1 //===- CoverageMapping.cpp - Code coverage mapping support ----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains support for clang's and llvm's instrumentation based 10 // code coverage. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/ProfileData/Coverage/CoverageMapping.h" 15 #include "llvm/ADT/ArrayRef.h" 16 #include "llvm/ADT/DenseMap.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/SmallBitVector.h" 19 #include "llvm/ADT/SmallVector.h" 20 #include "llvm/ADT/StringExtras.h" 21 #include "llvm/ADT/StringRef.h" 22 #include "llvm/Object/BuildID.h" 23 #include "llvm/ProfileData/Coverage/CoverageMappingReader.h" 24 #include "llvm/ProfileData/InstrProfReader.h" 25 #include "llvm/Support/Debug.h" 26 #include "llvm/Support/Errc.h" 27 #include "llvm/Support/Error.h" 28 #include "llvm/Support/ErrorHandling.h" 29 #include "llvm/Support/MemoryBuffer.h" 30 #include "llvm/Support/VirtualFileSystem.h" 31 #include "llvm/Support/raw_ostream.h" 32 #include <algorithm> 33 #include <cassert> 34 #include <cmath> 35 #include <cstdint> 36 #include <iterator> 37 #include <map> 38 #include <memory> 39 #include <optional> 40 #include <stack> 41 #include <string> 42 #include <system_error> 43 #include <utility> 44 #include <vector> 45 46 using namespace llvm; 47 using namespace coverage; 48 49 #define DEBUG_TYPE "coverage-mapping" 50 51 Counter CounterExpressionBuilder::get(const CounterExpression &E) { 52 auto [It, Inserted] = ExpressionIndices.try_emplace(E, Expressions.size()); 53 if (Inserted) 54 Expressions.push_back(E); 55 return Counter::getExpression(It->second); 56 } 57 58 void CounterExpressionBuilder::extractTerms(Counter C, int Factor, 59 SmallVectorImpl<Term> &Terms) { 60 switch (C.getKind()) { 61 case Counter::Zero: 62 break; 63 case Counter::CounterValueReference: 64 Terms.emplace_back(C.getCounterID(), Factor); 65 break; 66 case Counter::Expression: 67 const auto &E = Expressions[C.getExpressionID()]; 68 extractTerms(E.LHS, Factor, Terms); 69 extractTerms( 70 E.RHS, E.Kind == CounterExpression::Subtract ? -Factor : Factor, Terms); 71 break; 72 } 73 } 74 75 Counter CounterExpressionBuilder::simplify(Counter ExpressionTree) { 76 // Gather constant terms. 77 SmallVector<Term, 32> Terms; 78 extractTerms(ExpressionTree, +1, Terms); 79 80 // If there are no terms, this is just a zero. The algorithm below assumes at 81 // least one term. 82 if (Terms.size() == 0) 83 return Counter::getZero(); 84 85 // Group the terms by counter ID. 86 llvm::sort(Terms, [](const Term &LHS, const Term &RHS) { 87 return LHS.CounterID < RHS.CounterID; 88 }); 89 90 // Combine terms by counter ID to eliminate counters that sum to zero. 91 auto Prev = Terms.begin(); 92 for (auto I = Prev + 1, E = Terms.end(); I != E; ++I) { 93 if (I->CounterID == Prev->CounterID) { 94 Prev->Factor += I->Factor; 95 continue; 96 } 97 ++Prev; 98 *Prev = *I; 99 } 100 Terms.erase(++Prev, Terms.end()); 101 102 Counter C; 103 // Create additions. We do this before subtractions to avoid constructs like 104 // ((0 - X) + Y), as opposed to (Y - X). 105 for (auto T : Terms) { 106 if (T.Factor <= 0) 107 continue; 108 for (int I = 0; I < T.Factor; ++I) 109 if (C.isZero()) 110 C = Counter::getCounter(T.CounterID); 111 else 112 C = get(CounterExpression(CounterExpression::Add, C, 113 Counter::getCounter(T.CounterID))); 114 } 115 116 // Create subtractions. 117 for (auto T : Terms) { 118 if (T.Factor >= 0) 119 continue; 120 for (int I = 0; I < -T.Factor; ++I) 121 C = get(CounterExpression(CounterExpression::Subtract, C, 122 Counter::getCounter(T.CounterID))); 123 } 124 return C; 125 } 126 127 Counter CounterExpressionBuilder::add(Counter LHS, Counter RHS, bool Simplify) { 128 auto Cnt = get(CounterExpression(CounterExpression::Add, LHS, RHS)); 129 return Simplify ? simplify(Cnt) : Cnt; 130 } 131 132 Counter CounterExpressionBuilder::subtract(Counter LHS, Counter RHS, 133 bool Simplify) { 134 auto Cnt = get(CounterExpression(CounterExpression::Subtract, LHS, RHS)); 135 return Simplify ? simplify(Cnt) : Cnt; 136 } 137 138 void CounterMappingContext::dump(const Counter &C, raw_ostream &OS) const { 139 switch (C.getKind()) { 140 case Counter::Zero: 141 OS << '0'; 142 return; 143 case Counter::CounterValueReference: 144 OS << '#' << C.getCounterID(); 145 break; 146 case Counter::Expression: { 147 if (C.getExpressionID() >= Expressions.size()) 148 return; 149 const auto &E = Expressions[C.getExpressionID()]; 150 OS << '('; 151 dump(E.LHS, OS); 152 OS << (E.Kind == CounterExpression::Subtract ? " - " : " + "); 153 dump(E.RHS, OS); 154 OS << ')'; 155 break; 156 } 157 } 158 if (CounterValues.empty()) 159 return; 160 Expected<int64_t> Value = evaluate(C); 161 if (auto E = Value.takeError()) { 162 consumeError(std::move(E)); 163 return; 164 } 165 OS << '[' << *Value << ']'; 166 } 167 168 Expected<int64_t> CounterMappingContext::evaluate(const Counter &C) const { 169 struct StackElem { 170 Counter ICounter; 171 int64_t LHS = 0; 172 enum { 173 KNeverVisited = 0, 174 KVisitedOnce = 1, 175 KVisitedTwice = 2, 176 } VisitCount = KNeverVisited; 177 }; 178 179 std::stack<StackElem> CounterStack; 180 CounterStack.push({C}); 181 182 int64_t LastPoppedValue; 183 184 while (!CounterStack.empty()) { 185 StackElem &Current = CounterStack.top(); 186 187 switch (Current.ICounter.getKind()) { 188 case Counter::Zero: 189 LastPoppedValue = 0; 190 CounterStack.pop(); 191 break; 192 case Counter::CounterValueReference: 193 if (Current.ICounter.getCounterID() >= CounterValues.size()) 194 return errorCodeToError(errc::argument_out_of_domain); 195 LastPoppedValue = CounterValues[Current.ICounter.getCounterID()]; 196 CounterStack.pop(); 197 break; 198 case Counter::Expression: { 199 if (Current.ICounter.getExpressionID() >= Expressions.size()) 200 return errorCodeToError(errc::argument_out_of_domain); 201 const auto &E = Expressions[Current.ICounter.getExpressionID()]; 202 if (Current.VisitCount == StackElem::KNeverVisited) { 203 CounterStack.push(StackElem{E.LHS}); 204 Current.VisitCount = StackElem::KVisitedOnce; 205 } else if (Current.VisitCount == StackElem::KVisitedOnce) { 206 Current.LHS = LastPoppedValue; 207 CounterStack.push(StackElem{E.RHS}); 208 Current.VisitCount = StackElem::KVisitedTwice; 209 } else { 210 int64_t LHS = Current.LHS; 211 int64_t RHS = LastPoppedValue; 212 LastPoppedValue = 213 E.Kind == CounterExpression::Subtract ? LHS - RHS : LHS + RHS; 214 CounterStack.pop(); 215 } 216 break; 217 } 218 } 219 } 220 221 return LastPoppedValue; 222 } 223 224 mcdc::TVIdxBuilder::TVIdxBuilder(const SmallVectorImpl<ConditionIDs> &NextIDs, 225 int Offset) 226 : Indices(NextIDs.size()) { 227 // Construct Nodes and set up each InCount 228 auto N = NextIDs.size(); 229 SmallVector<MCDCNode> Nodes(N); 230 for (unsigned ID = 0; ID < N; ++ID) { 231 for (unsigned C = 0; C < 2; ++C) { 232 #ifndef NDEBUG 233 Indices[ID][C] = INT_MIN; 234 #endif 235 auto NextID = NextIDs[ID][C]; 236 Nodes[ID].NextIDs[C] = NextID; 237 if (NextID >= 0) 238 ++Nodes[NextID].InCount; 239 } 240 } 241 242 // Sort key ordered by <-Width, Ord> 243 SmallVector<std::tuple<int, /// -Width 244 unsigned, /// Ord 245 int, /// ID 246 unsigned /// Cond (0 or 1) 247 >> 248 Decisions; 249 250 // Traverse Nodes to assign Idx 251 SmallVector<int> Q; 252 assert(Nodes[0].InCount == 0); 253 Nodes[0].Width = 1; 254 Q.push_back(0); 255 256 unsigned Ord = 0; 257 while (!Q.empty()) { 258 auto IID = Q.begin(); 259 int ID = *IID; 260 Q.erase(IID); 261 auto &Node = Nodes[ID]; 262 assert(Node.Width > 0); 263 264 for (unsigned I = 0; I < 2; ++I) { 265 auto NextID = Node.NextIDs[I]; 266 assert(NextID != 0 && "NextID should not point to the top"); 267 if (NextID < 0) { 268 // Decision 269 Decisions.emplace_back(-Node.Width, Ord++, ID, I); 270 assert(Ord == Decisions.size()); 271 continue; 272 } 273 274 // Inter Node 275 auto &NextNode = Nodes[NextID]; 276 assert(NextNode.InCount > 0); 277 278 // Assign Idx 279 assert(Indices[ID][I] == INT_MIN); 280 Indices[ID][I] = NextNode.Width; 281 auto NextWidth = int64_t(NextNode.Width) + Node.Width; 282 if (NextWidth > HardMaxTVs) { 283 NumTestVectors = HardMaxTVs; // Overflow 284 return; 285 } 286 NextNode.Width = NextWidth; 287 288 // Ready if all incomings are processed. 289 // Or NextNode.Width hasn't been confirmed yet. 290 if (--NextNode.InCount == 0) 291 Q.push_back(NextID); 292 } 293 } 294 295 llvm::sort(Decisions); 296 297 // Assign TestVector Indices in Decision Nodes 298 int64_t CurIdx = 0; 299 for (auto [NegWidth, Ord, ID, C] : Decisions) { 300 int Width = -NegWidth; 301 assert(Nodes[ID].Width == Width); 302 assert(Nodes[ID].NextIDs[C] < 0); 303 assert(Indices[ID][C] == INT_MIN); 304 Indices[ID][C] = Offset + CurIdx; 305 CurIdx += Width; 306 if (CurIdx > HardMaxTVs) { 307 NumTestVectors = HardMaxTVs; // Overflow 308 return; 309 } 310 } 311 312 assert(CurIdx < HardMaxTVs); 313 NumTestVectors = CurIdx; 314 315 #ifndef NDEBUG 316 for (const auto &Idxs : Indices) 317 for (auto Idx : Idxs) 318 assert(Idx != INT_MIN); 319 SavedNodes = std::move(Nodes); 320 #endif 321 } 322 323 namespace { 324 325 /// Construct this->NextIDs with Branches for TVIdxBuilder to use it 326 /// before MCDCRecordProcessor(). 327 class NextIDsBuilder { 328 protected: 329 SmallVector<mcdc::ConditionIDs> NextIDs; 330 331 public: 332 NextIDsBuilder(const ArrayRef<const CounterMappingRegion *> Branches) 333 : NextIDs(Branches.size()) { 334 #ifndef NDEBUG 335 DenseSet<mcdc::ConditionID> SeenIDs; 336 #endif 337 for (const auto *Branch : Branches) { 338 const auto &BranchParams = Branch->getBranchParams(); 339 assert(SeenIDs.insert(BranchParams.ID).second && "Duplicate CondID"); 340 NextIDs[BranchParams.ID] = BranchParams.Conds; 341 } 342 assert(SeenIDs.size() == Branches.size()); 343 } 344 }; 345 346 class MCDCRecordProcessor : NextIDsBuilder, mcdc::TVIdxBuilder { 347 /// A bitmap representing the executed test vectors for a boolean expression. 348 /// Each index of the bitmap corresponds to a possible test vector. An index 349 /// with a bit value of '1' indicates that the corresponding Test Vector 350 /// identified by that index was executed. 351 const BitVector &Bitmap; 352 353 /// Decision Region to which the ExecutedTestVectorBitmap applies. 354 const CounterMappingRegion &Region; 355 const mcdc::DecisionParameters &DecisionParams; 356 357 /// Array of branch regions corresponding each conditions in the boolean 358 /// expression. 359 ArrayRef<const CounterMappingRegion *> Branches; 360 361 /// Total number of conditions in the boolean expression. 362 unsigned NumConditions; 363 364 /// Vector used to track whether a condition is constant folded. 365 MCDCRecord::BoolVector Folded; 366 367 /// Mapping of calculated MC/DC Independence Pairs for each condition. 368 MCDCRecord::TVPairMap IndependencePairs; 369 370 /// Storage for ExecVectors 371 /// ExecVectors is the alias of its 0th element. 372 std::array<MCDCRecord::TestVectors, 2> ExecVectorsByCond; 373 374 /// Actual executed Test Vectors for the boolean expression, based on 375 /// ExecutedTestVectorBitmap. 376 MCDCRecord::TestVectors &ExecVectors; 377 378 /// Number of False items in ExecVectors 379 unsigned NumExecVectorsF; 380 381 #ifndef NDEBUG 382 DenseSet<unsigned> TVIdxs; 383 #endif 384 385 bool IsVersion11; 386 387 public: 388 MCDCRecordProcessor(const BitVector &Bitmap, 389 const CounterMappingRegion &Region, 390 ArrayRef<const CounterMappingRegion *> Branches, 391 bool IsVersion11) 392 : NextIDsBuilder(Branches), TVIdxBuilder(this->NextIDs), Bitmap(Bitmap), 393 Region(Region), DecisionParams(Region.getDecisionParams()), 394 Branches(Branches), NumConditions(DecisionParams.NumConditions), 395 Folded(NumConditions, false), IndependencePairs(NumConditions), 396 ExecVectors(ExecVectorsByCond[false]), IsVersion11(IsVersion11) {} 397 398 private: 399 // Walk the binary decision diagram and try assigning both false and true to 400 // each node. When a terminal node (ID == 0) is reached, fill in the value in 401 // the truth table. 402 void buildTestVector(MCDCRecord::TestVector &TV, mcdc::ConditionID ID, 403 int TVIdx) { 404 for (auto MCDCCond : {MCDCRecord::MCDC_False, MCDCRecord::MCDC_True}) { 405 static_assert(MCDCRecord::MCDC_False == 0); 406 static_assert(MCDCRecord::MCDC_True == 1); 407 TV.set(ID, MCDCCond); 408 auto NextID = NextIDs[ID][MCDCCond]; 409 auto NextTVIdx = TVIdx + Indices[ID][MCDCCond]; 410 assert(NextID == SavedNodes[ID].NextIDs[MCDCCond]); 411 if (NextID >= 0) { 412 buildTestVector(TV, NextID, NextTVIdx); 413 continue; 414 } 415 416 assert(TVIdx < SavedNodes[ID].Width); 417 assert(TVIdxs.insert(NextTVIdx).second && "Duplicate TVIdx"); 418 419 if (!Bitmap[IsVersion11 420 ? DecisionParams.BitmapIdx * CHAR_BIT + TV.getIndex() 421 : DecisionParams.BitmapIdx - NumTestVectors + NextTVIdx]) 422 continue; 423 424 // Copy the completed test vector to the vector of testvectors. 425 // The final value (T,F) is equal to the last non-dontcare state on the 426 // path (in a short-circuiting system). 427 ExecVectorsByCond[MCDCCond].push_back({TV, MCDCCond}); 428 } 429 430 // Reset back to DontCare. 431 TV.set(ID, MCDCRecord::MCDC_DontCare); 432 } 433 434 /// Walk the bits in the bitmap. A bit set to '1' indicates that the test 435 /// vector at the corresponding index was executed during a test run. 436 void findExecutedTestVectors() { 437 // Walk the binary decision diagram to enumerate all possible test vectors. 438 // We start at the root node (ID == 0) with all values being DontCare. 439 // `TVIdx` starts with 0 and is in the traversal. 440 // `Index` encodes the bitmask of true values and is initially 0. 441 MCDCRecord::TestVector TV(NumConditions); 442 buildTestVector(TV, 0, 0); 443 assert(TVIdxs.size() == unsigned(NumTestVectors) && 444 "TVIdxs wasn't fulfilled"); 445 446 // Fill ExecVectors order by False items and True items. 447 // ExecVectors is the alias of ExecVectorsByCond[false], so 448 // Append ExecVectorsByCond[true] on it. 449 NumExecVectorsF = ExecVectors.size(); 450 auto &ExecVectorsT = ExecVectorsByCond[true]; 451 ExecVectors.append(std::make_move_iterator(ExecVectorsT.begin()), 452 std::make_move_iterator(ExecVectorsT.end())); 453 } 454 455 // Find an independence pair for each condition: 456 // - The condition is true in one test and false in the other. 457 // - The decision outcome is true one test and false in the other. 458 // - All other conditions' values must be equal or marked as "don't care". 459 void findIndependencePairs() { 460 unsigned NumTVs = ExecVectors.size(); 461 for (unsigned I = NumExecVectorsF; I < NumTVs; ++I) { 462 const auto &[A, ACond] = ExecVectors[I]; 463 assert(ACond == MCDCRecord::MCDC_True); 464 for (unsigned J = 0; J < NumExecVectorsF; ++J) { 465 const auto &[B, BCond] = ExecVectors[J]; 466 assert(BCond == MCDCRecord::MCDC_False); 467 // If the two vectors differ in exactly one condition, ignoring DontCare 468 // conditions, we have found an independence pair. 469 auto AB = A.getDifferences(B); 470 if (AB.count() == 1) 471 IndependencePairs.insert( 472 {AB.find_first(), std::make_pair(J + 1, I + 1)}); 473 } 474 } 475 } 476 477 public: 478 /// Process the MC/DC Record in order to produce a result for a boolean 479 /// expression. This process includes tracking the conditions that comprise 480 /// the decision region, calculating the list of all possible test vectors, 481 /// marking the executed test vectors, and then finding an Independence Pair 482 /// out of the executed test vectors for each condition in the boolean 483 /// expression. A condition is tracked to ensure that its ID can be mapped to 484 /// its ordinal position in the boolean expression. The condition's source 485 /// location is also tracked, as well as whether it is constant folded (in 486 /// which case it is excuded from the metric). 487 MCDCRecord processMCDCRecord() { 488 unsigned I = 0; 489 MCDCRecord::CondIDMap PosToID; 490 MCDCRecord::LineColPairMap CondLoc; 491 492 // Walk the Record's BranchRegions (representing Conditions) in order to: 493 // - Hash the condition based on its corresponding ID. This will be used to 494 // calculate the test vectors. 495 // - Keep a map of the condition's ordinal position (1, 2, 3, 4) to its 496 // actual ID. This will be used to visualize the conditions in the 497 // correct order. 498 // - Keep track of the condition source location. This will be used to 499 // visualize where the condition is. 500 // - Record whether the condition is constant folded so that we exclude it 501 // from being measured. 502 for (const auto *B : Branches) { 503 const auto &BranchParams = B->getBranchParams(); 504 PosToID[I] = BranchParams.ID; 505 CondLoc[I] = B->startLoc(); 506 Folded[I++] = (B->Count.isZero() || B->FalseCount.isZero()); 507 } 508 509 // Using Profile Bitmap from runtime, mark the executed test vectors. 510 findExecutedTestVectors(); 511 512 // Compare executed test vectors against each other to find an independence 513 // pairs for each condition. This processing takes the most time. 514 findIndependencePairs(); 515 516 // Record Test vectors, executed vectors, and independence pairs. 517 return MCDCRecord(Region, std::move(ExecVectors), 518 std::move(IndependencePairs), std::move(Folded), 519 std::move(PosToID), std::move(CondLoc)); 520 } 521 }; 522 523 } // namespace 524 525 Expected<MCDCRecord> CounterMappingContext::evaluateMCDCRegion( 526 const CounterMappingRegion &Region, 527 ArrayRef<const CounterMappingRegion *> Branches, bool IsVersion11) { 528 529 MCDCRecordProcessor MCDCProcessor(Bitmap, Region, Branches, IsVersion11); 530 return MCDCProcessor.processMCDCRecord(); 531 } 532 533 unsigned CounterMappingContext::getMaxCounterID(const Counter &C) const { 534 struct StackElem { 535 Counter ICounter; 536 int64_t LHS = 0; 537 enum { 538 KNeverVisited = 0, 539 KVisitedOnce = 1, 540 KVisitedTwice = 2, 541 } VisitCount = KNeverVisited; 542 }; 543 544 std::stack<StackElem> CounterStack; 545 CounterStack.push({C}); 546 547 int64_t LastPoppedValue; 548 549 while (!CounterStack.empty()) { 550 StackElem &Current = CounterStack.top(); 551 552 switch (Current.ICounter.getKind()) { 553 case Counter::Zero: 554 LastPoppedValue = 0; 555 CounterStack.pop(); 556 break; 557 case Counter::CounterValueReference: 558 LastPoppedValue = Current.ICounter.getCounterID(); 559 CounterStack.pop(); 560 break; 561 case Counter::Expression: { 562 if (Current.ICounter.getExpressionID() >= Expressions.size()) { 563 LastPoppedValue = 0; 564 CounterStack.pop(); 565 } else { 566 const auto &E = Expressions[Current.ICounter.getExpressionID()]; 567 if (Current.VisitCount == StackElem::KNeverVisited) { 568 CounterStack.push(StackElem{E.LHS}); 569 Current.VisitCount = StackElem::KVisitedOnce; 570 } else if (Current.VisitCount == StackElem::KVisitedOnce) { 571 Current.LHS = LastPoppedValue; 572 CounterStack.push(StackElem{E.RHS}); 573 Current.VisitCount = StackElem::KVisitedTwice; 574 } else { 575 int64_t LHS = Current.LHS; 576 int64_t RHS = LastPoppedValue; 577 LastPoppedValue = std::max(LHS, RHS); 578 CounterStack.pop(); 579 } 580 } 581 break; 582 } 583 } 584 } 585 586 return LastPoppedValue; 587 } 588 589 void FunctionRecordIterator::skipOtherFiles() { 590 while (Current != Records.end() && !Filename.empty() && 591 Filename != Current->Filenames[0]) 592 ++Current; 593 if (Current == Records.end()) 594 *this = FunctionRecordIterator(); 595 } 596 597 ArrayRef<unsigned> CoverageMapping::getImpreciseRecordIndicesForFilename( 598 StringRef Filename) const { 599 size_t FilenameHash = hash_value(Filename); 600 auto RecordIt = FilenameHash2RecordIndices.find(FilenameHash); 601 if (RecordIt == FilenameHash2RecordIndices.end()) 602 return {}; 603 return RecordIt->second; 604 } 605 606 static unsigned getMaxCounterID(const CounterMappingContext &Ctx, 607 const CoverageMappingRecord &Record) { 608 unsigned MaxCounterID = 0; 609 for (const auto &Region : Record.MappingRegions) { 610 MaxCounterID = std::max(MaxCounterID, Ctx.getMaxCounterID(Region.Count)); 611 } 612 return MaxCounterID; 613 } 614 615 /// Returns the bit count 616 static unsigned getMaxBitmapSize(const CoverageMappingRecord &Record, 617 bool IsVersion11) { 618 unsigned MaxBitmapIdx = 0; 619 unsigned NumConditions = 0; 620 // Scan max(BitmapIdx). 621 // Note that `<=` is used insted of `<`, because `BitmapIdx == 0` is valid 622 // and `MaxBitmapIdx is `unsigned`. `BitmapIdx` is unique in the record. 623 for (const auto &Region : reverse(Record.MappingRegions)) { 624 if (Region.Kind != CounterMappingRegion::MCDCDecisionRegion) 625 continue; 626 const auto &DecisionParams = Region.getDecisionParams(); 627 if (MaxBitmapIdx <= DecisionParams.BitmapIdx) { 628 MaxBitmapIdx = DecisionParams.BitmapIdx; 629 NumConditions = DecisionParams.NumConditions; 630 } 631 } 632 633 if (IsVersion11) 634 MaxBitmapIdx = MaxBitmapIdx * CHAR_BIT + 635 llvm::alignTo(uint64_t(1) << NumConditions, CHAR_BIT); 636 637 return MaxBitmapIdx; 638 } 639 640 namespace { 641 642 /// Collect Decisions, Branchs, and Expansions and associate them. 643 class MCDCDecisionRecorder { 644 private: 645 /// This holds the DecisionRegion and MCDCBranches under it. 646 /// Also traverses Expansion(s). 647 /// The Decision has the number of MCDCBranches and will complete 648 /// when it is filled with unique ConditionID of MCDCBranches. 649 struct DecisionRecord { 650 const CounterMappingRegion *DecisionRegion; 651 652 /// They are reflected from DecisionRegion for convenience. 653 mcdc::DecisionParameters DecisionParams; 654 LineColPair DecisionStartLoc; 655 LineColPair DecisionEndLoc; 656 657 /// This is passed to `MCDCRecordProcessor`, so this should be compatible 658 /// to`ArrayRef<const CounterMappingRegion *>`. 659 SmallVector<const CounterMappingRegion *> MCDCBranches; 660 661 /// IDs that are stored in MCDCBranches 662 /// Complete when all IDs (1 to NumConditions) are met. 663 DenseSet<mcdc::ConditionID> ConditionIDs; 664 665 /// Set of IDs of Expansion(s) that are relevant to DecisionRegion 666 /// and its children (via expansions). 667 /// FileID pointed by ExpandedFileID is dedicated to the expansion, so 668 /// the location in the expansion doesn't matter. 669 DenseSet<unsigned> ExpandedFileIDs; 670 671 DecisionRecord(const CounterMappingRegion &Decision) 672 : DecisionRegion(&Decision), 673 DecisionParams(Decision.getDecisionParams()), 674 DecisionStartLoc(Decision.startLoc()), 675 DecisionEndLoc(Decision.endLoc()) { 676 assert(Decision.Kind == CounterMappingRegion::MCDCDecisionRegion); 677 } 678 679 /// Determine whether DecisionRecord dominates `R`. 680 bool dominates(const CounterMappingRegion &R) const { 681 // Determine whether `R` is included in `DecisionRegion`. 682 if (R.FileID == DecisionRegion->FileID && 683 R.startLoc() >= DecisionStartLoc && R.endLoc() <= DecisionEndLoc) 684 return true; 685 686 // Determine whether `R` is pointed by any of Expansions. 687 return ExpandedFileIDs.contains(R.FileID); 688 } 689 690 enum Result { 691 NotProcessed = 0, /// Irrelevant to this Decision 692 Processed, /// Added to this Decision 693 Completed, /// Added and filled this Decision 694 }; 695 696 /// Add Branch into the Decision 697 /// \param Branch expects MCDCBranchRegion 698 /// \returns NotProcessed/Processed/Completed 699 Result addBranch(const CounterMappingRegion &Branch) { 700 assert(Branch.Kind == CounterMappingRegion::MCDCBranchRegion); 701 702 auto ConditionID = Branch.getBranchParams().ID; 703 704 if (ConditionIDs.contains(ConditionID) || 705 ConditionID >= DecisionParams.NumConditions) 706 return NotProcessed; 707 708 if (!this->dominates(Branch)) 709 return NotProcessed; 710 711 assert(MCDCBranches.size() < DecisionParams.NumConditions); 712 713 // Put `ID=0` in front of `MCDCBranches` for convenience 714 // even if `MCDCBranches` is not topological. 715 if (ConditionID == 0) 716 MCDCBranches.insert(MCDCBranches.begin(), &Branch); 717 else 718 MCDCBranches.push_back(&Branch); 719 720 // Mark `ID` as `assigned`. 721 ConditionIDs.insert(ConditionID); 722 723 // `Completed` when `MCDCBranches` is full 724 return (MCDCBranches.size() == DecisionParams.NumConditions ? Completed 725 : Processed); 726 } 727 728 /// Record Expansion if it is relevant to this Decision. 729 /// Each `Expansion` may nest. 730 /// \returns true if recorded. 731 bool recordExpansion(const CounterMappingRegion &Expansion) { 732 if (!this->dominates(Expansion)) 733 return false; 734 735 ExpandedFileIDs.insert(Expansion.ExpandedFileID); 736 return true; 737 } 738 }; 739 740 private: 741 /// Decisions in progress 742 /// DecisionRecord is added for each MCDCDecisionRegion. 743 /// DecisionRecord is removed when Decision is completed. 744 SmallVector<DecisionRecord> Decisions; 745 746 public: 747 ~MCDCDecisionRecorder() { 748 assert(Decisions.empty() && "All Decisions have not been resolved"); 749 } 750 751 /// Register Region and start recording. 752 void registerDecision(const CounterMappingRegion &Decision) { 753 Decisions.emplace_back(Decision); 754 } 755 756 void recordExpansion(const CounterMappingRegion &Expansion) { 757 any_of(Decisions, [&Expansion](auto &Decision) { 758 return Decision.recordExpansion(Expansion); 759 }); 760 } 761 762 using DecisionAndBranches = 763 std::pair<const CounterMappingRegion *, /// Decision 764 SmallVector<const CounterMappingRegion *> /// Branches 765 >; 766 767 /// Add MCDCBranchRegion to DecisionRecord. 768 /// \param Branch to be processed 769 /// \returns DecisionsAndBranches if DecisionRecord completed. 770 /// Or returns nullopt. 771 std::optional<DecisionAndBranches> 772 processBranch(const CounterMappingRegion &Branch) { 773 // Seek each Decision and apply Region to it. 774 for (auto DecisionIter = Decisions.begin(), DecisionEnd = Decisions.end(); 775 DecisionIter != DecisionEnd; ++DecisionIter) 776 switch (DecisionIter->addBranch(Branch)) { 777 case DecisionRecord::NotProcessed: 778 continue; 779 case DecisionRecord::Processed: 780 return std::nullopt; 781 case DecisionRecord::Completed: 782 DecisionAndBranches Result = 783 std::make_pair(DecisionIter->DecisionRegion, 784 std::move(DecisionIter->MCDCBranches)); 785 Decisions.erase(DecisionIter); // No longer used. 786 return Result; 787 } 788 789 llvm_unreachable("Branch not found in Decisions"); 790 } 791 }; 792 793 } // namespace 794 795 Error CoverageMapping::loadFunctionRecord( 796 const CoverageMappingRecord &Record, 797 IndexedInstrProfReader &ProfileReader) { 798 StringRef OrigFuncName = Record.FunctionName; 799 if (OrigFuncName.empty()) 800 return make_error<CoverageMapError>(coveragemap_error::malformed, 801 "record function name is empty"); 802 803 if (Record.Filenames.empty()) 804 OrigFuncName = getFuncNameWithoutPrefix(OrigFuncName); 805 else 806 OrigFuncName = getFuncNameWithoutPrefix(OrigFuncName, Record.Filenames[0]); 807 808 CounterMappingContext Ctx(Record.Expressions); 809 810 std::vector<uint64_t> Counts; 811 if (Error E = ProfileReader.getFunctionCounts(Record.FunctionName, 812 Record.FunctionHash, Counts)) { 813 instrprof_error IPE = std::get<0>(InstrProfError::take(std::move(E))); 814 if (IPE == instrprof_error::hash_mismatch) { 815 FuncHashMismatches.emplace_back(std::string(Record.FunctionName), 816 Record.FunctionHash); 817 return Error::success(); 818 } 819 if (IPE != instrprof_error::unknown_function) 820 return make_error<InstrProfError>(IPE); 821 Counts.assign(getMaxCounterID(Ctx, Record) + 1, 0); 822 } 823 Ctx.setCounts(Counts); 824 825 bool IsVersion11 = 826 ProfileReader.getVersion() < IndexedInstrProf::ProfVersion::Version12; 827 828 BitVector Bitmap; 829 if (Error E = ProfileReader.getFunctionBitmap(Record.FunctionName, 830 Record.FunctionHash, Bitmap)) { 831 instrprof_error IPE = std::get<0>(InstrProfError::take(std::move(E))); 832 if (IPE == instrprof_error::hash_mismatch) { 833 FuncHashMismatches.emplace_back(std::string(Record.FunctionName), 834 Record.FunctionHash); 835 return Error::success(); 836 } 837 if (IPE != instrprof_error::unknown_function) 838 return make_error<InstrProfError>(IPE); 839 Bitmap = BitVector(getMaxBitmapSize(Record, IsVersion11)); 840 } 841 Ctx.setBitmap(std::move(Bitmap)); 842 843 assert(!Record.MappingRegions.empty() && "Function has no regions"); 844 845 // This coverage record is a zero region for a function that's unused in 846 // some TU, but used in a different TU. Ignore it. The coverage maps from the 847 // the other TU will either be loaded (providing full region counts) or they 848 // won't (in which case we don't unintuitively report functions as uncovered 849 // when they have non-zero counts in the profile). 850 if (Record.MappingRegions.size() == 1 && 851 Record.MappingRegions[0].Count.isZero() && Counts[0] > 0) 852 return Error::success(); 853 854 MCDCDecisionRecorder MCDCDecisions; 855 FunctionRecord Function(OrigFuncName, Record.Filenames); 856 for (const auto &Region : Record.MappingRegions) { 857 // MCDCDecisionRegion should be handled first since it overlaps with 858 // others inside. 859 if (Region.Kind == CounterMappingRegion::MCDCDecisionRegion) { 860 MCDCDecisions.registerDecision(Region); 861 continue; 862 } 863 Expected<int64_t> ExecutionCount = Ctx.evaluate(Region.Count); 864 if (auto E = ExecutionCount.takeError()) { 865 consumeError(std::move(E)); 866 return Error::success(); 867 } 868 Expected<int64_t> AltExecutionCount = Ctx.evaluate(Region.FalseCount); 869 if (auto E = AltExecutionCount.takeError()) { 870 consumeError(std::move(E)); 871 return Error::success(); 872 } 873 Function.pushRegion(Region, *ExecutionCount, *AltExecutionCount, 874 ProfileReader.hasSingleByteCoverage()); 875 876 // Record ExpansionRegion. 877 if (Region.Kind == CounterMappingRegion::ExpansionRegion) { 878 MCDCDecisions.recordExpansion(Region); 879 continue; 880 } 881 882 // Do nothing unless MCDCBranchRegion. 883 if (Region.Kind != CounterMappingRegion::MCDCBranchRegion) 884 continue; 885 886 auto Result = MCDCDecisions.processBranch(Region); 887 if (!Result) // Any Decision doesn't complete. 888 continue; 889 890 auto MCDCDecision = Result->first; 891 auto &MCDCBranches = Result->second; 892 893 // Since the bitmap identifies the executed test vectors for an MC/DC 894 // DecisionRegion, all of the information is now available to process. 895 // This is where the bulk of the MC/DC progressing takes place. 896 Expected<MCDCRecord> Record = 897 Ctx.evaluateMCDCRegion(*MCDCDecision, MCDCBranches, IsVersion11); 898 if (auto E = Record.takeError()) { 899 consumeError(std::move(E)); 900 return Error::success(); 901 } 902 903 // Save the MC/DC Record so that it can be visualized later. 904 Function.pushMCDCRecord(std::move(*Record)); 905 } 906 907 // Don't create records for (filenames, function) pairs we've already seen. 908 auto FilenamesHash = hash_combine_range(Record.Filenames.begin(), 909 Record.Filenames.end()); 910 if (!RecordProvenance[FilenamesHash].insert(hash_value(OrigFuncName)).second) 911 return Error::success(); 912 913 Functions.push_back(std::move(Function)); 914 915 // Performance optimization: keep track of the indices of the function records 916 // which correspond to each filename. This can be used to substantially speed 917 // up queries for coverage info in a file. 918 unsigned RecordIndex = Functions.size() - 1; 919 for (StringRef Filename : Record.Filenames) { 920 auto &RecordIndices = FilenameHash2RecordIndices[hash_value(Filename)]; 921 // Note that there may be duplicates in the filename set for a function 922 // record, because of e.g. macro expansions in the function in which both 923 // the macro and the function are defined in the same file. 924 if (RecordIndices.empty() || RecordIndices.back() != RecordIndex) 925 RecordIndices.push_back(RecordIndex); 926 } 927 928 return Error::success(); 929 } 930 931 // This function is for memory optimization by shortening the lifetimes 932 // of CoverageMappingReader instances. 933 Error CoverageMapping::loadFromReaders( 934 ArrayRef<std::unique_ptr<CoverageMappingReader>> CoverageReaders, 935 IndexedInstrProfReader &ProfileReader, CoverageMapping &Coverage) { 936 for (const auto &CoverageReader : CoverageReaders) { 937 for (auto RecordOrErr : *CoverageReader) { 938 if (Error E = RecordOrErr.takeError()) 939 return E; 940 const auto &Record = *RecordOrErr; 941 if (Error E = Coverage.loadFunctionRecord(Record, ProfileReader)) 942 return E; 943 } 944 } 945 return Error::success(); 946 } 947 948 Expected<std::unique_ptr<CoverageMapping>> CoverageMapping::load( 949 ArrayRef<std::unique_ptr<CoverageMappingReader>> CoverageReaders, 950 IndexedInstrProfReader &ProfileReader) { 951 auto Coverage = std::unique_ptr<CoverageMapping>(new CoverageMapping()); 952 if (Error E = loadFromReaders(CoverageReaders, ProfileReader, *Coverage)) 953 return std::move(E); 954 return std::move(Coverage); 955 } 956 957 // If E is a no_data_found error, returns success. Otherwise returns E. 958 static Error handleMaybeNoDataFoundError(Error E) { 959 return handleErrors( 960 std::move(E), [](const CoverageMapError &CME) { 961 if (CME.get() == coveragemap_error::no_data_found) 962 return static_cast<Error>(Error::success()); 963 return make_error<CoverageMapError>(CME.get(), CME.getMessage()); 964 }); 965 } 966 967 Error CoverageMapping::loadFromFile( 968 StringRef Filename, StringRef Arch, StringRef CompilationDir, 969 IndexedInstrProfReader &ProfileReader, CoverageMapping &Coverage, 970 bool &DataFound, SmallVectorImpl<object::BuildID> *FoundBinaryIDs) { 971 auto CovMappingBufOrErr = MemoryBuffer::getFileOrSTDIN( 972 Filename, /*IsText=*/false, /*RequiresNullTerminator=*/false); 973 if (std::error_code EC = CovMappingBufOrErr.getError()) 974 return createFileError(Filename, errorCodeToError(EC)); 975 MemoryBufferRef CovMappingBufRef = 976 CovMappingBufOrErr.get()->getMemBufferRef(); 977 SmallVector<std::unique_ptr<MemoryBuffer>, 4> Buffers; 978 979 SmallVector<object::BuildIDRef> BinaryIDs; 980 auto CoverageReadersOrErr = BinaryCoverageReader::create( 981 CovMappingBufRef, Arch, Buffers, CompilationDir, 982 FoundBinaryIDs ? &BinaryIDs : nullptr); 983 if (Error E = CoverageReadersOrErr.takeError()) { 984 E = handleMaybeNoDataFoundError(std::move(E)); 985 if (E) 986 return createFileError(Filename, std::move(E)); 987 return E; 988 } 989 990 SmallVector<std::unique_ptr<CoverageMappingReader>, 4> Readers; 991 for (auto &Reader : CoverageReadersOrErr.get()) 992 Readers.push_back(std::move(Reader)); 993 if (FoundBinaryIDs && !Readers.empty()) { 994 llvm::append_range(*FoundBinaryIDs, 995 llvm::map_range(BinaryIDs, [](object::BuildIDRef BID) { 996 return object::BuildID(BID); 997 })); 998 } 999 DataFound |= !Readers.empty(); 1000 if (Error E = loadFromReaders(Readers, ProfileReader, Coverage)) 1001 return createFileError(Filename, std::move(E)); 1002 return Error::success(); 1003 } 1004 1005 Expected<std::unique_ptr<CoverageMapping>> CoverageMapping::load( 1006 ArrayRef<StringRef> ObjectFilenames, StringRef ProfileFilename, 1007 vfs::FileSystem &FS, ArrayRef<StringRef> Arches, StringRef CompilationDir, 1008 const object::BuildIDFetcher *BIDFetcher, bool CheckBinaryIDs) { 1009 auto ProfileReaderOrErr = IndexedInstrProfReader::create(ProfileFilename, FS); 1010 if (Error E = ProfileReaderOrErr.takeError()) 1011 return createFileError(ProfileFilename, std::move(E)); 1012 auto ProfileReader = std::move(ProfileReaderOrErr.get()); 1013 auto Coverage = std::unique_ptr<CoverageMapping>(new CoverageMapping()); 1014 bool DataFound = false; 1015 1016 auto GetArch = [&](size_t Idx) { 1017 if (Arches.empty()) 1018 return StringRef(); 1019 if (Arches.size() == 1) 1020 return Arches.front(); 1021 return Arches[Idx]; 1022 }; 1023 1024 SmallVector<object::BuildID> FoundBinaryIDs; 1025 for (const auto &File : llvm::enumerate(ObjectFilenames)) { 1026 if (Error E = 1027 loadFromFile(File.value(), GetArch(File.index()), CompilationDir, 1028 *ProfileReader, *Coverage, DataFound, &FoundBinaryIDs)) 1029 return std::move(E); 1030 } 1031 1032 if (BIDFetcher) { 1033 std::vector<object::BuildID> ProfileBinaryIDs; 1034 if (Error E = ProfileReader->readBinaryIds(ProfileBinaryIDs)) 1035 return createFileError(ProfileFilename, std::move(E)); 1036 1037 SmallVector<object::BuildIDRef> BinaryIDsToFetch; 1038 if (!ProfileBinaryIDs.empty()) { 1039 const auto &Compare = [](object::BuildIDRef A, object::BuildIDRef B) { 1040 return std::lexicographical_compare(A.begin(), A.end(), B.begin(), 1041 B.end()); 1042 }; 1043 llvm::sort(FoundBinaryIDs, Compare); 1044 std::set_difference( 1045 ProfileBinaryIDs.begin(), ProfileBinaryIDs.end(), 1046 FoundBinaryIDs.begin(), FoundBinaryIDs.end(), 1047 std::inserter(BinaryIDsToFetch, BinaryIDsToFetch.end()), Compare); 1048 } 1049 1050 for (object::BuildIDRef BinaryID : BinaryIDsToFetch) { 1051 std::optional<std::string> PathOpt = BIDFetcher->fetch(BinaryID); 1052 if (PathOpt) { 1053 std::string Path = std::move(*PathOpt); 1054 StringRef Arch = Arches.size() == 1 ? Arches.front() : StringRef(); 1055 if (Error E = loadFromFile(Path, Arch, CompilationDir, *ProfileReader, 1056 *Coverage, DataFound)) 1057 return std::move(E); 1058 } else if (CheckBinaryIDs) { 1059 return createFileError( 1060 ProfileFilename, 1061 createStringError(errc::no_such_file_or_directory, 1062 "Missing binary ID: " + 1063 llvm::toHex(BinaryID, /*LowerCase=*/true))); 1064 } 1065 } 1066 } 1067 1068 if (!DataFound) 1069 return createFileError( 1070 join(ObjectFilenames.begin(), ObjectFilenames.end(), ", "), 1071 make_error<CoverageMapError>(coveragemap_error::no_data_found)); 1072 return std::move(Coverage); 1073 } 1074 1075 namespace { 1076 1077 /// Distributes functions into instantiation sets. 1078 /// 1079 /// An instantiation set is a collection of functions that have the same source 1080 /// code, ie, template functions specializations. 1081 class FunctionInstantiationSetCollector { 1082 using MapT = std::map<LineColPair, std::vector<const FunctionRecord *>>; 1083 MapT InstantiatedFunctions; 1084 1085 public: 1086 void insert(const FunctionRecord &Function, unsigned FileID) { 1087 auto I = Function.CountedRegions.begin(), E = Function.CountedRegions.end(); 1088 while (I != E && I->FileID != FileID) 1089 ++I; 1090 assert(I != E && "function does not cover the given file"); 1091 auto &Functions = InstantiatedFunctions[I->startLoc()]; 1092 Functions.push_back(&Function); 1093 } 1094 1095 MapT::iterator begin() { return InstantiatedFunctions.begin(); } 1096 MapT::iterator end() { return InstantiatedFunctions.end(); } 1097 }; 1098 1099 class SegmentBuilder { 1100 std::vector<CoverageSegment> &Segments; 1101 SmallVector<const CountedRegion *, 8> ActiveRegions; 1102 1103 SegmentBuilder(std::vector<CoverageSegment> &Segments) : Segments(Segments) {} 1104 1105 /// Emit a segment with the count from \p Region starting at \p StartLoc. 1106 // 1107 /// \p IsRegionEntry: The segment is at the start of a new non-gap region. 1108 /// \p EmitSkippedRegion: The segment must be emitted as a skipped region. 1109 void startSegment(const CountedRegion &Region, LineColPair StartLoc, 1110 bool IsRegionEntry, bool EmitSkippedRegion = false) { 1111 bool HasCount = !EmitSkippedRegion && 1112 (Region.Kind != CounterMappingRegion::SkippedRegion); 1113 1114 // If the new segment wouldn't affect coverage rendering, skip it. 1115 if (!Segments.empty() && !IsRegionEntry && !EmitSkippedRegion) { 1116 const auto &Last = Segments.back(); 1117 if (Last.HasCount == HasCount && Last.Count == Region.ExecutionCount && 1118 !Last.IsRegionEntry) 1119 return; 1120 } 1121 1122 if (HasCount) 1123 Segments.emplace_back(StartLoc.first, StartLoc.second, 1124 Region.ExecutionCount, IsRegionEntry, 1125 Region.Kind == CounterMappingRegion::GapRegion); 1126 else 1127 Segments.emplace_back(StartLoc.first, StartLoc.second, IsRegionEntry); 1128 1129 LLVM_DEBUG({ 1130 const auto &Last = Segments.back(); 1131 dbgs() << "Segment at " << Last.Line << ":" << Last.Col 1132 << " (count = " << Last.Count << ")" 1133 << (Last.IsRegionEntry ? ", RegionEntry" : "") 1134 << (!Last.HasCount ? ", Skipped" : "") 1135 << (Last.IsGapRegion ? ", Gap" : "") << "\n"; 1136 }); 1137 } 1138 1139 /// Emit segments for active regions which end before \p Loc. 1140 /// 1141 /// \p Loc: The start location of the next region. If std::nullopt, all active 1142 /// regions are completed. 1143 /// \p FirstCompletedRegion: Index of the first completed region. 1144 void completeRegionsUntil(std::optional<LineColPair> Loc, 1145 unsigned FirstCompletedRegion) { 1146 // Sort the completed regions by end location. This makes it simple to 1147 // emit closing segments in sorted order. 1148 auto CompletedRegionsIt = ActiveRegions.begin() + FirstCompletedRegion; 1149 std::stable_sort(CompletedRegionsIt, ActiveRegions.end(), 1150 [](const CountedRegion *L, const CountedRegion *R) { 1151 return L->endLoc() < R->endLoc(); 1152 }); 1153 1154 // Emit segments for all completed regions. 1155 for (unsigned I = FirstCompletedRegion + 1, E = ActiveRegions.size(); I < E; 1156 ++I) { 1157 const auto *CompletedRegion = ActiveRegions[I]; 1158 assert((!Loc || CompletedRegion->endLoc() <= *Loc) && 1159 "Completed region ends after start of new region"); 1160 1161 const auto *PrevCompletedRegion = ActiveRegions[I - 1]; 1162 auto CompletedSegmentLoc = PrevCompletedRegion->endLoc(); 1163 1164 // Don't emit any more segments if they start where the new region begins. 1165 if (Loc && CompletedSegmentLoc == *Loc) 1166 break; 1167 1168 // Don't emit a segment if the next completed region ends at the same 1169 // location as this one. 1170 if (CompletedSegmentLoc == CompletedRegion->endLoc()) 1171 continue; 1172 1173 // Use the count from the last completed region which ends at this loc. 1174 for (unsigned J = I + 1; J < E; ++J) 1175 if (CompletedRegion->endLoc() == ActiveRegions[J]->endLoc()) 1176 CompletedRegion = ActiveRegions[J]; 1177 1178 startSegment(*CompletedRegion, CompletedSegmentLoc, false); 1179 } 1180 1181 auto Last = ActiveRegions.back(); 1182 if (FirstCompletedRegion && Last->endLoc() != *Loc) { 1183 // If there's a gap after the end of the last completed region and the 1184 // start of the new region, use the last active region to fill the gap. 1185 startSegment(*ActiveRegions[FirstCompletedRegion - 1], Last->endLoc(), 1186 false); 1187 } else if (!FirstCompletedRegion && (!Loc || *Loc != Last->endLoc())) { 1188 // Emit a skipped segment if there are no more active regions. This 1189 // ensures that gaps between functions are marked correctly. 1190 startSegment(*Last, Last->endLoc(), false, true); 1191 } 1192 1193 // Pop the completed regions. 1194 ActiveRegions.erase(CompletedRegionsIt, ActiveRegions.end()); 1195 } 1196 1197 void buildSegmentsImpl(ArrayRef<CountedRegion> Regions) { 1198 for (const auto &CR : enumerate(Regions)) { 1199 auto CurStartLoc = CR.value().startLoc(); 1200 1201 // Active regions which end before the current region need to be popped. 1202 auto CompletedRegions = 1203 std::stable_partition(ActiveRegions.begin(), ActiveRegions.end(), 1204 [&](const CountedRegion *Region) { 1205 return !(Region->endLoc() <= CurStartLoc); 1206 }); 1207 if (CompletedRegions != ActiveRegions.end()) { 1208 unsigned FirstCompletedRegion = 1209 std::distance(ActiveRegions.begin(), CompletedRegions); 1210 completeRegionsUntil(CurStartLoc, FirstCompletedRegion); 1211 } 1212 1213 bool GapRegion = CR.value().Kind == CounterMappingRegion::GapRegion; 1214 1215 // Try to emit a segment for the current region. 1216 if (CurStartLoc == CR.value().endLoc()) { 1217 // Avoid making zero-length regions active. If it's the last region, 1218 // emit a skipped segment. Otherwise use its predecessor's count. 1219 const bool Skipped = 1220 (CR.index() + 1) == Regions.size() || 1221 CR.value().Kind == CounterMappingRegion::SkippedRegion; 1222 startSegment(ActiveRegions.empty() ? CR.value() : *ActiveRegions.back(), 1223 CurStartLoc, !GapRegion, Skipped); 1224 // If it is skipped segment, create a segment with last pushed 1225 // regions's count at CurStartLoc. 1226 if (Skipped && !ActiveRegions.empty()) 1227 startSegment(*ActiveRegions.back(), CurStartLoc, false); 1228 continue; 1229 } 1230 if (CR.index() + 1 == Regions.size() || 1231 CurStartLoc != Regions[CR.index() + 1].startLoc()) { 1232 // Emit a segment if the next region doesn't start at the same location 1233 // as this one. 1234 startSegment(CR.value(), CurStartLoc, !GapRegion); 1235 } 1236 1237 // This region is active (i.e not completed). 1238 ActiveRegions.push_back(&CR.value()); 1239 } 1240 1241 // Complete any remaining active regions. 1242 if (!ActiveRegions.empty()) 1243 completeRegionsUntil(std::nullopt, 0); 1244 } 1245 1246 /// Sort a nested sequence of regions from a single file. 1247 static void sortNestedRegions(MutableArrayRef<CountedRegion> Regions) { 1248 llvm::sort(Regions, [](const CountedRegion &LHS, const CountedRegion &RHS) { 1249 if (LHS.startLoc() != RHS.startLoc()) 1250 return LHS.startLoc() < RHS.startLoc(); 1251 if (LHS.endLoc() != RHS.endLoc()) 1252 // When LHS completely contains RHS, we sort LHS first. 1253 return RHS.endLoc() < LHS.endLoc(); 1254 // If LHS and RHS cover the same area, we need to sort them according 1255 // to their kinds so that the most suitable region will become "active" 1256 // in combineRegions(). Because we accumulate counter values only from 1257 // regions of the same kind as the first region of the area, prefer 1258 // CodeRegion to ExpansionRegion and ExpansionRegion to SkippedRegion. 1259 static_assert(CounterMappingRegion::CodeRegion < 1260 CounterMappingRegion::ExpansionRegion && 1261 CounterMappingRegion::ExpansionRegion < 1262 CounterMappingRegion::SkippedRegion, 1263 "Unexpected order of region kind values"); 1264 return LHS.Kind < RHS.Kind; 1265 }); 1266 } 1267 1268 /// Combine counts of regions which cover the same area. 1269 static ArrayRef<CountedRegion> 1270 combineRegions(MutableArrayRef<CountedRegion> Regions) { 1271 if (Regions.empty()) 1272 return Regions; 1273 auto Active = Regions.begin(); 1274 auto End = Regions.end(); 1275 for (auto I = Regions.begin() + 1; I != End; ++I) { 1276 if (Active->startLoc() != I->startLoc() || 1277 Active->endLoc() != I->endLoc()) { 1278 // Shift to the next region. 1279 ++Active; 1280 if (Active != I) 1281 *Active = *I; 1282 continue; 1283 } 1284 // Merge duplicate region. 1285 // If CodeRegions and ExpansionRegions cover the same area, it's probably 1286 // a macro which is fully expanded to another macro. In that case, we need 1287 // to accumulate counts only from CodeRegions, or else the area will be 1288 // counted twice. 1289 // On the other hand, a macro may have a nested macro in its body. If the 1290 // outer macro is used several times, the ExpansionRegion for the nested 1291 // macro will also be added several times. These ExpansionRegions cover 1292 // the same source locations and have to be combined to reach the correct 1293 // value for that area. 1294 // We add counts of the regions of the same kind as the active region 1295 // to handle the both situations. 1296 if (I->Kind == Active->Kind) { 1297 assert(I->HasSingleByteCoverage == Active->HasSingleByteCoverage && 1298 "Regions are generated in different coverage modes"); 1299 if (I->HasSingleByteCoverage) 1300 Active->ExecutionCount = Active->ExecutionCount || I->ExecutionCount; 1301 else 1302 Active->ExecutionCount += I->ExecutionCount; 1303 } 1304 } 1305 return Regions.drop_back(std::distance(++Active, End)); 1306 } 1307 1308 public: 1309 /// Build a sorted list of CoverageSegments from a list of Regions. 1310 static std::vector<CoverageSegment> 1311 buildSegments(MutableArrayRef<CountedRegion> Regions) { 1312 std::vector<CoverageSegment> Segments; 1313 SegmentBuilder Builder(Segments); 1314 1315 sortNestedRegions(Regions); 1316 ArrayRef<CountedRegion> CombinedRegions = combineRegions(Regions); 1317 1318 LLVM_DEBUG({ 1319 dbgs() << "Combined regions:\n"; 1320 for (const auto &CR : CombinedRegions) 1321 dbgs() << " " << CR.LineStart << ":" << CR.ColumnStart << " -> " 1322 << CR.LineEnd << ":" << CR.ColumnEnd 1323 << " (count=" << CR.ExecutionCount << ")\n"; 1324 }); 1325 1326 Builder.buildSegmentsImpl(CombinedRegions); 1327 1328 #ifndef NDEBUG 1329 for (unsigned I = 1, E = Segments.size(); I < E; ++I) { 1330 const auto &L = Segments[I - 1]; 1331 const auto &R = Segments[I]; 1332 if (!(L.Line < R.Line) && !(L.Line == R.Line && L.Col < R.Col)) { 1333 if (L.Line == R.Line && L.Col == R.Col && !L.HasCount) 1334 continue; 1335 LLVM_DEBUG(dbgs() << " ! Segment " << L.Line << ":" << L.Col 1336 << " followed by " << R.Line << ":" << R.Col << "\n"); 1337 assert(false && "Coverage segments not unique or sorted"); 1338 } 1339 } 1340 #endif 1341 1342 return Segments; 1343 } 1344 }; 1345 1346 } // end anonymous namespace 1347 1348 std::vector<StringRef> CoverageMapping::getUniqueSourceFiles() const { 1349 std::vector<StringRef> Filenames; 1350 for (const auto &Function : getCoveredFunctions()) 1351 llvm::append_range(Filenames, Function.Filenames); 1352 llvm::sort(Filenames); 1353 auto Last = llvm::unique(Filenames); 1354 Filenames.erase(Last, Filenames.end()); 1355 return Filenames; 1356 } 1357 1358 static SmallBitVector gatherFileIDs(StringRef SourceFile, 1359 const FunctionRecord &Function) { 1360 SmallBitVector FilenameEquivalence(Function.Filenames.size(), false); 1361 for (unsigned I = 0, E = Function.Filenames.size(); I < E; ++I) 1362 if (SourceFile == Function.Filenames[I]) 1363 FilenameEquivalence[I] = true; 1364 return FilenameEquivalence; 1365 } 1366 1367 /// Return the ID of the file where the definition of the function is located. 1368 static std::optional<unsigned> 1369 findMainViewFileID(const FunctionRecord &Function) { 1370 SmallBitVector IsNotExpandedFile(Function.Filenames.size(), true); 1371 for (const auto &CR : Function.CountedRegions) 1372 if (CR.Kind == CounterMappingRegion::ExpansionRegion) 1373 IsNotExpandedFile[CR.ExpandedFileID] = false; 1374 int I = IsNotExpandedFile.find_first(); 1375 if (I == -1) 1376 return std::nullopt; 1377 return I; 1378 } 1379 1380 /// Check if SourceFile is the file that contains the definition of 1381 /// the Function. Return the ID of the file in that case or std::nullopt 1382 /// otherwise. 1383 static std::optional<unsigned> 1384 findMainViewFileID(StringRef SourceFile, const FunctionRecord &Function) { 1385 std::optional<unsigned> I = findMainViewFileID(Function); 1386 if (I && SourceFile == Function.Filenames[*I]) 1387 return I; 1388 return std::nullopt; 1389 } 1390 1391 static bool isExpansion(const CountedRegion &R, unsigned FileID) { 1392 return R.Kind == CounterMappingRegion::ExpansionRegion && R.FileID == FileID; 1393 } 1394 1395 CoverageData CoverageMapping::getCoverageForFile(StringRef Filename) const { 1396 CoverageData FileCoverage(Filename); 1397 std::vector<CountedRegion> Regions; 1398 1399 // Look up the function records in the given file. Due to hash collisions on 1400 // the filename, we may get back some records that are not in the file. 1401 ArrayRef<unsigned> RecordIndices = 1402 getImpreciseRecordIndicesForFilename(Filename); 1403 for (unsigned RecordIndex : RecordIndices) { 1404 const FunctionRecord &Function = Functions[RecordIndex]; 1405 auto MainFileID = findMainViewFileID(Filename, Function); 1406 auto FileIDs = gatherFileIDs(Filename, Function); 1407 for (const auto &CR : Function.CountedRegions) 1408 if (FileIDs.test(CR.FileID)) { 1409 Regions.push_back(CR); 1410 if (MainFileID && isExpansion(CR, *MainFileID)) 1411 FileCoverage.Expansions.emplace_back(CR, Function); 1412 } 1413 // Capture branch regions specific to the function (excluding expansions). 1414 for (const auto &CR : Function.CountedBranchRegions) 1415 if (FileIDs.test(CR.FileID) && (CR.FileID == CR.ExpandedFileID)) 1416 FileCoverage.BranchRegions.push_back(CR); 1417 // Capture MCDC records specific to the function. 1418 for (const auto &MR : Function.MCDCRecords) 1419 if (FileIDs.test(MR.getDecisionRegion().FileID)) 1420 FileCoverage.MCDCRecords.push_back(MR); 1421 } 1422 1423 LLVM_DEBUG(dbgs() << "Emitting segments for file: " << Filename << "\n"); 1424 FileCoverage.Segments = SegmentBuilder::buildSegments(Regions); 1425 1426 return FileCoverage; 1427 } 1428 1429 std::vector<InstantiationGroup> 1430 CoverageMapping::getInstantiationGroups(StringRef Filename) const { 1431 FunctionInstantiationSetCollector InstantiationSetCollector; 1432 // Look up the function records in the given file. Due to hash collisions on 1433 // the filename, we may get back some records that are not in the file. 1434 ArrayRef<unsigned> RecordIndices = 1435 getImpreciseRecordIndicesForFilename(Filename); 1436 for (unsigned RecordIndex : RecordIndices) { 1437 const FunctionRecord &Function = Functions[RecordIndex]; 1438 auto MainFileID = findMainViewFileID(Filename, Function); 1439 if (!MainFileID) 1440 continue; 1441 InstantiationSetCollector.insert(Function, *MainFileID); 1442 } 1443 1444 std::vector<InstantiationGroup> Result; 1445 for (auto &InstantiationSet : InstantiationSetCollector) { 1446 InstantiationGroup IG{InstantiationSet.first.first, 1447 InstantiationSet.first.second, 1448 std::move(InstantiationSet.second)}; 1449 Result.emplace_back(std::move(IG)); 1450 } 1451 return Result; 1452 } 1453 1454 CoverageData 1455 CoverageMapping::getCoverageForFunction(const FunctionRecord &Function) const { 1456 auto MainFileID = findMainViewFileID(Function); 1457 if (!MainFileID) 1458 return CoverageData(); 1459 1460 CoverageData FunctionCoverage(Function.Filenames[*MainFileID]); 1461 std::vector<CountedRegion> Regions; 1462 for (const auto &CR : Function.CountedRegions) 1463 if (CR.FileID == *MainFileID) { 1464 Regions.push_back(CR); 1465 if (isExpansion(CR, *MainFileID)) 1466 FunctionCoverage.Expansions.emplace_back(CR, Function); 1467 } 1468 // Capture branch regions specific to the function (excluding expansions). 1469 for (const auto &CR : Function.CountedBranchRegions) 1470 if (CR.FileID == *MainFileID) 1471 FunctionCoverage.BranchRegions.push_back(CR); 1472 1473 // Capture MCDC records specific to the function. 1474 for (const auto &MR : Function.MCDCRecords) 1475 if (MR.getDecisionRegion().FileID == *MainFileID) 1476 FunctionCoverage.MCDCRecords.push_back(MR); 1477 1478 LLVM_DEBUG(dbgs() << "Emitting segments for function: " << Function.Name 1479 << "\n"); 1480 FunctionCoverage.Segments = SegmentBuilder::buildSegments(Regions); 1481 1482 return FunctionCoverage; 1483 } 1484 1485 CoverageData CoverageMapping::getCoverageForExpansion( 1486 const ExpansionRecord &Expansion) const { 1487 CoverageData ExpansionCoverage( 1488 Expansion.Function.Filenames[Expansion.FileID]); 1489 std::vector<CountedRegion> Regions; 1490 for (const auto &CR : Expansion.Function.CountedRegions) 1491 if (CR.FileID == Expansion.FileID) { 1492 Regions.push_back(CR); 1493 if (isExpansion(CR, Expansion.FileID)) 1494 ExpansionCoverage.Expansions.emplace_back(CR, Expansion.Function); 1495 } 1496 for (const auto &CR : Expansion.Function.CountedBranchRegions) 1497 // Capture branch regions that only pertain to the corresponding expansion. 1498 if (CR.FileID == Expansion.FileID) 1499 ExpansionCoverage.BranchRegions.push_back(CR); 1500 1501 LLVM_DEBUG(dbgs() << "Emitting segments for expansion of file " 1502 << Expansion.FileID << "\n"); 1503 ExpansionCoverage.Segments = SegmentBuilder::buildSegments(Regions); 1504 1505 return ExpansionCoverage; 1506 } 1507 1508 LineCoverageStats::LineCoverageStats( 1509 ArrayRef<const CoverageSegment *> LineSegments, 1510 const CoverageSegment *WrappedSegment, unsigned Line) 1511 : ExecutionCount(0), HasMultipleRegions(false), Mapped(false), Line(Line), 1512 LineSegments(LineSegments), WrappedSegment(WrappedSegment) { 1513 // Find the minimum number of regions which start in this line. 1514 unsigned MinRegionCount = 0; 1515 auto isStartOfRegion = [](const CoverageSegment *S) { 1516 return !S->IsGapRegion && S->HasCount && S->IsRegionEntry; 1517 }; 1518 for (unsigned I = 0; I < LineSegments.size() && MinRegionCount < 2; ++I) 1519 if (isStartOfRegion(LineSegments[I])) 1520 ++MinRegionCount; 1521 1522 bool StartOfSkippedRegion = !LineSegments.empty() && 1523 !LineSegments.front()->HasCount && 1524 LineSegments.front()->IsRegionEntry; 1525 1526 HasMultipleRegions = MinRegionCount > 1; 1527 Mapped = 1528 !StartOfSkippedRegion && 1529 ((WrappedSegment && WrappedSegment->HasCount) || (MinRegionCount > 0)); 1530 1531 // if there is any starting segment at this line with a counter, it must be 1532 // mapped 1533 Mapped |= any_of(LineSegments, [](const auto *Seq) { 1534 return Seq->IsRegionEntry && Seq->HasCount; 1535 }); 1536 1537 if (!Mapped) { 1538 return; 1539 } 1540 1541 // Pick the max count from the non-gap, region entry segments and the 1542 // wrapped count. 1543 if (WrappedSegment) 1544 ExecutionCount = WrappedSegment->Count; 1545 if (!MinRegionCount) 1546 return; 1547 for (const auto *LS : LineSegments) 1548 if (isStartOfRegion(LS)) 1549 ExecutionCount = std::max(ExecutionCount, LS->Count); 1550 } 1551 1552 LineCoverageIterator &LineCoverageIterator::operator++() { 1553 if (Next == CD.end()) { 1554 Stats = LineCoverageStats(); 1555 Ended = true; 1556 return *this; 1557 } 1558 if (Segments.size()) 1559 WrappedSegment = Segments.back(); 1560 Segments.clear(); 1561 while (Next != CD.end() && Next->Line == Line) 1562 Segments.push_back(&*Next++); 1563 Stats = LineCoverageStats(Segments, WrappedSegment, Line); 1564 ++Line; 1565 return *this; 1566 } 1567 1568 static std::string getCoverageMapErrString(coveragemap_error Err, 1569 const std::string &ErrMsg = "") { 1570 std::string Msg; 1571 raw_string_ostream OS(Msg); 1572 1573 switch (Err) { 1574 case coveragemap_error::success: 1575 OS << "success"; 1576 break; 1577 case coveragemap_error::eof: 1578 OS << "end of File"; 1579 break; 1580 case coveragemap_error::no_data_found: 1581 OS << "no coverage data found"; 1582 break; 1583 case coveragemap_error::unsupported_version: 1584 OS << "unsupported coverage format version"; 1585 break; 1586 case coveragemap_error::truncated: 1587 OS << "truncated coverage data"; 1588 break; 1589 case coveragemap_error::malformed: 1590 OS << "malformed coverage data"; 1591 break; 1592 case coveragemap_error::decompression_failed: 1593 OS << "failed to decompress coverage data (zlib)"; 1594 break; 1595 case coveragemap_error::invalid_or_missing_arch_specifier: 1596 OS << "`-arch` specifier is invalid or missing for universal binary"; 1597 break; 1598 } 1599 1600 // If optional error message is not empty, append it to the message. 1601 if (!ErrMsg.empty()) 1602 OS << ": " << ErrMsg; 1603 1604 return Msg; 1605 } 1606 1607 namespace { 1608 1609 // FIXME: This class is only here to support the transition to llvm::Error. It 1610 // will be removed once this transition is complete. Clients should prefer to 1611 // deal with the Error value directly, rather than converting to error_code. 1612 class CoverageMappingErrorCategoryType : public std::error_category { 1613 const char *name() const noexcept override { return "llvm.coveragemap"; } 1614 std::string message(int IE) const override { 1615 return getCoverageMapErrString(static_cast<coveragemap_error>(IE)); 1616 } 1617 }; 1618 1619 } // end anonymous namespace 1620 1621 std::string CoverageMapError::message() const { 1622 return getCoverageMapErrString(Err, Msg); 1623 } 1624 1625 const std::error_category &llvm::coverage::coveragemap_category() { 1626 static CoverageMappingErrorCategoryType ErrorCategory; 1627 return ErrorCategory; 1628 } 1629 1630 char CoverageMapError::ID = 0; 1631