }); 1186 1187 Builder.buildSegmentsImpl(CombinedRegions); 1188 1189 #ifndef NDEBUG 1190 for (unsigned I = 1, E = Segments.size(); I < E; ++I) { 1191 const auto &L = Segments[I - 1]; 1192 const auto &R = Segments[I]; 1193 if (!(L.Line < R.Line) && !(L.Line == R.Line && L.Col < R.Col)) { 1194 if (L.Line == R.Line && L.Col == R.Col && !L.HasCount) 1195 continue; 1196 LLVM_DEBUG(dbgs() << " ! Segment " << L.Line << ":" << L.Col 1197 << " followed by " << R.Line << ":" << R.Col << "\n"); 1198 assert(false && "Coverage segments not unique or sorted"); 1199 } 1200 } 1201 #endif 1202 1203 return Segments; 1204 } 1205 }; 1206 1207 } // end anonymous namespace 1208 1209 std::vector<StringRef> CoverageMapping::getUniqueSourceFiles() const { 1210 std::vector<StringRef> Filenames; 1211 for (const auto &Function : getCoveredFunctions()) 1212 llvm::append_range(Filenames, Function.Filenames); 1213 llvm::sort(Filenames); 1214 auto Last = std::unique(Filenames.begin(), Filenames.end()); 1215 Filenames.erase(Last, Filenames.end()); 1216 return Filenames; 1217 } 1218 1219 static SmallBitVector gatherFileIDs(StringRef SourceFile, 1220 const FunctionRecord &Function) { 1221 SmallBitVector FilenameEquivalence(Function.Filenames.size(), false); 1222 for (unsigned I = 0, E = Function.Filenames.size(); I < E; ++I) 1223 if (SourceFile == Function.Filenames[I]) 1224 FilenameEquivalence[I] = true; 1225 return FilenameEquivalence; 1226 } 1227 1228 /// Return the ID of the file where the definition of the function is located. 1229 static std::optional<unsigned> 1230 findMainViewFileID(const FunctionRecord &Function) { 1231 SmallBitVector IsNotExpandedFile(Function.Filenames.size(), true); 1232 for (const auto &CR : Function.CountedRegions) 1233 if (CR.Kind == CounterMappingRegion::ExpansionRegion) 1234 IsNotExpandedFile[CR.ExpandedFileID] = false; 1235 int I = IsNotExpandedFile.find_first(); 1236 if (I == -1) 1237 return std::nullopt; 1238 return I; 1239 } 1240 1241 /// Check if SourceFile is the file that contains the definition of 1242 /// the Function. Return the ID of the file in that case or std::nullopt 1243 /// otherwise. 1244 static std::optional<unsigned> 1245 findMainViewFileID(StringRef SourceFile, const FunctionRecord &Function) { 1246 std::optional<unsigned> I = findMainViewFileID(Function); 1247 if (I && SourceFile == Function.Filenames[*I]) 1248 return I; 1249 return std::nullopt; 1250 } 1251 1252 static bool isExpansion(const CountedRegion &R, unsigned FileID) { 1253 return R.Kind == CounterMappingRegion::ExpansionRegion && R.FileID == FileID; 1254 } 1255 1256 CoverageData CoverageMapping::getCoverageForFile(StringRef Filename) const { 1257 CoverageData FileCoverage(Filename); 1258 std::vector<CountedRegion> Regions; 1259 1260 // Look up the function records in the given file. Due to hash collisions on 1261 // the filename, we may get back some records that are not in the file. 1262 ArrayRef<unsigned> RecordIndices = 1263 getImpreciseRecordIndicesForFilename(Filename); 1264 for (unsigned RecordIndex : RecordIndices) { 1265 const FunctionRecord &Function = Functions[RecordIndex]; 1266 auto MainFileID = findMainViewFileID(Filename, Function); 1267 auto FileIDs = gatherFileIDs(Filename, Function); 1268 for (const auto &CR : Function.CountedRegions) 1269 if (FileIDs.test(CR.FileID)) { 1270 Regions.push_back(CR); 1271 if (MainFileID && isExpansion(CR, *MainFileID)) 1272 FileCoverage.Expansions.emplace_back(CR, Function); 1273 } 1274 // Capture branch regions specific to the function (excluding expansions). 1275 for (const auto &CR : Function.CountedBranchRegions) 1276 if (FileIDs.test(CR.FileID) && (CR.FileID == CR.ExpandedFileID)) 1277 FileCoverage.BranchRegions.push_back(CR); 1278 // Capture MCDC records specific to the function. 1279 for (const auto &MR : Function.MCDCRecords) 1280 if (FileIDs.test(MR.getDecisionRegion().FileID)) 1281 FileCoverage.MCDCRecords.push_back(MR); 1282 } 1283 1284 LLVM_DEBUG(dbgs() << "Emitting segments for file: " << Filename << "\n"); 1285 FileCoverage.Segments = SegmentBuilder::buildSegments(Regions); 1286 1287 return FileCoverage; 1288 } 1289 1290 std::vector<InstantiationGroup> 1291 CoverageMapping::getInstantiationGroups(StringRef Filename) const { 1292 FunctionInstantiationSetCollector InstantiationSetCollector; 1293 // Look up the function records in the given file. Due to hash collisions on 1294 // the filename, we may get back some records that are not in the file. 1295 ArrayRef<unsigned> RecordIndices = 1296 getImpreciseRecordIndicesForFilename(Filename); 1297 for (unsigned RecordIndex : RecordIndices) { 1298 const FunctionRecord &Function = Functions[RecordIndex]; 1299 auto MainFileID = findMainViewFileID(Filename, Function); 1300 if (!MainFileID) 1301 continue; 1302 InstantiationSetCollector.insert(Function, *MainFileID); 1303 } 1304 1305 std::vector<InstantiationGroup> Result; 1306 for (auto &InstantiationSet : InstantiationSetCollector) { 1307 InstantiationGroup IG{InstantiationSet.first.first, 1308 InstantiationSet.first.second, 1309 std::move(InstantiationSet.second)}; 1310 Result.emplace_back(std::move(IG)); 1311 } 1312 return Result; 1313 } 1314 1315 CoverageData 1316 CoverageMapping::getCoverageForFunction(const FunctionRecord &Function) const { 1317 auto MainFileID = findMainViewFileID(Function); 1318 if (!MainFileID) 1319 return CoverageData(); 1320 1321 CoverageData FunctionCoverage(Function.Filenames[*MainFileID]); 1322 std::vector<CountedRegion> Regions; 1323 for (const auto &CR : Function.CountedRegions) 1324 if (CR.FileID == *MainFileID) { 1325 Regions.push_back(CR); 1326 if (isExpansion(CR, *MainFileID)) 1327 FunctionCoverage.Expansions.emplace_back(CR, Function); 1328 } 1329 // Capture branch regions specific to the function (excluding expansions). 1330 for (const auto &CR : Function.CountedBranchRegions) 1331 if (CR.FileID == *MainFileID) 1332 FunctionCoverage.BranchRegions.push_back(CR); 1333 1334 // Capture MCDC records specific to the function. 1335 for (const auto &MR : Function.MCDCRecords) 1336 if (MR.getDecisionRegion().FileID == *MainFileID) 1337 FunctionCoverage.MCDCRecords.push_back(MR); 1338 1339 LLVM_DEBUG(dbgs() << "Emitting segments for function: " << Function.Name 1340 << "\n"); 1341 FunctionCoverage.Segments = SegmentBuilder::buildSegments(Regions); 1342 1343 return FunctionCoverage; 1344 } 1345 1346 CoverageData CoverageMapping::getCoverageForExpansion( 1347 const ExpansionRecord &Expansion) const { 1348 CoverageData ExpansionCoverage( 1349 Expansion.Function.Filenames[Expansion.FileID]); 1350 std::vector<CountedRegion> Regions; 1351 for (const auto &CR : Expansion.Function.CountedRegions) 1352 if (CR.FileID == Expansion.FileID) { 1353 Regions.push_back(CR); 1354 if (isExpansion(CR, Expansion.FileID)) 1355 ExpansionCoverage.Expansions.emplace_back(CR, Expansion.Function); 1356 } 1357 for (const auto &CR : Expansion.Function.CountedBranchRegions) 1358 // Capture branch regions that only pertain to the corresponding expansion. 1359 if (CR.FileID == Expansion.FileID) 1360 ExpansionCoverage.BranchRegions.push_back(CR); 1361 1362 LLVM_DEBUG(dbgs() << "Emitting segments for expansion of file " 1363 << Expansion.FileID << "\n"); 1364 ExpansionCoverage.Segments = SegmentBuilder::buildSegments(Regions); 1365 1366 return ExpansionCoverage; 1367 } 1368 1369 LineCoverageStats::LineCoverageStats( 1370 ArrayRef<const CoverageSegment *> LineSegments, 1371 const CoverageSegment *WrappedSegment, unsigned Line) 1372 : ExecutionCount(0), HasMultipleRegions(false), Mapped(false), Line(Line), 1373 LineSegments(LineSegments), WrappedSegment(WrappedSegment) { 1374 // Find the minimum number of regions which start in this line. 1375 unsigned MinRegionCount = 0; 1376 auto isStartOfRegion = [](const CoverageSegment *S) { 1377 return !S->IsGapRegion && S->HasCount && S->IsRegionEntry; 1378 }; 1379 for (unsigned I = 0; I < LineSegments.size() && MinRegionCount < 2; ++I) 1380 if (isStartOfRegion(LineSegments[I])) 1381 ++MinRegionCount; 1382 1383 bool StartOfSkippedRegion = !LineSegments.empty() && 1384 !LineSegments.front()->HasCount && 1385 LineSegments.front()->IsRegionEntry; 1386 1387 HasMultipleRegions = MinRegionCount > 1; 1388 Mapped = 1389 !StartOfSkippedRegion && 1390 ((WrappedSegment && WrappedSegment->HasCount) || (MinRegionCount > 0)); 1391 1392 // if there is any starting segment at this line with a counter, it must be 1393 // mapped 1394 Mapped |= std::any_of( 1395 LineSegments.begin(), LineSegments.end(), 1396 [](const auto *Seq) { return Seq->IsRegionEntry && Seq->HasCount; }); 1397 1398 if (!Mapped) { 1399 return; 1400 } 1401 1402 // Pick the max count from the non-gap, region entry segments and the 1403 // wrapped count. 1404 if (WrappedSegment) 1405 ExecutionCount = WrappedSegment->Count; 1406 if (!MinRegionCount) 1407 return; 1408 for (const auto *LS : LineSegments) 1409 if (isStartOfRegion(LS)) 1410 ExecutionCount = std::max(ExecutionCount, LS->Count); 1411 } 1412 1413 LineCoverageIterator &LineCoverageIterator::operator++() { 1414 if (Next == CD.end()) { 1415 Stats = LineCoverageStats(); 1416 Ended = true; 1417 return *this; 1418 } 1419 if (Segments.size()) 1420 WrappedSegment = Segments.back(); 1421 Segments.clear(); 1422 while (Next != CD.end() && Next->Line == Line) 1423 Segments.push_back(&*Next++); 1424 Stats = LineCoverageStats(Segments, WrappedSegment, Line); 1425 ++Line; 1426 return *this; 1427 } 1428 1429 static std::string getCoverageMapErrString(coveragemap_error Err, 1430 const std::string &ErrMsg = "") { 1431 std::string Msg; 1432 raw_string_ostream OS(Msg); 1433 1434 switch (Err) { 1435 case coveragemap_error::success: 1436 OS << "success"; 1437 break; 1438 case coveragemap_error::eof: 1439 OS << "end of File"; 1440 break; 1441 case coveragemap_error::no_data_found: 1442 OS << "no coverage data found"; 1443 break; 1444 case coveragemap_error::unsupported_version: 1445 OS << "unsupported coverage format version"; 1446 break; 1447 case coveragemap_error::truncated: 1448 OS << "truncated coverage data"; 1449 break; 1450 case coveragemap_error::malformed: 1451 OS << "malformed coverage data"; 1452 break; 1453 case coveragemap_error::decompression_failed: 1454 OS << "failed to decompress coverage data (zlib)"; 1455 break; 1456 case coveragemap_error::invalid_or_missing_arch_specifier: 1457 OS << "`-arch` specifier is invalid or missing for universal binary"; 1458 break; 1459 } 1460 1461 // If optional error message is not empty, append it to the message. 1462 if (!ErrMsg.empty()) 1463 OS << ": " << ErrMsg; 1464 1465 return Msg; 1466 } 1467 1468 namespace { 1469 1470 // FIXME: This class is only here to support the transition to llvm::Error. It 1471 // will be removed once this transition is complete. Clients should prefer to 1472 // deal with the Error value directly, rather than converting to error_code. 1473 class CoverageMappingErrorCategoryType : public std::error_category { 1474 const char *name() const noexcept override { return "llvm.coveragemap"; } 1475 std::string message(int IE) const override { 1476 return getCoverageMapErrString(static_cast<coveragemap_error>(IE)); 1477 } 1478 }; 1479 1480 } // end anonymous namespace 1481 1482 std::string CoverageMapError::message() const { 1483 return getCoverageMapErrString(Err, Msg); 1484 } 1485 1486 const std::error_category &llvm::coverage::coveragemap_category() { 1487 static CoverageMappingErrorCategoryType ErrorCategory; 1488 return ErrorCategory; 1489 } 1490 1491 char CoverageMapError::ID = 0; 1492