1 //===- CoverageMapping.cpp - Code coverage mapping support ----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains support for clang's and llvm's instrumentation based 10 // code coverage. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/ProfileData/Coverage/CoverageMapping.h" 15 #include "llvm/ADT/ArrayRef.h" 16 #include "llvm/ADT/DenseMap.h" 17 #include "llvm/ADT/SmallBitVector.h" 18 #include "llvm/ADT/SmallVector.h" 19 #include "llvm/ADT/StringExtras.h" 20 #include "llvm/ADT/StringRef.h" 21 #include "llvm/Object/BuildID.h" 22 #include "llvm/ProfileData/Coverage/CoverageMappingReader.h" 23 #include "llvm/ProfileData/InstrProfReader.h" 24 #include "llvm/Support/Debug.h" 25 #include "llvm/Support/Errc.h" 26 #include "llvm/Support/Error.h" 27 #include "llvm/Support/ErrorHandling.h" 28 #include "llvm/Support/MemoryBuffer.h" 29 #include "llvm/Support/VirtualFileSystem.h" 30 #include "llvm/Support/raw_ostream.h" 31 #include <algorithm> 32 #include <cassert> 33 #include <cmath> 34 #include <cstdint> 35 #include <iterator> 36 #include <map> 37 #include <memory> 38 #include <optional> 39 #include <string> 40 #include <system_error> 41 #include <utility> 42 #include <vector> 43 44 using namespace llvm; 45 using namespace coverage; 46 47 #define DEBUG_TYPE "coverage-mapping" 48 49 Counter CounterExpressionBuilder::get(const CounterExpression &E) { 50 auto It = ExpressionIndices.find(E); 51 if (It != ExpressionIndices.end()) 52 return Counter::getExpression(It->second); 53 unsigned I = Expressions.size(); 54 Expressions.push_back(E); 55 ExpressionIndices[E] = I; 56 return Counter::getExpression(I); 57 } 58 59 void CounterExpressionBuilder::extractTerms(Counter C, int Factor, 60 SmallVectorImpl<Term> &Terms) { 61 switch (C.getKind()) { 62 case Counter::Zero: 63 break; 64 case Counter::CounterValueReference: 65 Terms.emplace_back(C.getCounterID(), Factor); 66 break; 67 case Counter::Expression: 68 const auto &E = Expressions[C.getExpressionID()]; 69 extractTerms(E.LHS, Factor, Terms); 70 extractTerms( 71 E.RHS, E.Kind == CounterExpression::Subtract ? -Factor : Factor, Terms); 72 break; 73 } 74 } 75 76 Counter CounterExpressionBuilder::simplify(Counter ExpressionTree) { 77 // Gather constant terms. 78 SmallVector<Term, 32> Terms; 79 extractTerms(ExpressionTree, +1, Terms); 80 81 // If there are no terms, this is just a zero. The algorithm below assumes at 82 // least one term. 83 if (Terms.size() == 0) 84 return Counter::getZero(); 85 86 // Group the terms by counter ID. 87 llvm::sort(Terms, [](const Term &LHS, const Term &RHS) { 88 return LHS.CounterID < RHS.CounterID; 89 }); 90 91 // Combine terms by counter ID to eliminate counters that sum to zero. 92 auto Prev = Terms.begin(); 93 for (auto I = Prev + 1, E = Terms.end(); I != E; ++I) { 94 if (I->CounterID == Prev->CounterID) { 95 Prev->Factor += I->Factor; 96 continue; 97 } 98 ++Prev; 99 *Prev = *I; 100 } 101 Terms.erase(++Prev, Terms.end()); 102 103 Counter C; 104 // Create additions. We do this before subtractions to avoid constructs like 105 // ((0 - X) + Y), as opposed to (Y - X). 106 for (auto T : Terms) { 107 if (T.Factor <= 0) 108 continue; 109 for (int I = 0; I < T.Factor; ++I) 110 if (C.isZero()) 111 C = Counter::getCounter(T.CounterID); 112 else 113 C = get(CounterExpression(CounterExpression::Add, C, 114 Counter::getCounter(T.CounterID))); 115 } 116 117 // Create subtractions. 118 for (auto T : Terms) { 119 if (T.Factor >= 0) 120 continue; 121 for (int I = 0; I < -T.Factor; ++I) 122 C = get(CounterExpression(CounterExpression::Subtract, C, 123 Counter::getCounter(T.CounterID))); 124 } 125 return C; 126 } 127 128 Counter CounterExpressionBuilder::add(Counter LHS, Counter RHS, bool Simplify) { 129 auto Cnt = get(CounterExpression(CounterExpression::Add, LHS, RHS)); 130 return Simplify ? simplify(Cnt) : Cnt; 131 } 132 133 Counter CounterExpressionBuilder::subtract(Counter LHS, Counter RHS, 134 bool Simplify) { 135 auto Cnt = get(CounterExpression(CounterExpression::Subtract, LHS, RHS)); 136 return Simplify ? simplify(Cnt) : Cnt; 137 } 138 139 void CounterMappingContext::dump(const Counter &C, raw_ostream &OS) const { 140 switch (C.getKind()) { 141 case Counter::Zero: 142 OS << '0'; 143 return; 144 case Counter::CounterValueReference: 145 OS << '#' << C.getCounterID(); 146 break; 147 case Counter::Expression: { 148 if (C.getExpressionID() >= Expressions.size()) 149 return; 150 const auto &E = Expressions[C.getExpressionID()]; 151 OS << '('; 152 dump(E.LHS, OS); 153 OS << (E.Kind == CounterExpression::Subtract ? " - " : " + "); 154 dump(E.RHS, OS); 155 OS << ')'; 156 break; 157 } 158 } 159 if (CounterValues.empty()) 160 return; 161 Expected<int64_t> Value = evaluate(C); 162 if (auto E = Value.takeError()) { 163 consumeError(std::move(E)); 164 return; 165 } 166 OS << '[' << *Value << ']'; 167 } 168 169 Expected<int64_t> CounterMappingContext::evaluate(const Counter &C) const { 170 struct StackElem { 171 Counter ICounter; 172 int64_t LHS = 0; 173 enum { 174 KNeverVisited = 0, 175 KVisitedOnce = 1, 176 KVisitedTwice = 2, 177 } VisitCount = KNeverVisited; 178 }; 179 180 std::stack<StackElem> CounterStack; 181 CounterStack.push({C}); 182 183 int64_t LastPoppedValue; 184 185 while (!CounterStack.empty()) { 186 StackElem &Current = CounterStack.top(); 187 188 switch (Current.ICounter.getKind()) { 189 case Counter::Zero: 190 LastPoppedValue = 0; 191 CounterStack.pop(); 192 break; 193 case Counter::CounterValueReference: 194 if (Current.ICounter.getCounterID() >= CounterValues.size()) 195 return errorCodeToError(errc::argument_out_of_domain); 196 LastPoppedValue = CounterValues[Current.ICounter.getCounterID()]; 197 CounterStack.pop(); 198 break; 199 case Counter::Expression: { 200 if (Current.ICounter.getExpressionID() >= Expressions.size()) 201 return errorCodeToError(errc::argument_out_of_domain); 202 const auto &E = Expressions[Current.ICounter.getExpressionID()]; 203 if (Current.VisitCount == StackElem::KNeverVisited) { 204 CounterStack.push(StackElem{E.LHS}); 205 Current.VisitCount = StackElem::KVisitedOnce; 206 } else if (Current.VisitCount == StackElem::KVisitedOnce) { 207 Current.LHS = LastPoppedValue; 208 CounterStack.push(StackElem{E.RHS}); 209 Current.VisitCount = StackElem::KVisitedTwice; 210 } else { 211 int64_t LHS = Current.LHS; 212 int64_t RHS = LastPoppedValue; 213 LastPoppedValue = 214 E.Kind == CounterExpression::Subtract ? LHS - RHS : LHS + RHS; 215 CounterStack.pop(); 216 } 217 break; 218 } 219 } 220 } 221 222 return LastPoppedValue; 223 } 224 225 Expected<BitVector> CounterMappingContext::evaluateBitmap( 226 const CounterMappingRegion *MCDCDecision) const { 227 unsigned ID = MCDCDecision->MCDCParams.BitmapIdx; 228 unsigned NC = MCDCDecision->MCDCParams.NumConditions; 229 unsigned SizeInBits = llvm::alignTo(uint64_t(1) << NC, CHAR_BIT); 230 unsigned SizeInBytes = SizeInBits / CHAR_BIT; 231 232 assert(ID + SizeInBytes <= BitmapBytes.size() && "BitmapBytes overrun"); 233 ArrayRef<uint8_t> Bytes(&BitmapBytes[ID], SizeInBytes); 234 235 // Mask each bitmap byte into the BitVector. Go in reverse so that the 236 // bitvector can just be shifted over by one byte on each iteration. 237 BitVector Result(SizeInBits, false); 238 for (auto Byte = std::rbegin(Bytes); Byte != std::rend(Bytes); ++Byte) { 239 uint32_t Data = *Byte; 240 Result <<= CHAR_BIT; 241 Result.setBitsInMask(&Data, 1); 242 } 243 return Result; 244 } 245 246 class MCDCRecordProcessor { 247 /// A bitmap representing the executed test vectors for a boolean expression. 248 /// Each index of the bitmap corresponds to a possible test vector. An index 249 /// with a bit value of '1' indicates that the corresponding Test Vector 250 /// identified by that index was executed. 251 const BitVector &ExecutedTestVectorBitmap; 252 253 /// Decision Region to which the ExecutedTestVectorBitmap applies. 254 const CounterMappingRegion &Region; 255 256 /// Array of branch regions corresponding each conditions in the boolean 257 /// expression. 258 ArrayRef<const CounterMappingRegion *> Branches; 259 260 /// Total number of conditions in the boolean expression. 261 unsigned NumConditions; 262 263 /// Mapping of a condition ID to its corresponding branch region. 264 llvm::DenseMap<unsigned, const CounterMappingRegion *> Map; 265 266 /// Vector used to track whether a condition is constant folded. 267 MCDCRecord::BoolVector Folded; 268 269 /// Mapping of calculated MC/DC Independence Pairs for each condition. 270 MCDCRecord::TVPairMap IndependencePairs; 271 272 /// Total number of possible Test Vectors for the boolean expression. 273 MCDCRecord::TestVectors TestVectors; 274 275 /// Actual executed Test Vectors for the boolean expression, based on 276 /// ExecutedTestVectorBitmap. 277 MCDCRecord::TestVectors ExecVectors; 278 279 public: 280 MCDCRecordProcessor(const BitVector &Bitmap, 281 const CounterMappingRegion &Region, 282 ArrayRef<const CounterMappingRegion *> Branches) 283 : ExecutedTestVectorBitmap(Bitmap), Region(Region), Branches(Branches), 284 NumConditions(Region.MCDCParams.NumConditions), 285 Folded(NumConditions, false), IndependencePairs(NumConditions), 286 TestVectors((size_t)1 << NumConditions) {} 287 288 private: 289 void recordTestVector(MCDCRecord::TestVector &TV, unsigned Index, 290 MCDCRecord::CondState Result) { 291 // Copy the completed test vector to the vector of testvectors. 292 TestVectors[Index] = TV; 293 294 // The final value (T,F) is equal to the last non-dontcare state on the 295 // path (in a short-circuiting system). 296 TestVectors[Index].push_back(Result); 297 } 298 299 // Walk the binary decision diagram and try assigning both false and true to 300 // each node. When a terminal node (ID == 0) is reached, fill in the value in 301 // the truth table. 302 void buildTestVector(MCDCRecord::TestVector &TV, unsigned ID, 303 unsigned Index) { 304 const CounterMappingRegion *Branch = Map[ID]; 305 306 TV[ID - 1] = MCDCRecord::MCDC_False; 307 if (Branch->MCDCParams.FalseID > 0) 308 buildTestVector(TV, Branch->MCDCParams.FalseID, Index); 309 else 310 recordTestVector(TV, Index, MCDCRecord::MCDC_False); 311 312 Index |= 1 << (ID - 1); 313 TV[ID - 1] = MCDCRecord::MCDC_True; 314 if (Branch->MCDCParams.TrueID > 0) 315 buildTestVector(TV, Branch->MCDCParams.TrueID, Index); 316 else 317 recordTestVector(TV, Index, MCDCRecord::MCDC_True); 318 319 // Reset back to DontCare. 320 TV[ID - 1] = MCDCRecord::MCDC_DontCare; 321 } 322 323 /// Walk the bits in the bitmap. A bit set to '1' indicates that the test 324 /// vector at the corresponding index was executed during a test run. 325 void findExecutedTestVectors(const BitVector &ExecutedTestVectorBitmap) { 326 for (unsigned Idx = 0; Idx < ExecutedTestVectorBitmap.size(); ++Idx) { 327 if (ExecutedTestVectorBitmap[Idx] == 0) 328 continue; 329 assert(!TestVectors[Idx].empty() && "Test Vector doesn't exist."); 330 ExecVectors.push_back(TestVectors[Idx]); 331 } 332 } 333 334 // Find an independence pair for each condition: 335 // - The condition is true in one test and false in the other. 336 // - The decision outcome is true one test and false in the other. 337 // - All other conditions' values must be equal or marked as "don't care". 338 void findIndependencePairs() { 339 unsigned NumTVs = ExecVectors.size(); 340 for (unsigned I = 1; I < NumTVs; ++I) { 341 const MCDCRecord::TestVector &A = ExecVectors[I]; 342 for (unsigned J = 0; J < I; ++J) { 343 const MCDCRecord::TestVector &B = ExecVectors[J]; 344 // Enumerate two execution vectors whose outcomes are different. 345 if (A[NumConditions] == B[NumConditions]) 346 continue; 347 unsigned Flip = NumConditions, Idx; 348 for (Idx = 0; Idx < NumConditions; ++Idx) { 349 MCDCRecord::CondState ACond = A[Idx], BCond = B[Idx]; 350 if (ACond == BCond || ACond == MCDCRecord::MCDC_DontCare || 351 BCond == MCDCRecord::MCDC_DontCare) 352 continue; 353 if (Flip != NumConditions) 354 break; 355 Flip = Idx; 356 } 357 // If the two vectors differ in exactly one condition, ignoring DontCare 358 // conditions, we have found an independence pair. 359 if (Idx == NumConditions && Flip != NumConditions) 360 IndependencePairs.insert({Flip, std::make_pair(J + 1, I + 1)}); 361 } 362 } 363 } 364 365 public: 366 /// Process the MC/DC Record in order to produce a result for a boolean 367 /// expression. This process includes tracking the conditions that comprise 368 /// the decision region, calculating the list of all possible test vectors, 369 /// marking the executed test vectors, and then finding an Independence Pair 370 /// out of the executed test vectors for each condition in the boolean 371 /// expression. A condition is tracked to ensure that its ID can be mapped to 372 /// its ordinal position in the boolean expression. The condition's source 373 /// location is also tracked, as well as whether it is constant folded (in 374 /// which case it is excuded from the metric). 375 MCDCRecord processMCDCRecord() { 376 unsigned I = 0; 377 MCDCRecord::CondIDMap PosToID; 378 MCDCRecord::LineColPairMap CondLoc; 379 380 // Walk the Record's BranchRegions (representing Conditions) in order to: 381 // - Hash the condition based on its corresponding ID. This will be used to 382 // calculate the test vectors. 383 // - Keep a map of the condition's ordinal position (1, 2, 3, 4) to its 384 // actual ID. This will be used to visualize the conditions in the 385 // correct order. 386 // - Keep track of the condition source location. This will be used to 387 // visualize where the condition is. 388 // - Record whether the condition is constant folded so that we exclude it 389 // from being measured. 390 for (const auto *B : Branches) { 391 Map[B->MCDCParams.ID] = B; 392 PosToID[I] = B->MCDCParams.ID - 1; 393 CondLoc[I] = B->startLoc(); 394 Folded[I++] = (B->Count.isZero() && B->FalseCount.isZero()); 395 } 396 397 // Walk the binary decision diagram to enumerate all possible test vectors. 398 // We start at the root node (ID == 1) with all values being DontCare. 399 // `Index` encodes the bitmask of true values and is initially 0. 400 MCDCRecord::TestVector TV(NumConditions, MCDCRecord::MCDC_DontCare); 401 buildTestVector(TV, 1, 0); 402 403 // Using Profile Bitmap from runtime, mark the executed test vectors. 404 findExecutedTestVectors(ExecutedTestVectorBitmap); 405 406 // Compare executed test vectors against each other to find an independence 407 // pairs for each condition. This processing takes the most time. 408 findIndependencePairs(); 409 410 // Record Test vectors, executed vectors, and independence pairs. 411 MCDCRecord Res(Region, ExecVectors, IndependencePairs, Folded, PosToID, 412 CondLoc); 413 return Res; 414 } 415 }; 416 417 Expected<MCDCRecord> CounterMappingContext::evaluateMCDCRegion( 418 const CounterMappingRegion &Region, 419 const BitVector &ExecutedTestVectorBitmap, 420 ArrayRef<const CounterMappingRegion *> Branches) { 421 422 MCDCRecordProcessor MCDCProcessor(ExecutedTestVectorBitmap, Region, Branches); 423 return MCDCProcessor.processMCDCRecord(); 424 } 425 426 unsigned CounterMappingContext::getMaxCounterID(const Counter &C) const { 427 struct StackElem { 428 Counter ICounter; 429 int64_t LHS = 0; 430 enum { 431 KNeverVisited = 0, 432 KVisitedOnce = 1, 433 KVisitedTwice = 2, 434 } VisitCount = KNeverVisited; 435 }; 436 437 std::stack<StackElem> CounterStack; 438 CounterStack.push({C}); 439 440 int64_t LastPoppedValue; 441 442 while (!CounterStack.empty()) { 443 StackElem &Current = CounterStack.top(); 444 445 switch (Current.ICounter.getKind()) { 446 case Counter::Zero: 447 LastPoppedValue = 0; 448 CounterStack.pop(); 449 break; 450 case Counter::CounterValueReference: 451 LastPoppedValue = Current.ICounter.getCounterID(); 452 CounterStack.pop(); 453 break; 454 case Counter::Expression: { 455 if (Current.ICounter.getExpressionID() >= Expressions.size()) { 456 LastPoppedValue = 0; 457 CounterStack.pop(); 458 } else { 459 const auto &E = Expressions[Current.ICounter.getExpressionID()]; 460 if (Current.VisitCount == StackElem::KNeverVisited) { 461 CounterStack.push(StackElem{E.LHS}); 462 Current.VisitCount = StackElem::KVisitedOnce; 463 } else if (Current.VisitCount == StackElem::KVisitedOnce) { 464 Current.LHS = LastPoppedValue; 465 CounterStack.push(StackElem{E.RHS}); 466 Current.VisitCount = StackElem::KVisitedTwice; 467 } else { 468 int64_t LHS = Current.LHS; 469 int64_t RHS = LastPoppedValue; 470 LastPoppedValue = std::max(LHS, RHS); 471 CounterStack.pop(); 472 } 473 } 474 break; 475 } 476 } 477 } 478 479 return LastPoppedValue; 480 } 481 482 void FunctionRecordIterator::skipOtherFiles() { 483 while (Current != Records.end() && !Filename.empty() && 484 Filename != Current->Filenames[0]) 485 ++Current; 486 if (Current == Records.end()) 487 *this = FunctionRecordIterator(); 488 } 489 490 ArrayRef<unsigned> CoverageMapping::getImpreciseRecordIndicesForFilename( 491 StringRef Filename) const { 492 size_t FilenameHash = hash_value(Filename); 493 auto RecordIt = FilenameHash2RecordIndices.find(FilenameHash); 494 if (RecordIt == FilenameHash2RecordIndices.end()) 495 return {}; 496 return RecordIt->second; 497 } 498 499 static unsigned getMaxCounterID(const CounterMappingContext &Ctx, 500 const CoverageMappingRecord &Record) { 501 unsigned MaxCounterID = 0; 502 for (const auto &Region : Record.MappingRegions) { 503 MaxCounterID = std::max(MaxCounterID, Ctx.getMaxCounterID(Region.Count)); 504 } 505 return MaxCounterID; 506 } 507 508 static unsigned getMaxBitmapSize(const CounterMappingContext &Ctx, 509 const CoverageMappingRecord &Record) { 510 unsigned MaxBitmapID = 0; 511 unsigned NumConditions = 0; 512 // Scan max(BitmapIdx). 513 // Note that `<=` is used insted of `<`, because `BitmapIdx == 0` is valid 514 // and `MaxBitmapID is `unsigned`. `BitmapIdx` is unique in the record. 515 for (const auto &Region : reverse(Record.MappingRegions)) { 516 if (Region.Kind == CounterMappingRegion::MCDCDecisionRegion && 517 MaxBitmapID <= Region.MCDCParams.BitmapIdx) { 518 MaxBitmapID = Region.MCDCParams.BitmapIdx; 519 NumConditions = Region.MCDCParams.NumConditions; 520 } 521 } 522 unsigned SizeInBits = llvm::alignTo(uint64_t(1) << NumConditions, CHAR_BIT); 523 return MaxBitmapID + (SizeInBits / CHAR_BIT); 524 } 525 526 Error CoverageMapping::loadFunctionRecord( 527 const CoverageMappingRecord &Record, 528 IndexedInstrProfReader &ProfileReader) { 529 StringRef OrigFuncName = Record.FunctionName; 530 if (OrigFuncName.empty()) 531 return make_error<CoverageMapError>(coveragemap_error::malformed, 532 "record function name is empty"); 533 534 if (Record.Filenames.empty()) 535 OrigFuncName = getFuncNameWithoutPrefix(OrigFuncName); 536 else 537 OrigFuncName = getFuncNameWithoutPrefix(OrigFuncName, Record.Filenames[0]); 538 539 CounterMappingContext Ctx(Record.Expressions); 540 541 std::vector<uint64_t> Counts; 542 if (Error E = ProfileReader.getFunctionCounts(Record.FunctionName, 543 Record.FunctionHash, Counts)) { 544 instrprof_error IPE = std::get<0>(InstrProfError::take(std::move(E))); 545 if (IPE == instrprof_error::hash_mismatch) { 546 FuncHashMismatches.emplace_back(std::string(Record.FunctionName), 547 Record.FunctionHash); 548 return Error::success(); 549 } 550 if (IPE != instrprof_error::unknown_function) 551 return make_error<InstrProfError>(IPE); 552 Counts.assign(getMaxCounterID(Ctx, Record) + 1, 0); 553 } 554 Ctx.setCounts(Counts); 555 556 std::vector<uint8_t> BitmapBytes; 557 if (Error E = ProfileReader.getFunctionBitmapBytes( 558 Record.FunctionName, Record.FunctionHash, BitmapBytes)) { 559 instrprof_error IPE = std::get<0>(InstrProfError::take(std::move(E))); 560 if (IPE == instrprof_error::hash_mismatch) { 561 FuncHashMismatches.emplace_back(std::string(Record.FunctionName), 562 Record.FunctionHash); 563 return Error::success(); 564 } 565 if (IPE != instrprof_error::unknown_function) 566 return make_error<InstrProfError>(IPE); 567 BitmapBytes.assign(getMaxBitmapSize(Ctx, Record) + 1, 0); 568 } 569 Ctx.setBitmapBytes(BitmapBytes); 570 571 assert(!Record.MappingRegions.empty() && "Function has no regions"); 572 573 // This coverage record is a zero region for a function that's unused in 574 // some TU, but used in a different TU. Ignore it. The coverage maps from the 575 // the other TU will either be loaded (providing full region counts) or they 576 // won't (in which case we don't unintuitively report functions as uncovered 577 // when they have non-zero counts in the profile). 578 if (Record.MappingRegions.size() == 1 && 579 Record.MappingRegions[0].Count.isZero() && Counts[0] > 0) 580 return Error::success(); 581 582 unsigned NumConds = 0; 583 const CounterMappingRegion *MCDCDecision; 584 std::vector<const CounterMappingRegion *> MCDCBranches; 585 586 FunctionRecord Function(OrigFuncName, Record.Filenames); 587 for (const auto &Region : Record.MappingRegions) { 588 // If an MCDCDecisionRegion is seen, track the BranchRegions that follow 589 // it according to Region.NumConditions. 590 if (Region.Kind == CounterMappingRegion::MCDCDecisionRegion) { 591 assert(NumConds == 0); 592 MCDCDecision = &Region; 593 NumConds = Region.MCDCParams.NumConditions; 594 continue; 595 } 596 Expected<int64_t> ExecutionCount = Ctx.evaluate(Region.Count); 597 if (auto E = ExecutionCount.takeError()) { 598 consumeError(std::move(E)); 599 return Error::success(); 600 } 601 Expected<int64_t> AltExecutionCount = Ctx.evaluate(Region.FalseCount); 602 if (auto E = AltExecutionCount.takeError()) { 603 consumeError(std::move(E)); 604 return Error::success(); 605 } 606 Function.pushRegion(Region, *ExecutionCount, *AltExecutionCount); 607 608 // If a MCDCDecisionRegion was seen, store the BranchRegions that 609 // correspond to it in a vector, according to the number of conditions 610 // recorded for the region (tracked by NumConds). 611 if (NumConds > 0 && Region.Kind == CounterMappingRegion::MCDCBranchRegion) { 612 MCDCBranches.push_back(&Region); 613 614 // As we move through all of the MCDCBranchRegions that follow the 615 // MCDCDecisionRegion, decrement NumConds to make sure we account for 616 // them all before we calculate the bitmap of executed test vectors. 617 if (--NumConds == 0) { 618 // Evaluating the test vector bitmap for the decision region entails 619 // calculating precisely what bits are pertinent to this region alone. 620 // This is calculated based on the recorded offset into the global 621 // profile bitmap; the length is calculated based on the recorded 622 // number of conditions. 623 Expected<BitVector> ExecutedTestVectorBitmap = 624 Ctx.evaluateBitmap(MCDCDecision); 625 if (auto E = ExecutedTestVectorBitmap.takeError()) { 626 consumeError(std::move(E)); 627 return Error::success(); 628 } 629 630 // Since the bitmap identifies the executed test vectors for an MC/DC 631 // DecisionRegion, all of the information is now available to process. 632 // This is where the bulk of the MC/DC progressing takes place. 633 Expected<MCDCRecord> Record = Ctx.evaluateMCDCRegion( 634 *MCDCDecision, *ExecutedTestVectorBitmap, MCDCBranches); 635 if (auto E = Record.takeError()) { 636 consumeError(std::move(E)); 637 return Error::success(); 638 } 639 640 // Save the MC/DC Record so that it can be visualized later. 641 Function.pushMCDCRecord(*Record); 642 MCDCBranches.clear(); 643 } 644 } 645 } 646 647 // Don't create records for (filenames, function) pairs we've already seen. 648 auto FilenamesHash = hash_combine_range(Record.Filenames.begin(), 649 Record.Filenames.end()); 650 if (!RecordProvenance[FilenamesHash].insert(hash_value(OrigFuncName)).second) 651 return Error::success(); 652 653 Functions.push_back(std::move(Function)); 654 655 // Performance optimization: keep track of the indices of the function records 656 // which correspond to each filename. This can be used to substantially speed 657 // up queries for coverage info in a file. 658 unsigned RecordIndex = Functions.size() - 1; 659 for (StringRef Filename : Record.Filenames) { 660 auto &RecordIndices = FilenameHash2RecordIndices[hash_value(Filename)]; 661 // Note that there may be duplicates in the filename set for a function 662 // record, because of e.g. macro expansions in the function in which both 663 // the macro and the function are defined in the same file. 664 if (RecordIndices.empty() || RecordIndices.back() != RecordIndex) 665 RecordIndices.push_back(RecordIndex); 666 } 667 668 return Error::success(); 669 } 670 671 // This function is for memory optimization by shortening the lifetimes 672 // of CoverageMappingReader instances. 673 Error CoverageMapping::loadFromReaders( 674 ArrayRef<std::unique_ptr<CoverageMappingReader>> CoverageReaders, 675 IndexedInstrProfReader &ProfileReader, CoverageMapping &Coverage) { 676 for (const auto &CoverageReader : CoverageReaders) { 677 for (auto RecordOrErr : *CoverageReader) { 678 if (Error E = RecordOrErr.takeError()) 679 return E; 680 const auto &Record = *RecordOrErr; 681 if (Error E = Coverage.loadFunctionRecord(Record, ProfileReader)) 682 return E; 683 } 684 } 685 return Error::success(); 686 } 687 688 Expected<std::unique_ptr<CoverageMapping>> CoverageMapping::load( 689 ArrayRef<std::unique_ptr<CoverageMappingReader>> CoverageReaders, 690 IndexedInstrProfReader &ProfileReader) { 691 auto Coverage = std::unique_ptr<CoverageMapping>(new CoverageMapping()); 692 if (Error E = loadFromReaders(CoverageReaders, ProfileReader, *Coverage)) 693 return std::move(E); 694 return std::move(Coverage); 695 } 696 697 // If E is a no_data_found error, returns success. Otherwise returns E. 698 static Error handleMaybeNoDataFoundError(Error E) { 699 return handleErrors( 700 std::move(E), [](const CoverageMapError &CME) { 701 if (CME.get() == coveragemap_error::no_data_found) 702 return static_cast<Error>(Error::success()); 703 return make_error<CoverageMapError>(CME.get(), CME.getMessage()); 704 }); 705 } 706 707 Error CoverageMapping::loadFromFile( 708 StringRef Filename, StringRef Arch, StringRef CompilationDir, 709 IndexedInstrProfReader &ProfileReader, CoverageMapping &Coverage, 710 bool &DataFound, SmallVectorImpl<object::BuildID> *FoundBinaryIDs) { 711 auto CovMappingBufOrErr = MemoryBuffer::getFileOrSTDIN( 712 Filename, /*IsText=*/false, /*RequiresNullTerminator=*/false); 713 if (std::error_code EC = CovMappingBufOrErr.getError()) 714 return createFileError(Filename, errorCodeToError(EC)); 715 MemoryBufferRef CovMappingBufRef = 716 CovMappingBufOrErr.get()->getMemBufferRef(); 717 SmallVector<std::unique_ptr<MemoryBuffer>, 4> Buffers; 718 719 SmallVector<object::BuildIDRef> BinaryIDs; 720 auto CoverageReadersOrErr = BinaryCoverageReader::create( 721 CovMappingBufRef, Arch, Buffers, CompilationDir, 722 FoundBinaryIDs ? &BinaryIDs : nullptr); 723 if (Error E = CoverageReadersOrErr.takeError()) { 724 E = handleMaybeNoDataFoundError(std::move(E)); 725 if (E) 726 return createFileError(Filename, std::move(E)); 727 return E; 728 } 729 730 SmallVector<std::unique_ptr<CoverageMappingReader>, 4> Readers; 731 for (auto &Reader : CoverageReadersOrErr.get()) 732 Readers.push_back(std::move(Reader)); 733 if (FoundBinaryIDs && !Readers.empty()) { 734 llvm::append_range(*FoundBinaryIDs, 735 llvm::map_range(BinaryIDs, [](object::BuildIDRef BID) { 736 return object::BuildID(BID); 737 })); 738 } 739 DataFound |= !Readers.empty(); 740 if (Error E = loadFromReaders(Readers, ProfileReader, Coverage)) 741 return createFileError(Filename, std::move(E)); 742 return Error::success(); 743 } 744 745 Expected<std::unique_ptr<CoverageMapping>> CoverageMapping::load( 746 ArrayRef<StringRef> ObjectFilenames, StringRef ProfileFilename, 747 vfs::FileSystem &FS, ArrayRef<StringRef> Arches, StringRef CompilationDir, 748 const object::BuildIDFetcher *BIDFetcher, bool CheckBinaryIDs) { 749 auto ProfileReaderOrErr = IndexedInstrProfReader::create(ProfileFilename, FS); 750 if (Error E = ProfileReaderOrErr.takeError()) 751 return createFileError(ProfileFilename, std::move(E)); 752 auto ProfileReader = std::move(ProfileReaderOrErr.get()); 753 auto Coverage = std::unique_ptr<CoverageMapping>(new CoverageMapping()); 754 bool DataFound = false; 755 756 auto GetArch = [&](size_t Idx) { 757 if (Arches.empty()) 758 return StringRef(); 759 if (Arches.size() == 1) 760 return Arches.front(); 761 return Arches[Idx]; 762 }; 763 764 SmallVector<object::BuildID> FoundBinaryIDs; 765 for (const auto &File : llvm::enumerate(ObjectFilenames)) { 766 if (Error E = 767 loadFromFile(File.value(), GetArch(File.index()), CompilationDir, 768 *ProfileReader, *Coverage, DataFound, &FoundBinaryIDs)) 769 return std::move(E); 770 } 771 772 if (BIDFetcher) { 773 std::vector<object::BuildID> ProfileBinaryIDs; 774 if (Error E = ProfileReader->readBinaryIds(ProfileBinaryIDs)) 775 return createFileError(ProfileFilename, std::move(E)); 776 777 SmallVector<object::BuildIDRef> BinaryIDsToFetch; 778 if (!ProfileBinaryIDs.empty()) { 779 const auto &Compare = [](object::BuildIDRef A, object::BuildIDRef B) { 780 return std::lexicographical_compare(A.begin(), A.end(), B.begin(), 781 B.end()); 782 }; 783 llvm::sort(FoundBinaryIDs, Compare); 784 std::set_difference( 785 ProfileBinaryIDs.begin(), ProfileBinaryIDs.end(), 786 FoundBinaryIDs.begin(), FoundBinaryIDs.end(), 787 std::inserter(BinaryIDsToFetch, BinaryIDsToFetch.end()), Compare); 788 } 789 790 for (object::BuildIDRef BinaryID : BinaryIDsToFetch) { 791 std::optional<std::string> PathOpt = BIDFetcher->fetch(BinaryID); 792 if (PathOpt) { 793 std::string Path = std::move(*PathOpt); 794 StringRef Arch = Arches.size() == 1 ? Arches.front() : StringRef(); 795 if (Error E = loadFromFile(Path, Arch, CompilationDir, *ProfileReader, 796 *Coverage, DataFound)) 797 return std::move(E); 798 } else if (CheckBinaryIDs) { 799 return createFileError( 800 ProfileFilename, 801 createStringError(errc::no_such_file_or_directory, 802 "Missing binary ID: " + 803 llvm::toHex(BinaryID, /*LowerCase=*/true))); 804 } 805 } 806 } 807 808 if (!DataFound) 809 return createFileError( 810 join(ObjectFilenames.begin(), ObjectFilenames.end(), ", "), 811 make_error<CoverageMapError>(coveragemap_error::no_data_found)); 812 return std::move(Coverage); 813 } 814 815 namespace { 816 817 /// Distributes functions into instantiation sets. 818 /// 819 /// An instantiation set is a collection of functions that have the same source 820 /// code, ie, template functions specializations. 821 class FunctionInstantiationSetCollector { 822 using MapT = std::map<LineColPair, std::vector<const FunctionRecord *>>; 823 MapT InstantiatedFunctions; 824 825 public: 826 void insert(const FunctionRecord &Function, unsigned FileID) { 827 auto I = Function.CountedRegions.begin(), E = Function.CountedRegions.end(); 828 while (I != E && I->FileID != FileID) 829 ++I; 830 assert(I != E && "function does not cover the given file"); 831 auto &Functions = InstantiatedFunctions[I->startLoc()]; 832 Functions.push_back(&Function); 833 } 834 835 MapT::iterator begin() { return InstantiatedFunctions.begin(); } 836 MapT::iterator end() { return InstantiatedFunctions.end(); } 837 }; 838 839 class SegmentBuilder { 840 std::vector<CoverageSegment> &Segments; 841 SmallVector<const CountedRegion *, 8> ActiveRegions; 842 843 SegmentBuilder(std::vector<CoverageSegment> &Segments) : Segments(Segments) {} 844 845 /// Emit a segment with the count from \p Region starting at \p StartLoc. 846 // 847 /// \p IsRegionEntry: The segment is at the start of a new non-gap region. 848 /// \p EmitSkippedRegion: The segment must be emitted as a skipped region. 849 void startSegment(const CountedRegion &Region, LineColPair StartLoc, 850 bool IsRegionEntry, bool EmitSkippedRegion = false) { 851 bool HasCount = !EmitSkippedRegion && 852 (Region.Kind != CounterMappingRegion::SkippedRegion); 853 854 // If the new segment wouldn't affect coverage rendering, skip it. 855 if (!Segments.empty() && !IsRegionEntry && !EmitSkippedRegion) { 856 const auto &Last = Segments.back(); 857 if (Last.HasCount == HasCount && Last.Count == Region.ExecutionCount && 858 !Last.IsRegionEntry) 859 return; 860 } 861 862 if (HasCount) 863 Segments.emplace_back(StartLoc.first, StartLoc.second, 864 Region.ExecutionCount, IsRegionEntry, 865 Region.Kind == CounterMappingRegion::GapRegion); 866 else 867 Segments.emplace_back(StartLoc.first, StartLoc.second, IsRegionEntry); 868 869 LLVM_DEBUG({ 870 const auto &Last = Segments.back(); 871 dbgs() << "Segment at " << Last.Line << ":" << Last.Col 872 << " (count = " << Last.Count << ")" 873 << (Last.IsRegionEntry ? ", RegionEntry" : "") 874 << (!Last.HasCount ? ", Skipped" : "") 875 << (Last.IsGapRegion ? ", Gap" : "") << "\n"; 876 }); 877 } 878 879 /// Emit segments for active regions which end before \p Loc. 880 /// 881 /// \p Loc: The start location of the next region. If std::nullopt, all active 882 /// regions are completed. 883 /// \p FirstCompletedRegion: Index of the first completed region. 884 void completeRegionsUntil(std::optional<LineColPair> Loc, 885 unsigned FirstCompletedRegion) { 886 // Sort the completed regions by end location. This makes it simple to 887 // emit closing segments in sorted order. 888 auto CompletedRegionsIt = ActiveRegions.begin() + FirstCompletedRegion; 889 std::stable_sort(CompletedRegionsIt, ActiveRegions.end(), 890 [](const CountedRegion *L, const CountedRegion *R) { 891 return L->endLoc() < R->endLoc(); 892 }); 893 894 // Emit segments for all completed regions. 895 for (unsigned I = FirstCompletedRegion + 1, E = ActiveRegions.size(); I < E; 896 ++I) { 897 const auto *CompletedRegion = ActiveRegions[I]; 898 assert((!Loc || CompletedRegion->endLoc() <= *Loc) && 899 "Completed region ends after start of new region"); 900 901 const auto *PrevCompletedRegion = ActiveRegions[I - 1]; 902 auto CompletedSegmentLoc = PrevCompletedRegion->endLoc(); 903 904 // Don't emit any more segments if they start where the new region begins. 905 if (Loc && CompletedSegmentLoc == *Loc) 906 break; 907 908 // Don't emit a segment if the next completed region ends at the same 909 // location as this one. 910 if (CompletedSegmentLoc == CompletedRegion->endLoc()) 911 continue; 912 913 // Use the count from the last completed region which ends at this loc. 914 for (unsigned J = I + 1; J < E; ++J) 915 if (CompletedRegion->endLoc() == ActiveRegions[J]->endLoc()) 916 CompletedRegion = ActiveRegions[J]; 917 918 startSegment(*CompletedRegion, CompletedSegmentLoc, false); 919 } 920 921 auto Last = ActiveRegions.back(); 922 if (FirstCompletedRegion && Last->endLoc() != *Loc) { 923 // If there's a gap after the end of the last completed region and the 924 // start of the new region, use the last active region to fill the gap. 925 startSegment(*ActiveRegions[FirstCompletedRegion - 1], Last->endLoc(), 926 false); 927 } else if (!FirstCompletedRegion && (!Loc || *Loc != Last->endLoc())) { 928 // Emit a skipped segment if there are no more active regions. This 929 // ensures that gaps between functions are marked correctly. 930 startSegment(*Last, Last->endLoc(), false, true); 931 } 932 933 // Pop the completed regions. 934 ActiveRegions.erase(CompletedRegionsIt, ActiveRegions.end()); 935 } 936 937 void buildSegmentsImpl(ArrayRef<CountedRegion> Regions) { 938 for (const auto &CR : enumerate(Regions)) { 939 auto CurStartLoc = CR.value().startLoc(); 940 941 // Active regions which end before the current region need to be popped. 942 auto CompletedRegions = 943 std::stable_partition(ActiveRegions.begin(), ActiveRegions.end(), 944 [&](const CountedRegion *Region) { 945 return !(Region->endLoc() <= CurStartLoc); 946 }); 947 if (CompletedRegions != ActiveRegions.end()) { 948 unsigned FirstCompletedRegion = 949 std::distance(ActiveRegions.begin(), CompletedRegions); 950 completeRegionsUntil(CurStartLoc, FirstCompletedRegion); 951 } 952 953 bool GapRegion = CR.value().Kind == CounterMappingRegion::GapRegion; 954 955 // Try to emit a segment for the current region. 956 if (CurStartLoc == CR.value().endLoc()) { 957 // Avoid making zero-length regions active. If it's the last region, 958 // emit a skipped segment. Otherwise use its predecessor's count. 959 const bool Skipped = 960 (CR.index() + 1) == Regions.size() || 961 CR.value().Kind == CounterMappingRegion::SkippedRegion; 962 startSegment(ActiveRegions.empty() ? CR.value() : *ActiveRegions.back(), 963 CurStartLoc, !GapRegion, Skipped); 964 // If it is skipped segment, create a segment with last pushed 965 // regions's count at CurStartLoc. 966 if (Skipped && !ActiveRegions.empty()) 967 startSegment(*ActiveRegions.back(), CurStartLoc, false); 968 continue; 969 } 970 if (CR.index() + 1 == Regions.size() || 971 CurStartLoc != Regions[CR.index() + 1].startLoc()) { 972 // Emit a segment if the next region doesn't start at the same location 973 // as this one. 974 startSegment(CR.value(), CurStartLoc, !GapRegion); 975 } 976 977 // This region is active (i.e not completed). 978 ActiveRegions.push_back(&CR.value()); 979 } 980 981 // Complete any remaining active regions. 982 if (!ActiveRegions.empty()) 983 completeRegionsUntil(std::nullopt, 0); 984 } 985 986 /// Sort a nested sequence of regions from a single file. 987 static void sortNestedRegions(MutableArrayRef<CountedRegion> Regions) { 988 llvm::sort(Regions, [](const CountedRegion &LHS, const CountedRegion &RHS) { 989 if (LHS.startLoc() != RHS.startLoc()) 990 return LHS.startLoc() < RHS.startLoc(); 991 if (LHS.endLoc() != RHS.endLoc()) 992 // When LHS completely contains RHS, we sort LHS first. 993 return RHS.endLoc() < LHS.endLoc(); 994 // If LHS and RHS cover the same area, we need to sort them according 995 // to their kinds so that the most suitable region will become "active" 996 // in combineRegions(). Because we accumulate counter values only from 997 // regions of the same kind as the first region of the area, prefer 998 // CodeRegion to ExpansionRegion and ExpansionRegion to SkippedRegion. 999 static_assert(CounterMappingRegion::CodeRegion < 1000 CounterMappingRegion::ExpansionRegion && 1001 CounterMappingRegion::ExpansionRegion < 1002 CounterMappingRegion::SkippedRegion, 1003 "Unexpected order of region kind values"); 1004 return LHS.Kind < RHS.Kind; 1005 }); 1006 } 1007 1008 /// Combine counts of regions which cover the same area. 1009 static ArrayRef<CountedRegion> 1010 combineRegions(MutableArrayRef<CountedRegion> Regions) { 1011 if (Regions.empty()) 1012 return Regions; 1013 auto Active = Regions.begin(); 1014 auto End = Regions.end(); 1015 for (auto I = Regions.begin() + 1; I != End; ++I) { 1016 if (Active->startLoc() != I->startLoc() || 1017 Active->endLoc() != I->endLoc()) { 1018 // Shift to the next region. 1019 ++Active; 1020 if (Active != I) 1021 *Active = *I; 1022 continue; 1023 } 1024 // Merge duplicate region. 1025 // If CodeRegions and ExpansionRegions cover the same area, it's probably 1026 // a macro which is fully expanded to another macro. In that case, we need 1027 // to accumulate counts only from CodeRegions, or else the area will be 1028 // counted twice. 1029 // On the other hand, a macro may have a nested macro in its body. If the 1030 // outer macro is used several times, the ExpansionRegion for the nested 1031 // macro will also be added several times. These ExpansionRegions cover 1032 // the same source locations and have to be combined to reach the correct 1033 // value for that area. 1034 // We add counts of the regions of the same kind as the active region 1035 // to handle the both situations. 1036 if (I->Kind == Active->Kind) 1037 Active->ExecutionCount += I->ExecutionCount; 1038 } 1039 return Regions.drop_back(std::distance(++Active, End)); 1040 } 1041 1042 public: 1043 /// Build a sorted list of CoverageSegments from a list of Regions. 1044 static std::vector<CoverageSegment> 1045 buildSegments(MutableArrayRef<CountedRegion> Regions) { 1046 std::vector<CoverageSegment> Segments; 1047 SegmentBuilder Builder(Segments); 1048 1049 sortNestedRegions(Regions); 1050 ArrayRef<CountedRegion> CombinedRegions = combineRegions(Regions); 1051 1052 LLVM_DEBUG({ 1053 dbgs() << "Combined regions:\n"; 1054 for (const auto &CR : CombinedRegions) 1055 dbgs() << " " << CR.LineStart << ":" << CR.ColumnStart << " -> " 1056 << CR.LineEnd << ":" << CR.ColumnEnd 1057 << " (count=" << CR.ExecutionCount << ")\n"; 1058 }); 1059 1060 Builder.buildSegmentsImpl(CombinedRegions); 1061 1062 #ifndef NDEBUG 1063 for (unsigned I = 1, E = Segments.size(); I < E; ++I) { 1064 const auto &L = Segments[I - 1]; 1065 const auto &R = Segments[I]; 1066 if (!(L.Line < R.Line) && !(L.Line == R.Line && L.Col < R.Col)) { 1067 if (L.Line == R.Line && L.Col == R.Col && !L.HasCount) 1068 continue; 1069 LLVM_DEBUG(dbgs() << " ! Segment " << L.Line << ":" << L.Col 1070 << " followed by " << R.Line << ":" << R.Col << "\n"); 1071 assert(false && "Coverage segments not unique or sorted"); 1072 } 1073 } 1074 #endif 1075 1076 return Segments; 1077 } 1078 }; 1079 1080 } // end anonymous namespace 1081 1082 std::vector<StringRef> CoverageMapping::getUniqueSourceFiles() const { 1083 std::vector<StringRef> Filenames; 1084 for (const auto &Function : getCoveredFunctions()) 1085 llvm::append_range(Filenames, Function.Filenames); 1086 llvm::sort(Filenames); 1087 auto Last = std::unique(Filenames.begin(), Filenames.end()); 1088 Filenames.erase(Last, Filenames.end()); 1089 return Filenames; 1090 } 1091 1092 static SmallBitVector gatherFileIDs(StringRef SourceFile, 1093 const FunctionRecord &Function) { 1094 SmallBitVector FilenameEquivalence(Function.Filenames.size(), false); 1095 for (unsigned I = 0, E = Function.Filenames.size(); I < E; ++I) 1096 if (SourceFile == Function.Filenames[I]) 1097 FilenameEquivalence[I] = true; 1098 return FilenameEquivalence; 1099 } 1100 1101 /// Return the ID of the file where the definition of the function is located. 1102 static std::optional<unsigned> 1103 findMainViewFileID(const FunctionRecord &Function) { 1104 SmallBitVector IsNotExpandedFile(Function.Filenames.size(), true); 1105 for (const auto &CR : Function.CountedRegions) 1106 if (CR.Kind == CounterMappingRegion::ExpansionRegion) 1107 IsNotExpandedFile[CR.ExpandedFileID] = false; 1108 int I = IsNotExpandedFile.find_first(); 1109 if (I == -1) 1110 return std::nullopt; 1111 return I; 1112 } 1113 1114 /// Check if SourceFile is the file that contains the definition of 1115 /// the Function. Return the ID of the file in that case or std::nullopt 1116 /// otherwise. 1117 static std::optional<unsigned> 1118 findMainViewFileID(StringRef SourceFile, const FunctionRecord &Function) { 1119 std::optional<unsigned> I = findMainViewFileID(Function); 1120 if (I && SourceFile == Function.Filenames[*I]) 1121 return I; 1122 return std::nullopt; 1123 } 1124 1125 static bool isExpansion(const CountedRegion &R, unsigned FileID) { 1126 return R.Kind == CounterMappingRegion::ExpansionRegion && R.FileID == FileID; 1127 } 1128 1129 CoverageData CoverageMapping::getCoverageForFile(StringRef Filename) const { 1130 CoverageData FileCoverage(Filename); 1131 std::vector<CountedRegion> Regions; 1132 1133 // Look up the function records in the given file. Due to hash collisions on 1134 // the filename, we may get back some records that are not in the file. 1135 ArrayRef<unsigned> RecordIndices = 1136 getImpreciseRecordIndicesForFilename(Filename); 1137 for (unsigned RecordIndex : RecordIndices) { 1138 const FunctionRecord &Function = Functions[RecordIndex]; 1139 auto MainFileID = findMainViewFileID(Filename, Function); 1140 auto FileIDs = gatherFileIDs(Filename, Function); 1141 for (const auto &CR : Function.CountedRegions) 1142 if (FileIDs.test(CR.FileID)) { 1143 Regions.push_back(CR); 1144 if (MainFileID && isExpansion(CR, *MainFileID)) 1145 FileCoverage.Expansions.emplace_back(CR, Function); 1146 } 1147 // Capture branch regions specific to the function (excluding expansions). 1148 for (const auto &CR : Function.CountedBranchRegions) 1149 if (FileIDs.test(CR.FileID) && (CR.FileID == CR.ExpandedFileID)) 1150 FileCoverage.BranchRegions.push_back(CR); 1151 // Capture MCDC records specific to the function. 1152 for (const auto &MR : Function.MCDCRecords) 1153 if (FileIDs.test(MR.getDecisionRegion().FileID)) 1154 FileCoverage.MCDCRecords.push_back(MR); 1155 } 1156 1157 LLVM_DEBUG(dbgs() << "Emitting segments for file: " << Filename << "\n"); 1158 FileCoverage.Segments = SegmentBuilder::buildSegments(Regions); 1159 1160 return FileCoverage; 1161 } 1162 1163 std::vector<InstantiationGroup> 1164 CoverageMapping::getInstantiationGroups(StringRef Filename) const { 1165 FunctionInstantiationSetCollector InstantiationSetCollector; 1166 // Look up the function records in the given file. Due to hash collisions on 1167 // the filename, we may get back some records that are not in the file. 1168 ArrayRef<unsigned> RecordIndices = 1169 getImpreciseRecordIndicesForFilename(Filename); 1170 for (unsigned RecordIndex : RecordIndices) { 1171 const FunctionRecord &Function = Functions[RecordIndex]; 1172 auto MainFileID = findMainViewFileID(Filename, Function); 1173 if (!MainFileID) 1174 continue; 1175 InstantiationSetCollector.insert(Function, *MainFileID); 1176 } 1177 1178 std::vector<InstantiationGroup> Result; 1179 for (auto &InstantiationSet : InstantiationSetCollector) { 1180 InstantiationGroup IG{InstantiationSet.first.first, 1181 InstantiationSet.first.second, 1182 std::move(InstantiationSet.second)}; 1183 Result.emplace_back(std::move(IG)); 1184 } 1185 return Result; 1186 } 1187 1188 CoverageData 1189 CoverageMapping::getCoverageForFunction(const FunctionRecord &Function) const { 1190 auto MainFileID = findMainViewFileID(Function); 1191 if (!MainFileID) 1192 return CoverageData(); 1193 1194 CoverageData FunctionCoverage(Function.Filenames[*MainFileID]); 1195 std::vector<CountedRegion> Regions; 1196 for (const auto &CR : Function.CountedRegions) 1197 if (CR.FileID == *MainFileID) { 1198 Regions.push_back(CR); 1199 if (isExpansion(CR, *MainFileID)) 1200 FunctionCoverage.Expansions.emplace_back(CR, Function); 1201 } 1202 // Capture branch regions specific to the function (excluding expansions). 1203 for (const auto &CR : Function.CountedBranchRegions) 1204 if (CR.FileID == *MainFileID) 1205 FunctionCoverage.BranchRegions.push_back(CR); 1206 1207 // Capture MCDC records specific to the function. 1208 for (const auto &MR : Function.MCDCRecords) 1209 if (MR.getDecisionRegion().FileID == *MainFileID) 1210 FunctionCoverage.MCDCRecords.push_back(MR); 1211 1212 LLVM_DEBUG(dbgs() << "Emitting segments for function: " << Function.Name 1213 << "\n"); 1214 FunctionCoverage.Segments = SegmentBuilder::buildSegments(Regions); 1215 1216 return FunctionCoverage; 1217 } 1218 1219 CoverageData CoverageMapping::getCoverageForExpansion( 1220 const ExpansionRecord &Expansion) const { 1221 CoverageData ExpansionCoverage( 1222 Expansion.Function.Filenames[Expansion.FileID]); 1223 std::vector<CountedRegion> Regions; 1224 for (const auto &CR : Expansion.Function.CountedRegions) 1225 if (CR.FileID == Expansion.FileID) { 1226 Regions.push_back(CR); 1227 if (isExpansion(CR, Expansion.FileID)) 1228 ExpansionCoverage.Expansions.emplace_back(CR, Expansion.Function); 1229 } 1230 for (const auto &CR : Expansion.Function.CountedBranchRegions) 1231 // Capture branch regions that only pertain to the corresponding expansion. 1232 if (CR.FileID == Expansion.FileID) 1233 ExpansionCoverage.BranchRegions.push_back(CR); 1234 1235 LLVM_DEBUG(dbgs() << "Emitting segments for expansion of file " 1236 << Expansion.FileID << "\n"); 1237 ExpansionCoverage.Segments = SegmentBuilder::buildSegments(Regions); 1238 1239 return ExpansionCoverage; 1240 } 1241 1242 LineCoverageStats::LineCoverageStats( 1243 ArrayRef<const CoverageSegment *> LineSegments, 1244 const CoverageSegment *WrappedSegment, unsigned Line) 1245 : ExecutionCount(0), HasMultipleRegions(false), Mapped(false), Line(Line), 1246 LineSegments(LineSegments), WrappedSegment(WrappedSegment) { 1247 // Find the minimum number of regions which start in this line. 1248 unsigned MinRegionCount = 0; 1249 auto isStartOfRegion = [](const CoverageSegment *S) { 1250 return !S->IsGapRegion && S->HasCount && S->IsRegionEntry; 1251 }; 1252 for (unsigned I = 0; I < LineSegments.size() && MinRegionCount < 2; ++I) 1253 if (isStartOfRegion(LineSegments[I])) 1254 ++MinRegionCount; 1255 1256 bool StartOfSkippedRegion = !LineSegments.empty() && 1257 !LineSegments.front()->HasCount && 1258 LineSegments.front()->IsRegionEntry; 1259 1260 HasMultipleRegions = MinRegionCount > 1; 1261 Mapped = 1262 !StartOfSkippedRegion && 1263 ((WrappedSegment && WrappedSegment->HasCount) || (MinRegionCount > 0)); 1264 1265 // if there is any starting segment at this line with a counter, it must be 1266 // mapped 1267 Mapped |= std::any_of( 1268 LineSegments.begin(), LineSegments.end(), 1269 [](const auto *Seq) { return Seq->IsRegionEntry && Seq->HasCount; }); 1270 1271 if (!Mapped) { 1272 return; 1273 } 1274 1275 // Pick the max count from the non-gap, region entry segments and the 1276 // wrapped count. 1277 if (WrappedSegment) 1278 ExecutionCount = WrappedSegment->Count; 1279 if (!MinRegionCount) 1280 return; 1281 for (const auto *LS : LineSegments) 1282 if (isStartOfRegion(LS)) 1283 ExecutionCount = std::max(ExecutionCount, LS->Count); 1284 } 1285 1286 LineCoverageIterator &LineCoverageIterator::operator++() { 1287 if (Next == CD.end()) { 1288 Stats = LineCoverageStats(); 1289 Ended = true; 1290 return *this; 1291 } 1292 if (Segments.size()) 1293 WrappedSegment = Segments.back(); 1294 Segments.clear(); 1295 while (Next != CD.end() && Next->Line == Line) 1296 Segments.push_back(&*Next++); 1297 Stats = LineCoverageStats(Segments, WrappedSegment, Line); 1298 ++Line; 1299 return *this; 1300 } 1301 1302 static std::string getCoverageMapErrString(coveragemap_error Err, 1303 const std::string &ErrMsg = "") { 1304 std::string Msg; 1305 raw_string_ostream OS(Msg); 1306 1307 switch (Err) { 1308 case coveragemap_error::success: 1309 OS << "success"; 1310 break; 1311 case coveragemap_error::eof: 1312 OS << "end of File"; 1313 break; 1314 case coveragemap_error::no_data_found: 1315 OS << "no coverage data found"; 1316 break; 1317 case coveragemap_error::unsupported_version: 1318 OS << "unsupported coverage format version"; 1319 break; 1320 case coveragemap_error::truncated: 1321 OS << "truncated coverage data"; 1322 break; 1323 case coveragemap_error::malformed: 1324 OS << "malformed coverage data"; 1325 break; 1326 case coveragemap_error::decompression_failed: 1327 OS << "failed to decompress coverage data (zlib)"; 1328 break; 1329 case coveragemap_error::invalid_or_missing_arch_specifier: 1330 OS << "`-arch` specifier is invalid or missing for universal binary"; 1331 break; 1332 } 1333 1334 // If optional error message is not empty, append it to the message. 1335 if (!ErrMsg.empty()) 1336 OS << ": " << ErrMsg; 1337 1338 return Msg; 1339 } 1340 1341 namespace { 1342 1343 // FIXME: This class is only here to support the transition to llvm::Error. It 1344 // will be removed once this transition is complete. Clients should prefer to 1345 // deal with the Error value directly, rather than converting to error_code. 1346 class CoverageMappingErrorCategoryType : public std::error_category { 1347 const char *name() const noexcept override { return "llvm.coveragemap"; } 1348 std::string message(int IE) const override { 1349 return getCoverageMapErrString(static_cast<coveragemap_error>(IE)); 1350 } 1351 }; 1352 1353 } // end anonymous namespace 1354 1355 std::string CoverageMapError::message() const { 1356 return getCoverageMapErrString(Err, Msg); 1357 } 1358 1359 const std::error_category &llvm::coverage::coveragemap_category() { 1360 static CoverageMappingErrorCategoryType ErrorCategory; 1361 return ErrorCategory; 1362 } 1363 1364 char CoverageMapError::ID = 0; 1365