1 //===- CoverageMapping.cpp - Code coverage mapping support ----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains support for clang's and llvm's instrumentation based 10 // code coverage. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/ProfileData/Coverage/CoverageMapping.h" 15 #include "llvm/ADT/ArrayRef.h" 16 #include "llvm/ADT/DenseMap.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/SmallBitVector.h" 19 #include "llvm/ADT/SmallVector.h" 20 #include "llvm/ADT/StringExtras.h" 21 #include "llvm/ADT/StringRef.h" 22 #include "llvm/Object/BuildID.h" 23 #include "llvm/ProfileData/Coverage/CoverageMappingReader.h" 24 #include "llvm/ProfileData/InstrProfReader.h" 25 #include "llvm/Support/Debug.h" 26 #include "llvm/Support/Errc.h" 27 #include "llvm/Support/Error.h" 28 #include "llvm/Support/ErrorHandling.h" 29 #include "llvm/Support/MemoryBuffer.h" 30 #include "llvm/Support/VirtualFileSystem.h" 31 #include "llvm/Support/raw_ostream.h" 32 #include <algorithm> 33 #include <cassert> 34 #include <cmath> 35 #include <cstdint> 36 #include <iterator> 37 #include <map> 38 #include <memory> 39 #include <optional> 40 #include <stack> 41 #include <string> 42 #include <system_error> 43 #include <utility> 44 #include <vector> 45 46 using namespace llvm; 47 using namespace coverage; 48 49 #define DEBUG_TYPE "coverage-mapping" 50 51 Counter CounterExpressionBuilder::get(const CounterExpression &E) { 52 auto [It, Inserted] = ExpressionIndices.try_emplace(E, Expressions.size()); 53 if (Inserted) 54 Expressions.push_back(E); 55 return Counter::getExpression(It->second); 56 } 57 58 void CounterExpressionBuilder::extractTerms(Counter C, int Factor, 59 SmallVectorImpl<Term> &Terms) { 60 switch (C.getKind()) { 61 case Counter::Zero: 62 break; 63 case Counter::CounterValueReference: 64 Terms.emplace_back(C.getCounterID(), Factor); 65 break; 66 case Counter::Expression: 67 const auto &E = Expressions[C.getExpressionID()]; 68 extractTerms(E.LHS, Factor, Terms); 69 extractTerms( 70 E.RHS, E.Kind == CounterExpression::Subtract ? -Factor : Factor, Terms); 71 break; 72 } 73 } 74 75 Counter CounterExpressionBuilder::simplify(Counter ExpressionTree) { 76 // Gather constant terms. 77 SmallVector<Term, 32> Terms; 78 extractTerms(ExpressionTree, +1, Terms); 79 80 // If there are no terms, this is just a zero. The algorithm below assumes at 81 // least one term. 82 if (Terms.size() == 0) 83 return Counter::getZero(); 84 85 // Group the terms by counter ID. 86 llvm::sort(Terms, [](const Term &LHS, const Term &RHS) { 87 return LHS.CounterID < RHS.CounterID; 88 }); 89 90 // Combine terms by counter ID to eliminate counters that sum to zero. 91 auto Prev = Terms.begin(); 92 for (auto I = Prev + 1, E = Terms.end(); I != E; ++I) { 93 if (I->CounterID == Prev->CounterID) { 94 Prev->Factor += I->Factor; 95 continue; 96 } 97 ++Prev; 98 *Prev = *I; 99 } 100 Terms.erase(++Prev, Terms.end()); 101 102 Counter C; 103 // Create additions. We do this before subtractions to avoid constructs like 104 // ((0 - X) + Y), as opposed to (Y - X). 105 for (auto T : Terms) { 106 if (T.Factor <= 0) 107 continue; 108 for (int I = 0; I < T.Factor; ++I) 109 if (C.isZero()) 110 C = Counter::getCounter(T.CounterID); 111 else 112 C = get(CounterExpression(CounterExpression::Add, C, 113 Counter::getCounter(T.CounterID))); 114 } 115 116 // Create subtractions. 117 for (auto T : Terms) { 118 if (T.Factor >= 0) 119 continue; 120 for (int I = 0; I < -T.Factor; ++I) 121 C = get(CounterExpression(CounterExpression::Subtract, C, 122 Counter::getCounter(T.CounterID))); 123 } 124 return C; 125 } 126 127 Counter CounterExpressionBuilder::add(Counter LHS, Counter RHS, bool Simplify) { 128 auto Cnt = get(CounterExpression(CounterExpression::Add, LHS, RHS)); 129 return Simplify ? simplify(Cnt) : Cnt; 130 } 131 132 Counter CounterExpressionBuilder::subtract(Counter LHS, Counter RHS, 133 bool Simplify) { 134 auto Cnt = get(CounterExpression(CounterExpression::Subtract, LHS, RHS)); 135 return Simplify ? simplify(Cnt) : Cnt; 136 } 137 138 void CounterMappingContext::dump(const Counter &C, raw_ostream &OS) const { 139 switch (C.getKind()) { 140 case Counter::Zero: 141 OS << '0'; 142 return; 143 case Counter::CounterValueReference: 144 OS << '#' << C.getCounterID(); 145 break; 146 case Counter::Expression: { 147 if (C.getExpressionID() >= Expressions.size()) 148 return; 149 const auto &E = Expressions[C.getExpressionID()]; 150 OS << '('; 151 dump(E.LHS, OS); 152 OS << (E.Kind == CounterExpression::Subtract ? " - " : " + "); 153 dump(E.RHS, OS); 154 OS << ')'; 155 break; 156 } 157 } 158 if (CounterValues.empty()) 159 return; 160 Expected<int64_t> Value = evaluate(C); 161 if (auto E = Value.takeError()) { 162 consumeError(std::move(E)); 163 return; 164 } 165 OS << '[' << *Value << ']'; 166 } 167 168 Expected<int64_t> CounterMappingContext::evaluate(const Counter &C) const { 169 struct StackElem { 170 Counter ICounter; 171 int64_t LHS = 0; 172 enum { 173 KNeverVisited = 0, 174 KVisitedOnce = 1, 175 KVisitedTwice = 2, 176 } VisitCount = KNeverVisited; 177 }; 178 179 std::stack<StackElem> CounterStack; 180 CounterStack.push({C}); 181 182 int64_t LastPoppedValue; 183 184 while (!CounterStack.empty()) { 185 StackElem &Current = CounterStack.top(); 186 187 switch (Current.ICounter.getKind()) { 188 case Counter::Zero: 189 LastPoppedValue = 0; 190 CounterStack.pop(); 191 break; 192 case Counter::CounterValueReference: 193 if (Current.ICounter.getCounterID() >= CounterValues.size()) 194 return errorCodeToError(errc::argument_out_of_domain); 195 LastPoppedValue = CounterValues[Current.ICounter.getCounterID()]; 196 CounterStack.pop(); 197 break; 198 case Counter::Expression: { 199 if (Current.ICounter.getExpressionID() >= Expressions.size()) 200 return errorCodeToError(errc::argument_out_of_domain); 201 const auto &E = Expressions[Current.ICounter.getExpressionID()]; 202 if (Current.VisitCount == StackElem::KNeverVisited) { 203 CounterStack.push(StackElem{E.LHS}); 204 Current.VisitCount = StackElem::KVisitedOnce; 205 } else if (Current.VisitCount == StackElem::KVisitedOnce) { 206 Current.LHS = LastPoppedValue; 207 CounterStack.push(StackElem{E.RHS}); 208 Current.VisitCount = StackElem::KVisitedTwice; 209 } else { 210 int64_t LHS = Current.LHS; 211 int64_t RHS = LastPoppedValue; 212 LastPoppedValue = 213 E.Kind == CounterExpression::Subtract ? LHS - RHS : LHS + RHS; 214 CounterStack.pop(); 215 } 216 break; 217 } 218 } 219 } 220 221 return LastPoppedValue; 222 } 223 224 // Find an independence pair for each condition: 225 // - The condition is true in one test and false in the other. 226 // - The decision outcome is true one test and false in the other. 227 // - All other conditions' values must be equal or marked as "don't care". 228 void MCDCRecord::findIndependencePairs() { 229 if (IndependencePairs) 230 return; 231 232 IndependencePairs.emplace(); 233 234 unsigned NumTVs = TV.size(); 235 // Will be replaced to shorter expr. 236 unsigned TVTrueIdx = std::distance( 237 TV.begin(), 238 std::find_if(TV.begin(), TV.end(), 239 [&](auto I) { return (I.second == MCDCRecord::MCDC_True); }) 240 241 ); 242 for (unsigned I = TVTrueIdx; I < NumTVs; ++I) { 243 const auto &[A, ACond] = TV[I]; 244 assert(ACond == MCDCRecord::MCDC_True); 245 for (unsigned J = 0; J < TVTrueIdx; ++J) { 246 const auto &[B, BCond] = TV[J]; 247 assert(BCond == MCDCRecord::MCDC_False); 248 // If the two vectors differ in exactly one condition, ignoring DontCare 249 // conditions, we have found an independence pair. 250 auto AB = A.getDifferences(B); 251 if (AB.count() == 1) 252 IndependencePairs->insert( 253 {AB.find_first(), std::make_pair(J + 1, I + 1)}); 254 } 255 } 256 } 257 258 mcdc::TVIdxBuilder::TVIdxBuilder(const SmallVectorImpl<ConditionIDs> &NextIDs, 259 int Offset) 260 : Indices(NextIDs.size()) { 261 // Construct Nodes and set up each InCount 262 auto N = NextIDs.size(); 263 SmallVector<MCDCNode> Nodes(N); 264 for (unsigned ID = 0; ID < N; ++ID) { 265 for (unsigned C = 0; C < 2; ++C) { 266 #ifndef NDEBUG 267 Indices[ID][C] = INT_MIN; 268 #endif 269 auto NextID = NextIDs[ID][C]; 270 Nodes[ID].NextIDs[C] = NextID; 271 if (NextID >= 0) 272 ++Nodes[NextID].InCount; 273 } 274 } 275 276 // Sort key ordered by <-Width, Ord> 277 SmallVector<std::tuple<int, /// -Width 278 unsigned, /// Ord 279 int, /// ID 280 unsigned /// Cond (0 or 1) 281 >> 282 Decisions; 283 284 // Traverse Nodes to assign Idx 285 SmallVector<int> Q; 286 assert(Nodes[0].InCount == 0); 287 Nodes[0].Width = 1; 288 Q.push_back(0); 289 290 unsigned Ord = 0; 291 while (!Q.empty()) { 292 auto IID = Q.begin(); 293 int ID = *IID; 294 Q.erase(IID); 295 auto &Node = Nodes[ID]; 296 assert(Node.Width > 0); 297 298 for (unsigned I = 0; I < 2; ++I) { 299 auto NextID = Node.NextIDs[I]; 300 assert(NextID != 0 && "NextID should not point to the top"); 301 if (NextID < 0) { 302 // Decision 303 Decisions.emplace_back(-Node.Width, Ord++, ID, I); 304 assert(Ord == Decisions.size()); 305 continue; 306 } 307 308 // Inter Node 309 auto &NextNode = Nodes[NextID]; 310 assert(NextNode.InCount > 0); 311 312 // Assign Idx 313 assert(Indices[ID][I] == INT_MIN); 314 Indices[ID][I] = NextNode.Width; 315 auto NextWidth = int64_t(NextNode.Width) + Node.Width; 316 if (NextWidth > HardMaxTVs) { 317 NumTestVectors = HardMaxTVs; // Overflow 318 return; 319 } 320 NextNode.Width = NextWidth; 321 322 // Ready if all incomings are processed. 323 // Or NextNode.Width hasn't been confirmed yet. 324 if (--NextNode.InCount == 0) 325 Q.push_back(NextID); 326 } 327 } 328 329 llvm::sort(Decisions); 330 331 // Assign TestVector Indices in Decision Nodes 332 int64_t CurIdx = 0; 333 for (auto [NegWidth, Ord, ID, C] : Decisions) { 334 int Width = -NegWidth; 335 assert(Nodes[ID].Width == Width); 336 assert(Nodes[ID].NextIDs[C] < 0); 337 assert(Indices[ID][C] == INT_MIN); 338 Indices[ID][C] = Offset + CurIdx; 339 CurIdx += Width; 340 if (CurIdx > HardMaxTVs) { 341 NumTestVectors = HardMaxTVs; // Overflow 342 return; 343 } 344 } 345 346 assert(CurIdx < HardMaxTVs); 347 NumTestVectors = CurIdx; 348 349 #ifndef NDEBUG 350 for (const auto &Idxs : Indices) 351 for (auto Idx : Idxs) 352 assert(Idx != INT_MIN); 353 SavedNodes = std::move(Nodes); 354 #endif 355 } 356 357 namespace { 358 359 /// Construct this->NextIDs with Branches for TVIdxBuilder to use it 360 /// before MCDCRecordProcessor(). 361 class NextIDsBuilder { 362 protected: 363 SmallVector<mcdc::ConditionIDs> NextIDs; 364 365 public: 366 NextIDsBuilder(const ArrayRef<const CounterMappingRegion *> Branches) 367 : NextIDs(Branches.size()) { 368 #ifndef NDEBUG 369 DenseSet<mcdc::ConditionID> SeenIDs; 370 #endif 371 for (const auto *Branch : Branches) { 372 const auto &BranchParams = Branch->getBranchParams(); 373 assert(SeenIDs.insert(BranchParams.ID).second && "Duplicate CondID"); 374 NextIDs[BranchParams.ID] = BranchParams.Conds; 375 } 376 assert(SeenIDs.size() == Branches.size()); 377 } 378 }; 379 380 class MCDCRecordProcessor : NextIDsBuilder, mcdc::TVIdxBuilder { 381 /// A bitmap representing the executed test vectors for a boolean expression. 382 /// Each index of the bitmap corresponds to a possible test vector. An index 383 /// with a bit value of '1' indicates that the corresponding Test Vector 384 /// identified by that index was executed. 385 const BitVector &Bitmap; 386 387 /// Decision Region to which the ExecutedTestVectorBitmap applies. 388 const CounterMappingRegion &Region; 389 const mcdc::DecisionParameters &DecisionParams; 390 391 /// Array of branch regions corresponding each conditions in the boolean 392 /// expression. 393 ArrayRef<const CounterMappingRegion *> Branches; 394 395 /// Total number of conditions in the boolean expression. 396 unsigned NumConditions; 397 398 /// Vector used to track whether a condition is constant folded. 399 MCDCRecord::BoolVector Folded; 400 401 /// Mapping of calculated MC/DC Independence Pairs for each condition. 402 MCDCRecord::TVPairMap IndependencePairs; 403 404 /// Storage for ExecVectors 405 /// ExecVectors is the alias of its 0th element. 406 std::array<MCDCRecord::TestVectors, 2> ExecVectorsByCond; 407 408 /// Actual executed Test Vectors for the boolean expression, based on 409 /// ExecutedTestVectorBitmap. 410 MCDCRecord::TestVectors &ExecVectors; 411 412 #ifndef NDEBUG 413 DenseSet<unsigned> TVIdxs; 414 #endif 415 416 bool IsVersion11; 417 418 public: 419 MCDCRecordProcessor(const BitVector &Bitmap, 420 const CounterMappingRegion &Region, 421 ArrayRef<const CounterMappingRegion *> Branches, 422 bool IsVersion11) 423 : NextIDsBuilder(Branches), TVIdxBuilder(this->NextIDs), Bitmap(Bitmap), 424 Region(Region), DecisionParams(Region.getDecisionParams()), 425 Branches(Branches), NumConditions(DecisionParams.NumConditions), 426 Folded{{BitVector(NumConditions), BitVector(NumConditions)}}, 427 IndependencePairs(NumConditions), ExecVectors(ExecVectorsByCond[false]), 428 IsVersion11(IsVersion11) {} 429 430 private: 431 // Walk the binary decision diagram and try assigning both false and true to 432 // each node. When a terminal node (ID == 0) is reached, fill in the value in 433 // the truth table. 434 void buildTestVector(MCDCRecord::TestVector &TV, mcdc::ConditionID ID, 435 int TVIdx) { 436 for (auto MCDCCond : {MCDCRecord::MCDC_False, MCDCRecord::MCDC_True}) { 437 static_assert(MCDCRecord::MCDC_False == 0); 438 static_assert(MCDCRecord::MCDC_True == 1); 439 TV.set(ID, MCDCCond); 440 auto NextID = NextIDs[ID][MCDCCond]; 441 auto NextTVIdx = TVIdx + Indices[ID][MCDCCond]; 442 assert(NextID == SavedNodes[ID].NextIDs[MCDCCond]); 443 if (NextID >= 0) { 444 buildTestVector(TV, NextID, NextTVIdx); 445 continue; 446 } 447 448 assert(TVIdx < SavedNodes[ID].Width); 449 assert(TVIdxs.insert(NextTVIdx).second && "Duplicate TVIdx"); 450 451 if (!Bitmap[IsVersion11 452 ? DecisionParams.BitmapIdx * CHAR_BIT + TV.getIndex() 453 : DecisionParams.BitmapIdx - NumTestVectors + NextTVIdx]) 454 continue; 455 456 // Copy the completed test vector to the vector of testvectors. 457 // The final value (T,F) is equal to the last non-dontcare state on the 458 // path (in a short-circuiting system). 459 ExecVectorsByCond[MCDCCond].push_back({TV, MCDCCond}); 460 } 461 462 // Reset back to DontCare. 463 TV.set(ID, MCDCRecord::MCDC_DontCare); 464 } 465 466 /// Walk the bits in the bitmap. A bit set to '1' indicates that the test 467 /// vector at the corresponding index was executed during a test run. 468 void findExecutedTestVectors() { 469 // Walk the binary decision diagram to enumerate all possible test vectors. 470 // We start at the root node (ID == 0) with all values being DontCare. 471 // `TVIdx` starts with 0 and is in the traversal. 472 // `Index` encodes the bitmask of true values and is initially 0. 473 MCDCRecord::TestVector TV(NumConditions); 474 buildTestVector(TV, 0, 0); 475 assert(TVIdxs.size() == unsigned(NumTestVectors) && 476 "TVIdxs wasn't fulfilled"); 477 478 // Fill ExecVectors order by False items and True items. 479 // ExecVectors is the alias of ExecVectorsByCond[false], so 480 // Append ExecVectorsByCond[true] on it. 481 auto &ExecVectorsT = ExecVectorsByCond[true]; 482 ExecVectors.append(std::make_move_iterator(ExecVectorsT.begin()), 483 std::make_move_iterator(ExecVectorsT.end())); 484 } 485 486 public: 487 /// Process the MC/DC Record in order to produce a result for a boolean 488 /// expression. This process includes tracking the conditions that comprise 489 /// the decision region, calculating the list of all possible test vectors, 490 /// marking the executed test vectors, and then finding an Independence Pair 491 /// out of the executed test vectors for each condition in the boolean 492 /// expression. A condition is tracked to ensure that its ID can be mapped to 493 /// its ordinal position in the boolean expression. The condition's source 494 /// location is also tracked, as well as whether it is constant folded (in 495 /// which case it is excuded from the metric). 496 MCDCRecord processMCDCRecord() { 497 MCDCRecord::CondIDMap PosToID; 498 MCDCRecord::LineColPairMap CondLoc; 499 500 // Walk the Record's BranchRegions (representing Conditions) in order to: 501 // - Hash the condition based on its corresponding ID. This will be used to 502 // calculate the test vectors. 503 // - Keep a map of the condition's ordinal position (1, 2, 3, 4) to its 504 // actual ID. This will be used to visualize the conditions in the 505 // correct order. 506 // - Keep track of the condition source location. This will be used to 507 // visualize where the condition is. 508 // - Record whether the condition is constant folded so that we exclude it 509 // from being measured. 510 for (auto [I, B] : enumerate(Branches)) { 511 const auto &BranchParams = B->getBranchParams(); 512 PosToID[I] = BranchParams.ID; 513 CondLoc[I] = B->startLoc(); 514 Folded[false][I] = B->FalseCount.isZero(); 515 Folded[true][I] = B->Count.isZero(); 516 } 517 518 // Using Profile Bitmap from runtime, mark the executed test vectors. 519 findExecutedTestVectors(); 520 521 // Record Test vectors, executed vectors, and independence pairs. 522 return MCDCRecord(Region, std::move(ExecVectors), std::move(Folded), 523 std::move(PosToID), std::move(CondLoc)); 524 } 525 }; 526 527 } // namespace 528 529 Expected<MCDCRecord> CounterMappingContext::evaluateMCDCRegion( 530 const CounterMappingRegion &Region, 531 ArrayRef<const CounterMappingRegion *> Branches, bool IsVersion11) { 532 533 MCDCRecordProcessor MCDCProcessor(Bitmap, Region, Branches, IsVersion11); 534 return MCDCProcessor.processMCDCRecord(); 535 } 536 537 unsigned CounterMappingContext::getMaxCounterID(const Counter &C) const { 538 struct StackElem { 539 Counter ICounter; 540 int64_t LHS = 0; 541 enum { 542 KNeverVisited = 0, 543 KVisitedOnce = 1, 544 KVisitedTwice = 2, 545 } VisitCount = KNeverVisited; 546 }; 547 548 std::stack<StackElem> CounterStack; 549 CounterStack.push({C}); 550 551 int64_t LastPoppedValue; 552 553 while (!CounterStack.empty()) { 554 StackElem &Current = CounterStack.top(); 555 556 switch (Current.ICounter.getKind()) { 557 case Counter::Zero: 558 LastPoppedValue = 0; 559 CounterStack.pop(); 560 break; 561 case Counter::CounterValueReference: 562 LastPoppedValue = Current.ICounter.getCounterID(); 563 CounterStack.pop(); 564 break; 565 case Counter::Expression: { 566 if (Current.ICounter.getExpressionID() >= Expressions.size()) { 567 LastPoppedValue = 0; 568 CounterStack.pop(); 569 } else { 570 const auto &E = Expressions[Current.ICounter.getExpressionID()]; 571 if (Current.VisitCount == StackElem::KNeverVisited) { 572 CounterStack.push(StackElem{E.LHS}); 573 Current.VisitCount = StackElem::KVisitedOnce; 574 } else if (Current.VisitCount == StackElem::KVisitedOnce) { 575 Current.LHS = LastPoppedValue; 576 CounterStack.push(StackElem{E.RHS}); 577 Current.VisitCount = StackElem::KVisitedTwice; 578 } else { 579 int64_t LHS = Current.LHS; 580 int64_t RHS = LastPoppedValue; 581 LastPoppedValue = std::max(LHS, RHS); 582 CounterStack.pop(); 583 } 584 } 585 break; 586 } 587 } 588 } 589 590 return LastPoppedValue; 591 } 592 593 void FunctionRecordIterator::skipOtherFiles() { 594 while (Current != Records.end() && !Filename.empty() && 595 Filename != Current->Filenames[0]) 596 ++Current; 597 if (Current == Records.end()) 598 *this = FunctionRecordIterator(); 599 } 600 601 ArrayRef<unsigned> CoverageMapping::getImpreciseRecordIndicesForFilename( 602 StringRef Filename) const { 603 size_t FilenameHash = hash_value(Filename); 604 auto RecordIt = FilenameHash2RecordIndices.find(FilenameHash); 605 if (RecordIt == FilenameHash2RecordIndices.end()) 606 return {}; 607 return RecordIt->second; 608 } 609 610 static unsigned getMaxCounterID(const CounterMappingContext &Ctx, 611 const CoverageMappingRecord &Record) { 612 unsigned MaxCounterID = 0; 613 for (const auto &Region : Record.MappingRegions) { 614 MaxCounterID = std::max(MaxCounterID, Ctx.getMaxCounterID(Region.Count)); 615 } 616 return MaxCounterID; 617 } 618 619 /// Returns the bit count 620 static unsigned getMaxBitmapSize(const CoverageMappingRecord &Record, 621 bool IsVersion11) { 622 unsigned MaxBitmapIdx = 0; 623 unsigned NumConditions = 0; 624 // Scan max(BitmapIdx). 625 // Note that `<=` is used insted of `<`, because `BitmapIdx == 0` is valid 626 // and `MaxBitmapIdx is `unsigned`. `BitmapIdx` is unique in the record. 627 for (const auto &Region : reverse(Record.MappingRegions)) { 628 if (Region.Kind != CounterMappingRegion::MCDCDecisionRegion) 629 continue; 630 const auto &DecisionParams = Region.getDecisionParams(); 631 if (MaxBitmapIdx <= DecisionParams.BitmapIdx) { 632 MaxBitmapIdx = DecisionParams.BitmapIdx; 633 NumConditions = DecisionParams.NumConditions; 634 } 635 } 636 637 if (IsVersion11) 638 MaxBitmapIdx = MaxBitmapIdx * CHAR_BIT + 639 llvm::alignTo(uint64_t(1) << NumConditions, CHAR_BIT); 640 641 return MaxBitmapIdx; 642 } 643 644 namespace { 645 646 /// Collect Decisions, Branchs, and Expansions and associate them. 647 class MCDCDecisionRecorder { 648 private: 649 /// This holds the DecisionRegion and MCDCBranches under it. 650 /// Also traverses Expansion(s). 651 /// The Decision has the number of MCDCBranches and will complete 652 /// when it is filled with unique ConditionID of MCDCBranches. 653 struct DecisionRecord { 654 const CounterMappingRegion *DecisionRegion; 655 656 /// They are reflected from DecisionRegion for convenience. 657 mcdc::DecisionParameters DecisionParams; 658 LineColPair DecisionStartLoc; 659 LineColPair DecisionEndLoc; 660 661 /// This is passed to `MCDCRecordProcessor`, so this should be compatible 662 /// to`ArrayRef<const CounterMappingRegion *>`. 663 SmallVector<const CounterMappingRegion *> MCDCBranches; 664 665 /// IDs that are stored in MCDCBranches 666 /// Complete when all IDs (1 to NumConditions) are met. 667 DenseSet<mcdc::ConditionID> ConditionIDs; 668 669 /// Set of IDs of Expansion(s) that are relevant to DecisionRegion 670 /// and its children (via expansions). 671 /// FileID pointed by ExpandedFileID is dedicated to the expansion, so 672 /// the location in the expansion doesn't matter. 673 DenseSet<unsigned> ExpandedFileIDs; 674 675 DecisionRecord(const CounterMappingRegion &Decision) 676 : DecisionRegion(&Decision), 677 DecisionParams(Decision.getDecisionParams()), 678 DecisionStartLoc(Decision.startLoc()), 679 DecisionEndLoc(Decision.endLoc()) { 680 assert(Decision.Kind == CounterMappingRegion::MCDCDecisionRegion); 681 } 682 683 /// Determine whether DecisionRecord dominates `R`. 684 bool dominates(const CounterMappingRegion &R) const { 685 // Determine whether `R` is included in `DecisionRegion`. 686 if (R.FileID == DecisionRegion->FileID && 687 R.startLoc() >= DecisionStartLoc && R.endLoc() <= DecisionEndLoc) 688 return true; 689 690 // Determine whether `R` is pointed by any of Expansions. 691 return ExpandedFileIDs.contains(R.FileID); 692 } 693 694 enum Result { 695 NotProcessed = 0, /// Irrelevant to this Decision 696 Processed, /// Added to this Decision 697 Completed, /// Added and filled this Decision 698 }; 699 700 /// Add Branch into the Decision 701 /// \param Branch expects MCDCBranchRegion 702 /// \returns NotProcessed/Processed/Completed 703 Result addBranch(const CounterMappingRegion &Branch) { 704 assert(Branch.Kind == CounterMappingRegion::MCDCBranchRegion); 705 706 auto ConditionID = Branch.getBranchParams().ID; 707 708 if (ConditionIDs.contains(ConditionID) || 709 ConditionID >= DecisionParams.NumConditions) 710 return NotProcessed; 711 712 if (!this->dominates(Branch)) 713 return NotProcessed; 714 715 assert(MCDCBranches.size() < DecisionParams.NumConditions); 716 717 // Put `ID=0` in front of `MCDCBranches` for convenience 718 // even if `MCDCBranches` is not topological. 719 if (ConditionID == 0) 720 MCDCBranches.insert(MCDCBranches.begin(), &Branch); 721 else 722 MCDCBranches.push_back(&Branch); 723 724 // Mark `ID` as `assigned`. 725 ConditionIDs.insert(ConditionID); 726 727 // `Completed` when `MCDCBranches` is full 728 return (MCDCBranches.size() == DecisionParams.NumConditions ? Completed 729 : Processed); 730 } 731 732 /// Record Expansion if it is relevant to this Decision. 733 /// Each `Expansion` may nest. 734 /// \returns true if recorded. 735 bool recordExpansion(const CounterMappingRegion &Expansion) { 736 if (!this->dominates(Expansion)) 737 return false; 738 739 ExpandedFileIDs.insert(Expansion.ExpandedFileID); 740 return true; 741 } 742 }; 743 744 private: 745 /// Decisions in progress 746 /// DecisionRecord is added for each MCDCDecisionRegion. 747 /// DecisionRecord is removed when Decision is completed. 748 SmallVector<DecisionRecord> Decisions; 749 750 public: 751 ~MCDCDecisionRecorder() { 752 assert(Decisions.empty() && "All Decisions have not been resolved"); 753 } 754 755 /// Register Region and start recording. 756 void registerDecision(const CounterMappingRegion &Decision) { 757 Decisions.emplace_back(Decision); 758 } 759 760 void recordExpansion(const CounterMappingRegion &Expansion) { 761 any_of(Decisions, [&Expansion](auto &Decision) { 762 return Decision.recordExpansion(Expansion); 763 }); 764 } 765 766 using DecisionAndBranches = 767 std::pair<const CounterMappingRegion *, /// Decision 768 SmallVector<const CounterMappingRegion *> /// Branches 769 >; 770 771 /// Add MCDCBranchRegion to DecisionRecord. 772 /// \param Branch to be processed 773 /// \returns DecisionsAndBranches if DecisionRecord completed. 774 /// Or returns nullopt. 775 std::optional<DecisionAndBranches> 776 processBranch(const CounterMappingRegion &Branch) { 777 // Seek each Decision and apply Region to it. 778 for (auto DecisionIter = Decisions.begin(), DecisionEnd = Decisions.end(); 779 DecisionIter != DecisionEnd; ++DecisionIter) 780 switch (DecisionIter->addBranch(Branch)) { 781 case DecisionRecord::NotProcessed: 782 continue; 783 case DecisionRecord::Processed: 784 return std::nullopt; 785 case DecisionRecord::Completed: 786 DecisionAndBranches Result = 787 std::make_pair(DecisionIter->DecisionRegion, 788 std::move(DecisionIter->MCDCBranches)); 789 Decisions.erase(DecisionIter); // No longer used. 790 return Result; 791 } 792 793 llvm_unreachable("Branch not found in Decisions"); 794 } 795 }; 796 797 } // namespace 798 799 Error CoverageMapping::loadFunctionRecord( 800 const CoverageMappingRecord &Record, 801 IndexedInstrProfReader &ProfileReader) { 802 StringRef OrigFuncName = Record.FunctionName; 803 if (OrigFuncName.empty()) 804 return make_error<CoverageMapError>(coveragemap_error::malformed, 805 "record function name is empty"); 806 807 if (Record.Filenames.empty()) 808 OrigFuncName = getFuncNameWithoutPrefix(OrigFuncName); 809 else 810 OrigFuncName = getFuncNameWithoutPrefix(OrigFuncName, Record.Filenames[0]); 811 812 CounterMappingContext Ctx(Record.Expressions); 813 814 std::vector<uint64_t> Counts; 815 if (Error E = ProfileReader.getFunctionCounts(Record.FunctionName, 816 Record.FunctionHash, Counts)) { 817 instrprof_error IPE = std::get<0>(InstrProfError::take(std::move(E))); 818 if (IPE == instrprof_error::hash_mismatch) { 819 FuncHashMismatches.emplace_back(std::string(Record.FunctionName), 820 Record.FunctionHash); 821 return Error::success(); 822 } 823 if (IPE != instrprof_error::unknown_function) 824 return make_error<InstrProfError>(IPE); 825 Counts.assign(getMaxCounterID(Ctx, Record) + 1, 0); 826 } 827 Ctx.setCounts(Counts); 828 829 bool IsVersion11 = 830 ProfileReader.getVersion() < IndexedInstrProf::ProfVersion::Version12; 831 832 BitVector Bitmap; 833 if (Error E = ProfileReader.getFunctionBitmap(Record.FunctionName, 834 Record.FunctionHash, Bitmap)) { 835 instrprof_error IPE = std::get<0>(InstrProfError::take(std::move(E))); 836 if (IPE == instrprof_error::hash_mismatch) { 837 FuncHashMismatches.emplace_back(std::string(Record.FunctionName), 838 Record.FunctionHash); 839 return Error::success(); 840 } 841 if (IPE != instrprof_error::unknown_function) 842 return make_error<InstrProfError>(IPE); 843 Bitmap = BitVector(getMaxBitmapSize(Record, IsVersion11)); 844 } 845 Ctx.setBitmap(std::move(Bitmap)); 846 847 assert(!Record.MappingRegions.empty() && "Function has no regions"); 848 849 // This coverage record is a zero region for a function that's unused in 850 // some TU, but used in a different TU. Ignore it. The coverage maps from the 851 // the other TU will either be loaded (providing full region counts) or they 852 // won't (in which case we don't unintuitively report functions as uncovered 853 // when they have non-zero counts in the profile). 854 if (Record.MappingRegions.size() == 1 && 855 Record.MappingRegions[0].Count.isZero() && Counts[0] > 0) 856 return Error::success(); 857 858 MCDCDecisionRecorder MCDCDecisions; 859 FunctionRecord Function(OrigFuncName, Record.Filenames); 860 for (const auto &Region : Record.MappingRegions) { 861 // MCDCDecisionRegion should be handled first since it overlaps with 862 // others inside. 863 if (Region.Kind == CounterMappingRegion::MCDCDecisionRegion) { 864 MCDCDecisions.registerDecision(Region); 865 continue; 866 } 867 Expected<int64_t> ExecutionCount = Ctx.evaluate(Region.Count); 868 if (auto E = ExecutionCount.takeError()) { 869 consumeError(std::move(E)); 870 return Error::success(); 871 } 872 Expected<int64_t> AltExecutionCount = Ctx.evaluate(Region.FalseCount); 873 if (auto E = AltExecutionCount.takeError()) { 874 consumeError(std::move(E)); 875 return Error::success(); 876 } 877 Function.pushRegion(Region, *ExecutionCount, *AltExecutionCount); 878 879 // Record ExpansionRegion. 880 if (Region.Kind == CounterMappingRegion::ExpansionRegion) { 881 MCDCDecisions.recordExpansion(Region); 882 continue; 883 } 884 885 // Do nothing unless MCDCBranchRegion. 886 if (Region.Kind != CounterMappingRegion::MCDCBranchRegion) 887 continue; 888 889 auto Result = MCDCDecisions.processBranch(Region); 890 if (!Result) // Any Decision doesn't complete. 891 continue; 892 893 auto MCDCDecision = Result->first; 894 auto &MCDCBranches = Result->second; 895 896 // Since the bitmap identifies the executed test vectors for an MC/DC 897 // DecisionRegion, all of the information is now available to process. 898 // This is where the bulk of the MC/DC progressing takes place. 899 Expected<MCDCRecord> Record = 900 Ctx.evaluateMCDCRegion(*MCDCDecision, MCDCBranches, IsVersion11); 901 if (auto E = Record.takeError()) { 902 consumeError(std::move(E)); 903 return Error::success(); 904 } 905 906 // Save the MC/DC Record so that it can be visualized later. 907 Function.pushMCDCRecord(std::move(*Record)); 908 } 909 910 // Don't create records for (filenames, function) pairs we've already seen. 911 auto FilenamesHash = hash_combine_range(Record.Filenames.begin(), 912 Record.Filenames.end()); 913 if (!RecordProvenance[FilenamesHash].insert(hash_value(OrigFuncName)).second) 914 return Error::success(); 915 916 Functions.push_back(std::move(Function)); 917 918 // Performance optimization: keep track of the indices of the function records 919 // which correspond to each filename. This can be used to substantially speed 920 // up queries for coverage info in a file. 921 unsigned RecordIndex = Functions.size() - 1; 922 for (StringRef Filename : Record.Filenames) { 923 auto &RecordIndices = FilenameHash2RecordIndices[hash_value(Filename)]; 924 // Note that there may be duplicates in the filename set for a function 925 // record, because of e.g. macro expansions in the function in which both 926 // the macro and the function are defined in the same file. 927 if (RecordIndices.empty() || RecordIndices.back() != RecordIndex) 928 RecordIndices.push_back(RecordIndex); 929 } 930 931 return Error::success(); 932 } 933 934 // This function is for memory optimization by shortening the lifetimes 935 // of CoverageMappingReader instances. 936 Error CoverageMapping::loadFromReaders( 937 ArrayRef<std::unique_ptr<CoverageMappingReader>> CoverageReaders, 938 IndexedInstrProfReader &ProfileReader, CoverageMapping &Coverage) { 939 assert(!Coverage.SingleByteCoverage || 940 *Coverage.SingleByteCoverage == ProfileReader.hasSingleByteCoverage()); 941 Coverage.SingleByteCoverage = ProfileReader.hasSingleByteCoverage(); 942 for (const auto &CoverageReader : CoverageReaders) { 943 for (auto RecordOrErr : *CoverageReader) { 944 if (Error E = RecordOrErr.takeError()) 945 return E; 946 const auto &Record = *RecordOrErr; 947 if (Error E = Coverage.loadFunctionRecord(Record, ProfileReader)) 948 return E; 949 } 950 } 951 return Error::success(); 952 } 953 954 Expected<std::unique_ptr<CoverageMapping>> CoverageMapping::load( 955 ArrayRef<std::unique_ptr<CoverageMappingReader>> CoverageReaders, 956 IndexedInstrProfReader &ProfileReader) { 957 auto Coverage = std::unique_ptr<CoverageMapping>(new CoverageMapping()); 958 if (Error E = loadFromReaders(CoverageReaders, ProfileReader, *Coverage)) 959 return std::move(E); 960 return std::move(Coverage); 961 } 962 963 // If E is a no_data_found error, returns success. Otherwise returns E. 964 static Error handleMaybeNoDataFoundError(Error E) { 965 return handleErrors( 966 std::move(E), [](const CoverageMapError &CME) { 967 if (CME.get() == coveragemap_error::no_data_found) 968 return static_cast<Error>(Error::success()); 969 return make_error<CoverageMapError>(CME.get(), CME.getMessage()); 970 }); 971 } 972 973 Error CoverageMapping::loadFromFile( 974 StringRef Filename, StringRef Arch, StringRef CompilationDir, 975 IndexedInstrProfReader &ProfileReader, CoverageMapping &Coverage, 976 bool &DataFound, SmallVectorImpl<object::BuildID> *FoundBinaryIDs) { 977 auto CovMappingBufOrErr = MemoryBuffer::getFileOrSTDIN( 978 Filename, /*IsText=*/false, /*RequiresNullTerminator=*/false); 979 if (std::error_code EC = CovMappingBufOrErr.getError()) 980 return createFileError(Filename, errorCodeToError(EC)); 981 MemoryBufferRef CovMappingBufRef = 982 CovMappingBufOrErr.get()->getMemBufferRef(); 983 SmallVector<std::unique_ptr<MemoryBuffer>, 4> Buffers; 984 985 SmallVector<object::BuildIDRef> BinaryIDs; 986 auto CoverageReadersOrErr = BinaryCoverageReader::create( 987 CovMappingBufRef, Arch, Buffers, CompilationDir, 988 FoundBinaryIDs ? &BinaryIDs : nullptr); 989 if (Error E = CoverageReadersOrErr.takeError()) { 990 E = handleMaybeNoDataFoundError(std::move(E)); 991 if (E) 992 return createFileError(Filename, std::move(E)); 993 return E; 994 } 995 996 SmallVector<std::unique_ptr<CoverageMappingReader>, 4> Readers; 997 for (auto &Reader : CoverageReadersOrErr.get()) 998 Readers.push_back(std::move(Reader)); 999 if (FoundBinaryIDs && !Readers.empty()) { 1000 llvm::append_range(*FoundBinaryIDs, 1001 llvm::map_range(BinaryIDs, [](object::BuildIDRef BID) { 1002 return object::BuildID(BID); 1003 })); 1004 } 1005 DataFound |= !Readers.empty(); 1006 if (Error E = loadFromReaders(Readers, ProfileReader, Coverage)) 1007 return createFileError(Filename, std::move(E)); 1008 return Error::success(); 1009 } 1010 1011 Expected<std::unique_ptr<CoverageMapping>> CoverageMapping::load( 1012 ArrayRef<StringRef> ObjectFilenames, StringRef ProfileFilename, 1013 vfs::FileSystem &FS, ArrayRef<StringRef> Arches, StringRef CompilationDir, 1014 const object::BuildIDFetcher *BIDFetcher, bool CheckBinaryIDs) { 1015 auto ProfileReaderOrErr = IndexedInstrProfReader::create(ProfileFilename, FS); 1016 if (Error E = ProfileReaderOrErr.takeError()) 1017 return createFileError(ProfileFilename, std::move(E)); 1018 auto ProfileReader = std::move(ProfileReaderOrErr.get()); 1019 auto Coverage = std::unique_ptr<CoverageMapping>(new CoverageMapping()); 1020 bool DataFound = false; 1021 1022 auto GetArch = [&](size_t Idx) { 1023 if (Arches.empty()) 1024 return StringRef(); 1025 if (Arches.size() == 1) 1026 return Arches.front(); 1027 return Arches[Idx]; 1028 }; 1029 1030 SmallVector<object::BuildID> FoundBinaryIDs; 1031 for (const auto &File : llvm::enumerate(ObjectFilenames)) { 1032 if (Error E = 1033 loadFromFile(File.value(), GetArch(File.index()), CompilationDir, 1034 *ProfileReader, *Coverage, DataFound, &FoundBinaryIDs)) 1035 return std::move(E); 1036 } 1037 1038 if (BIDFetcher) { 1039 std::vector<object::BuildID> ProfileBinaryIDs; 1040 if (Error E = ProfileReader->readBinaryIds(ProfileBinaryIDs)) 1041 return createFileError(ProfileFilename, std::move(E)); 1042 1043 SmallVector<object::BuildIDRef> BinaryIDsToFetch; 1044 if (!ProfileBinaryIDs.empty()) { 1045 const auto &Compare = [](object::BuildIDRef A, object::BuildIDRef B) { 1046 return std::lexicographical_compare(A.begin(), A.end(), B.begin(), 1047 B.end()); 1048 }; 1049 llvm::sort(FoundBinaryIDs, Compare); 1050 std::set_difference( 1051 ProfileBinaryIDs.begin(), ProfileBinaryIDs.end(), 1052 FoundBinaryIDs.begin(), FoundBinaryIDs.end(), 1053 std::inserter(BinaryIDsToFetch, BinaryIDsToFetch.end()), Compare); 1054 } 1055 1056 for (object::BuildIDRef BinaryID : BinaryIDsToFetch) { 1057 std::optional<std::string> PathOpt = BIDFetcher->fetch(BinaryID); 1058 if (PathOpt) { 1059 std::string Path = std::move(*PathOpt); 1060 StringRef Arch = Arches.size() == 1 ? Arches.front() : StringRef(); 1061 if (Error E = loadFromFile(Path, Arch, CompilationDir, *ProfileReader, 1062 *Coverage, DataFound)) 1063 return std::move(E); 1064 } else if (CheckBinaryIDs) { 1065 return createFileError( 1066 ProfileFilename, 1067 createStringError(errc::no_such_file_or_directory, 1068 "Missing binary ID: " + 1069 llvm::toHex(BinaryID, /*LowerCase=*/true))); 1070 } 1071 } 1072 } 1073 1074 if (!DataFound) 1075 return createFileError( 1076 join(ObjectFilenames.begin(), ObjectFilenames.end(), ", "), 1077 make_error<CoverageMapError>(coveragemap_error::no_data_found)); 1078 return std::move(Coverage); 1079 } 1080 1081 namespace { 1082 1083 /// Distributes functions into instantiation sets. 1084 /// 1085 /// An instantiation set is a collection of functions that have the same source 1086 /// code, ie, template functions specializations. 1087 class FunctionInstantiationSetCollector { 1088 using MapT = std::map<LineColPair, std::vector<const FunctionRecord *>>; 1089 MapT InstantiatedFunctions; 1090 1091 public: 1092 void insert(const FunctionRecord &Function, unsigned FileID) { 1093 auto I = Function.CountedRegions.begin(), E = Function.CountedRegions.end(); 1094 while (I != E && I->FileID != FileID) 1095 ++I; 1096 assert(I != E && "function does not cover the given file"); 1097 auto &Functions = InstantiatedFunctions[I->startLoc()]; 1098 Functions.push_back(&Function); 1099 } 1100 1101 MapT::iterator begin() { return InstantiatedFunctions.begin(); } 1102 MapT::iterator end() { return InstantiatedFunctions.end(); } 1103 }; 1104 1105 class SegmentBuilder { 1106 std::vector<CoverageSegment> &Segments; 1107 SmallVector<const CountedRegion *, 8> ActiveRegions; 1108 1109 SegmentBuilder(std::vector<CoverageSegment> &Segments) : Segments(Segments) {} 1110 1111 /// Emit a segment with the count from \p Region starting at \p StartLoc. 1112 // 1113 /// \p IsRegionEntry: The segment is at the start of a new non-gap region. 1114 /// \p EmitSkippedRegion: The segment must be emitted as a skipped region. 1115 void startSegment(const CountedRegion &Region, LineColPair StartLoc, 1116 bool IsRegionEntry, bool EmitSkippedRegion = false) { 1117 bool HasCount = !EmitSkippedRegion && 1118 (Region.Kind != CounterMappingRegion::SkippedRegion); 1119 1120 // If the new segment wouldn't affect coverage rendering, skip it. 1121 if (!Segments.empty() && !IsRegionEntry && !EmitSkippedRegion) { 1122 const auto &Last = Segments.back(); 1123 if (Last.HasCount == HasCount && Last.Count == Region.ExecutionCount && 1124 !Last.IsRegionEntry) 1125 return; 1126 } 1127 1128 if (HasCount) 1129 Segments.emplace_back(StartLoc.first, StartLoc.second, 1130 Region.ExecutionCount, IsRegionEntry, 1131 Region.Kind == CounterMappingRegion::GapRegion); 1132 else 1133 Segments.emplace_back(StartLoc.first, StartLoc.second, IsRegionEntry); 1134 1135 LLVM_DEBUG({ 1136 const auto &Last = Segments.back(); 1137 dbgs() << "Segment at " << Last.Line << ":" << Last.Col 1138 << " (count = " << Last.Count << ")" 1139 << (Last.IsRegionEntry ? ", RegionEntry" : "") 1140 << (!Last.HasCount ? ", Skipped" : "") 1141 << (Last.IsGapRegion ? ", Gap" : "") << "\n"; 1142 }); 1143 } 1144 1145 /// Emit segments for active regions which end before \p Loc. 1146 /// 1147 /// \p Loc: The start location of the next region. If std::nullopt, all active 1148 /// regions are completed. 1149 /// \p FirstCompletedRegion: Index of the first completed region. 1150 void completeRegionsUntil(std::optional<LineColPair> Loc, 1151 unsigned FirstCompletedRegion) { 1152 // Sort the completed regions by end location. This makes it simple to 1153 // emit closing segments in sorted order. 1154 auto CompletedRegionsIt = ActiveRegions.begin() + FirstCompletedRegion; 1155 std::stable_sort(CompletedRegionsIt, ActiveRegions.end(), 1156 [](const CountedRegion *L, const CountedRegion *R) { 1157 return L->endLoc() < R->endLoc(); 1158 }); 1159 1160 // Emit segments for all completed regions. 1161 for (unsigned I = FirstCompletedRegion + 1, E = ActiveRegions.size(); I < E; 1162 ++I) { 1163 const auto *CompletedRegion = ActiveRegions[I]; 1164 assert((!Loc || CompletedRegion->endLoc() <= *Loc) && 1165 "Completed region ends after start of new region"); 1166 1167 const auto *PrevCompletedRegion = ActiveRegions[I - 1]; 1168 auto CompletedSegmentLoc = PrevCompletedRegion->endLoc(); 1169 1170 // Don't emit any more segments if they start where the new region begins. 1171 if (Loc && CompletedSegmentLoc == *Loc) 1172 break; 1173 1174 // Don't emit a segment if the next completed region ends at the same 1175 // location as this one. 1176 if (CompletedSegmentLoc == CompletedRegion->endLoc()) 1177 continue; 1178 1179 // Use the count from the last completed region which ends at this loc. 1180 for (unsigned J = I + 1; J < E; ++J) 1181 if (CompletedRegion->endLoc() == ActiveRegions[J]->endLoc()) 1182 CompletedRegion = ActiveRegions[J]; 1183 1184 startSegment(*CompletedRegion, CompletedSegmentLoc, false); 1185 } 1186 1187 auto Last = ActiveRegions.back(); 1188 if (FirstCompletedRegion && Last->endLoc() != *Loc) { 1189 // If there's a gap after the end of the last completed region and the 1190 // start of the new region, use the last active region to fill the gap. 1191 startSegment(*ActiveRegions[FirstCompletedRegion - 1], Last->endLoc(), 1192 false); 1193 } else if (!FirstCompletedRegion && (!Loc || *Loc != Last->endLoc())) { 1194 // Emit a skipped segment if there are no more active regions. This 1195 // ensures that gaps between functions are marked correctly. 1196 startSegment(*Last, Last->endLoc(), false, true); 1197 } 1198 1199 // Pop the completed regions. 1200 ActiveRegions.erase(CompletedRegionsIt, ActiveRegions.end()); 1201 } 1202 1203 void buildSegmentsImpl(ArrayRef<CountedRegion> Regions) { 1204 for (const auto &CR : enumerate(Regions)) { 1205 auto CurStartLoc = CR.value().startLoc(); 1206 1207 // Active regions which end before the current region need to be popped. 1208 auto CompletedRegions = 1209 std::stable_partition(ActiveRegions.begin(), ActiveRegions.end(), 1210 [&](const CountedRegion *Region) { 1211 return !(Region->endLoc() <= CurStartLoc); 1212 }); 1213 if (CompletedRegions != ActiveRegions.end()) { 1214 unsigned FirstCompletedRegion = 1215 std::distance(ActiveRegions.begin(), CompletedRegions); 1216 completeRegionsUntil(CurStartLoc, FirstCompletedRegion); 1217 } 1218 1219 bool GapRegion = CR.value().Kind == CounterMappingRegion::GapRegion; 1220 1221 // Try to emit a segment for the current region. 1222 if (CurStartLoc == CR.value().endLoc()) { 1223 // Avoid making zero-length regions active. If it's the last region, 1224 // emit a skipped segment. Otherwise use its predecessor's count. 1225 const bool Skipped = 1226 (CR.index() + 1) == Regions.size() || 1227 CR.value().Kind == CounterMappingRegion::SkippedRegion; 1228 startSegment(ActiveRegions.empty() ? CR.value() : *ActiveRegions.back(), 1229 CurStartLoc, !GapRegion, Skipped); 1230 // If it is skipped segment, create a segment with last pushed 1231 // regions's count at CurStartLoc. 1232 if (Skipped && !ActiveRegions.empty()) 1233 startSegment(*ActiveRegions.back(), CurStartLoc, false); 1234 continue; 1235 } 1236 if (CR.index() + 1 == Regions.size() || 1237 CurStartLoc != Regions[CR.index() + 1].startLoc()) { 1238 // Emit a segment if the next region doesn't start at the same location 1239 // as this one. 1240 startSegment(CR.value(), CurStartLoc, !GapRegion); 1241 } 1242 1243 // This region is active (i.e not completed). 1244 ActiveRegions.push_back(&CR.value()); 1245 } 1246 1247 // Complete any remaining active regions. 1248 if (!ActiveRegions.empty()) 1249 completeRegionsUntil(std::nullopt, 0); 1250 } 1251 1252 /// Sort a nested sequence of regions from a single file. 1253 static void sortNestedRegions(MutableArrayRef<CountedRegion> Regions) { 1254 llvm::sort(Regions, [](const CountedRegion &LHS, const CountedRegion &RHS) { 1255 if (LHS.startLoc() != RHS.startLoc()) 1256 return LHS.startLoc() < RHS.startLoc(); 1257 if (LHS.endLoc() != RHS.endLoc()) 1258 // When LHS completely contains RHS, we sort LHS first. 1259 return RHS.endLoc() < LHS.endLoc(); 1260 // If LHS and RHS cover the same area, we need to sort them according 1261 // to their kinds so that the most suitable region will become "active" 1262 // in combineRegions(). Because we accumulate counter values only from 1263 // regions of the same kind as the first region of the area, prefer 1264 // CodeRegion to ExpansionRegion and ExpansionRegion to SkippedRegion. 1265 static_assert(CounterMappingRegion::CodeRegion < 1266 CounterMappingRegion::ExpansionRegion && 1267 CounterMappingRegion::ExpansionRegion < 1268 CounterMappingRegion::SkippedRegion, 1269 "Unexpected order of region kind values"); 1270 return LHS.Kind < RHS.Kind; 1271 }); 1272 } 1273 1274 /// Combine counts of regions which cover the same area. 1275 static ArrayRef<CountedRegion> 1276 combineRegions(MutableArrayRef<CountedRegion> Regions) { 1277 if (Regions.empty()) 1278 return Regions; 1279 auto Active = Regions.begin(); 1280 auto End = Regions.end(); 1281 for (auto I = Regions.begin() + 1; I != End; ++I) { 1282 if (Active->startLoc() != I->startLoc() || 1283 Active->endLoc() != I->endLoc()) { 1284 // Shift to the next region. 1285 ++Active; 1286 if (Active != I) 1287 *Active = *I; 1288 continue; 1289 } 1290 // Merge duplicate region. 1291 // If CodeRegions and ExpansionRegions cover the same area, it's probably 1292 // a macro which is fully expanded to another macro. In that case, we need 1293 // to accumulate counts only from CodeRegions, or else the area will be 1294 // counted twice. 1295 // On the other hand, a macro may have a nested macro in its body. If the 1296 // outer macro is used several times, the ExpansionRegion for the nested 1297 // macro will also be added several times. These ExpansionRegions cover 1298 // the same source locations and have to be combined to reach the correct 1299 // value for that area. 1300 // We add counts of the regions of the same kind as the active region 1301 // to handle the both situations. 1302 if (I->Kind == Active->Kind) 1303 Active->ExecutionCount += I->ExecutionCount; 1304 } 1305 return Regions.drop_back(std::distance(++Active, End)); 1306 } 1307 1308 public: 1309 /// Build a sorted list of CoverageSegments from a list of Regions. 1310 static std::vector<CoverageSegment> 1311 buildSegments(MutableArrayRef<CountedRegion> Regions) { 1312 std::vector<CoverageSegment> Segments; 1313 SegmentBuilder Builder(Segments); 1314 1315 sortNestedRegions(Regions); 1316 ArrayRef<CountedRegion> CombinedRegions = combineRegions(Regions); 1317 1318 LLVM_DEBUG({ 1319 dbgs() << "Combined regions:\n"; 1320 for (const auto &CR : CombinedRegions) 1321 dbgs() << " " << CR.LineStart << ":" << CR.ColumnStart << " -> " 1322 << CR.LineEnd << ":" << CR.ColumnEnd 1323 << " (count=" << CR.ExecutionCount << ")\n"; 1324 }); 1325 1326 Builder.buildSegmentsImpl(CombinedRegions); 1327 1328 #ifndef NDEBUG 1329 for (unsigned I = 1, E = Segments.size(); I < E; ++I) { 1330 const auto &L = Segments[I - 1]; 1331 const auto &R = Segments[I]; 1332 if (!(L.Line < R.Line) && !(L.Line == R.Line && L.Col < R.Col)) { 1333 if (L.Line == R.Line && L.Col == R.Col && !L.HasCount) 1334 continue; 1335 LLVM_DEBUG(dbgs() << " ! Segment " << L.Line << ":" << L.Col 1336 << " followed by " << R.Line << ":" << R.Col << "\n"); 1337 assert(false && "Coverage segments not unique or sorted"); 1338 } 1339 } 1340 #endif 1341 1342 return Segments; 1343 } 1344 }; 1345 1346 } // end anonymous namespace 1347 1348 std::vector<StringRef> CoverageMapping::getUniqueSourceFiles() const { 1349 std::vector<StringRef> Filenames; 1350 for (const auto &Function : getCoveredFunctions()) 1351 llvm::append_range(Filenames, Function.Filenames); 1352 llvm::sort(Filenames); 1353 auto Last = llvm::unique(Filenames); 1354 Filenames.erase(Last, Filenames.end()); 1355 return Filenames; 1356 } 1357 1358 static SmallBitVector gatherFileIDs(StringRef SourceFile, 1359 const FunctionRecord &Function) { 1360 SmallBitVector FilenameEquivalence(Function.Filenames.size(), false); 1361 for (unsigned I = 0, E = Function.Filenames.size(); I < E; ++I) 1362 if (SourceFile == Function.Filenames[I]) 1363 FilenameEquivalence[I] = true; 1364 return FilenameEquivalence; 1365 } 1366 1367 /// Return the ID of the file where the definition of the function is located. 1368 static std::optional<unsigned> 1369 findMainViewFileID(const FunctionRecord &Function) { 1370 SmallBitVector IsNotExpandedFile(Function.Filenames.size(), true); 1371 for (const auto &CR : Function.CountedRegions) 1372 if (CR.Kind == CounterMappingRegion::ExpansionRegion) 1373 IsNotExpandedFile[CR.ExpandedFileID] = false; 1374 int I = IsNotExpandedFile.find_first(); 1375 if (I == -1) 1376 return std::nullopt; 1377 return I; 1378 } 1379 1380 /// Check if SourceFile is the file that contains the definition of 1381 /// the Function. Return the ID of the file in that case or std::nullopt 1382 /// otherwise. 1383 static std::optional<unsigned> 1384 findMainViewFileID(StringRef SourceFile, const FunctionRecord &Function) { 1385 std::optional<unsigned> I = findMainViewFileID(Function); 1386 if (I && SourceFile == Function.Filenames[*I]) 1387 return I; 1388 return std::nullopt; 1389 } 1390 1391 static bool isExpansion(const CountedRegion &R, unsigned FileID) { 1392 return R.Kind == CounterMappingRegion::ExpansionRegion && R.FileID == FileID; 1393 } 1394 1395 CoverageData CoverageMapping::getCoverageForFile(StringRef Filename) const { 1396 assert(SingleByteCoverage); 1397 CoverageData FileCoverage(*SingleByteCoverage, Filename); 1398 std::vector<CountedRegion> Regions; 1399 1400 // Look up the function records in the given file. Due to hash collisions on 1401 // the filename, we may get back some records that are not in the file. 1402 ArrayRef<unsigned> RecordIndices = 1403 getImpreciseRecordIndicesForFilename(Filename); 1404 for (unsigned RecordIndex : RecordIndices) { 1405 const FunctionRecord &Function = Functions[RecordIndex]; 1406 auto MainFileID = findMainViewFileID(Filename, Function); 1407 auto FileIDs = gatherFileIDs(Filename, Function); 1408 for (const auto &CR : Function.CountedRegions) 1409 if (FileIDs.test(CR.FileID)) { 1410 Regions.push_back(CR); 1411 if (MainFileID && isExpansion(CR, *MainFileID)) 1412 FileCoverage.Expansions.emplace_back(CR, Function); 1413 } 1414 // Capture branch regions specific to the function (excluding expansions). 1415 for (const auto &CR : Function.CountedBranchRegions) 1416 if (FileIDs.test(CR.FileID)) 1417 FileCoverage.BranchRegions.push_back(CR); 1418 // Capture MCDC records specific to the function. 1419 for (const auto &MR : Function.MCDCRecords) 1420 if (FileIDs.test(MR.getDecisionRegion().FileID)) 1421 FileCoverage.MCDCRecords.push_back(MR); 1422 } 1423 1424 LLVM_DEBUG(dbgs() << "Emitting segments for file: " << Filename << "\n"); 1425 FileCoverage.Segments = SegmentBuilder::buildSegments(Regions); 1426 1427 return FileCoverage; 1428 } 1429 1430 std::vector<InstantiationGroup> 1431 CoverageMapping::getInstantiationGroups(StringRef Filename) const { 1432 FunctionInstantiationSetCollector InstantiationSetCollector; 1433 // Look up the function records in the given file. Due to hash collisions on 1434 // the filename, we may get back some records that are not in the file. 1435 ArrayRef<unsigned> RecordIndices = 1436 getImpreciseRecordIndicesForFilename(Filename); 1437 for (unsigned RecordIndex : RecordIndices) { 1438 const FunctionRecord &Function = Functions[RecordIndex]; 1439 auto MainFileID = findMainViewFileID(Filename, Function); 1440 if (!MainFileID) 1441 continue; 1442 InstantiationSetCollector.insert(Function, *MainFileID); 1443 } 1444 1445 std::vector<InstantiationGroup> Result; 1446 for (auto &InstantiationSet : InstantiationSetCollector) { 1447 InstantiationGroup IG{InstantiationSet.first.first, 1448 InstantiationSet.first.second, 1449 std::move(InstantiationSet.second)}; 1450 Result.emplace_back(std::move(IG)); 1451 } 1452 return Result; 1453 } 1454 1455 CoverageData 1456 CoverageMapping::getCoverageForFunction(const FunctionRecord &Function) const { 1457 auto MainFileID = findMainViewFileID(Function); 1458 if (!MainFileID) 1459 return CoverageData(); 1460 1461 assert(SingleByteCoverage); 1462 CoverageData FunctionCoverage(*SingleByteCoverage, 1463 Function.Filenames[*MainFileID]); 1464 std::vector<CountedRegion> Regions; 1465 for (const auto &CR : Function.CountedRegions) 1466 if (CR.FileID == *MainFileID) { 1467 Regions.push_back(CR); 1468 if (isExpansion(CR, *MainFileID)) 1469 FunctionCoverage.Expansions.emplace_back(CR, Function); 1470 } 1471 // Capture branch regions specific to the function (excluding expansions). 1472 for (const auto &CR : Function.CountedBranchRegions) 1473 if (CR.FileID == *MainFileID) 1474 FunctionCoverage.BranchRegions.push_back(CR); 1475 1476 // Capture MCDC records specific to the function. 1477 for (const auto &MR : Function.MCDCRecords) 1478 if (MR.getDecisionRegion().FileID == *MainFileID) 1479 FunctionCoverage.MCDCRecords.push_back(MR); 1480 1481 LLVM_DEBUG(dbgs() << "Emitting segments for function: " << Function.Name 1482 << "\n"); 1483 FunctionCoverage.Segments = SegmentBuilder::buildSegments(Regions); 1484 1485 return FunctionCoverage; 1486 } 1487 1488 CoverageData CoverageMapping::getCoverageForExpansion( 1489 const ExpansionRecord &Expansion) const { 1490 assert(SingleByteCoverage); 1491 CoverageData ExpansionCoverage( 1492 *SingleByteCoverage, Expansion.Function.Filenames[Expansion.FileID]); 1493 std::vector<CountedRegion> Regions; 1494 for (const auto &CR : Expansion.Function.CountedRegions) 1495 if (CR.FileID == Expansion.FileID) { 1496 Regions.push_back(CR); 1497 if (isExpansion(CR, Expansion.FileID)) 1498 ExpansionCoverage.Expansions.emplace_back(CR, Expansion.Function); 1499 } 1500 for (const auto &CR : Expansion.Function.CountedBranchRegions) 1501 // Capture branch regions that only pertain to the corresponding expansion. 1502 if (CR.FileID == Expansion.FileID) 1503 ExpansionCoverage.BranchRegions.push_back(CR); 1504 1505 LLVM_DEBUG(dbgs() << "Emitting segments for expansion of file " 1506 << Expansion.FileID << "\n"); 1507 ExpansionCoverage.Segments = SegmentBuilder::buildSegments(Regions); 1508 1509 return ExpansionCoverage; 1510 } 1511 1512 LineCoverageStats::LineCoverageStats( 1513 ArrayRef<const CoverageSegment *> LineSegments, 1514 const CoverageSegment *WrappedSegment, unsigned Line) 1515 : ExecutionCount(0), HasMultipleRegions(false), Mapped(false), Line(Line), 1516 LineSegments(LineSegments), WrappedSegment(WrappedSegment) { 1517 // Find the minimum number of regions which start in this line. 1518 unsigned MinRegionCount = 0; 1519 auto isStartOfRegion = [](const CoverageSegment *S) { 1520 return !S->IsGapRegion && S->HasCount && S->IsRegionEntry; 1521 }; 1522 for (unsigned I = 0; I < LineSegments.size() && MinRegionCount < 2; ++I) 1523 if (isStartOfRegion(LineSegments[I])) 1524 ++MinRegionCount; 1525 1526 bool StartOfSkippedRegion = !LineSegments.empty() && 1527 !LineSegments.front()->HasCount && 1528 LineSegments.front()->IsRegionEntry; 1529 1530 HasMultipleRegions = MinRegionCount > 1; 1531 Mapped = 1532 !StartOfSkippedRegion && 1533 ((WrappedSegment && WrappedSegment->HasCount) || (MinRegionCount > 0)); 1534 1535 // if there is any starting segment at this line with a counter, it must be 1536 // mapped 1537 Mapped |= any_of(LineSegments, [](const auto *Seq) { 1538 return Seq->IsRegionEntry && Seq->HasCount; 1539 }); 1540 1541 if (!Mapped) { 1542 return; 1543 } 1544 1545 // Pick the max count from the non-gap, region entry segments and the 1546 // wrapped count. 1547 if (WrappedSegment) 1548 ExecutionCount = WrappedSegment->Count; 1549 if (!MinRegionCount) 1550 return; 1551 for (const auto *LS : LineSegments) 1552 if (isStartOfRegion(LS)) 1553 ExecutionCount = std::max(ExecutionCount, LS->Count); 1554 } 1555 1556 LineCoverageIterator &LineCoverageIterator::operator++() { 1557 if (Next == CD.end()) { 1558 Stats = LineCoverageStats(); 1559 Ended = true; 1560 return *this; 1561 } 1562 if (Segments.size()) 1563 WrappedSegment = Segments.back(); 1564 Segments.clear(); 1565 while (Next != CD.end() && Next->Line == Line) 1566 Segments.push_back(&*Next++); 1567 Stats = LineCoverageStats(Segments, WrappedSegment, Line); 1568 ++Line; 1569 return *this; 1570 } 1571 1572 static std::string getCoverageMapErrString(coveragemap_error Err, 1573 const std::string &ErrMsg = "") { 1574 std::string Msg; 1575 raw_string_ostream OS(Msg); 1576 1577 switch (Err) { 1578 case coveragemap_error::success: 1579 OS << "success"; 1580 break; 1581 case coveragemap_error::eof: 1582 OS << "end of File"; 1583 break; 1584 case coveragemap_error::no_data_found: 1585 OS << "no coverage data found"; 1586 break; 1587 case coveragemap_error::unsupported_version: 1588 OS << "unsupported coverage format version"; 1589 break; 1590 case coveragemap_error::truncated: 1591 OS << "truncated coverage data"; 1592 break; 1593 case coveragemap_error::malformed: 1594 OS << "malformed coverage data"; 1595 break; 1596 case coveragemap_error::decompression_failed: 1597 OS << "failed to decompress coverage data (zlib)"; 1598 break; 1599 case coveragemap_error::invalid_or_missing_arch_specifier: 1600 OS << "`-arch` specifier is invalid or missing for universal binary"; 1601 break; 1602 } 1603 1604 // If optional error message is not empty, append it to the message. 1605 if (!ErrMsg.empty()) 1606 OS << ": " << ErrMsg; 1607 1608 return Msg; 1609 } 1610 1611 namespace { 1612 1613 // FIXME: This class is only here to support the transition to llvm::Error. It 1614 // will be removed once this transition is complete. Clients should prefer to 1615 // deal with the Error value directly, rather than converting to error_code. 1616 class CoverageMappingErrorCategoryType : public std::error_category { 1617 const char *name() const noexcept override { return "llvm.coveragemap"; } 1618 std::string message(int IE) const override { 1619 return getCoverageMapErrString(static_cast<coveragemap_error>(IE)); 1620 } 1621 }; 1622 1623 } // end anonymous namespace 1624 1625 std::string CoverageMapError::message() const { 1626 return getCoverageMapErrString(Err, Msg); 1627 } 1628 1629 const std::error_category &llvm::coverage::coveragemap_category() { 1630 static CoverageMappingErrorCategoryType ErrorCategory; 1631 return ErrorCategory; 1632 } 1633 1634 char CoverageMapError::ID = 0; 1635