1 //===- CoverageMapping.cpp - Code coverage mapping support ----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains support for clang's and llvm's instrumentation based 10 // code coverage. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/ProfileData/Coverage/CoverageMapping.h" 15 #include "llvm/ADT/ArrayRef.h" 16 #include "llvm/ADT/DenseMap.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/SmallBitVector.h" 19 #include "llvm/ADT/SmallVector.h" 20 #include "llvm/ADT/StringExtras.h" 21 #include "llvm/ADT/StringRef.h" 22 #include "llvm/Object/BuildID.h" 23 #include "llvm/ProfileData/Coverage/CoverageMappingReader.h" 24 #include "llvm/ProfileData/InstrProfReader.h" 25 #include "llvm/Support/Debug.h" 26 #include "llvm/Support/Errc.h" 27 #include "llvm/Support/Error.h" 28 #include "llvm/Support/ErrorHandling.h" 29 #include "llvm/Support/MemoryBuffer.h" 30 #include "llvm/Support/VirtualFileSystem.h" 31 #include "llvm/Support/raw_ostream.h" 32 #include <algorithm> 33 #include <cassert> 34 #include <cmath> 35 #include <cstdint> 36 #include <iterator> 37 #include <map> 38 #include <memory> 39 #include <optional> 40 #include <string> 41 #include <system_error> 42 #include <utility> 43 #include <vector> 44 45 using namespace llvm; 46 using namespace coverage; 47 48 #define DEBUG_TYPE "coverage-mapping" 49 50 Counter CounterExpressionBuilder::get(const CounterExpression &E) { 51 auto It = ExpressionIndices.find(E); 52 if (It != ExpressionIndices.end()) 53 return Counter::getExpression(It->second); 54 unsigned I = Expressions.size(); 55 Expressions.push_back(E); 56 ExpressionIndices[E] = I; 57 return Counter::getExpression(I); 58 } 59 60 void CounterExpressionBuilder::extractTerms(Counter C, int Factor, 61 SmallVectorImpl<Term> &Terms) { 62 switch (C.getKind()) { 63 case Counter::Zero: 64 break; 65 case Counter::CounterValueReference: 66 Terms.emplace_back(C.getCounterID(), Factor); 67 break; 68 case Counter::Expression: 69 const auto &E = Expressions[C.getExpressionID()]; 70 extractTerms(E.LHS, Factor, Terms); 71 extractTerms( 72 E.RHS, E.Kind == CounterExpression::Subtract ? -Factor : Factor, Terms); 73 break; 74 } 75 } 76 77 Counter CounterExpressionBuilder::simplify(Counter ExpressionTree) { 78 // Gather constant terms. 79 SmallVector<Term, 32> Terms; 80 extractTerms(ExpressionTree, +1, Terms); 81 82 // If there are no terms, this is just a zero. The algorithm below assumes at 83 // least one term. 84 if (Terms.size() == 0) 85 return Counter::getZero(); 86 87 // Group the terms by counter ID. 88 llvm::sort(Terms, [](const Term &LHS, const Term &RHS) { 89 return LHS.CounterID < RHS.CounterID; 90 }); 91 92 // Combine terms by counter ID to eliminate counters that sum to zero. 93 auto Prev = Terms.begin(); 94 for (auto I = Prev + 1, E = Terms.end(); I != E; ++I) { 95 if (I->CounterID == Prev->CounterID) { 96 Prev->Factor += I->Factor; 97 continue; 98 } 99 ++Prev; 100 *Prev = *I; 101 } 102 Terms.erase(++Prev, Terms.end()); 103 104 Counter C; 105 // Create additions. We do this before subtractions to avoid constructs like 106 // ((0 - X) + Y), as opposed to (Y - X). 107 for (auto T : Terms) { 108 if (T.Factor <= 0) 109 continue; 110 for (int I = 0; I < T.Factor; ++I) 111 if (C.isZero()) 112 C = Counter::getCounter(T.CounterID); 113 else 114 C = get(CounterExpression(CounterExpression::Add, C, 115 Counter::getCounter(T.CounterID))); 116 } 117 118 // Create subtractions. 119 for (auto T : Terms) { 120 if (T.Factor >= 0) 121 continue; 122 for (int I = 0; I < -T.Factor; ++I) 123 C = get(CounterExpression(CounterExpression::Subtract, C, 124 Counter::getCounter(T.CounterID))); 125 } 126 return C; 127 } 128 129 Counter CounterExpressionBuilder::add(Counter LHS, Counter RHS, bool Simplify) { 130 auto Cnt = get(CounterExpression(CounterExpression::Add, LHS, RHS)); 131 return Simplify ? simplify(Cnt) : Cnt; 132 } 133 134 Counter CounterExpressionBuilder::subtract(Counter LHS, Counter RHS, 135 bool Simplify) { 136 auto Cnt = get(CounterExpression(CounterExpression::Subtract, LHS, RHS)); 137 return Simplify ? simplify(Cnt) : Cnt; 138 } 139 140 void CounterMappingContext::dump(const Counter &C, raw_ostream &OS) const { 141 switch (C.getKind()) { 142 case Counter::Zero: 143 OS << '0'; 144 return; 145 case Counter::CounterValueReference: 146 OS << '#' << C.getCounterID(); 147 break; 148 case Counter::Expression: { 149 if (C.getExpressionID() >= Expressions.size()) 150 return; 151 const auto &E = Expressions[C.getExpressionID()]; 152 OS << '('; 153 dump(E.LHS, OS); 154 OS << (E.Kind == CounterExpression::Subtract ? " - " : " + "); 155 dump(E.RHS, OS); 156 OS << ')'; 157 break; 158 } 159 } 160 if (CounterValues.empty()) 161 return; 162 Expected<int64_t> Value = evaluate(C); 163 if (auto E = Value.takeError()) { 164 consumeError(std::move(E)); 165 return; 166 } 167 OS << '[' << *Value << ']'; 168 } 169 170 Expected<int64_t> CounterMappingContext::evaluate(const Counter &C) const { 171 struct StackElem { 172 Counter ICounter; 173 int64_t LHS = 0; 174 enum { 175 KNeverVisited = 0, 176 KVisitedOnce = 1, 177 KVisitedTwice = 2, 178 } VisitCount = KNeverVisited; 179 }; 180 181 std::stack<StackElem> CounterStack; 182 CounterStack.push({C}); 183 184 int64_t LastPoppedValue; 185 186 while (!CounterStack.empty()) { 187 StackElem &Current = CounterStack.top(); 188 189 switch (Current.ICounter.getKind()) { 190 case Counter::Zero: 191 LastPoppedValue = 0; 192 CounterStack.pop(); 193 break; 194 case Counter::CounterValueReference: 195 if (Current.ICounter.getCounterID() >= CounterValues.size()) 196 return errorCodeToError(errc::argument_out_of_domain); 197 LastPoppedValue = CounterValues[Current.ICounter.getCounterID()]; 198 CounterStack.pop(); 199 break; 200 case Counter::Expression: { 201 if (Current.ICounter.getExpressionID() >= Expressions.size()) 202 return errorCodeToError(errc::argument_out_of_domain); 203 const auto &E = Expressions[Current.ICounter.getExpressionID()]; 204 if (Current.VisitCount == StackElem::KNeverVisited) { 205 CounterStack.push(StackElem{E.LHS}); 206 Current.VisitCount = StackElem::KVisitedOnce; 207 } else if (Current.VisitCount == StackElem::KVisitedOnce) { 208 Current.LHS = LastPoppedValue; 209 CounterStack.push(StackElem{E.RHS}); 210 Current.VisitCount = StackElem::KVisitedTwice; 211 } else { 212 int64_t LHS = Current.LHS; 213 int64_t RHS = LastPoppedValue; 214 LastPoppedValue = 215 E.Kind == CounterExpression::Subtract ? LHS - RHS : LHS + RHS; 216 CounterStack.pop(); 217 } 218 break; 219 } 220 } 221 } 222 223 return LastPoppedValue; 224 } 225 226 class MCDCRecordProcessor { 227 /// A bitmap representing the executed test vectors for a boolean expression. 228 /// Each index of the bitmap corresponds to a possible test vector. An index 229 /// with a bit value of '1' indicates that the corresponding Test Vector 230 /// identified by that index was executed. 231 const BitVector &Bitmap; 232 233 /// Decision Region to which the ExecutedTestVectorBitmap applies. 234 const CounterMappingRegion &Region; 235 236 /// Array of branch regions corresponding each conditions in the boolean 237 /// expression. 238 ArrayRef<const CounterMappingRegion *> Branches; 239 240 /// Total number of conditions in the boolean expression. 241 unsigned NumConditions; 242 243 unsigned BitmapIdx; 244 245 /// Mapping of a condition ID to its corresponding branch region. 246 llvm::DenseMap<unsigned, const CounterMappingRegion *> Map; 247 248 /// Vector used to track whether a condition is constant folded. 249 MCDCRecord::BoolVector Folded; 250 251 /// Mapping of calculated MC/DC Independence Pairs for each condition. 252 MCDCRecord::TVPairMap IndependencePairs; 253 254 /// Total number of possible Test Vectors for the boolean expression. 255 MCDCRecord::TestVectors TestVectors; 256 257 /// Actual executed Test Vectors for the boolean expression, based on 258 /// ExecutedTestVectorBitmap. 259 MCDCRecord::TestVectors ExecVectors; 260 261 public: 262 MCDCRecordProcessor(const BitVector &Bitmap, 263 const CounterMappingRegion &Region, 264 ArrayRef<const CounterMappingRegion *> Branches) 265 : Bitmap(Bitmap), Region(Region), Branches(Branches), 266 NumConditions(Region.MCDCParams.NumConditions), 267 BitmapIdx(Region.MCDCParams.BitmapIdx * CHAR_BIT), 268 Folded(NumConditions, false), IndependencePairs(NumConditions), 269 TestVectors((size_t)1 << NumConditions) {} 270 271 private: 272 void recordTestVector(MCDCRecord::TestVector &TV, unsigned Index, 273 MCDCRecord::CondState Result) { 274 // Copy the completed test vector to the vector of testvectors. 275 TestVectors[Index] = TV; 276 277 // The final value (T,F) is equal to the last non-dontcare state on the 278 // path (in a short-circuiting system). 279 TestVectors[Index].push_back(Result); 280 } 281 282 // Walk the binary decision diagram and try assigning both false and true to 283 // each node. When a terminal node (ID == 0) is reached, fill in the value in 284 // the truth table. 285 void buildTestVector(MCDCRecord::TestVector &TV, unsigned ID, 286 unsigned Index) { 287 const CounterMappingRegion *Branch = Map[ID]; 288 289 TV[ID - 1] = MCDCRecord::MCDC_False; 290 if (Branch->MCDCParams.FalseID > 0) 291 buildTestVector(TV, Branch->MCDCParams.FalseID, Index); 292 else 293 recordTestVector(TV, Index, MCDCRecord::MCDC_False); 294 295 Index |= 1 << (ID - 1); 296 TV[ID - 1] = MCDCRecord::MCDC_True; 297 if (Branch->MCDCParams.TrueID > 0) 298 buildTestVector(TV, Branch->MCDCParams.TrueID, Index); 299 else 300 recordTestVector(TV, Index, MCDCRecord::MCDC_True); 301 302 // Reset back to DontCare. 303 TV[ID - 1] = MCDCRecord::MCDC_DontCare; 304 } 305 306 /// Walk the bits in the bitmap. A bit set to '1' indicates that the test 307 /// vector at the corresponding index was executed during a test run. 308 void findExecutedTestVectors() { 309 for (unsigned Idx = 0; Idx < (1u << NumConditions); ++Idx) { 310 assert(BitmapIdx + Idx < Bitmap.size() && "Bitmap overrun"); 311 if (Bitmap[BitmapIdx + Idx] == 0) 312 continue; 313 assert(!TestVectors[Idx].empty() && "Test Vector doesn't exist."); 314 ExecVectors.push_back(TestVectors[Idx]); 315 } 316 } 317 318 // Find an independence pair for each condition: 319 // - The condition is true in one test and false in the other. 320 // - The decision outcome is true one test and false in the other. 321 // - All other conditions' values must be equal or marked as "don't care". 322 void findIndependencePairs() { 323 unsigned NumTVs = ExecVectors.size(); 324 for (unsigned I = 1; I < NumTVs; ++I) { 325 const MCDCRecord::TestVector &A = ExecVectors[I]; 326 for (unsigned J = 0; J < I; ++J) { 327 const MCDCRecord::TestVector &B = ExecVectors[J]; 328 // Enumerate two execution vectors whose outcomes are different. 329 if (A[NumConditions] == B[NumConditions]) 330 continue; 331 unsigned Flip = NumConditions, Idx; 332 for (Idx = 0; Idx < NumConditions; ++Idx) { 333 MCDCRecord::CondState ACond = A[Idx], BCond = B[Idx]; 334 if (ACond == BCond || ACond == MCDCRecord::MCDC_DontCare || 335 BCond == MCDCRecord::MCDC_DontCare) 336 continue; 337 if (Flip != NumConditions) 338 break; 339 Flip = Idx; 340 } 341 // If the two vectors differ in exactly one condition, ignoring DontCare 342 // conditions, we have found an independence pair. 343 if (Idx == NumConditions && Flip != NumConditions) 344 IndependencePairs.insert({Flip, std::make_pair(J + 1, I + 1)}); 345 } 346 } 347 } 348 349 public: 350 /// Process the MC/DC Record in order to produce a result for a boolean 351 /// expression. This process includes tracking the conditions that comprise 352 /// the decision region, calculating the list of all possible test vectors, 353 /// marking the executed test vectors, and then finding an Independence Pair 354 /// out of the executed test vectors for each condition in the boolean 355 /// expression. A condition is tracked to ensure that its ID can be mapped to 356 /// its ordinal position in the boolean expression. The condition's source 357 /// location is also tracked, as well as whether it is constant folded (in 358 /// which case it is excuded from the metric). 359 MCDCRecord processMCDCRecord() { 360 unsigned I = 0; 361 MCDCRecord::CondIDMap PosToID; 362 MCDCRecord::LineColPairMap CondLoc; 363 364 // Walk the Record's BranchRegions (representing Conditions) in order to: 365 // - Hash the condition based on its corresponding ID. This will be used to 366 // calculate the test vectors. 367 // - Keep a map of the condition's ordinal position (1, 2, 3, 4) to its 368 // actual ID. This will be used to visualize the conditions in the 369 // correct order. 370 // - Keep track of the condition source location. This will be used to 371 // visualize where the condition is. 372 // - Record whether the condition is constant folded so that we exclude it 373 // from being measured. 374 for (const auto *B : Branches) { 375 Map[B->MCDCParams.ID] = B; 376 PosToID[I] = B->MCDCParams.ID - 1; 377 CondLoc[I] = B->startLoc(); 378 Folded[I++] = (B->Count.isZero() && B->FalseCount.isZero()); 379 } 380 381 // Walk the binary decision diagram to enumerate all possible test vectors. 382 // We start at the root node (ID == 1) with all values being DontCare. 383 // `Index` encodes the bitmask of true values and is initially 0. 384 MCDCRecord::TestVector TV(NumConditions, MCDCRecord::MCDC_DontCare); 385 buildTestVector(TV, 1, 0); 386 387 // Using Profile Bitmap from runtime, mark the executed test vectors. 388 findExecutedTestVectors(); 389 390 // Compare executed test vectors against each other to find an independence 391 // pairs for each condition. This processing takes the most time. 392 findIndependencePairs(); 393 394 // Record Test vectors, executed vectors, and independence pairs. 395 MCDCRecord Res(Region, ExecVectors, IndependencePairs, Folded, PosToID, 396 CondLoc); 397 return Res; 398 } 399 }; 400 401 Expected<MCDCRecord> CounterMappingContext::evaluateMCDCRegion( 402 const CounterMappingRegion &Region, 403 ArrayRef<const CounterMappingRegion *> Branches) { 404 405 MCDCRecordProcessor MCDCProcessor(Bitmap, Region, Branches); 406 return MCDCProcessor.processMCDCRecord(); 407 } 408 409 unsigned CounterMappingContext::getMaxCounterID(const Counter &C) const { 410 struct StackElem { 411 Counter ICounter; 412 int64_t LHS = 0; 413 enum { 414 KNeverVisited = 0, 415 KVisitedOnce = 1, 416 KVisitedTwice = 2, 417 } VisitCount = KNeverVisited; 418 }; 419 420 std::stack<StackElem> CounterStack; 421 CounterStack.push({C}); 422 423 int64_t LastPoppedValue; 424 425 while (!CounterStack.empty()) { 426 StackElem &Current = CounterStack.top(); 427 428 switch (Current.ICounter.getKind()) { 429 case Counter::Zero: 430 LastPoppedValue = 0; 431 CounterStack.pop(); 432 break; 433 case Counter::CounterValueReference: 434 LastPoppedValue = Current.ICounter.getCounterID(); 435 CounterStack.pop(); 436 break; 437 case Counter::Expression: { 438 if (Current.ICounter.getExpressionID() >= Expressions.size()) { 439 LastPoppedValue = 0; 440 CounterStack.pop(); 441 } else { 442 const auto &E = Expressions[Current.ICounter.getExpressionID()]; 443 if (Current.VisitCount == StackElem::KNeverVisited) { 444 CounterStack.push(StackElem{E.LHS}); 445 Current.VisitCount = StackElem::KVisitedOnce; 446 } else if (Current.VisitCount == StackElem::KVisitedOnce) { 447 Current.LHS = LastPoppedValue; 448 CounterStack.push(StackElem{E.RHS}); 449 Current.VisitCount = StackElem::KVisitedTwice; 450 } else { 451 int64_t LHS = Current.LHS; 452 int64_t RHS = LastPoppedValue; 453 LastPoppedValue = std::max(LHS, RHS); 454 CounterStack.pop(); 455 } 456 } 457 break; 458 } 459 } 460 } 461 462 return LastPoppedValue; 463 } 464 465 void FunctionRecordIterator::skipOtherFiles() { 466 while (Current != Records.end() && !Filename.empty() && 467 Filename != Current->Filenames[0]) 468 ++Current; 469 if (Current == Records.end()) 470 *this = FunctionRecordIterator(); 471 } 472 473 ArrayRef<unsigned> CoverageMapping::getImpreciseRecordIndicesForFilename( 474 StringRef Filename) const { 475 size_t FilenameHash = hash_value(Filename); 476 auto RecordIt = FilenameHash2RecordIndices.find(FilenameHash); 477 if (RecordIt == FilenameHash2RecordIndices.end()) 478 return {}; 479 return RecordIt->second; 480 } 481 482 static unsigned getMaxCounterID(const CounterMappingContext &Ctx, 483 const CoverageMappingRecord &Record) { 484 unsigned MaxCounterID = 0; 485 for (const auto &Region : Record.MappingRegions) { 486 MaxCounterID = std::max(MaxCounterID, Ctx.getMaxCounterID(Region.Count)); 487 } 488 return MaxCounterID; 489 } 490 491 /// Returns the bit count 492 static unsigned getMaxBitmapSize(const CounterMappingContext &Ctx, 493 const CoverageMappingRecord &Record) { 494 unsigned MaxBitmapID = 0; 495 unsigned NumConditions = 0; 496 // Scan max(BitmapIdx). 497 // Note that `<=` is used insted of `<`, because `BitmapIdx == 0` is valid 498 // and `MaxBitmapID is `unsigned`. `BitmapIdx` is unique in the record. 499 for (const auto &Region : reverse(Record.MappingRegions)) { 500 if (Region.Kind == CounterMappingRegion::MCDCDecisionRegion && 501 MaxBitmapID <= Region.MCDCParams.BitmapIdx) { 502 MaxBitmapID = Region.MCDCParams.BitmapIdx; 503 NumConditions = Region.MCDCParams.NumConditions; 504 } 505 } 506 unsigned SizeInBits = llvm::alignTo(uint64_t(1) << NumConditions, CHAR_BIT); 507 return MaxBitmapID * CHAR_BIT + SizeInBits; 508 } 509 510 namespace { 511 512 /// Collect Decisions, Branchs, and Expansions and associate them. 513 class MCDCDecisionRecorder { 514 private: 515 /// This holds the DecisionRegion and MCDCBranches under it. 516 /// Also traverses Expansion(s). 517 /// The Decision has the number of MCDCBranches and will complete 518 /// when it is filled with unique ConditionID of MCDCBranches. 519 struct DecisionRecord { 520 const CounterMappingRegion *DecisionRegion; 521 522 /// They are reflected from DecisionRegion for convenience. 523 LineColPair DecisionStartLoc; 524 LineColPair DecisionEndLoc; 525 526 /// This is passed to `MCDCRecordProcessor`, so this should be compatible 527 /// to`ArrayRef<const CounterMappingRegion *>`. 528 SmallVector<const CounterMappingRegion *> MCDCBranches; 529 530 /// IDs that are stored in MCDCBranches 531 /// Complete when all IDs (1 to NumConditions) are met. 532 DenseSet<CounterMappingRegion::MCDCConditionID> ConditionIDs; 533 534 /// Set of IDs of Expansion(s) that are relevant to DecisionRegion 535 /// and its children (via expansions). 536 /// FileID pointed by ExpandedFileID is dedicated to the expansion, so 537 /// the location in the expansion doesn't matter. 538 DenseSet<unsigned> ExpandedFileIDs; 539 540 DecisionRecord(const CounterMappingRegion &Decision) 541 : DecisionRegion(&Decision), DecisionStartLoc(Decision.startLoc()), 542 DecisionEndLoc(Decision.endLoc()) { 543 assert(Decision.Kind == CounterMappingRegion::MCDCDecisionRegion); 544 } 545 546 /// Determine whether DecisionRecord dominates `R`. 547 bool dominates(const CounterMappingRegion &R) const { 548 // Determine whether `R` is included in `DecisionRegion`. 549 if (R.FileID == DecisionRegion->FileID && 550 R.startLoc() >= DecisionStartLoc && R.endLoc() <= DecisionEndLoc) 551 return true; 552 553 // Determine whether `R` is pointed by any of Expansions. 554 return ExpandedFileIDs.contains(R.FileID); 555 } 556 557 enum Result { 558 NotProcessed = 0, /// Irrelevant to this Decision 559 Processed, /// Added to this Decision 560 Completed, /// Added and filled this Decision 561 }; 562 563 /// Add Branch into the Decision 564 /// \param Branch expects MCDCBranchRegion 565 /// \returns NotProcessed/Processed/Completed 566 Result addBranch(const CounterMappingRegion &Branch) { 567 assert(Branch.Kind == CounterMappingRegion::MCDCBranchRegion); 568 569 auto ConditionID = Branch.MCDCParams.ID; 570 assert(ConditionID > 0 && "ConditionID should begin with 1"); 571 572 if (ConditionIDs.contains(ConditionID) || 573 ConditionID > DecisionRegion->MCDCParams.NumConditions) 574 return NotProcessed; 575 576 if (!this->dominates(Branch)) 577 return NotProcessed; 578 579 assert(MCDCBranches.size() < DecisionRegion->MCDCParams.NumConditions); 580 581 // Put `ID=1` in front of `MCDCBranches` for convenience 582 // even if `MCDCBranches` is not topological. 583 if (ConditionID == 1) 584 MCDCBranches.insert(MCDCBranches.begin(), &Branch); 585 else 586 MCDCBranches.push_back(&Branch); 587 588 // Mark `ID` as `assigned`. 589 ConditionIDs.insert(ConditionID); 590 591 // `Completed` when `MCDCBranches` is full 592 return (MCDCBranches.size() == DecisionRegion->MCDCParams.NumConditions 593 ? Completed 594 : Processed); 595 } 596 597 /// Record Expansion if it is relevant to this Decision. 598 /// Each `Expansion` may nest. 599 /// \returns true if recorded. 600 bool recordExpansion(const CounterMappingRegion &Expansion) { 601 if (!this->dominates(Expansion)) 602 return false; 603 604 ExpandedFileIDs.insert(Expansion.ExpandedFileID); 605 return true; 606 } 607 }; 608 609 private: 610 /// Decisions in progress 611 /// DecisionRecord is added for each MCDCDecisionRegion. 612 /// DecisionRecord is removed when Decision is completed. 613 SmallVector<DecisionRecord> Decisions; 614 615 public: 616 ~MCDCDecisionRecorder() { 617 assert(Decisions.empty() && "All Decisions have not been resolved"); 618 } 619 620 /// Register Region and start recording. 621 void registerDecision(const CounterMappingRegion &Decision) { 622 Decisions.emplace_back(Decision); 623 } 624 625 void recordExpansion(const CounterMappingRegion &Expansion) { 626 any_of(Decisions, [&Expansion](auto &Decision) { 627 return Decision.recordExpansion(Expansion); 628 }); 629 } 630 631 using DecisionAndBranches = 632 std::pair<const CounterMappingRegion *, /// Decision 633 SmallVector<const CounterMappingRegion *> /// Branches 634 >; 635 636 /// Add MCDCBranchRegion to DecisionRecord. 637 /// \param Branch to be processed 638 /// \returns DecisionsAndBranches if DecisionRecord completed. 639 /// Or returns nullopt. 640 std::optional<DecisionAndBranches> 641 processBranch(const CounterMappingRegion &Branch) { 642 // Seek each Decision and apply Region to it. 643 for (auto DecisionIter = Decisions.begin(), DecisionEnd = Decisions.end(); 644 DecisionIter != DecisionEnd; ++DecisionIter) 645 switch (DecisionIter->addBranch(Branch)) { 646 case DecisionRecord::NotProcessed: 647 continue; 648 case DecisionRecord::Processed: 649 return std::nullopt; 650 case DecisionRecord::Completed: 651 DecisionAndBranches Result = 652 std::make_pair(DecisionIter->DecisionRegion, 653 std::move(DecisionIter->MCDCBranches)); 654 Decisions.erase(DecisionIter); // No longer used. 655 return Result; 656 } 657 658 llvm_unreachable("Branch not found in Decisions"); 659 } 660 }; 661 662 } // namespace 663 664 Error CoverageMapping::loadFunctionRecord( 665 const CoverageMappingRecord &Record, 666 IndexedInstrProfReader &ProfileReader) { 667 StringRef OrigFuncName = Record.FunctionName; 668 if (OrigFuncName.empty()) 669 return make_error<CoverageMapError>(coveragemap_error::malformed, 670 "record function name is empty"); 671 672 if (Record.Filenames.empty()) 673 OrigFuncName = getFuncNameWithoutPrefix(OrigFuncName); 674 else 675 OrigFuncName = getFuncNameWithoutPrefix(OrigFuncName, Record.Filenames[0]); 676 677 CounterMappingContext Ctx(Record.Expressions); 678 679 std::vector<uint64_t> Counts; 680 if (Error E = ProfileReader.getFunctionCounts(Record.FunctionName, 681 Record.FunctionHash, Counts)) { 682 instrprof_error IPE = std::get<0>(InstrProfError::take(std::move(E))); 683 if (IPE == instrprof_error::hash_mismatch) { 684 FuncHashMismatches.emplace_back(std::string(Record.FunctionName), 685 Record.FunctionHash); 686 return Error::success(); 687 } 688 if (IPE != instrprof_error::unknown_function) 689 return make_error<InstrProfError>(IPE); 690 Counts.assign(getMaxCounterID(Ctx, Record) + 1, 0); 691 } 692 Ctx.setCounts(Counts); 693 694 BitVector Bitmap; 695 if (Error E = ProfileReader.getFunctionBitmap(Record.FunctionName, 696 Record.FunctionHash, Bitmap)) { 697 instrprof_error IPE = std::get<0>(InstrProfError::take(std::move(E))); 698 if (IPE == instrprof_error::hash_mismatch) { 699 FuncHashMismatches.emplace_back(std::string(Record.FunctionName), 700 Record.FunctionHash); 701 return Error::success(); 702 } 703 if (IPE != instrprof_error::unknown_function) 704 return make_error<InstrProfError>(IPE); 705 Bitmap = BitVector(getMaxBitmapSize(Ctx, Record)); 706 } 707 Ctx.setBitmap(std::move(Bitmap)); 708 709 assert(!Record.MappingRegions.empty() && "Function has no regions"); 710 711 // This coverage record is a zero region for a function that's unused in 712 // some TU, but used in a different TU. Ignore it. The coverage maps from the 713 // the other TU will either be loaded (providing full region counts) or they 714 // won't (in which case we don't unintuitively report functions as uncovered 715 // when they have non-zero counts in the profile). 716 if (Record.MappingRegions.size() == 1 && 717 Record.MappingRegions[0].Count.isZero() && Counts[0] > 0) 718 return Error::success(); 719 720 MCDCDecisionRecorder MCDCDecisions; 721 FunctionRecord Function(OrigFuncName, Record.Filenames); 722 for (const auto &Region : Record.MappingRegions) { 723 // MCDCDecisionRegion should be handled first since it overlaps with 724 // others inside. 725 if (Region.Kind == CounterMappingRegion::MCDCDecisionRegion) { 726 MCDCDecisions.registerDecision(Region); 727 continue; 728 } 729 Expected<int64_t> ExecutionCount = Ctx.evaluate(Region.Count); 730 if (auto E = ExecutionCount.takeError()) { 731 consumeError(std::move(E)); 732 return Error::success(); 733 } 734 Expected<int64_t> AltExecutionCount = Ctx.evaluate(Region.FalseCount); 735 if (auto E = AltExecutionCount.takeError()) { 736 consumeError(std::move(E)); 737 return Error::success(); 738 } 739 Function.pushRegion(Region, *ExecutionCount, *AltExecutionCount); 740 741 // Record ExpansionRegion. 742 if (Region.Kind == CounterMappingRegion::ExpansionRegion) { 743 MCDCDecisions.recordExpansion(Region); 744 continue; 745 } 746 747 // Do nothing unless MCDCBranchRegion. 748 if (Region.Kind != CounterMappingRegion::MCDCBranchRegion) 749 continue; 750 751 auto Result = MCDCDecisions.processBranch(Region); 752 if (!Result) // Any Decision doesn't complete. 753 continue; 754 755 auto MCDCDecision = Result->first; 756 auto &MCDCBranches = Result->second; 757 758 // Since the bitmap identifies the executed test vectors for an MC/DC 759 // DecisionRegion, all of the information is now available to process. 760 // This is where the bulk of the MC/DC progressing takes place. 761 Expected<MCDCRecord> Record = 762 Ctx.evaluateMCDCRegion(*MCDCDecision, MCDCBranches); 763 if (auto E = Record.takeError()) { 764 consumeError(std::move(E)); 765 return Error::success(); 766 } 767 768 // Save the MC/DC Record so that it can be visualized later. 769 Function.pushMCDCRecord(*Record); 770 } 771 772 // Don't create records for (filenames, function) pairs we've already seen. 773 auto FilenamesHash = hash_combine_range(Record.Filenames.begin(), 774 Record.Filenames.end()); 775 if (!RecordProvenance[FilenamesHash].insert(hash_value(OrigFuncName)).second) 776 return Error::success(); 777 778 Functions.push_back(std::move(Function)); 779 780 // Performance optimization: keep track of the indices of the function records 781 // which correspond to each filename. This can be used to substantially speed 782 // up queries for coverage info in a file. 783 unsigned RecordIndex = Functions.size() - 1; 784 for (StringRef Filename : Record.Filenames) { 785 auto &RecordIndices = FilenameHash2RecordIndices[hash_value(Filename)]; 786 // Note that there may be duplicates in the filename set for a function 787 // record, because of e.g. macro expansions in the function in which both 788 // the macro and the function are defined in the same file. 789 if (RecordIndices.empty() || RecordIndices.back() != RecordIndex) 790 RecordIndices.push_back(RecordIndex); 791 } 792 793 return Error::success(); 794 } 795 796 // This function is for memory optimization by shortening the lifetimes 797 // of CoverageMappingReader instances. 798 Error CoverageMapping::loadFromReaders( 799 ArrayRef<std::unique_ptr<CoverageMappingReader>> CoverageReaders, 800 IndexedInstrProfReader &ProfileReader, CoverageMapping &Coverage) { 801 for (const auto &CoverageReader : CoverageReaders) { 802 for (auto RecordOrErr : *CoverageReader) { 803 if (Error E = RecordOrErr.takeError()) 804 return E; 805 const auto &Record = *RecordOrErr; 806 if (Error E = Coverage.loadFunctionRecord(Record, ProfileReader)) 807 return E; 808 } 809 } 810 return Error::success(); 811 } 812 813 Expected<std::unique_ptr<CoverageMapping>> CoverageMapping::load( 814 ArrayRef<std::unique_ptr<CoverageMappingReader>> CoverageReaders, 815 IndexedInstrProfReader &ProfileReader) { 816 auto Coverage = std::unique_ptr<CoverageMapping>(new CoverageMapping()); 817 if (Error E = loadFromReaders(CoverageReaders, ProfileReader, *Coverage)) 818 return std::move(E); 819 return std::move(Coverage); 820 } 821 822 // If E is a no_data_found error, returns success. Otherwise returns E. 823 static Error handleMaybeNoDataFoundError(Error E) { 824 return handleErrors( 825 std::move(E), [](const CoverageMapError &CME) { 826 if (CME.get() == coveragemap_error::no_data_found) 827 return static_cast<Error>(Error::success()); 828 return make_error<CoverageMapError>(CME.get(), CME.getMessage()); 829 }); 830 } 831 832 Error CoverageMapping::loadFromFile( 833 StringRef Filename, StringRef Arch, StringRef CompilationDir, 834 IndexedInstrProfReader &ProfileReader, CoverageMapping &Coverage, 835 bool &DataFound, SmallVectorImpl<object::BuildID> *FoundBinaryIDs) { 836 auto CovMappingBufOrErr = MemoryBuffer::getFileOrSTDIN( 837 Filename, /*IsText=*/false, /*RequiresNullTerminator=*/false); 838 if (std::error_code EC = CovMappingBufOrErr.getError()) 839 return createFileError(Filename, errorCodeToError(EC)); 840 MemoryBufferRef CovMappingBufRef = 841 CovMappingBufOrErr.get()->getMemBufferRef(); 842 SmallVector<std::unique_ptr<MemoryBuffer>, 4> Buffers; 843 844 SmallVector<object::BuildIDRef> BinaryIDs; 845 auto CoverageReadersOrErr = BinaryCoverageReader::create( 846 CovMappingBufRef, Arch, Buffers, CompilationDir, 847 FoundBinaryIDs ? &BinaryIDs : nullptr); 848 if (Error E = CoverageReadersOrErr.takeError()) { 849 E = handleMaybeNoDataFoundError(std::move(E)); 850 if (E) 851 return createFileError(Filename, std::move(E)); 852 return E; 853 } 854 855 SmallVector<std::unique_ptr<CoverageMappingReader>, 4> Readers; 856 for (auto &Reader : CoverageReadersOrErr.get()) 857 Readers.push_back(std::move(Reader)); 858 if (FoundBinaryIDs && !Readers.empty()) { 859 llvm::append_range(*FoundBinaryIDs, 860 llvm::map_range(BinaryIDs, [](object::BuildIDRef BID) { 861 return object::BuildID(BID); 862 })); 863 } 864 DataFound |= !Readers.empty(); 865 if (Error E = loadFromReaders(Readers, ProfileReader, Coverage)) 866 return createFileError(Filename, std::move(E)); 867 return Error::success(); 868 } 869 870 Expected<std::unique_ptr<CoverageMapping>> CoverageMapping::load( 871 ArrayRef<StringRef> ObjectFilenames, StringRef ProfileFilename, 872 vfs::FileSystem &FS, ArrayRef<StringRef> Arches, StringRef CompilationDir, 873 const object::BuildIDFetcher *BIDFetcher, bool CheckBinaryIDs) { 874 auto ProfileReaderOrErr = IndexedInstrProfReader::create(ProfileFilename, FS); 875 if (Error E = ProfileReaderOrErr.takeError()) 876 return createFileError(ProfileFilename, std::move(E)); 877 auto ProfileReader = std::move(ProfileReaderOrErr.get()); 878 auto Coverage = std::unique_ptr<CoverageMapping>(new CoverageMapping()); 879 bool DataFound = false; 880 881 auto GetArch = [&](size_t Idx) { 882 if (Arches.empty()) 883 return StringRef(); 884 if (Arches.size() == 1) 885 return Arches.front(); 886 return Arches[Idx]; 887 }; 888 889 SmallVector<object::BuildID> FoundBinaryIDs; 890 for (const auto &File : llvm::enumerate(ObjectFilenames)) { 891 if (Error E = 892 loadFromFile(File.value(), GetArch(File.index()), CompilationDir, 893 *ProfileReader, *Coverage, DataFound, &FoundBinaryIDs)) 894 return std::move(E); 895 } 896 897 if (BIDFetcher) { 898 std::vector<object::BuildID> ProfileBinaryIDs; 899 if (Error E = ProfileReader->readBinaryIds(ProfileBinaryIDs)) 900 return createFileError(ProfileFilename, std::move(E)); 901 902 SmallVector<object::BuildIDRef> BinaryIDsToFetch; 903 if (!ProfileBinaryIDs.empty()) { 904 const auto &Compare = [](object::BuildIDRef A, object::BuildIDRef B) { 905 return std::lexicographical_compare(A.begin(), A.end(), B.begin(), 906 B.end()); 907 }; 908 llvm::sort(FoundBinaryIDs, Compare); 909 std::set_difference( 910 ProfileBinaryIDs.begin(), ProfileBinaryIDs.end(), 911 FoundBinaryIDs.begin(), FoundBinaryIDs.end(), 912 std::inserter(BinaryIDsToFetch, BinaryIDsToFetch.end()), Compare); 913 } 914 915 for (object::BuildIDRef BinaryID : BinaryIDsToFetch) { 916 std::optional<std::string> PathOpt = BIDFetcher->fetch(BinaryID); 917 if (PathOpt) { 918 std::string Path = std::move(*PathOpt); 919 StringRef Arch = Arches.size() == 1 ? Arches.front() : StringRef(); 920 if (Error E = loadFromFile(Path, Arch, CompilationDir, *ProfileReader, 921 *Coverage, DataFound)) 922 return std::move(E); 923 } else if (CheckBinaryIDs) { 924 return createFileError( 925 ProfileFilename, 926 createStringError(errc::no_such_file_or_directory, 927 "Missing binary ID: " + 928 llvm::toHex(BinaryID, /*LowerCase=*/true))); 929 } 930 } 931 } 932 933 if (!DataFound) 934 return createFileError( 935 join(ObjectFilenames.begin(), ObjectFilenames.end(), ", "), 936 make_error<CoverageMapError>(coveragemap_error::no_data_found)); 937 return std::move(Coverage); 938 } 939 940 namespace { 941 942 /// Distributes functions into instantiation sets. 943 /// 944 /// An instantiation set is a collection of functions that have the same source 945 /// code, ie, template functions specializations. 946 class FunctionInstantiationSetCollector { 947 using MapT = std::map<LineColPair, std::vector<const FunctionRecord *>>; 948 MapT InstantiatedFunctions; 949 950 public: 951 void insert(const FunctionRecord &Function, unsigned FileID) { 952 auto I = Function.CountedRegions.begin(), E = Function.CountedRegions.end(); 953 while (I != E && I->FileID != FileID) 954 ++I; 955 assert(I != E && "function does not cover the given file"); 956 auto &Functions = InstantiatedFunctions[I->startLoc()]; 957 Functions.push_back(&Function); 958 } 959 960 MapT::iterator begin() { return InstantiatedFunctions.begin(); } 961 MapT::iterator end() { return InstantiatedFunctions.end(); } 962 }; 963 964 class SegmentBuilder { 965 std::vector<CoverageSegment> &Segments; 966 SmallVector<const CountedRegion *, 8> ActiveRegions; 967 968 SegmentBuilder(std::vector<CoverageSegment> &Segments) : Segments(Segments) {} 969 970 /// Emit a segment with the count from \p Region starting at \p StartLoc. 971 // 972 /// \p IsRegionEntry: The segment is at the start of a new non-gap region. 973 /// \p EmitSkippedRegion: The segment must be emitted as a skipped region. 974 void startSegment(const CountedRegion &Region, LineColPair StartLoc, 975 bool IsRegionEntry, bool EmitSkippedRegion = false) { 976 bool HasCount = !EmitSkippedRegion && 977 (Region.Kind != CounterMappingRegion::SkippedRegion); 978 979 // If the new segment wouldn't affect coverage rendering, skip it. 980 if (!Segments.empty() && !IsRegionEntry && !EmitSkippedRegion) { 981 const auto &Last = Segments.back(); 982 if (Last.HasCount == HasCount && Last.Count == Region.ExecutionCount && 983 !Last.IsRegionEntry) 984 return; 985 } 986 987 if (HasCount) 988 Segments.emplace_back(StartLoc.first, StartLoc.second, 989 Region.ExecutionCount, IsRegionEntry, 990 Region.Kind == CounterMappingRegion::GapRegion); 991 else 992 Segments.emplace_back(StartLoc.first, StartLoc.second, IsRegionEntry); 993 994 LLVM_DEBUG({ 995 const auto &Last = Segments.back(); 996 dbgs() << "Segment at " << Last.Line << ":" << Last.Col 997 << " (count = " << Last.Count << ")" 998 << (Last.IsRegionEntry ? ", RegionEntry" : "") 999 << (!Last.HasCount ? ", Skipped" : "") 1000 << (Last.IsGapRegion ? ", Gap" : "") << "\n"; 1001 }); 1002 } 1003 1004 /// Emit segments for active regions which end before \p Loc. 1005 /// 1006 /// \p Loc: The start location of the next region. If std::nullopt, all active 1007 /// regions are completed. 1008 /// \p FirstCompletedRegion: Index of the first completed region. 1009 void completeRegionsUntil(std::optional<LineColPair> Loc, 1010 unsigned FirstCompletedRegion) { 1011 // Sort the completed regions by end location. This makes it simple to 1012 // emit closing segments in sorted order. 1013 auto CompletedRegionsIt = ActiveRegions.begin() + FirstCompletedRegion; 1014 std::stable_sort(CompletedRegionsIt, ActiveRegions.end(), 1015 [](const CountedRegion *L, const CountedRegion *R) { 1016 return L->endLoc() < R->endLoc(); 1017 }); 1018 1019 // Emit segments for all completed regions. 1020 for (unsigned I = FirstCompletedRegion + 1, E = ActiveRegions.size(); I < E; 1021 ++I) { 1022 const auto *CompletedRegion = ActiveRegions[I]; 1023 assert((!Loc || CompletedRegion->endLoc() <= *Loc) && 1024 "Completed region ends after start of new region"); 1025 1026 const auto *PrevCompletedRegion = ActiveRegions[I - 1]; 1027 auto CompletedSegmentLoc = PrevCompletedRegion->endLoc(); 1028 1029 // Don't emit any more segments if they start where the new region begins. 1030 if (Loc && CompletedSegmentLoc == *Loc) 1031 break; 1032 1033 // Don't emit a segment if the next completed region ends at the same 1034 // location as this one. 1035 if (CompletedSegmentLoc == CompletedRegion->endLoc()) 1036 continue; 1037 1038 // Use the count from the last completed region which ends at this loc. 1039 for (unsigned J = I + 1; J < E; ++J) 1040 if (CompletedRegion->endLoc() == ActiveRegions[J]->endLoc()) 1041 CompletedRegion = ActiveRegions[J]; 1042 1043 startSegment(*CompletedRegion, CompletedSegmentLoc, false); 1044 } 1045 1046 auto Last = ActiveRegions.back(); 1047 if (FirstCompletedRegion && Last->endLoc() != *Loc) { 1048 // If there's a gap after the end of the last completed region and the 1049 // start of the new region, use the last active region to fill the gap. 1050 startSegment(*ActiveRegions[FirstCompletedRegion - 1], Last->endLoc(), 1051 false); 1052 } else if (!FirstCompletedRegion && (!Loc || *Loc != Last->endLoc())) { 1053 // Emit a skipped segment if there are no more active regions. This 1054 // ensures that gaps between functions are marked correctly. 1055 startSegment(*Last, Last->endLoc(), false, true); 1056 } 1057 1058 // Pop the completed regions. 1059 ActiveRegions.erase(CompletedRegionsIt, ActiveRegions.end()); 1060 } 1061 1062 void buildSegmentsImpl(ArrayRef<CountedRegion> Regions) { 1063 for (const auto &CR : enumerate(Regions)) { 1064 auto CurStartLoc = CR.value().startLoc(); 1065 1066 // Active regions which end before the current region need to be popped. 1067 auto CompletedRegions = 1068 std::stable_partition(ActiveRegions.begin(), ActiveRegions.end(), 1069 [&](const CountedRegion *Region) { 1070 return !(Region->endLoc() <= CurStartLoc); 1071 }); 1072 if (CompletedRegions != ActiveRegions.end()) { 1073 unsigned FirstCompletedRegion = 1074 std::distance(ActiveRegions.begin(), CompletedRegions); 1075 completeRegionsUntil(CurStartLoc, FirstCompletedRegion); 1076 } 1077 1078 bool GapRegion = CR.value().Kind == CounterMappingRegion::GapRegion; 1079 1080 // Try to emit a segment for the current region. 1081 if (CurStartLoc == CR.value().endLoc()) { 1082 // Avoid making zero-length regions active. If it's the last region, 1083 // emit a skipped segment. Otherwise use its predecessor's count. 1084 const bool Skipped = 1085 (CR.index() + 1) == Regions.size() || 1086 CR.value().Kind == CounterMappingRegion::SkippedRegion; 1087 startSegment(ActiveRegions.empty() ? CR.value() : *ActiveRegions.back(), 1088 CurStartLoc, !GapRegion, Skipped); 1089 // If it is skipped segment, create a segment with last pushed 1090 // regions's count at CurStartLoc. 1091 if (Skipped && !ActiveRegions.empty()) 1092 startSegment(*ActiveRegions.back(), CurStartLoc, false); 1093 continue; 1094 } 1095 if (CR.index() + 1 == Regions.size() || 1096 CurStartLoc != Regions[CR.index() + 1].startLoc()) { 1097 // Emit a segment if the next region doesn't start at the same location 1098 // as this one. 1099 startSegment(CR.value(), CurStartLoc, !GapRegion); 1100 } 1101 1102 // This region is active (i.e not completed). 1103 ActiveRegions.push_back(&CR.value()); 1104 } 1105 1106 // Complete any remaining active regions. 1107 if (!ActiveRegions.empty()) 1108 completeRegionsUntil(std::nullopt, 0); 1109 } 1110 1111 /// Sort a nested sequence of regions from a single file. 1112 static void sortNestedRegions(MutableArrayRef<CountedRegion> Regions) { 1113 llvm::sort(Regions, [](const CountedRegion &LHS, const CountedRegion &RHS) { 1114 if (LHS.startLoc() != RHS.startLoc()) 1115 return LHS.startLoc() < RHS.startLoc(); 1116 if (LHS.endLoc() != RHS.endLoc()) 1117 // When LHS completely contains RHS, we sort LHS first. 1118 return RHS.endLoc() < LHS.endLoc(); 1119 // If LHS and RHS cover the same area, we need to sort them according 1120 // to their kinds so that the most suitable region will become "active" 1121 // in combineRegions(). Because we accumulate counter values only from 1122 // regions of the same kind as the first region of the area, prefer 1123 // CodeRegion to ExpansionRegion and ExpansionRegion to SkippedRegion. 1124 static_assert(CounterMappingRegion::CodeRegion < 1125 CounterMappingRegion::ExpansionRegion && 1126 CounterMappingRegion::ExpansionRegion < 1127 CounterMappingRegion::SkippedRegion, 1128 "Unexpected order of region kind values"); 1129 return LHS.Kind < RHS.Kind; 1130 }); 1131 } 1132 1133 /// Combine counts of regions which cover the same area. 1134 static ArrayRef<CountedRegion> 1135 combineRegions(MutableArrayRef<CountedRegion> Regions) { 1136 if (Regions.empty()) 1137 return Regions; 1138 auto Active = Regions.begin(); 1139 auto End = Regions.end(); 1140 for (auto I = Regions.begin() + 1; I != End; ++I) { 1141 if (Active->startLoc() != I->startLoc() || 1142 Active->endLoc() != I->endLoc()) { 1143 // Shift to the next region. 1144 ++Active; 1145 if (Active != I) 1146 *Active = *I; 1147 continue; 1148 } 1149 // Merge duplicate region. 1150 // If CodeRegions and ExpansionRegions cover the same area, it's probably 1151 // a macro which is fully expanded to another macro. In that case, we need 1152 // to accumulate counts only from CodeRegions, or else the area will be 1153 // counted twice. 1154 // On the other hand, a macro may have a nested macro in its body. If the 1155 // outer macro is used several times, the ExpansionRegion for the nested 1156 // macro will also be added several times. These ExpansionRegions cover 1157 // the same source locations and have to be combined to reach the correct 1158 // value for that area. 1159 // We add counts of the regions of the same kind as the active region 1160 // to handle the both situations. 1161 if (I->Kind == Active->Kind) 1162 Active->ExecutionCount += I->ExecutionCount; 1163 } 1164 return Regions.drop_back(std::distance(++Active, End)); 1165 } 1166 1167 public: 1168 /// Build a sorted list of CoverageSegments from a list of Regions. 1169 static std::vector<CoverageSegment> 1170 buildSegments(MutableArrayRef<CountedRegion> Regions) { 1171 std::vector<CoverageSegment> Segments; 1172 SegmentBuilder Builder(Segments); 1173 1174 sortNestedRegions(Regions); 1175 ArrayRef<CountedRegion> CombinedRegions = combineRegions(Regions); 1176 1177 LLVM_DEBUG({ 1178 dbgs() << "Combined regions:\n"; 1179 for (const auto &CR : CombinedRegions) 1180 dbgs() << " " << CR.LineStart << ":" << CR.ColumnStart << " -> " 1181 << CR.LineEnd << ":" << CR.ColumnEnd 1182 << " (count=" << CR.ExecutionCount << ")\n"; 1183 }); 1184 1185 Builder.buildSegmentsImpl(CombinedRegions); 1186 1187 #ifndef NDEBUG 1188 for (unsigned I = 1, E = Segments.size(); I < E; ++I) { 1189 const auto &L = Segments[I - 1]; 1190 const auto &R = Segments[I]; 1191 if (!(L.Line < R.Line) && !(L.Line == R.Line && L.Col < R.Col)) { 1192 if (L.Line == R.Line && L.Col == R.Col && !L.HasCount) 1193 continue; 1194 LLVM_DEBUG(dbgs() << " ! Segment " << L.Line << ":" << L.Col 1195 << " followed by " << R.Line << ":" << R.Col << "\n"); 1196 assert(false && "Coverage segments not unique or sorted"); 1197 } 1198 } 1199 #endif 1200 1201 return Segments; 1202 } 1203 }; 1204 1205 } // end anonymous namespace 1206 1207 std::vector<StringRef> CoverageMapping::getUniqueSourceFiles() const { 1208 std::vector<StringRef> Filenames; 1209 for (const auto &Function : getCoveredFunctions()) 1210 llvm::append_range(Filenames, Function.Filenames); 1211 llvm::sort(Filenames); 1212 auto Last = std::unique(Filenames.begin(), Filenames.end()); 1213 Filenames.erase(Last, Filenames.end()); 1214 return Filenames; 1215 } 1216 1217 static SmallBitVector gatherFileIDs(StringRef SourceFile, 1218 const FunctionRecord &Function) { 1219 SmallBitVector FilenameEquivalence(Function.Filenames.size(), false); 1220 for (unsigned I = 0, E = Function.Filenames.size(); I < E; ++I) 1221 if (SourceFile == Function.Filenames[I]) 1222 FilenameEquivalence[I] = true; 1223 return FilenameEquivalence; 1224 } 1225 1226 /// Return the ID of the file where the definition of the function is located. 1227 static std::optional<unsigned> 1228 findMainViewFileID(const FunctionRecord &Function) { 1229 SmallBitVector IsNotExpandedFile(Function.Filenames.size(), true); 1230 for (const auto &CR : Function.CountedRegions) 1231 if (CR.Kind == CounterMappingRegion::ExpansionRegion) 1232 IsNotExpandedFile[CR.ExpandedFileID] = false; 1233 int I = IsNotExpandedFile.find_first(); 1234 if (I == -1) 1235 return std::nullopt; 1236 return I; 1237 } 1238 1239 /// Check if SourceFile is the file that contains the definition of 1240 /// the Function. Return the ID of the file in that case or std::nullopt 1241 /// otherwise. 1242 static std::optional<unsigned> 1243 findMainViewFileID(StringRef SourceFile, const FunctionRecord &Function) { 1244 std::optional<unsigned> I = findMainViewFileID(Function); 1245 if (I && SourceFile == Function.Filenames[*I]) 1246 return I; 1247 return std::nullopt; 1248 } 1249 1250 static bool isExpansion(const CountedRegion &R, unsigned FileID) { 1251 return R.Kind == CounterMappingRegion::ExpansionRegion && R.FileID == FileID; 1252 } 1253 1254 CoverageData CoverageMapping::getCoverageForFile(StringRef Filename) const { 1255 CoverageData FileCoverage(Filename); 1256 std::vector<CountedRegion> Regions; 1257 1258 // Look up the function records in the given file. Due to hash collisions on 1259 // the filename, we may get back some records that are not in the file. 1260 ArrayRef<unsigned> RecordIndices = 1261 getImpreciseRecordIndicesForFilename(Filename); 1262 for (unsigned RecordIndex : RecordIndices) { 1263 const FunctionRecord &Function = Functions[RecordIndex]; 1264 auto MainFileID = findMainViewFileID(Filename, Function); 1265 auto FileIDs = gatherFileIDs(Filename, Function); 1266 for (const auto &CR : Function.CountedRegions) 1267 if (FileIDs.test(CR.FileID)) { 1268 Regions.push_back(CR); 1269 if (MainFileID && isExpansion(CR, *MainFileID)) 1270 FileCoverage.Expansions.emplace_back(CR, Function); 1271 } 1272 // Capture branch regions specific to the function (excluding expansions). 1273 for (const auto &CR : Function.CountedBranchRegions) 1274 if (FileIDs.test(CR.FileID) && (CR.FileID == CR.ExpandedFileID)) 1275 FileCoverage.BranchRegions.push_back(CR); 1276 // Capture MCDC records specific to the function. 1277 for (const auto &MR : Function.MCDCRecords) 1278 if (FileIDs.test(MR.getDecisionRegion().FileID)) 1279 FileCoverage.MCDCRecords.push_back(MR); 1280 } 1281 1282 LLVM_DEBUG(dbgs() << "Emitting segments for file: " << Filename << "\n"); 1283 FileCoverage.Segments = SegmentBuilder::buildSegments(Regions); 1284 1285 return FileCoverage; 1286 } 1287 1288 std::vector<InstantiationGroup> 1289 CoverageMapping::getInstantiationGroups(StringRef Filename) const { 1290 FunctionInstantiationSetCollector InstantiationSetCollector; 1291 // Look up the function records in the given file. Due to hash collisions on 1292 // the filename, we may get back some records that are not in the file. 1293 ArrayRef<unsigned> RecordIndices = 1294 getImpreciseRecordIndicesForFilename(Filename); 1295 for (unsigned RecordIndex : RecordIndices) { 1296 const FunctionRecord &Function = Functions[RecordIndex]; 1297 auto MainFileID = findMainViewFileID(Filename, Function); 1298 if (!MainFileID) 1299 continue; 1300 InstantiationSetCollector.insert(Function, *MainFileID); 1301 } 1302 1303 std::vector<InstantiationGroup> Result; 1304 for (auto &InstantiationSet : InstantiationSetCollector) { 1305 InstantiationGroup IG{InstantiationSet.first.first, 1306 InstantiationSet.first.second, 1307 std::move(InstantiationSet.second)}; 1308 Result.emplace_back(std::move(IG)); 1309 } 1310 return Result; 1311 } 1312 1313 CoverageData 1314 CoverageMapping::getCoverageForFunction(const FunctionRecord &Function) const { 1315 auto MainFileID = findMainViewFileID(Function); 1316 if (!MainFileID) 1317 return CoverageData(); 1318 1319 CoverageData FunctionCoverage(Function.Filenames[*MainFileID]); 1320 std::vector<CountedRegion> Regions; 1321 for (const auto &CR : Function.CountedRegions) 1322 if (CR.FileID == *MainFileID) { 1323 Regions.push_back(CR); 1324 if (isExpansion(CR, *MainFileID)) 1325 FunctionCoverage.Expansions.emplace_back(CR, Function); 1326 } 1327 // Capture branch regions specific to the function (excluding expansions). 1328 for (const auto &CR : Function.CountedBranchRegions) 1329 if (CR.FileID == *MainFileID) 1330 FunctionCoverage.BranchRegions.push_back(CR); 1331 1332 // Capture MCDC records specific to the function. 1333 for (const auto &MR : Function.MCDCRecords) 1334 if (MR.getDecisionRegion().FileID == *MainFileID) 1335 FunctionCoverage.MCDCRecords.push_back(MR); 1336 1337 LLVM_DEBUG(dbgs() << "Emitting segments for function: " << Function.Name 1338 << "\n"); 1339 FunctionCoverage.Segments = SegmentBuilder::buildSegments(Regions); 1340 1341 return FunctionCoverage; 1342 } 1343 1344 CoverageData CoverageMapping::getCoverageForExpansion( 1345 const ExpansionRecord &Expansion) const { 1346 CoverageData ExpansionCoverage( 1347 Expansion.Function.Filenames[Expansion.FileID]); 1348 std::vector<CountedRegion> Regions; 1349 for (const auto &CR : Expansion.Function.CountedRegions) 1350 if (CR.FileID == Expansion.FileID) { 1351 Regions.push_back(CR); 1352 if (isExpansion(CR, Expansion.FileID)) 1353 ExpansionCoverage.Expansions.emplace_back(CR, Expansion.Function); 1354 } 1355 for (const auto &CR : Expansion.Function.CountedBranchRegions) 1356 // Capture branch regions that only pertain to the corresponding expansion. 1357 if (CR.FileID == Expansion.FileID) 1358 ExpansionCoverage.BranchRegions.push_back(CR); 1359 1360 LLVM_DEBUG(dbgs() << "Emitting segments for expansion of file " 1361 << Expansion.FileID << "\n"); 1362 ExpansionCoverage.Segments = SegmentBuilder::buildSegments(Regions); 1363 1364 return ExpansionCoverage; 1365 } 1366 1367 LineCoverageStats::LineCoverageStats( 1368 ArrayRef<const CoverageSegment *> LineSegments, 1369 const CoverageSegment *WrappedSegment, unsigned Line) 1370 : ExecutionCount(0), HasMultipleRegions(false), Mapped(false), Line(Line), 1371 LineSegments(LineSegments), WrappedSegment(WrappedSegment) { 1372 // Find the minimum number of regions which start in this line. 1373 unsigned MinRegionCount = 0; 1374 auto isStartOfRegion = [](const CoverageSegment *S) { 1375 return !S->IsGapRegion && S->HasCount && S->IsRegionEntry; 1376 }; 1377 for (unsigned I = 0; I < LineSegments.size() && MinRegionCount < 2; ++I) 1378 if (isStartOfRegion(LineSegments[I])) 1379 ++MinRegionCount; 1380 1381 bool StartOfSkippedRegion = !LineSegments.empty() && 1382 !LineSegments.front()->HasCount && 1383 LineSegments.front()->IsRegionEntry; 1384 1385 HasMultipleRegions = MinRegionCount > 1; 1386 Mapped = 1387 !StartOfSkippedRegion && 1388 ((WrappedSegment && WrappedSegment->HasCount) || (MinRegionCount > 0)); 1389 1390 // if there is any starting segment at this line with a counter, it must be 1391 // mapped 1392 Mapped |= std::any_of( 1393 LineSegments.begin(), LineSegments.end(), 1394 [](const auto *Seq) { return Seq->IsRegionEntry && Seq->HasCount; }); 1395 1396 if (!Mapped) { 1397 return; 1398 } 1399 1400 // Pick the max count from the non-gap, region entry segments and the 1401 // wrapped count. 1402 if (WrappedSegment) 1403 ExecutionCount = WrappedSegment->Count; 1404 if (!MinRegionCount) 1405 return; 1406 for (const auto *LS : LineSegments) 1407 if (isStartOfRegion(LS)) 1408 ExecutionCount = std::max(ExecutionCount, LS->Count); 1409 } 1410 1411 LineCoverageIterator &LineCoverageIterator::operator++() { 1412 if (Next == CD.end()) { 1413 Stats = LineCoverageStats(); 1414 Ended = true; 1415 return *this; 1416 } 1417 if (Segments.size()) 1418 WrappedSegment = Segments.back(); 1419 Segments.clear(); 1420 while (Next != CD.end() && Next->Line == Line) 1421 Segments.push_back(&*Next++); 1422 Stats = LineCoverageStats(Segments, WrappedSegment, Line); 1423 ++Line; 1424 return *this; 1425 } 1426 1427 static std::string getCoverageMapErrString(coveragemap_error Err, 1428 const std::string &ErrMsg = "") { 1429 std::string Msg; 1430 raw_string_ostream OS(Msg); 1431 1432 switch (Err) { 1433 case coveragemap_error::success: 1434 OS << "success"; 1435 break; 1436 case coveragemap_error::eof: 1437 OS << "end of File"; 1438 break; 1439 case coveragemap_error::no_data_found: 1440 OS << "no coverage data found"; 1441 break; 1442 case coveragemap_error::unsupported_version: 1443 OS << "unsupported coverage format version"; 1444 break; 1445 case coveragemap_error::truncated: 1446 OS << "truncated coverage data"; 1447 break; 1448 case coveragemap_error::malformed: 1449 OS << "malformed coverage data"; 1450 break; 1451 case coveragemap_error::decompression_failed: 1452 OS << "failed to decompress coverage data (zlib)"; 1453 break; 1454 case coveragemap_error::invalid_or_missing_arch_specifier: 1455 OS << "`-arch` specifier is invalid or missing for universal binary"; 1456 break; 1457 } 1458 1459 // If optional error message is not empty, append it to the message. 1460 if (!ErrMsg.empty()) 1461 OS << ": " << ErrMsg; 1462 1463 return Msg; 1464 } 1465 1466 namespace { 1467 1468 // FIXME: This class is only here to support the transition to llvm::Error. It 1469 // will be removed once this transition is complete. Clients should prefer to 1470 // deal with the Error value directly, rather than converting to error_code. 1471 class CoverageMappingErrorCategoryType : public std::error_category { 1472 const char *name() const noexcept override { return "llvm.coveragemap"; } 1473 std::string message(int IE) const override { 1474 return getCoverageMapErrString(static_cast<coveragemap_error>(IE)); 1475 } 1476 }; 1477 1478 } // end anonymous namespace 1479 1480 std::string CoverageMapError::message() const { 1481 return getCoverageMapErrString(Err, Msg); 1482 } 1483 1484 const std::error_category &llvm::coverage::coveragemap_category() { 1485 static CoverageMappingErrorCategoryType ErrorCategory; 1486 return ErrorCategory; 1487 } 1488 1489 char CoverageMapError::ID = 0; 1490