1 //===- CoverageMapping.cpp - Code coverage mapping support ----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains support for clang's and llvm's instrumentation based 10 // code coverage. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/ProfileData/Coverage/CoverageMapping.h" 15 #include "llvm/ADT/ArrayRef.h" 16 #include "llvm/ADT/DenseMap.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/SmallBitVector.h" 19 #include "llvm/ADT/SmallVector.h" 20 #include "llvm/ADT/StringExtras.h" 21 #include "llvm/ADT/StringRef.h" 22 #include "llvm/Object/BuildID.h" 23 #include "llvm/ProfileData/Coverage/CoverageMappingReader.h" 24 #include "llvm/ProfileData/InstrProfReader.h" 25 #include "llvm/Support/Debug.h" 26 #include "llvm/Support/Errc.h" 27 #include "llvm/Support/Error.h" 28 #include "llvm/Support/ErrorHandling.h" 29 #include "llvm/Support/MemoryBuffer.h" 30 #include "llvm/Support/VirtualFileSystem.h" 31 #include "llvm/Support/raw_ostream.h" 32 #include <algorithm> 33 #include <cassert> 34 #include <cmath> 35 #include <cstdint> 36 #include <iterator> 37 #include <map> 38 #include <memory> 39 #include <optional> 40 #include <string> 41 #include <system_error> 42 #include <utility> 43 #include <vector> 44 45 using namespace llvm; 46 using namespace coverage; 47 48 #define DEBUG_TYPE "coverage-mapping" 49 50 Counter CounterExpressionBuilder::get(const CounterExpression &E) { 51 auto It = ExpressionIndices.find(E); 52 if (It != ExpressionIndices.end()) 53 return Counter::getExpression(It->second); 54 unsigned I = Expressions.size(); 55 Expressions.push_back(E); 56 ExpressionIndices[E] = I; 57 return Counter::getExpression(I); 58 } 59 60 void CounterExpressionBuilder::extractTerms(Counter C, int Factor, 61 SmallVectorImpl<Term> &Terms) { 62 switch (C.getKind()) { 63 case Counter::Zero: 64 break; 65 case Counter::CounterValueReference: 66 Terms.emplace_back(C.getCounterID(), Factor); 67 break; 68 case Counter::Expression: 69 const auto &E = Expressions[C.getExpressionID()]; 70 extractTerms(E.LHS, Factor, Terms); 71 extractTerms( 72 E.RHS, E.Kind == CounterExpression::Subtract ? -Factor : Factor, Terms); 73 break; 74 } 75 } 76 77 Counter CounterExpressionBuilder::simplify(Counter ExpressionTree) { 78 // Gather constant terms. 79 SmallVector<Term, 32> Terms; 80 extractTerms(ExpressionTree, +1, Terms); 81 82 // If there are no terms, this is just a zero. The algorithm below assumes at 83 // least one term. 84 if (Terms.size() == 0) 85 return Counter::getZero(); 86 87 // Group the terms by counter ID. 88 llvm::sort(Terms, [](const Term &LHS, const Term &RHS) { 89 return LHS.CounterID < RHS.CounterID; 90 }); 91 92 // Combine terms by counter ID to eliminate counters that sum to zero. 93 auto Prev = Terms.begin(); 94 for (auto I = Prev + 1, E = Terms.end(); I != E; ++I) { 95 if (I->CounterID == Prev->CounterID) { 96 Prev->Factor += I->Factor; 97 continue; 98 } 99 ++Prev; 100 *Prev = *I; 101 } 102 Terms.erase(++Prev, Terms.end()); 103 104 Counter C; 105 // Create additions. We do this before subtractions to avoid constructs like 106 // ((0 - X) + Y), as opposed to (Y - X). 107 for (auto T : Terms) { 108 if (T.Factor <= 0) 109 continue; 110 for (int I = 0; I < T.Factor; ++I) 111 if (C.isZero()) 112 C = Counter::getCounter(T.CounterID); 113 else 114 C = get(CounterExpression(CounterExpression::Add, C, 115 Counter::getCounter(T.CounterID))); 116 } 117 118 // Create subtractions. 119 for (auto T : Terms) { 120 if (T.Factor >= 0) 121 continue; 122 for (int I = 0; I < -T.Factor; ++I) 123 C = get(CounterExpression(CounterExpression::Subtract, C, 124 Counter::getCounter(T.CounterID))); 125 } 126 return C; 127 } 128 129 Counter CounterExpressionBuilder::add(Counter LHS, Counter RHS, bool Simplify) { 130 auto Cnt = get(CounterExpression(CounterExpression::Add, LHS, RHS)); 131 return Simplify ? simplify(Cnt) : Cnt; 132 } 133 134 Counter CounterExpressionBuilder::subtract(Counter LHS, Counter RHS, 135 bool Simplify) { 136 auto Cnt = get(CounterExpression(CounterExpression::Subtract, LHS, RHS)); 137 return Simplify ? simplify(Cnt) : Cnt; 138 } 139 140 void CounterMappingContext::dump(const Counter &C, raw_ostream &OS) const { 141 switch (C.getKind()) { 142 case Counter::Zero: 143 OS << '0'; 144 return; 145 case Counter::CounterValueReference: 146 OS << '#' << C.getCounterID(); 147 break; 148 case Counter::Expression: { 149 if (C.getExpressionID() >= Expressions.size()) 150 return; 151 const auto &E = Expressions[C.getExpressionID()]; 152 OS << '('; 153 dump(E.LHS, OS); 154 OS << (E.Kind == CounterExpression::Subtract ? " - " : " + "); 155 dump(E.RHS, OS); 156 OS << ')'; 157 break; 158 } 159 } 160 if (CounterValues.empty()) 161 return; 162 Expected<int64_t> Value = evaluate(C); 163 if (auto E = Value.takeError()) { 164 consumeError(std::move(E)); 165 return; 166 } 167 OS << '[' << *Value << ']'; 168 } 169 170 Expected<int64_t> CounterMappingContext::evaluate(const Counter &C) const { 171 struct StackElem { 172 Counter ICounter; 173 int64_t LHS = 0; 174 enum { 175 KNeverVisited = 0, 176 KVisitedOnce = 1, 177 KVisitedTwice = 2, 178 } VisitCount = KNeverVisited; 179 }; 180 181 std::stack<StackElem> CounterStack; 182 CounterStack.push({C}); 183 184 int64_t LastPoppedValue; 185 186 while (!CounterStack.empty()) { 187 StackElem &Current = CounterStack.top(); 188 189 switch (Current.ICounter.getKind()) { 190 case Counter::Zero: 191 LastPoppedValue = 0; 192 CounterStack.pop(); 193 break; 194 case Counter::CounterValueReference: 195 if (Current.ICounter.getCounterID() >= CounterValues.size()) 196 return errorCodeToError(errc::argument_out_of_domain); 197 LastPoppedValue = CounterValues[Current.ICounter.getCounterID()]; 198 CounterStack.pop(); 199 break; 200 case Counter::Expression: { 201 if (Current.ICounter.getExpressionID() >= Expressions.size()) 202 return errorCodeToError(errc::argument_out_of_domain); 203 const auto &E = Expressions[Current.ICounter.getExpressionID()]; 204 if (Current.VisitCount == StackElem::KNeverVisited) { 205 CounterStack.push(StackElem{E.LHS}); 206 Current.VisitCount = StackElem::KVisitedOnce; 207 } else if (Current.VisitCount == StackElem::KVisitedOnce) { 208 Current.LHS = LastPoppedValue; 209 CounterStack.push(StackElem{E.RHS}); 210 Current.VisitCount = StackElem::KVisitedTwice; 211 } else { 212 int64_t LHS = Current.LHS; 213 int64_t RHS = LastPoppedValue; 214 LastPoppedValue = 215 E.Kind == CounterExpression::Subtract ? LHS - RHS : LHS + RHS; 216 CounterStack.pop(); 217 } 218 break; 219 } 220 } 221 } 222 223 return LastPoppedValue; 224 } 225 226 mcdc::TVIdxBuilder::TVIdxBuilder(const SmallVectorImpl<ConditionIDs> &NextIDs, 227 int Offset) 228 : Indices(NextIDs.size()) { 229 // Construct Nodes and set up each InCount 230 auto N = NextIDs.size(); 231 SmallVector<MCDCNode> Nodes(N); 232 for (unsigned ID = 0; ID < N; ++ID) { 233 for (unsigned C = 0; C < 2; ++C) { 234 #ifndef NDEBUG 235 Indices[ID][C] = INT_MIN; 236 #endif 237 auto NextID = NextIDs[ID][C]; 238 Nodes[ID].NextIDs[C] = NextID; 239 if (NextID >= 0) 240 ++Nodes[NextID].InCount; 241 } 242 } 243 244 // Sort key ordered by <-Width, Ord> 245 SmallVector<std::tuple<int, /// -Width 246 unsigned, /// Ord 247 int, /// ID 248 unsigned /// Cond (0 or 1) 249 >> 250 Decisions; 251 252 // Traverse Nodes to assign Idx 253 SmallVector<int> Q; 254 assert(Nodes[0].InCount == 0); 255 Nodes[0].Width = 1; 256 Q.push_back(0); 257 258 unsigned Ord = 0; 259 while (!Q.empty()) { 260 auto IID = Q.begin(); 261 int ID = *IID; 262 Q.erase(IID); 263 auto &Node = Nodes[ID]; 264 assert(Node.Width > 0); 265 266 for (unsigned I = 0; I < 2; ++I) { 267 auto NextID = Node.NextIDs[I]; 268 assert(NextID != 0 && "NextID should not point to the top"); 269 if (NextID < 0) { 270 // Decision 271 Decisions.emplace_back(-Node.Width, Ord++, ID, I); 272 assert(Ord == Decisions.size()); 273 continue; 274 } 275 276 // Inter Node 277 auto &NextNode = Nodes[NextID]; 278 assert(NextNode.InCount > 0); 279 280 // Assign Idx 281 assert(Indices[ID][I] == INT_MIN); 282 Indices[ID][I] = NextNode.Width; 283 auto NextWidth = int64_t(NextNode.Width) + Node.Width; 284 if (NextWidth > HardMaxTVs) { 285 NumTestVectors = HardMaxTVs; // Overflow 286 return; 287 } 288 NextNode.Width = NextWidth; 289 290 // Ready if all incomings are processed. 291 // Or NextNode.Width hasn't been confirmed yet. 292 if (--NextNode.InCount == 0) 293 Q.push_back(NextID); 294 } 295 } 296 297 llvm::sort(Decisions); 298 299 // Assign TestVector Indices in Decision Nodes 300 int64_t CurIdx = 0; 301 for (auto [NegWidth, Ord, ID, C] : Decisions) { 302 int Width = -NegWidth; 303 assert(Nodes[ID].Width == Width); 304 assert(Nodes[ID].NextIDs[C] < 0); 305 assert(Indices[ID][C] == INT_MIN); 306 Indices[ID][C] = Offset + CurIdx; 307 CurIdx += Width; 308 if (CurIdx > HardMaxTVs) { 309 NumTestVectors = HardMaxTVs; // Overflow 310 return; 311 } 312 } 313 314 assert(CurIdx < HardMaxTVs); 315 NumTestVectors = CurIdx; 316 317 #ifndef NDEBUG 318 for (const auto &Idxs : Indices) 319 for (auto Idx : Idxs) 320 assert(Idx != INT_MIN); 321 SavedNodes = std::move(Nodes); 322 #endif 323 } 324 325 namespace { 326 327 /// Construct this->NextIDs with Branches for TVIdxBuilder to use it 328 /// before MCDCRecordProcessor(). 329 class NextIDsBuilder { 330 protected: 331 SmallVector<mcdc::ConditionIDs> NextIDs; 332 333 public: 334 NextIDsBuilder(const ArrayRef<const CounterMappingRegion *> Branches) 335 : NextIDs(Branches.size()) { 336 #ifndef NDEBUG 337 DenseSet<mcdc::ConditionID> SeenIDs; 338 #endif 339 for (const auto *Branch : Branches) { 340 const auto &BranchParams = Branch->getBranchParams(); 341 assert(BranchParams.ID >= 0 && "CondID isn't set"); 342 assert(SeenIDs.insert(BranchParams.ID).second && "Duplicate CondID"); 343 NextIDs[BranchParams.ID] = BranchParams.Conds; 344 } 345 assert(SeenIDs.size() == Branches.size()); 346 } 347 }; 348 349 class MCDCRecordProcessor : NextIDsBuilder, mcdc::TVIdxBuilder { 350 /// A bitmap representing the executed test vectors for a boolean expression. 351 /// Each index of the bitmap corresponds to a possible test vector. An index 352 /// with a bit value of '1' indicates that the corresponding Test Vector 353 /// identified by that index was executed. 354 const BitVector &Bitmap; 355 356 /// Decision Region to which the ExecutedTestVectorBitmap applies. 357 const CounterMappingRegion &Region; 358 const mcdc::DecisionParameters &DecisionParams; 359 360 /// Array of branch regions corresponding each conditions in the boolean 361 /// expression. 362 ArrayRef<const CounterMappingRegion *> Branches; 363 364 /// Total number of conditions in the boolean expression. 365 unsigned NumConditions; 366 367 /// Vector used to track whether a condition is constant folded. 368 MCDCRecord::BoolVector Folded; 369 370 /// Mapping of calculated MC/DC Independence Pairs for each condition. 371 MCDCRecord::TVPairMap IndependencePairs; 372 373 /// Storage for ExecVectors 374 /// ExecVectors is the alias of its 0th element. 375 std::array<MCDCRecord::TestVectors, 2> ExecVectorsByCond; 376 377 /// Actual executed Test Vectors for the boolean expression, based on 378 /// ExecutedTestVectorBitmap. 379 MCDCRecord::TestVectors &ExecVectors; 380 381 /// Number of False items in ExecVectors 382 unsigned NumExecVectorsF; 383 384 #ifndef NDEBUG 385 DenseSet<unsigned> TVIdxs; 386 #endif 387 388 public: 389 MCDCRecordProcessor(const BitVector &Bitmap, 390 const CounterMappingRegion &Region, 391 ArrayRef<const CounterMappingRegion *> Branches) 392 : NextIDsBuilder(Branches), TVIdxBuilder(this->NextIDs), Bitmap(Bitmap), 393 Region(Region), DecisionParams(Region.getDecisionParams()), 394 Branches(Branches), NumConditions(DecisionParams.NumConditions), 395 Folded(NumConditions, false), IndependencePairs(NumConditions), 396 ExecVectors(ExecVectorsByCond[false]) {} 397 398 private: 399 // Walk the binary decision diagram and try assigning both false and true to 400 // each node. When a terminal node (ID == 0) is reached, fill in the value in 401 // the truth table. 402 void buildTestVector(MCDCRecord::TestVector &TV, mcdc::ConditionID ID, 403 int TVIdx) { 404 for (auto MCDCCond : {MCDCRecord::MCDC_False, MCDCRecord::MCDC_True}) { 405 static_assert(MCDCRecord::MCDC_False == 0); 406 static_assert(MCDCRecord::MCDC_True == 1); 407 TV.set(ID, MCDCCond); 408 auto NextID = NextIDs[ID][MCDCCond]; 409 auto NextTVIdx = TVIdx + Indices[ID][MCDCCond]; 410 assert(NextID == SavedNodes[ID].NextIDs[MCDCCond]); 411 if (NextID >= 0) { 412 buildTestVector(TV, NextID, NextTVIdx); 413 continue; 414 } 415 416 assert(TVIdx < SavedNodes[ID].Width); 417 assert(TVIdxs.insert(NextTVIdx).second && "Duplicate TVIdx"); 418 419 if (!Bitmap[DecisionParams.BitmapIdx * CHAR_BIT + TV.getIndex()]) 420 continue; 421 422 // Copy the completed test vector to the vector of testvectors. 423 // The final value (T,F) is equal to the last non-dontcare state on the 424 // path (in a short-circuiting system). 425 ExecVectorsByCond[MCDCCond].push_back({TV, MCDCCond}); 426 } 427 428 // Reset back to DontCare. 429 TV.set(ID, MCDCRecord::MCDC_DontCare); 430 } 431 432 /// Walk the bits in the bitmap. A bit set to '1' indicates that the test 433 /// vector at the corresponding index was executed during a test run. 434 void findExecutedTestVectors() { 435 // Walk the binary decision diagram to enumerate all possible test vectors. 436 // We start at the root node (ID == 0) with all values being DontCare. 437 // `TVIdx` starts with 0 and is in the traversal. 438 // `Index` encodes the bitmask of true values and is initially 0. 439 MCDCRecord::TestVector TV(NumConditions); 440 buildTestVector(TV, 0, 0); 441 assert(TVIdxs.size() == unsigned(NumTestVectors) && 442 "TVIdxs wasn't fulfilled"); 443 444 // Fill ExecVectors order by False items and True items. 445 // ExecVectors is the alias of ExecVectorsByCond[false], so 446 // Append ExecVectorsByCond[true] on it. 447 NumExecVectorsF = ExecVectors.size(); 448 auto &ExecVectorsT = ExecVectorsByCond[true]; 449 ExecVectors.append(std::make_move_iterator(ExecVectorsT.begin()), 450 std::make_move_iterator(ExecVectorsT.end())); 451 } 452 453 // Find an independence pair for each condition: 454 // - The condition is true in one test and false in the other. 455 // - The decision outcome is true one test and false in the other. 456 // - All other conditions' values must be equal or marked as "don't care". 457 void findIndependencePairs() { 458 unsigned NumTVs = ExecVectors.size(); 459 for (unsigned I = NumExecVectorsF; I < NumTVs; ++I) { 460 const auto &[A, ACond] = ExecVectors[I]; 461 assert(ACond == MCDCRecord::MCDC_True); 462 for (unsigned J = 0; J < NumExecVectorsF; ++J) { 463 const auto &[B, BCond] = ExecVectors[J]; 464 assert(BCond == MCDCRecord::MCDC_False); 465 // If the two vectors differ in exactly one condition, ignoring DontCare 466 // conditions, we have found an independence pair. 467 auto AB = A.getDifferences(B); 468 if (AB.count() == 1) 469 IndependencePairs.insert( 470 {AB.find_first(), std::make_pair(J + 1, I + 1)}); 471 } 472 } 473 } 474 475 public: 476 /// Process the MC/DC Record in order to produce a result for a boolean 477 /// expression. This process includes tracking the conditions that comprise 478 /// the decision region, calculating the list of all possible test vectors, 479 /// marking the executed test vectors, and then finding an Independence Pair 480 /// out of the executed test vectors for each condition in the boolean 481 /// expression. A condition is tracked to ensure that its ID can be mapped to 482 /// its ordinal position in the boolean expression. The condition's source 483 /// location is also tracked, as well as whether it is constant folded (in 484 /// which case it is excuded from the metric). 485 MCDCRecord processMCDCRecord() { 486 unsigned I = 0; 487 MCDCRecord::CondIDMap PosToID; 488 MCDCRecord::LineColPairMap CondLoc; 489 490 // Walk the Record's BranchRegions (representing Conditions) in order to: 491 // - Hash the condition based on its corresponding ID. This will be used to 492 // calculate the test vectors. 493 // - Keep a map of the condition's ordinal position (1, 2, 3, 4) to its 494 // actual ID. This will be used to visualize the conditions in the 495 // correct order. 496 // - Keep track of the condition source location. This will be used to 497 // visualize where the condition is. 498 // - Record whether the condition is constant folded so that we exclude it 499 // from being measured. 500 for (const auto *B : Branches) { 501 const auto &BranchParams = B->getBranchParams(); 502 PosToID[I] = BranchParams.ID; 503 CondLoc[I] = B->startLoc(); 504 Folded[I++] = (B->Count.isZero() && B->FalseCount.isZero()); 505 } 506 507 // Using Profile Bitmap from runtime, mark the executed test vectors. 508 findExecutedTestVectors(); 509 510 // Compare executed test vectors against each other to find an independence 511 // pairs for each condition. This processing takes the most time. 512 findIndependencePairs(); 513 514 // Record Test vectors, executed vectors, and independence pairs. 515 return MCDCRecord(Region, std::move(ExecVectors), 516 std::move(IndependencePairs), std::move(Folded), 517 std::move(PosToID), std::move(CondLoc)); 518 } 519 }; 520 521 } // namespace 522 523 Expected<MCDCRecord> CounterMappingContext::evaluateMCDCRegion( 524 const CounterMappingRegion &Region, 525 ArrayRef<const CounterMappingRegion *> Branches) { 526 527 MCDCRecordProcessor MCDCProcessor(Bitmap, Region, Branches); 528 return MCDCProcessor.processMCDCRecord(); 529 } 530 531 unsigned CounterMappingContext::getMaxCounterID(const Counter &C) const { 532 struct StackElem { 533 Counter ICounter; 534 int64_t LHS = 0; 535 enum { 536 KNeverVisited = 0, 537 KVisitedOnce = 1, 538 KVisitedTwice = 2, 539 } VisitCount = KNeverVisited; 540 }; 541 542 std::stack<StackElem> CounterStack; 543 CounterStack.push({C}); 544 545 int64_t LastPoppedValue; 546 547 while (!CounterStack.empty()) { 548 StackElem &Current = CounterStack.top(); 549 550 switch (Current.ICounter.getKind()) { 551 case Counter::Zero: 552 LastPoppedValue = 0; 553 CounterStack.pop(); 554 break; 555 case Counter::CounterValueReference: 556 LastPoppedValue = Current.ICounter.getCounterID(); 557 CounterStack.pop(); 558 break; 559 case Counter::Expression: { 560 if (Current.ICounter.getExpressionID() >= Expressions.size()) { 561 LastPoppedValue = 0; 562 CounterStack.pop(); 563 } else { 564 const auto &E = Expressions[Current.ICounter.getExpressionID()]; 565 if (Current.VisitCount == StackElem::KNeverVisited) { 566 CounterStack.push(StackElem{E.LHS}); 567 Current.VisitCount = StackElem::KVisitedOnce; 568 } else if (Current.VisitCount == StackElem::KVisitedOnce) { 569 Current.LHS = LastPoppedValue; 570 CounterStack.push(StackElem{E.RHS}); 571 Current.VisitCount = StackElem::KVisitedTwice; 572 } else { 573 int64_t LHS = Current.LHS; 574 int64_t RHS = LastPoppedValue; 575 LastPoppedValue = std::max(LHS, RHS); 576 CounterStack.pop(); 577 } 578 } 579 break; 580 } 581 } 582 } 583 584 return LastPoppedValue; 585 } 586 587 void FunctionRecordIterator::skipOtherFiles() { 588 while (Current != Records.end() && !Filename.empty() && 589 Filename != Current->Filenames[0]) 590 ++Current; 591 if (Current == Records.end()) 592 *this = FunctionRecordIterator(); 593 } 594 595 ArrayRef<unsigned> CoverageMapping::getImpreciseRecordIndicesForFilename( 596 StringRef Filename) const { 597 size_t FilenameHash = hash_value(Filename); 598 auto RecordIt = FilenameHash2RecordIndices.find(FilenameHash); 599 if (RecordIt == FilenameHash2RecordIndices.end()) 600 return {}; 601 return RecordIt->second; 602 } 603 604 static unsigned getMaxCounterID(const CounterMappingContext &Ctx, 605 const CoverageMappingRecord &Record) { 606 unsigned MaxCounterID = 0; 607 for (const auto &Region : Record.MappingRegions) { 608 MaxCounterID = std::max(MaxCounterID, Ctx.getMaxCounterID(Region.Count)); 609 } 610 return MaxCounterID; 611 } 612 613 /// Returns the bit count 614 static unsigned getMaxBitmapSize(const CounterMappingContext &Ctx, 615 const CoverageMappingRecord &Record) { 616 unsigned MaxBitmapIdx = 0; 617 unsigned NumConditions = 0; 618 // Scan max(BitmapIdx). 619 // Note that `<=` is used insted of `<`, because `BitmapIdx == 0` is valid 620 // and `MaxBitmapIdx is `unsigned`. `BitmapIdx` is unique in the record. 621 for (const auto &Region : reverse(Record.MappingRegions)) { 622 if (Region.Kind != CounterMappingRegion::MCDCDecisionRegion) 623 continue; 624 const auto &DecisionParams = Region.getDecisionParams(); 625 if (MaxBitmapIdx <= DecisionParams.BitmapIdx) { 626 MaxBitmapIdx = DecisionParams.BitmapIdx; 627 NumConditions = DecisionParams.NumConditions; 628 } 629 } 630 unsigned SizeInBits = llvm::alignTo(uint64_t(1) << NumConditions, CHAR_BIT); 631 return MaxBitmapIdx * CHAR_BIT + SizeInBits; 632 } 633 634 namespace { 635 636 /// Collect Decisions, Branchs, and Expansions and associate them. 637 class MCDCDecisionRecorder { 638 private: 639 /// This holds the DecisionRegion and MCDCBranches under it. 640 /// Also traverses Expansion(s). 641 /// The Decision has the number of MCDCBranches and will complete 642 /// when it is filled with unique ConditionID of MCDCBranches. 643 struct DecisionRecord { 644 const CounterMappingRegion *DecisionRegion; 645 646 /// They are reflected from DecisionRegion for convenience. 647 mcdc::DecisionParameters DecisionParams; 648 LineColPair DecisionStartLoc; 649 LineColPair DecisionEndLoc; 650 651 /// This is passed to `MCDCRecordProcessor`, so this should be compatible 652 /// to`ArrayRef<const CounterMappingRegion *>`. 653 SmallVector<const CounterMappingRegion *> MCDCBranches; 654 655 /// IDs that are stored in MCDCBranches 656 /// Complete when all IDs (1 to NumConditions) are met. 657 DenseSet<mcdc::ConditionID> ConditionIDs; 658 659 /// Set of IDs of Expansion(s) that are relevant to DecisionRegion 660 /// and its children (via expansions). 661 /// FileID pointed by ExpandedFileID is dedicated to the expansion, so 662 /// the location in the expansion doesn't matter. 663 DenseSet<unsigned> ExpandedFileIDs; 664 665 DecisionRecord(const CounterMappingRegion &Decision) 666 : DecisionRegion(&Decision), 667 DecisionParams(Decision.getDecisionParams()), 668 DecisionStartLoc(Decision.startLoc()), 669 DecisionEndLoc(Decision.endLoc()) { 670 assert(Decision.Kind == CounterMappingRegion::MCDCDecisionRegion); 671 } 672 673 /// Determine whether DecisionRecord dominates `R`. 674 bool dominates(const CounterMappingRegion &R) const { 675 // Determine whether `R` is included in `DecisionRegion`. 676 if (R.FileID == DecisionRegion->FileID && 677 R.startLoc() >= DecisionStartLoc && R.endLoc() <= DecisionEndLoc) 678 return true; 679 680 // Determine whether `R` is pointed by any of Expansions. 681 return ExpandedFileIDs.contains(R.FileID); 682 } 683 684 enum Result { 685 NotProcessed = 0, /// Irrelevant to this Decision 686 Processed, /// Added to this Decision 687 Completed, /// Added and filled this Decision 688 }; 689 690 /// Add Branch into the Decision 691 /// \param Branch expects MCDCBranchRegion 692 /// \returns NotProcessed/Processed/Completed 693 Result addBranch(const CounterMappingRegion &Branch) { 694 assert(Branch.Kind == CounterMappingRegion::MCDCBranchRegion); 695 696 auto ConditionID = Branch.getBranchParams().ID; 697 assert(ConditionID >= 0 && "ConditionID should be positive"); 698 699 if (ConditionIDs.contains(ConditionID) || 700 ConditionID >= DecisionParams.NumConditions) 701 return NotProcessed; 702 703 if (!this->dominates(Branch)) 704 return NotProcessed; 705 706 assert(MCDCBranches.size() < DecisionParams.NumConditions); 707 708 // Put `ID=0` in front of `MCDCBranches` for convenience 709 // even if `MCDCBranches` is not topological. 710 if (ConditionID == 0) 711 MCDCBranches.insert(MCDCBranches.begin(), &Branch); 712 else 713 MCDCBranches.push_back(&Branch); 714 715 // Mark `ID` as `assigned`. 716 ConditionIDs.insert(ConditionID); 717 718 // `Completed` when `MCDCBranches` is full 719 return (MCDCBranches.size() == DecisionParams.NumConditions ? Completed 720 : Processed); 721 } 722 723 /// Record Expansion if it is relevant to this Decision. 724 /// Each `Expansion` may nest. 725 /// \returns true if recorded. 726 bool recordExpansion(const CounterMappingRegion &Expansion) { 727 if (!this->dominates(Expansion)) 728 return false; 729 730 ExpandedFileIDs.insert(Expansion.ExpandedFileID); 731 return true; 732 } 733 }; 734 735 private: 736 /// Decisions in progress 737 /// DecisionRecord is added for each MCDCDecisionRegion. 738 /// DecisionRecord is removed when Decision is completed. 739 SmallVector<DecisionRecord> Decisions; 740 741 public: 742 ~MCDCDecisionRecorder() { 743 assert(Decisions.empty() && "All Decisions have not been resolved"); 744 } 745 746 /// Register Region and start recording. 747 void registerDecision(const CounterMappingRegion &Decision) { 748 Decisions.emplace_back(Decision); 749 } 750 751 void recordExpansion(const CounterMappingRegion &Expansion) { 752 any_of(Decisions, [&Expansion](auto &Decision) { 753 return Decision.recordExpansion(Expansion); 754 }); 755 } 756 757 using DecisionAndBranches = 758 std::pair<const CounterMappingRegion *, /// Decision 759 SmallVector<const CounterMappingRegion *> /// Branches 760 >; 761 762 /// Add MCDCBranchRegion to DecisionRecord. 763 /// \param Branch to be processed 764 /// \returns DecisionsAndBranches if DecisionRecord completed. 765 /// Or returns nullopt. 766 std::optional<DecisionAndBranches> 767 processBranch(const CounterMappingRegion &Branch) { 768 // Seek each Decision and apply Region to it. 769 for (auto DecisionIter = Decisions.begin(), DecisionEnd = Decisions.end(); 770 DecisionIter != DecisionEnd; ++DecisionIter) 771 switch (DecisionIter->addBranch(Branch)) { 772 case DecisionRecord::NotProcessed: 773 continue; 774 case DecisionRecord::Processed: 775 return std::nullopt; 776 case DecisionRecord::Completed: 777 DecisionAndBranches Result = 778 std::make_pair(DecisionIter->DecisionRegion, 779 std::move(DecisionIter->MCDCBranches)); 780 Decisions.erase(DecisionIter); // No longer used. 781 return Result; 782 } 783 784 llvm_unreachable("Branch not found in Decisions"); 785 } 786 }; 787 788 } // namespace 789 790 Error CoverageMapping::loadFunctionRecord( 791 const CoverageMappingRecord &Record, 792 IndexedInstrProfReader &ProfileReader) { 793 StringRef OrigFuncName = Record.FunctionName; 794 if (OrigFuncName.empty()) 795 return make_error<CoverageMapError>(coveragemap_error::malformed, 796 "record function name is empty"); 797 798 if (Record.Filenames.empty()) 799 OrigFuncName = getFuncNameWithoutPrefix(OrigFuncName); 800 else 801 OrigFuncName = getFuncNameWithoutPrefix(OrigFuncName, Record.Filenames[0]); 802 803 CounterMappingContext Ctx(Record.Expressions); 804 805 std::vector<uint64_t> Counts; 806 if (Error E = ProfileReader.getFunctionCounts(Record.FunctionName, 807 Record.FunctionHash, Counts)) { 808 instrprof_error IPE = std::get<0>(InstrProfError::take(std::move(E))); 809 if (IPE == instrprof_error::hash_mismatch) { 810 FuncHashMismatches.emplace_back(std::string(Record.FunctionName), 811 Record.FunctionHash); 812 return Error::success(); 813 } 814 if (IPE != instrprof_error::unknown_function) 815 return make_error<InstrProfError>(IPE); 816 Counts.assign(getMaxCounterID(Ctx, Record) + 1, 0); 817 } 818 Ctx.setCounts(Counts); 819 820 BitVector Bitmap; 821 if (Error E = ProfileReader.getFunctionBitmap(Record.FunctionName, 822 Record.FunctionHash, Bitmap)) { 823 instrprof_error IPE = std::get<0>(InstrProfError::take(std::move(E))); 824 if (IPE == instrprof_error::hash_mismatch) { 825 FuncHashMismatches.emplace_back(std::string(Record.FunctionName), 826 Record.FunctionHash); 827 return Error::success(); 828 } 829 if (IPE != instrprof_error::unknown_function) 830 return make_error<InstrProfError>(IPE); 831 Bitmap = BitVector(getMaxBitmapSize(Ctx, Record)); 832 } 833 Ctx.setBitmap(std::move(Bitmap)); 834 835 assert(!Record.MappingRegions.empty() && "Function has no regions"); 836 837 // This coverage record is a zero region for a function that's unused in 838 // some TU, but used in a different TU. Ignore it. The coverage maps from the 839 // the other TU will either be loaded (providing full region counts) or they 840 // won't (in which case we don't unintuitively report functions as uncovered 841 // when they have non-zero counts in the profile). 842 if (Record.MappingRegions.size() == 1 && 843 Record.MappingRegions[0].Count.isZero() && Counts[0] > 0) 844 return Error::success(); 845 846 MCDCDecisionRecorder MCDCDecisions; 847 FunctionRecord Function(OrigFuncName, Record.Filenames); 848 for (const auto &Region : Record.MappingRegions) { 849 // MCDCDecisionRegion should be handled first since it overlaps with 850 // others inside. 851 if (Region.Kind == CounterMappingRegion::MCDCDecisionRegion) { 852 MCDCDecisions.registerDecision(Region); 853 continue; 854 } 855 Expected<int64_t> ExecutionCount = Ctx.evaluate(Region.Count); 856 if (auto E = ExecutionCount.takeError()) { 857 consumeError(std::move(E)); 858 return Error::success(); 859 } 860 Expected<int64_t> AltExecutionCount = Ctx.evaluate(Region.FalseCount); 861 if (auto E = AltExecutionCount.takeError()) { 862 consumeError(std::move(E)); 863 return Error::success(); 864 } 865 Function.pushRegion(Region, *ExecutionCount, *AltExecutionCount, 866 ProfileReader.hasSingleByteCoverage()); 867 868 // Record ExpansionRegion. 869 if (Region.Kind == CounterMappingRegion::ExpansionRegion) { 870 MCDCDecisions.recordExpansion(Region); 871 continue; 872 } 873 874 // Do nothing unless MCDCBranchRegion. 875 if (Region.Kind != CounterMappingRegion::MCDCBranchRegion) 876 continue; 877 878 auto Result = MCDCDecisions.processBranch(Region); 879 if (!Result) // Any Decision doesn't complete. 880 continue; 881 882 auto MCDCDecision = Result->first; 883 auto &MCDCBranches = Result->second; 884 885 // Since the bitmap identifies the executed test vectors for an MC/DC 886 // DecisionRegion, all of the information is now available to process. 887 // This is where the bulk of the MC/DC progressing takes place. 888 Expected<MCDCRecord> Record = 889 Ctx.evaluateMCDCRegion(*MCDCDecision, MCDCBranches); 890 if (auto E = Record.takeError()) { 891 consumeError(std::move(E)); 892 return Error::success(); 893 } 894 895 // Save the MC/DC Record so that it can be visualized later. 896 Function.pushMCDCRecord(std::move(*Record)); 897 } 898 899 // Don't create records for (filenames, function) pairs we've already seen. 900 auto FilenamesHash = hash_combine_range(Record.Filenames.begin(), 901 Record.Filenames.end()); 902 if (!RecordProvenance[FilenamesHash].insert(hash_value(OrigFuncName)).second) 903 return Error::success(); 904 905 Functions.push_back(std::move(Function)); 906 907 // Performance optimization: keep track of the indices of the function records 908 // which correspond to each filename. This can be used to substantially speed 909 // up queries for coverage info in a file. 910 unsigned RecordIndex = Functions.size() - 1; 911 for (StringRef Filename : Record.Filenames) { 912 auto &RecordIndices = FilenameHash2RecordIndices[hash_value(Filename)]; 913 // Note that there may be duplicates in the filename set for a function 914 // record, because of e.g. macro expansions in the function in which both 915 // the macro and the function are defined in the same file. 916 if (RecordIndices.empty() || RecordIndices.back() != RecordIndex) 917 RecordIndices.push_back(RecordIndex); 918 } 919 920 return Error::success(); 921 } 922 923 // This function is for memory optimization by shortening the lifetimes 924 // of CoverageMappingReader instances. 925 Error CoverageMapping::loadFromReaders( 926 ArrayRef<std::unique_ptr<CoverageMappingReader>> CoverageReaders, 927 IndexedInstrProfReader &ProfileReader, CoverageMapping &Coverage) { 928 for (const auto &CoverageReader : CoverageReaders) { 929 for (auto RecordOrErr : *CoverageReader) { 930 if (Error E = RecordOrErr.takeError()) 931 return E; 932 const auto &Record = *RecordOrErr; 933 if (Error E = Coverage.loadFunctionRecord(Record, ProfileReader)) 934 return E; 935 } 936 } 937 return Error::success(); 938 } 939 940 Expected<std::unique_ptr<CoverageMapping>> CoverageMapping::load( 941 ArrayRef<std::unique_ptr<CoverageMappingReader>> CoverageReaders, 942 IndexedInstrProfReader &ProfileReader) { 943 auto Coverage = std::unique_ptr<CoverageMapping>(new CoverageMapping()); 944 if (Error E = loadFromReaders(CoverageReaders, ProfileReader, *Coverage)) 945 return std::move(E); 946 return std::move(Coverage); 947 } 948 949 // If E is a no_data_found error, returns success. Otherwise returns E. 950 static Error handleMaybeNoDataFoundError(Error E) { 951 return handleErrors( 952 std::move(E), [](const CoverageMapError &CME) { 953 if (CME.get() == coveragemap_error::no_data_found) 954 return static_cast<Error>(Error::success()); 955 return make_error<CoverageMapError>(CME.get(), CME.getMessage()); 956 }); 957 } 958 959 Error CoverageMapping::loadFromFile( 960 StringRef Filename, StringRef Arch, StringRef CompilationDir, 961 IndexedInstrProfReader &ProfileReader, CoverageMapping &Coverage, 962 bool &DataFound, SmallVectorImpl<object::BuildID> *FoundBinaryIDs) { 963 auto CovMappingBufOrErr = MemoryBuffer::getFileOrSTDIN( 964 Filename, /*IsText=*/false, /*RequiresNullTerminator=*/false); 965 if (std::error_code EC = CovMappingBufOrErr.getError()) 966 return createFileError(Filename, errorCodeToError(EC)); 967 MemoryBufferRef CovMappingBufRef = 968 CovMappingBufOrErr.get()->getMemBufferRef(); 969 SmallVector<std::unique_ptr<MemoryBuffer>, 4> Buffers; 970 971 SmallVector<object::BuildIDRef> BinaryIDs; 972 auto CoverageReadersOrErr = BinaryCoverageReader::create( 973 CovMappingBufRef, Arch, Buffers, CompilationDir, 974 FoundBinaryIDs ? &BinaryIDs : nullptr); 975 if (Error E = CoverageReadersOrErr.takeError()) { 976 E = handleMaybeNoDataFoundError(std::move(E)); 977 if (E) 978 return createFileError(Filename, std::move(E)); 979 return E; 980 } 981 982 SmallVector<std::unique_ptr<CoverageMappingReader>, 4> Readers; 983 for (auto &Reader : CoverageReadersOrErr.get()) 984 Readers.push_back(std::move(Reader)); 985 if (FoundBinaryIDs && !Readers.empty()) { 986 llvm::append_range(*FoundBinaryIDs, 987 llvm::map_range(BinaryIDs, [](object::BuildIDRef BID) { 988 return object::BuildID(BID); 989 })); 990 } 991 DataFound |= !Readers.empty(); 992 if (Error E = loadFromReaders(Readers, ProfileReader, Coverage)) 993 return createFileError(Filename, std::move(E)); 994 return Error::success(); 995 } 996 997 Expected<std::unique_ptr<CoverageMapping>> CoverageMapping::load( 998 ArrayRef<StringRef> ObjectFilenames, StringRef ProfileFilename, 999 vfs::FileSystem &FS, ArrayRef<StringRef> Arches, StringRef CompilationDir, 1000 const object::BuildIDFetcher *BIDFetcher, bool CheckBinaryIDs) { 1001 auto ProfileReaderOrErr = IndexedInstrProfReader::create(ProfileFilename, FS); 1002 if (Error E = ProfileReaderOrErr.takeError()) 1003 return createFileError(ProfileFilename, std::move(E)); 1004 auto ProfileReader = std::move(ProfileReaderOrErr.get()); 1005 auto Coverage = std::unique_ptr<CoverageMapping>(new CoverageMapping()); 1006 bool DataFound = false; 1007 1008 auto GetArch = [&](size_t Idx) { 1009 if (Arches.empty()) 1010 return StringRef(); 1011 if (Arches.size() == 1) 1012 return Arches.front(); 1013 return Arches[Idx]; 1014 }; 1015 1016 SmallVector<object::BuildID> FoundBinaryIDs; 1017 for (const auto &File : llvm::enumerate(ObjectFilenames)) { 1018 if (Error E = 1019 loadFromFile(File.value(), GetArch(File.index()), CompilationDir, 1020 *ProfileReader, *Coverage, DataFound, &FoundBinaryIDs)) 1021 return std::move(E); 1022 } 1023 1024 if (BIDFetcher) { 1025 std::vector<object::BuildID> ProfileBinaryIDs; 1026 if (Error E = ProfileReader->readBinaryIds(ProfileBinaryIDs)) 1027 return createFileError(ProfileFilename, std::move(E)); 1028 1029 SmallVector<object::BuildIDRef> BinaryIDsToFetch; 1030 if (!ProfileBinaryIDs.empty()) { 1031 const auto &Compare = [](object::BuildIDRef A, object::BuildIDRef B) { 1032 return std::lexicographical_compare(A.begin(), A.end(), B.begin(), 1033 B.end()); 1034 }; 1035 llvm::sort(FoundBinaryIDs, Compare); 1036 std::set_difference( 1037 ProfileBinaryIDs.begin(), ProfileBinaryIDs.end(), 1038 FoundBinaryIDs.begin(), FoundBinaryIDs.end(), 1039 std::inserter(BinaryIDsToFetch, BinaryIDsToFetch.end()), Compare); 1040 } 1041 1042 for (object::BuildIDRef BinaryID : BinaryIDsToFetch) { 1043 std::optional<std::string> PathOpt = BIDFetcher->fetch(BinaryID); 1044 if (PathOpt) { 1045 std::string Path = std::move(*PathOpt); 1046 StringRef Arch = Arches.size() == 1 ? Arches.front() : StringRef(); 1047 if (Error E = loadFromFile(Path, Arch, CompilationDir, *ProfileReader, 1048 *Coverage, DataFound)) 1049 return std::move(E); 1050 } else if (CheckBinaryIDs) { 1051 return createFileError( 1052 ProfileFilename, 1053 createStringError(errc::no_such_file_or_directory, 1054 "Missing binary ID: " + 1055 llvm::toHex(BinaryID, /*LowerCase=*/true))); 1056 } 1057 } 1058 } 1059 1060 if (!DataFound) 1061 return createFileError( 1062 join(ObjectFilenames.begin(), ObjectFilenames.end(), ", "), 1063 make_error<CoverageMapError>(coveragemap_error::no_data_found)); 1064 return std::move(Coverage); 1065 } 1066 1067 namespace { 1068 1069 /// Distributes functions into instantiation sets. 1070 /// 1071 /// An instantiation set is a collection of functions that have the same source 1072 /// code, ie, template functions specializations. 1073 class FunctionInstantiationSetCollector { 1074 using MapT = std::map<LineColPair, std::vector<const FunctionRecord *>>; 1075 MapT InstantiatedFunctions; 1076 1077 public: 1078 void insert(const FunctionRecord &Function, unsigned FileID) { 1079 auto I = Function.CountedRegions.begin(), E = Function.CountedRegions.end(); 1080 while (I != E && I->FileID != FileID) 1081 ++I; 1082 assert(I != E && "function does not cover the given file"); 1083 auto &Functions = InstantiatedFunctions[I->startLoc()]; 1084 Functions.push_back(&Function); 1085 } 1086 1087 MapT::iterator begin() { return InstantiatedFunctions.begin(); } 1088 MapT::iterator end() { return InstantiatedFunctions.end(); } 1089 }; 1090 1091 class SegmentBuilder { 1092 std::vector<CoverageSegment> &Segments; 1093 SmallVector<const CountedRegion *, 8> ActiveRegions; 1094 1095 SegmentBuilder(std::vector<CoverageSegment> &Segments) : Segments(Segments) {} 1096 1097 /// Emit a segment with the count from \p Region starting at \p StartLoc. 1098 // 1099 /// \p IsRegionEntry: The segment is at the start of a new non-gap region. 1100 /// \p EmitSkippedRegion: The segment must be emitted as a skipped region. 1101 void startSegment(const CountedRegion &Region, LineColPair StartLoc, 1102 bool IsRegionEntry, bool EmitSkippedRegion = false) { 1103 bool HasCount = !EmitSkippedRegion && 1104 (Region.Kind != CounterMappingRegion::SkippedRegion); 1105 1106 // If the new segment wouldn't affect coverage rendering, skip it. 1107 if (!Segments.empty() && !IsRegionEntry && !EmitSkippedRegion) { 1108 const auto &Last = Segments.back(); 1109 if (Last.HasCount == HasCount && Last.Count == Region.ExecutionCount && 1110 !Last.IsRegionEntry) 1111 return; 1112 } 1113 1114 if (HasCount) 1115 Segments.emplace_back(StartLoc.first, StartLoc.second, 1116 Region.ExecutionCount, IsRegionEntry, 1117 Region.Kind == CounterMappingRegion::GapRegion); 1118 else 1119 Segments.emplace_back(StartLoc.first, StartLoc.second, IsRegionEntry); 1120 1121 LLVM_DEBUG({ 1122 const auto &Last = Segments.back(); 1123 dbgs() << "Segment at " << Last.Line << ":" << Last.Col 1124 << " (count = " << Last.Count << ")" 1125 << (Last.IsRegionEntry ? ", RegionEntry" : "") 1126 << (!Last.HasCount ? ", Skipped" : "") 1127 << (Last.IsGapRegion ? ", Gap" : "") << "\n"; 1128 }); 1129 } 1130 1131 /// Emit segments for active regions which end before \p Loc. 1132 /// 1133 /// \p Loc: The start location of the next region. If std::nullopt, all active 1134 /// regions are completed. 1135 /// \p FirstCompletedRegion: Index of the first completed region. 1136 void completeRegionsUntil(std::optional<LineColPair> Loc, 1137 unsigned FirstCompletedRegion) { 1138 // Sort the completed regions by end location. This makes it simple to 1139 // emit closing segments in sorted order. 1140 auto CompletedRegionsIt = ActiveRegions.begin() + FirstCompletedRegion; 1141 std::stable_sort(CompletedRegionsIt, ActiveRegions.end(), 1142 [](const CountedRegion *L, const CountedRegion *R) { 1143 return L->endLoc() < R->endLoc(); 1144 }); 1145 1146 // Emit segments for all completed regions. 1147 for (unsigned I = FirstCompletedRegion + 1, E = ActiveRegions.size(); I < E; 1148 ++I) { 1149 const auto *CompletedRegion = ActiveRegions[I]; 1150 assert((!Loc || CompletedRegion->endLoc() <= *Loc) && 1151 "Completed region ends after start of new region"); 1152 1153 const auto *PrevCompletedRegion = ActiveRegions[I - 1]; 1154 auto CompletedSegmentLoc = PrevCompletedRegion->endLoc(); 1155 1156 // Don't emit any more segments if they start where the new region begins. 1157 if (Loc && CompletedSegmentLoc == *Loc) 1158 break; 1159 1160 // Don't emit a segment if the next completed region ends at the same 1161 // location as this one. 1162 if (CompletedSegmentLoc == CompletedRegion->endLoc()) 1163 continue; 1164 1165 // Use the count from the last completed region which ends at this loc. 1166 for (unsigned J = I + 1; J < E; ++J) 1167 if (CompletedRegion->endLoc() == ActiveRegions[J]->endLoc()) 1168 CompletedRegion = ActiveRegions[J]; 1169 1170 startSegment(*CompletedRegion, CompletedSegmentLoc, false); 1171 } 1172 1173 auto Last = ActiveRegions.back(); 1174 if (FirstCompletedRegion && Last->endLoc() != *Loc) { 1175 // If there's a gap after the end of the last completed region and the 1176 // start of the new region, use the last active region to fill the gap. 1177 startSegment(*ActiveRegions[FirstCompletedRegion - 1], Last->endLoc(), 1178 false); 1179 } else if (!FirstCompletedRegion && (!Loc || *Loc != Last->endLoc())) { 1180 // Emit a skipped segment if there are no more active regions. This 1181 // ensures that gaps between functions are marked correctly. 1182 startSegment(*Last, Last->endLoc(), false, true); 1183 } 1184 1185 // Pop the completed regions. 1186 ActiveRegions.erase(CompletedRegionsIt, ActiveRegions.end()); 1187 } 1188 1189 void buildSegmentsImpl(ArrayRef<CountedRegion> Regions) { 1190 for (const auto &CR : enumerate(Regions)) { 1191 auto CurStartLoc = CR.value().startLoc(); 1192 1193 // Active regions which end before the current region need to be popped. 1194 auto CompletedRegions = 1195 std::stable_partition(ActiveRegions.begin(), ActiveRegions.end(), 1196 [&](const CountedRegion *Region) { 1197 return !(Region->endLoc() <= CurStartLoc); 1198 }); 1199 if (CompletedRegions != ActiveRegions.end()) { 1200 unsigned FirstCompletedRegion = 1201 std::distance(ActiveRegions.begin(), CompletedRegions); 1202 completeRegionsUntil(CurStartLoc, FirstCompletedRegion); 1203 } 1204 1205 bool GapRegion = CR.value().Kind == CounterMappingRegion::GapRegion; 1206 1207 // Try to emit a segment for the current region. 1208 if (CurStartLoc == CR.value().endLoc()) { 1209 // Avoid making zero-length regions active. If it's the last region, 1210 // emit a skipped segment. Otherwise use its predecessor's count. 1211 const bool Skipped = 1212 (CR.index() + 1) == Regions.size() || 1213 CR.value().Kind == CounterMappingRegion::SkippedRegion; 1214 startSegment(ActiveRegions.empty() ? CR.value() : *ActiveRegions.back(), 1215 CurStartLoc, !GapRegion, Skipped); 1216 // If it is skipped segment, create a segment with last pushed 1217 // regions's count at CurStartLoc. 1218 if (Skipped && !ActiveRegions.empty()) 1219 startSegment(*ActiveRegions.back(), CurStartLoc, false); 1220 continue; 1221 } 1222 if (CR.index() + 1 == Regions.size() || 1223 CurStartLoc != Regions[CR.index() + 1].startLoc()) { 1224 // Emit a segment if the next region doesn't start at the same location 1225 // as this one. 1226 startSegment(CR.value(), CurStartLoc, !GapRegion); 1227 } 1228 1229 // This region is active (i.e not completed). 1230 ActiveRegions.push_back(&CR.value()); 1231 } 1232 1233 // Complete any remaining active regions. 1234 if (!ActiveRegions.empty()) 1235 completeRegionsUntil(std::nullopt, 0); 1236 } 1237 1238 /// Sort a nested sequence of regions from a single file. 1239 static void sortNestedRegions(MutableArrayRef<CountedRegion> Regions) { 1240 llvm::sort(Regions, [](const CountedRegion &LHS, const CountedRegion &RHS) { 1241 if (LHS.startLoc() != RHS.startLoc()) 1242 return LHS.startLoc() < RHS.startLoc(); 1243 if (LHS.endLoc() != RHS.endLoc()) 1244 // When LHS completely contains RHS, we sort LHS first. 1245 return RHS.endLoc() < LHS.endLoc(); 1246 // If LHS and RHS cover the same area, we need to sort them according 1247 // to their kinds so that the most suitable region will become "active" 1248 // in combineRegions(). Because we accumulate counter values only from 1249 // regions of the same kind as the first region of the area, prefer 1250 // CodeRegion to ExpansionRegion and ExpansionRegion to SkippedRegion. 1251 static_assert(CounterMappingRegion::CodeRegion < 1252 CounterMappingRegion::ExpansionRegion && 1253 CounterMappingRegion::ExpansionRegion < 1254 CounterMappingRegion::SkippedRegion, 1255 "Unexpected order of region kind values"); 1256 return LHS.Kind < RHS.Kind; 1257 }); 1258 } 1259 1260 /// Combine counts of regions which cover the same area. 1261 static ArrayRef<CountedRegion> 1262 combineRegions(MutableArrayRef<CountedRegion> Regions) { 1263 if (Regions.empty()) 1264 return Regions; 1265 auto Active = Regions.begin(); 1266 auto End = Regions.end(); 1267 for (auto I = Regions.begin() + 1; I != End; ++I) { 1268 if (Active->startLoc() != I->startLoc() || 1269 Active->endLoc() != I->endLoc()) { 1270 // Shift to the next region. 1271 ++Active; 1272 if (Active != I) 1273 *Active = *I; 1274 continue; 1275 } 1276 // Merge duplicate region. 1277 // If CodeRegions and ExpansionRegions cover the same area, it's probably 1278 // a macro which is fully expanded to another macro. In that case, we need 1279 // to accumulate counts only from CodeRegions, or else the area will be 1280 // counted twice. 1281 // On the other hand, a macro may have a nested macro in its body. If the 1282 // outer macro is used several times, the ExpansionRegion for the nested 1283 // macro will also be added several times. These ExpansionRegions cover 1284 // the same source locations and have to be combined to reach the correct 1285 // value for that area. 1286 // We add counts of the regions of the same kind as the active region 1287 // to handle the both situations. 1288 if (I->Kind == Active->Kind) { 1289 assert(I->HasSingleByteCoverage == Active->HasSingleByteCoverage && 1290 "Regions are generated in different coverage modes"); 1291 if (I->HasSingleByteCoverage) 1292 Active->ExecutionCount = Active->ExecutionCount || I->ExecutionCount; 1293 else 1294 Active->ExecutionCount += I->ExecutionCount; 1295 } 1296 } 1297 return Regions.drop_back(std::distance(++Active, End)); 1298 } 1299 1300 public: 1301 /// Build a sorted list of CoverageSegments from a list of Regions. 1302 static std::vector<CoverageSegment> 1303 buildSegments(MutableArrayRef<CountedRegion> Regions) { 1304 std::vector<CoverageSegment> Segments; 1305 SegmentBuilder Builder(Segments); 1306 1307 sortNestedRegions(Regions); 1308 ArrayRef<CountedRegion> CombinedRegions = combineRegions(Regions); 1309 1310 LLVM_DEBUG({ 1311 dbgs() << "Combined regions:\n"; 1312 for (const auto &CR : CombinedRegions) 1313 dbgs() << " " << CR.LineStart << ":" << CR.ColumnStart << " -> " 1314 << CR.LineEnd << ":" << CR.ColumnEnd 1315 << " (count=" << CR.ExecutionCount << ")\n"; 1316 }); 1317 1318 Builder.buildSegmentsImpl(CombinedRegions); 1319 1320 #ifndef NDEBUG 1321 for (unsigned I = 1, E = Segments.size(); I < E; ++I) { 1322 const auto &L = Segments[I - 1]; 1323 const auto &R = Segments[I]; 1324 if (!(L.Line < R.Line) && !(L.Line == R.Line && L.Col < R.Col)) { 1325 if (L.Line == R.Line && L.Col == R.Col && !L.HasCount) 1326 continue; 1327 LLVM_DEBUG(dbgs() << " ! Segment " << L.Line << ":" << L.Col 1328 << " followed by " << R.Line << ":" << R.Col << "\n"); 1329 assert(false && "Coverage segments not unique or sorted"); 1330 } 1331 } 1332 #endif 1333 1334 return Segments; 1335 } 1336 }; 1337 1338 } // end anonymous namespace 1339 1340 std::vector<StringRef> CoverageMapping::getUniqueSourceFiles() const { 1341 std::vector<StringRef> Filenames; 1342 for (const auto &Function : getCoveredFunctions()) 1343 llvm::append_range(Filenames, Function.Filenames); 1344 llvm::sort(Filenames); 1345 auto Last = std::unique(Filenames.begin(), Filenames.end()); 1346 Filenames.erase(Last, Filenames.end()); 1347 return Filenames; 1348 } 1349 1350 static SmallBitVector gatherFileIDs(StringRef SourceFile, 1351 const FunctionRecord &Function) { 1352 SmallBitVector FilenameEquivalence(Function.Filenames.size(), false); 1353 for (unsigned I = 0, E = Function.Filenames.size(); I < E; ++I) 1354 if (SourceFile == Function.Filenames[I]) 1355 FilenameEquivalence[I] = true; 1356 return FilenameEquivalence; 1357 } 1358 1359 /// Return the ID of the file where the definition of the function is located. 1360 static std::optional<unsigned> 1361 findMainViewFileID(const FunctionRecord &Function) { 1362 SmallBitVector IsNotExpandedFile(Function.Filenames.size(), true); 1363 for (const auto &CR : Function.CountedRegions) 1364 if (CR.Kind == CounterMappingRegion::ExpansionRegion) 1365 IsNotExpandedFile[CR.ExpandedFileID] = false; 1366 int I = IsNotExpandedFile.find_first(); 1367 if (I == -1) 1368 return std::nullopt; 1369 return I; 1370 } 1371 1372 /// Check if SourceFile is the file that contains the definition of 1373 /// the Function. Return the ID of the file in that case or std::nullopt 1374 /// otherwise. 1375 static std::optional<unsigned> 1376 findMainViewFileID(StringRef SourceFile, const FunctionRecord &Function) { 1377 std::optional<unsigned> I = findMainViewFileID(Function); 1378 if (I && SourceFile == Function.Filenames[*I]) 1379 return I; 1380 return std::nullopt; 1381 } 1382 1383 static bool isExpansion(const CountedRegion &R, unsigned FileID) { 1384 return R.Kind == CounterMappingRegion::ExpansionRegion && R.FileID == FileID; 1385 } 1386 1387 CoverageData CoverageMapping::getCoverageForFile(StringRef Filename) const { 1388 CoverageData FileCoverage(Filename); 1389 std::vector<CountedRegion> Regions; 1390 1391 // Look up the function records in the given file. Due to hash collisions on 1392 // the filename, we may get back some records that are not in the file. 1393 ArrayRef<unsigned> RecordIndices = 1394 getImpreciseRecordIndicesForFilename(Filename); 1395 for (unsigned RecordIndex : RecordIndices) { 1396 const FunctionRecord &Function = Functions[RecordIndex]; 1397 auto MainFileID = findMainViewFileID(Filename, Function); 1398 auto FileIDs = gatherFileIDs(Filename, Function); 1399 for (const auto &CR : Function.CountedRegions) 1400 if (FileIDs.test(CR.FileID)) { 1401 Regions.push_back(CR); 1402 if (MainFileID && isExpansion(CR, *MainFileID)) 1403 FileCoverage.Expansions.emplace_back(CR, Function); 1404 } 1405 // Capture branch regions specific to the function (excluding expansions). 1406 for (const auto &CR : Function.CountedBranchRegions) 1407 if (FileIDs.test(CR.FileID) && (CR.FileID == CR.ExpandedFileID)) 1408 FileCoverage.BranchRegions.push_back(CR); 1409 // Capture MCDC records specific to the function. 1410 for (const auto &MR : Function.MCDCRecords) 1411 if (FileIDs.test(MR.getDecisionRegion().FileID)) 1412 FileCoverage.MCDCRecords.push_back(MR); 1413 } 1414 1415 LLVM_DEBUG(dbgs() << "Emitting segments for file: " << Filename << "\n"); 1416 FileCoverage.Segments = SegmentBuilder::buildSegments(Regions); 1417 1418 return FileCoverage; 1419 } 1420 1421 std::vector<InstantiationGroup> 1422 CoverageMapping::getInstantiationGroups(StringRef Filename) const { 1423 FunctionInstantiationSetCollector InstantiationSetCollector; 1424 // Look up the function records in the given file. Due to hash collisions on 1425 // the filename, we may get back some records that are not in the file. 1426 ArrayRef<unsigned> RecordIndices = 1427 getImpreciseRecordIndicesForFilename(Filename); 1428 for (unsigned RecordIndex : RecordIndices) { 1429 const FunctionRecord &Function = Functions[RecordIndex]; 1430 auto MainFileID = findMainViewFileID(Filename, Function); 1431 if (!MainFileID) 1432 continue; 1433 InstantiationSetCollector.insert(Function, *MainFileID); 1434 } 1435 1436 std::vector<InstantiationGroup> Result; 1437 for (auto &InstantiationSet : InstantiationSetCollector) { 1438 InstantiationGroup IG{InstantiationSet.first.first, 1439 InstantiationSet.first.second, 1440 std::move(InstantiationSet.second)}; 1441 Result.emplace_back(std::move(IG)); 1442 } 1443 return Result; 1444 } 1445 1446 CoverageData 1447 CoverageMapping::getCoverageForFunction(const FunctionRecord &Function) const { 1448 auto MainFileID = findMainViewFileID(Function); 1449 if (!MainFileID) 1450 return CoverageData(); 1451 1452 CoverageData FunctionCoverage(Function.Filenames[*MainFileID]); 1453 std::vector<CountedRegion> Regions; 1454 for (const auto &CR : Function.CountedRegions) 1455 if (CR.FileID == *MainFileID) { 1456 Regions.push_back(CR); 1457 if (isExpansion(CR, *MainFileID)) 1458 FunctionCoverage.Expansions.emplace_back(CR, Function); 1459 } 1460 // Capture branch regions specific to the function (excluding expansions). 1461 for (const auto &CR : Function.CountedBranchRegions) 1462 if (CR.FileID == *MainFileID) 1463 FunctionCoverage.BranchRegions.push_back(CR); 1464 1465 // Capture MCDC records specific to the function. 1466 for (const auto &MR : Function.MCDCRecords) 1467 if (MR.getDecisionRegion().FileID == *MainFileID) 1468 FunctionCoverage.MCDCRecords.push_back(MR); 1469 1470 LLVM_DEBUG(dbgs() << "Emitting segments for function: " << Function.Name 1471 << "\n"); 1472 FunctionCoverage.Segments = SegmentBuilder::buildSegments(Regions); 1473 1474 return FunctionCoverage; 1475 } 1476 1477 CoverageData CoverageMapping::getCoverageForExpansion( 1478 const ExpansionRecord &Expansion) const { 1479 CoverageData ExpansionCoverage( 1480 Expansion.Function.Filenames[Expansion.FileID]); 1481 std::vector<CountedRegion> Regions; 1482 for (const auto &CR : Expansion.Function.CountedRegions) 1483 if (CR.FileID == Expansion.FileID) { 1484 Regions.push_back(CR); 1485 if (isExpansion(CR, Expansion.FileID)) 1486 ExpansionCoverage.Expansions.emplace_back(CR, Expansion.Function); 1487 } 1488 for (const auto &CR : Expansion.Function.CountedBranchRegions) 1489 // Capture branch regions that only pertain to the corresponding expansion. 1490 if (CR.FileID == Expansion.FileID) 1491 ExpansionCoverage.BranchRegions.push_back(CR); 1492 1493 LLVM_DEBUG(dbgs() << "Emitting segments for expansion of file " 1494 << Expansion.FileID << "\n"); 1495 ExpansionCoverage.Segments = SegmentBuilder::buildSegments(Regions); 1496 1497 return ExpansionCoverage; 1498 } 1499 1500 LineCoverageStats::LineCoverageStats( 1501 ArrayRef<const CoverageSegment *> LineSegments, 1502 const CoverageSegment *WrappedSegment, unsigned Line) 1503 : ExecutionCount(0), HasMultipleRegions(false), Mapped(false), Line(Line), 1504 LineSegments(LineSegments), WrappedSegment(WrappedSegment) { 1505 // Find the minimum number of regions which start in this line. 1506 unsigned MinRegionCount = 0; 1507 auto isStartOfRegion = [](const CoverageSegment *S) { 1508 return !S->IsGapRegion && S->HasCount && S->IsRegionEntry; 1509 }; 1510 for (unsigned I = 0; I < LineSegments.size() && MinRegionCount < 2; ++I) 1511 if (isStartOfRegion(LineSegments[I])) 1512 ++MinRegionCount; 1513 1514 bool StartOfSkippedRegion = !LineSegments.empty() && 1515 !LineSegments.front()->HasCount && 1516 LineSegments.front()->IsRegionEntry; 1517 1518 HasMultipleRegions = MinRegionCount > 1; 1519 Mapped = 1520 !StartOfSkippedRegion && 1521 ((WrappedSegment && WrappedSegment->HasCount) || (MinRegionCount > 0)); 1522 1523 // if there is any starting segment at this line with a counter, it must be 1524 // mapped 1525 Mapped |= std::any_of( 1526 LineSegments.begin(), LineSegments.end(), 1527 [](const auto *Seq) { return Seq->IsRegionEntry && Seq->HasCount; }); 1528 1529 if (!Mapped) { 1530 return; 1531 } 1532 1533 // Pick the max count from the non-gap, region entry segments and the 1534 // wrapped count. 1535 if (WrappedSegment) 1536 ExecutionCount = WrappedSegment->Count; 1537 if (!MinRegionCount) 1538 return; 1539 for (const auto *LS : LineSegments) 1540 if (isStartOfRegion(LS)) 1541 ExecutionCount = std::max(ExecutionCount, LS->Count); 1542 } 1543 1544 LineCoverageIterator &LineCoverageIterator::operator++() { 1545 if (Next == CD.end()) { 1546 Stats = LineCoverageStats(); 1547 Ended = true; 1548 return *this; 1549 } 1550 if (Segments.size()) 1551 WrappedSegment = Segments.back(); 1552 Segments.clear(); 1553 while (Next != CD.end() && Next->Line == Line) 1554 Segments.push_back(&*Next++); 1555 Stats = LineCoverageStats(Segments, WrappedSegment, Line); 1556 ++Line; 1557 return *this; 1558 } 1559 1560 static std::string getCoverageMapErrString(coveragemap_error Err, 1561 const std::string &ErrMsg = "") { 1562 std::string Msg; 1563 raw_string_ostream OS(Msg); 1564 1565 switch (Err) { 1566 case coveragemap_error::success: 1567 OS << "success"; 1568 break; 1569 case coveragemap_error::eof: 1570 OS << "end of File"; 1571 break; 1572 case coveragemap_error::no_data_found: 1573 OS << "no coverage data found"; 1574 break; 1575 case coveragemap_error::unsupported_version: 1576 OS << "unsupported coverage format version"; 1577 break; 1578 case coveragemap_error::truncated: 1579 OS << "truncated coverage data"; 1580 break; 1581 case coveragemap_error::malformed: 1582 OS << "malformed coverage data"; 1583 break; 1584 case coveragemap_error::decompression_failed: 1585 OS << "failed to decompress coverage data (zlib)"; 1586 break; 1587 case coveragemap_error::invalid_or_missing_arch_specifier: 1588 OS << "`-arch` specifier is invalid or missing for universal binary"; 1589 break; 1590 } 1591 1592 // If optional error message is not empty, append it to the message. 1593 if (!ErrMsg.empty()) 1594 OS << ": " << ErrMsg; 1595 1596 return Msg; 1597 } 1598 1599 namespace { 1600 1601 // FIXME: This class is only here to support the transition to llvm::Error. It 1602 // will be removed once this transition is complete. Clients should prefer to 1603 // deal with the Error value directly, rather than converting to error_code. 1604 class CoverageMappingErrorCategoryType : public std::error_category { 1605 const char *name() const noexcept override { return "llvm.coveragemap"; } 1606 std::string message(int IE) const override { 1607 return getCoverageMapErrString(static_cast<coveragemap_error>(IE)); 1608 } 1609 }; 1610 1611 } // end anonymous namespace 1612 1613 std::string CoverageMapError::message() const { 1614 return getCoverageMapErrString(Err, Msg); 1615 } 1616 1617 const std::error_category &llvm::coverage::coveragemap_category() { 1618 static CoverageMappingErrorCategoryType ErrorCategory; 1619 return ErrorCategory; 1620 } 1621 1622 char CoverageMapError::ID = 0; 1623